文档库 最新最全的文档下载
当前位置:文档库 › 小型四旋翼无人机组机方案设计

小型四旋翼无人机组机方案设计

小型四旋翼无人机组机方案设计
小型四旋翼无人机组机方案设计

一、小型四旋翼无人机总体架构

典型的小型四旋翼无人机,一般由机械部分(机架),动力部分(包括电机、电子调速器、电调连接板、桨叶、电池),电子部分(包括飞控板、通信模块、遥控器接收机、PPM编码板)组成。

(一)机械部分

机架

考虑到编队飞行对实验室空间的要求,希望机架能够尽量的小。根据与蔡国伟老师对电机与桨叶(后文提到)的搭配进行讨论后,决定将机架的大小设定为轴距255mm,边距180mm(由6寸桨的大小决定)。

1,底板 2,中间机架板 3,顶板

整个机体由底板、中间机架板、顶板连接而成(通过尼龙螺柱和螺丝);底板安置电池、xbee模块、遥控器接收机、电调连接板,中间机架板安置4个电调、pixhawk飞控板,顶板用于安置定位系统标记点(同时起到保护、隐藏pixhawk 飞控板及走线的作用);为便于安装,所有开孔、镂空均根据拟选器件匹配设计;拟采用碳2mm厚3K纤维板加工。

另设计四个保护罩如下(可用于避免桨叶受损或伤人):

4,保护罩

(二)动力部分

(1)电机

一般而言,小型四旋翼无人机(轴距250mm左右)选用KV2000左右(配5-6寸桨)的电机。经过对比讨论后,拟选用飓风D2206 KV1900无刷直流电机(配6寸桨)。之所以选用这款电机是因为这款电机能够提供较大的拉力,同时该电机的工作电流处在一个比较小的区间,单个电机重量仅为27.5g。

飓风D2206 KV1900参数表

飓风D2206 KV1900实物图

(2)电子调速器

电子调速器用于驱动无刷直流电机,比较重要的参数是工作电流,刷新频率,重量。一般而言,市面上可售的大部分电子调速器的刷新频率都大于400hz,符合要求。根据上文所选电机的工作电流,综合考虑重量要求,与蔡国伟老师沟通后,拟选用好盈XRotor-10A电子调速器。

好盈XRotor系列电子调速器参数表

好盈XRotor-10A电子调速器实物图

(3)电调连接板

电调连接板,其本质为一块电源配电板,用于简化电池与电调、电调与飞控之间的电气连接,同时可以避免导线拆装时的反复焊接。

电调连接板电调连接板与电调连接图

(4)桨叶

桨叶与电机的搭配主要是从机架大小、能否提供足够动力这两方面进行考虑。由于希望设计体型较小的机架(以便给室编队飞行提供更大的机动空间),因此只考虑5寸桨、6寸桨。经过调研,发现搭配5寸桨时,整机起飞重量在500g 以下时较为合适。考虑到本次将要设计组装的小型四旋翼无人机的起飞重量在600g左右,在与蔡国伟老师交流后,决定选用6寸桨。根据蔡老师建议,桨叶的调衡和材质直接决定性能,因此需要多购入几款桨叶进行测试。

6寸桨

(5)电池

现在几乎所有的四旋翼无人机都使用锂电池,主要考量电池的容量、放电速率、自身重量。综合考虑后,电池拟选用ACE格瑞普2200mAh锂电池,充电倍率20C,重量186g,尺寸25mm*34mm*105mm。

ACE格瑞普2200mAh锂电池

(三)电子部分

(1)飞控板

飞控板是四旋翼无人机的核心电子部件。考虑到嵌入算法的需要,拟选用开源飞控板。开源飞控领域影响比较大的就是3d robotics公司生产的APM和Pixhawk。其中APM的由开源社区设计与维护(硬件与软件均为开源),Pixhawk 是由苏黎世联邦理工学院牵头的一个开源项目(硬件与软件均为开源),致力于为学术研究、业余爱好、工业用途提供低成本、高性能的自动驾驶仪。Pixhawk 的硬件部分明显地要比APM强大,同时其软件部分采用了Nuttx实时操作系统,专业性更强,因此拟选用Pixhawk飞控板。

Pixhawk与APM硬件对比

(2)通信模块

在对比了数传电台、蓝牙、zigbee以及wifi这四种通信机制后,摒弃了蓝牙、数传电台(组网比较困难),留下zigbee和wifi作为预选。其中zigbee 的延时较短,因此优先选用zigbee。拟选zigbee模块为xbee Pro S2B。

基于STM32的四旋翼飞行器设计

摘要 四轴飞行器是一种结构紧凑、飞行方式独特的垂直起降式飞行器,与普通飞行器相比,具有结构简单、故障率低和单位体积能够产生更大升力等优点,所以在军事和民用多个领域都有广阔的应用前景,非常适合在狭小空间内执行任务。 本设计采用stm32f103zet6作为主控芯片,3轴加速度传感器mpu6050作为惯性测量单元,通过2.4G无线模块和遥控板进行通信,最终使用PID控制算法以PWM方式控制电子调速器驱动电机实现了四轴飞行器的设计。 关键词:四轴飞行器,stm32;mpu6050,2.4G无线模块.PID.PWM

Abstract Quadrocopter has broad application prospect in the area of military and civilian because of its advantages of simple structure. Small size, low failure rate, taking off and landing ertically . etc. it is suitable for having task in narrow space. This design uses STM32f103zet6 as the master chip, and triaxial accelerometer mpu6050 inertial measurement unit, via 2.4G wireless module and remote control panel for communication. Finally using pid control algorithm with pwm drives the electronic speed controller to change moto to realize the design of quadrocopter. Key word : quadrocopter,stm32,mpu6050,2.4G wireless module ;pid; pwm

2015年全国大学生电子设计大赛四旋翼飞行器论文

2015年全国大学生电子设计竞赛多旋翼自主飞行器(C题) 2015年8月15日

摘要 本文对四旋翼碟形飞行器进行了初步的研究和设计。首先,对飞行器各旋翼的电机选择做了论证,分析了实际升力效率与PWM的关系并选择了此样机的最优工作频率,并重点对飞行器进行了硬件和软件的设计。 本飞行器采用瑞萨R5F100LEA单片机为主控制器,通过四元数算法处理传感器MPU6000采集机身平衡信息并进行闭环的PID控制来保持机身的平衡。整个控制系统包括电源模块、传感器检测模块、电机调速模块、飞行控制模块及微处理器模块等。角度传感器和角速率传感模块为整个系统提供飞行器当前姿态和角速率信号,构成飞行器的增稳系统。本系统经过飞行测试,可以达到设计要求。关键字:R5F100LEA单片机、传感器、PWM、PID控制。

目录 1系统方案 (1) 1.1电机的论证与选择 (1) 1.2红外对管检测传感器的论证与选择 (1) 1.3电机驱动方案的论证与选择 (2) 2系统控制理论分析 (2) 2.1控制方式 (2) 2.2 PID模糊控制算法 (2) 3控制系统硬件与软件设计 (4) 3.1系统硬件电路设计 (4) 3.1.1系统总体框图 (4) 3.1.2 飞行控制电路原理图 (4) 3.1.3电机驱动模块子系统 (5) 3.1.4电源 (5) 3.1.5简易电子示高模块电路原理图 (6) 3.2系统软件设计 (6) 3.2.1程序功能描述与设计思路 (6) 3.2.2程序流程图 (6) 4测试条件与测试结果 (7) 4.1 测试条件与仪器 (7) 4.2 测试结果及分析 (7) 4.2.1测试结果(数据) (7) 4.2.2测试分析与结论 (8) 附录1:电路图原理 (9) 附录2:源程序 (10)

四旋翼设计报告

四旋翼自主飞行器(A题) 摘要 四旋翼飞行器是无人飞行器中一个热门的研究分支,随着惯性导航技术的发展与惯导传感器精度的提高,四旋翼飞行器在近些年得到了快速的发展。 为了满足四旋翼飞行的设计要求,系统以STM32F103VET6作为四旋翼自主飞行器控制的核心,处理器内核为ARM32位Cortex-M3 CPU,最高72MHz工作频率,工作电压3.3V-5.5V。该四旋翼由电源模块、电机电调调速控制模块、传感器检测模块、飞行器控制模块等构成。飞行姿态检测模块是通过采用MPU-6050模块,整合3轴陀螺仪、3轴加速度计,检测飞行器实时飞行姿态,实现飞行器运动速度和转向的精准控制。传感器检测模块包括红外障碍传感器、超声波测距模块,在动力学模 型的基础上,将四旋翼飞行器实时控制算法分为两个PID 控制回路,即位置控制回 路和姿态控制回路。测试结果表明系统可通过各个模块的配合实现对电机的精确控制,具有平均速度快、定位误差小、运行较为稳定等特点。 关键词:四旋翼飞行器;STM32;飞行姿态控制;串口PID

目录 1 系统方案论证与控制方案的选择...................................................................- 2 - 1.1 地面黑线检测传感器...................................................................... .............- 2 - 1.2 电机的选择与论证...................................................................... .................- 2 - 1.3 电机驱动方案的选择与论证...................................................................... .- 2 - 2 四旋翼自主飞行器控制算法设计...................................................................- 3 -

小型四旋翼无人机组机方案

一、小型四旋翼无人机总体架构 典型的小型四旋翼无人机,一般由机械部分(机架),动力部分(包括电机、电子调速器、电调连接板、桨叶、电池),电子部分(包括飞控板、通信模块、遥控器接收机、PPM编码板)组成。 (一)机械部分 机架 考虑到编队飞行对实验室空间的要求,希望机架能够尽量的小。根据与蔡国伟老师对电机与桨叶(后文提到)的搭配进行讨论后,决定将机架的大小设定为轴距255mm,边距180mm(由6寸桨的大小决定)。 1,底板 2,中间机架板 3,顶板 整个机体由底板、中间机架板、顶板连接而成(通过尼龙螺柱和螺丝);底板安置电池、xbee模块、遥控器接收机、电调连接板,中间机架板安置4个电调、pixhawk飞控板,顶板用于安置定位系统标记点(同时起到保护、隐藏pixhawk 飞控板及走线的作用);为便于安装,所有开孔、镂空均根据拟选器件匹配设计;拟采用碳2mm厚3K纤维板加工。 另设计四个保护罩如下(可用于避免桨叶受损或伤人):

4,保护罩 (二)动力部分 (1)电机 一般而言,小型四旋翼无人机(轴距250mm左右)选用KV2000左右(配5-6寸桨)的电机。经过对比讨论后,拟选用飓风D2206 KV1900无刷直流电机(配6寸桨)。之所以选用这款电机是因为这款电机能够提供较大的拉力,同时该电机的工作电流处在一个比较小的区间,单个电机重量仅为。

飓风D2206 KV1900参数表 飓风D2206 KV1900实物图 (2)电子调速器 电子调速器用于驱动无刷直流电机,比较重要的参数是工作电流,刷新频率,重量。一般而言,市面上可售的大部分电子调速器的刷新频率都大于400hz,符合要求。根据上文所选电机的工作电流,综合考虑重量要求,与蔡国伟老师沟通后,拟选用好盈XRotor-10A电子调速器。

四旋翼无人机毕业设计

渤海大学本科毕业论文(设计)四旋翼无人机设计与制作 The Manufacture and Design of Quad Rotor Unmanned Aerial Vehicle 学院(系): 专业: 学号: 学生姓名: 入学年度: 指导教师: 完成日期:

摘要 四旋翼无人机飞行器因为它的结构简单,而且控制起来也很方便,因此它成为了近几年来发展起来的热门产业。在这里本文详细的介绍了四旋翼飞行器的设计和制作的过程,其中包括了四旋翼无人机飞行器的飞行原理,硬件的介绍和选型,姿态参考算法的推导和实现,系统软件的具体实现。该四旋翼飞行器控制系统以STM32f103zet 单片机为核心,根据各个传感器的特点,采用不同的校正方法对各个传感器数据进行校正以及低通数字滤波处理,之后设计了互补滤波器对姿态进行最优估计,实现精确的姿态测量。最后结合GPS控制与姿态控制叠加进行PID控制四旋翼飞行器的四个电机,来达到实现各种飞行动作的目的。在制作四旋翼飞行器的过程中,进行了大量的调试并且与现有优秀算法做对比验证,最终设计出能够稳定飞行的四旋翼无人机飞行器。 关键词:姿态传感器;四元数姿态解算;STM32微型处理器;数据融合;PID

The Manufacture and Design of Quad Rotor Unmanned Aerial Vehicle Abstract Quad-rotor unmanned aerial vehicle aircraft have a simple structure, and it is very easy to control, so it has become popular in recent years. Here article describes in detail the design and the process of making the four-rotor aircraft, including Quad-rotor UAV aircraft flight principle, hardware introduction and selection, implementation and realization of derivation attitude reference algorithm, the system software . The Quad-rotor aircraft control system STM32f103zet microcontroller core, and the advantages and disadvantages based on the accelerometer sensor, a gyro sensor and electronic compass sensors using different correction methods for correcting various sensor data and low-pass digital filter processing, after design complementary filter to estimate the optimal posture, precise attitude measurement. Finally, GPS control and attitude control PID control is superimposed four-rotor aircraft four motors to achieve a variety of flight maneuvers to achieve the purpose. Four-rotor aircraft in the production process, a lot of debugging and do comparison with the existing excellent algorithm validation, the final design to stabilize the Quad-rotor UAV flying aircraft. Key Words:MEMS Sensor; Quaternion; STM32 Processor; Data Fusion; PID

四旋翼直升机的动力学原理

冯如杯论文 《四旋翼飞行器的设计与控制》 院(系)名称机械工程及自动化学院 作者姓名薛骋豪 学号35071422 指导教师梁建宏 2008年3月22日

四旋翼飞行器的设计与控制 薛骋豪 摘要 四旋翼直升机,其主旋翼分成前后与左右两组,旋转时方向相反,因此与一般直升机最主要的不同点为四旋翼直升机不需要用尾旋翼来平衡机体。因为四旋翼直升机为不稳定系统,因此需利用旋转专用的感测器:陀螺仪来感知机身的平衡程度并将讯号传送至微控制器,再通过微控制器内部程序的运算产生控制信号来控制机体上四个旋翼的转速,以维持整个机身的平衡促使四旋翼直升机能顺利飞行。 关键词:四旋翼、VTOL(垂直起降)、矩阵控制、 Abstract Quadrotor, its main rotor divides into with two about groups from beginning to end, in opposite direction while rotating, so Quadrotor and does not need to fasten the wing and having the balance organism for four with the end with the main difference of general helicopter. Whether four fasten wing helicopter stable system, need to utilize and rotate the special-purpose detecting device. The gyroscope comes to perceive balancing the degree and conveying the signal to the little controller of the fuselage, and then produce the control signal to control four rotational speed of fastenning the wings on the organism through the operation of the procedure within the little controller, impel four to fly smoothly while Quadrotor for the balance of maintaining the whole fuselage. Key words: Quadrotor、VTOL(Vertical Take-Off and Landing)、matrix control

基于WIFI的智能多功能微型四旋翼飞行器设计

基于WIFI的智能多功能微型四旋翼飞行器设计 摘要:本文基于WIFI无线传输技术,通过建立四旋翼飞行器的空气动力数学模型,结合实际需求分析,通过单片机总控,各功能模块有机整合,优化软硬件设计,完成最终制作调试,实现飞行器的自由巡航、悬停、降落和视频探测等功能,达到了预期设计目标。 关键词:WIFI;四旋翼;飞行器 1.引言 四旋翼飞行器是一种可以实现垂直起降的旋翼式无人飞行器,具有操控简单,体积小,机动性强,启动快,方便拍摄等优点,能及时地将诸如地震、矿难等特殊现场第一手资料传送回控制中心,帮助我们了解现场状况并作出正确判断[1]。 国外对旋翼式飞行器的研究较多且较深入,我国在该领域的研究起步较晚,成果相对较弱,并且侧重点有所不同,有的侧重数学建模,有的侧重自动控制与研发等等[2]。 本文于是针对自然灾害等特殊现场设计了一种基于WIFI的智能多功能四旋翼飞行器,采用独立控制的四旋翼,升力更大,同时可狭小空间内起降,还具有机械结构简单、机动灵活、操控性高及成本低等优势。 2.建立动力学模型 2.1 坐标变换 四旋翼飞行器的四个旋翼都高速旋转,其所受的空气动力比较复杂,要建立非常准确的空气动力学模型比较困难,为了简化四旋翼飞行器的数学模型,可忽略其弹性形变[3]。为了相对准确的描述飞行器运动状态,建立三维数学坐标系,也叫机体坐标系。OX轴指向地平面方向,由右手定则确定OY轴和OZ轴的方向。用原点O表示飞行器的重心,则OX轴指向飞行器的前方,OY轴指向飞行器的右方,OZ轴指向飞行器的上方。地面三维坐标系与机体坐标系之间存在三个欧拉角:偏航角ψ(沿Z轴方向)、滚动角φ(沿X轴方向)和俯仰角q(沿Y轴方向)。两个坐标系之间的关系如下: ,,(1) 可进一步的转换矩阵得: (2) 经计算可得如下坐标转换公式:

四旋翼无人机前沿报告

四旋翼无人机前沿报告 近些年来,各国的许多研究机构都对小型四旋翼无人机进行了一系列的研究,下面列出来一些比较有代表性的四旋翼无人机研究成果。 一、国内外技术发展现状 1.“蜻蜓”无人机 近期,约翰-霍普金斯大学的应用物理实验室的一个研究小组就开发出了一个叫做“蜻蜓(Dragonfly)”的概念无人机任务。该任务提出了一款利用放射性同位素驱动的双四旋翼飞行器,它将可以在土星最大的卫星Titan上执行太空任务。蜻蜓项目首席研究员Elizabeth Turtle指出,这种实验是他们在实验室无法进行的,因为涉及到时间尺度问题,而Titan富含有有机分子和液态水的表面却能维持很长一段时间的时间尺度。该项目就是为了研究Titan生命前化学而设计的。由于Titan表层厚重的云层使得那里的太阳能效率并不高,为此,研究人员改用了多任务放射性同位素热电机(MMRTG)为飞行器提供能源。据了解,MMRTG能让这架双四旋翼无人机在白天持续飞行一个小时的时间,夜晚它将接受充电。蜻蜓无人机的空气流动可以让它收集样本和测量的种类获得增加。在时长1个小时的飞行中,飞行器大概能飞10到20公里。这意味着蜻蜓可以在为期两年的任务中探测到的范围非常广。 2.“OS4”四旋翼无人机 OS4是EPFL自动化系统实验室开发的一种小型四旋翼飞行器,研究的重点是自主飞行控制算法和机构设计方法,目标是要实现室内和室外环境中的完全自主飞行。目前,该项目以及进行了两个阶段。OS4I最大长度约为73CM,质量为235g,它使用了Draganflyer3的十字框架和旋翼,电机型号为Faulhaber1724,微惯性测量单元为Xsens的MT9-B。研究

四旋翼飞行器实验报告

实验报告 课程名称:《机械原理课内实验》 学生姓名:徐学腾 学生学号:1416010122 所在学院:海洋信息工程学院 专业:机械设计制造及其自动化 报导教师:宫文峰 2016年6 月26 日

实验一四旋翼飞行器实验 一、实验目的 1.通过对四旋翼无人机结构的分析,了解四旋翼无人机的基本结构、工作的原理和传动控制系统; 2. 练习采用手机控制终端来控制无人机飞行,并了解无人机飞行大赛的相关内容,及程序开发变为智能飞行无人机。 二、实验设备和工具 1. Parrot公司AR.Drone 2.0四旋翼飞行器一架; 2. 苹果手机一部; 3. 蓝牙数据传输设备一套。 4. 自备铅笔、橡皮、草稿纸。 三、实验内容 1、了解四旋翼无人机的基本结构; 2、了解四旋翼无人机的传动控制路线; 3、掌握四旋翼无人机的飞行控制的基本操作; 4、了解四旋翼无人机翻转动作的机理; 5、能根据指令控制无人机完成特定操作。 四、实验步骤 1、学生自行用IPHONE手机下载并安装AR.FreeFlight四旋翼飞行器控制软件。 2、检查飞行器结构是否完好无损; 3、安装电沲并装好安全罩; 4、连接WIFI,打开手机AR.FreeFlight软件,进入控制界面; 5、软件启动,设备连通,即可飞行。 6、启动和停止由TAKE OFF 控制。 五、注意事项 1.飞行器在同一时间只能由一部手机终端进行控制; 2. 飞行之前,要检查螺旋浆处是否有障碍物干涉; 3. 飞行之后禁止用手去接飞行器,以免螺旋浆损伤手部; 4. 电量不足时,不可强制启动飞行; 5. 翻转特技飞行时,要注意飞行器距地面高度大于4米以上; 6. 飞行器不得触水; 7. 飞行器最大续航时间10分钟。

四旋翼飞行器的结构形式和工作原理

四旋翼飞行器的结构形式和工作原理 1.结构形式 直升机在巧妙使用总距控制和周期变距控制之前,四旋翼结构被认为是一种最简单和最直观的稳定控制形式。但由于这种形式必须同时协调控制四个旋翼的状态参数,这对驾驶员认为操纵来说是一件非常困难的事,所以该方案始终没有真正在大型直升机设计中被采用。这里四旋翼飞行器重新考虑采用这种结构形式,主要是因为总距控制和周期变距控制虽然设计精巧,控制灵活,但其复杂的机械结构却使它无法再小型四旋翼飞行器设计中应用。另外,四旋翼飞行器的旋翼效率相对很低,从单个旋翼上增加拉力的空间是非常有限的,所以采用多旋翼结构形式无疑是一种提高四旋翼飞行器负载能力的最有效手段之一。至于四旋翼结构存在控制量较多的问题,则有望通过设计自动飞行控制系统来解决。四旋翼飞行器采用四个旋翼作为飞行的直接动力源,旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,旋翼1和旋翼3逆时针旋转,旋翼2和旋翼4顺时针旋转,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。四旋翼飞行器的结构形式如图1.1所示。

图1.1四旋翼飞行器的结构形式 2.工作原理 典型的传统直升机配备有一个主转子和一个尾桨。他们是通过控制舵机来改变螺旋桨的桨距角,从而控制直升机的姿态和位置。四旋翼飞行器与此不同,是通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。由于飞行器是通过改变旋翼转速实现升力变化,这样会导致其动力部稳定,所以需要一种能够长期保稳定的控制方法。四旋翼飞行器是一种六自由度的垂直升降机,因此非常适合静态和准静态条件下飞行。但是四旋翼飞行器只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

电子设计大赛国赛_四旋翼自主飞行器A题

2013年全国大学生电子设计竞赛课题:四旋翼自主飞行器(B 题) 【本科组】 2013年9月7日

摘要 为了满足四旋翼飞行器的设计要求,设计了以微控制器为核心的控制系统和算法。首先进行了各单元电路方案的比较论证,确定了硬件设计方案。四旋翼飞行器采用了固连在刚性十字架交叉结构上的4个电机驱动的一种飞行器,以78K0R CPU內核为基础,围绕新的RL78 CPU內核演化而来的RL78/G13作为控制核心,工作频率高达32MHz,工作电压1.6V-5.5V,适合各种类型的消费类电子和工业应用, 满足8/16位微控制器的需求,有助于降低系统功耗,削减总系统的构建成本。采用9926B MOS管芯片的驱动直流电机,该驱动芯片具有内阻小、负载电流大、且控制简单的特性。通过采用MPU-6050整合的3轴陀螺仪、3轴加速器,并含可藉由第二个I2C端口连接其他厂牌之加速器、磁力传感器、或其他传感器的数位运动处理(DMP: Digital Motion Processor)硬件加速引擎,由主要I2C端口以单一数据流的形式,向应用端输出完整的9轴融合演算技术InvenSense的运动处理资料库,可处理运动感测的复杂数据,降低了运动处理运算对操作系统的负荷,实现了四旋翼飞行器运动速度和转向的精准控制。通过HC-SR04超声波测距模块实现了对四旋翼飞行器飞行高度的准确控制。通过激光传感器,实现了四旋翼飞行器沿黑线前进,在规定区域起降,投放铁片等功能,所采用的设计方案先进有效,完全达到了设计要求。 关键词:四旋翼自主飞行器,E18-D50NK光电传感器,寻线,超声波,单片机。

四旋翼自主飞行器(B 题) 【本科组】 1系统方案 本系统主要由电源模块、电机驱动模块、光电循迹模块模块、超声波测高模块、姿态传感器模块组成,下面分别论证这几个模块的选择。 1.1 电源模块的论证与选择 方案一:采用线性元器件LM7805三端稳压器构成稳压电路,为单片机等其他模块供电,输出纹波小,效率低,容易发热。 方案二:采用元器件2596为开关稳压芯片,效率高,输出的纹波大,不容易发热。 方案三:采用线性元器件2940构成稳压电路,为单片机等其他模块供电,输出纹波小,效率高,不容易发热,综合性能高。 综合以上三种方案,选择方案三。 1.2 电机驱动模块的论证与选择 方案一:采用三极管驱动,由于输出电流很大,容易发热, 方案二:采用L298N电机驱动模块,通过电流大,容易发热,使得电机转速变慢,载重量变小。 方案三:采用场效应管9926B芯片组成的电机驱动模块,驱动能力好。能承受的最大电流为7.5A,符合要求。 综合以上三种方案,选择方案三。 1.3 光电循迹模块的论证与选择 方案一:采用CCD摄像头采集图片经过算法处理循迹,前瞻性比较好、循迹效果好,但是处理程序复杂、成本高。 方案二:采用红外对管,有效距离太短,不能满足实际循迹要求。 方案三:采用E18-D50NK光电传感器,这是一种集发射与接收于一体的光电传感器, 检测距离可以根据要求进行调节。探测距离远、受可见光干扰小、前瞻性较好、抗干扰性较好。

四旋翼飞行器设计资料

四旋翼飞行器的设计 四旋翼微型飞行器是一种以4个电机作为动力装置.通过调节电机转 速来控制飞行的欠驱动系统;为了实现四旋翼微型飞行器的自主飞行 控制,对飞行控制系统进行了初步设计,并且以C8051F020单片机为计算控制单元,给出了飞行控制系统的硬件设计,研究了设计中的关键技术;由于采用贴片封装和低功耗的元器件,使飞行器具有重量轻、体积小、功耗低的优点;经过多次室内试验,该硬件设计性能可靠,能满足飞行器起飞、悬停、降落等飞行模态的控制要求. 一.微小型四旋翼飞行器的发展前景 根据微小型四旋翼飞行器发展现状和相关高新技术发展趋势, 预计它将有以下发展前景。 1 )随着相关研究进一步深入,预计在不久的将来小型四旋翼飞行 器技术会逐步走向成熟与实用。任务规划、飞行控制、无 G P S 导航、视觉和通信等子系统将进一步健全和完善,使其具有自主起降和全天候抗干扰稳定飞行能力。它未来的主要技术指标:任务半径 5 k m,飞行高度 1 0 0 m,续航时间 1 h ,有效载荷约 5 0 0 g ,完全能够填补目前国际上在该范围内侦察手段的空白。 2 )未来的微型四旋翼飞行器将完全能够达到美国国防预研局对 M A V基本技术指标的要求。随着低雷诺数空气动力学研究的深入,以及纳米和 M E MS 技术的发展,四旋翼 M A V必然取得理论和工程上的突破。它将是一种有 4个旋翼的可飞行传感器芯片,是一

任务与通信等子与能源、动力导航与控制、 ( 个集成多个子系统系统) 的高度复杂ME M S系统;不但能够在空中悬停和向任意方向机动飞行,还 能飞临、绕过甚至是穿过目标物体。此外,它还将拥有良好的隐身功能和信息传输能力。 3 )微小型四旋翼飞行器的编队飞行与作战应 在未来的战争中,微小型四旋翼飞行器的任务之一将是对敌方进行电子干扰并攻击其核心目标。单个微小型飞行器的有效载荷量毕竟有限,难以有效地完成任务,而编队飞行与作战不仅可以极大地提高有效载荷量,还能够增强其突防能力。 二.四旋翼飞行器的国内外研究现状 目前世界上存在的四旋翼飞行器基本上都属于微小型无人飞行器,一般可分为3类:遥控航模四旋翼飞行器、小型四旋翼飞行器以及微型四旋翼飞行器。 (1)遥控航模四旋翼飞行器 遥控航模四旋翼飞行器的典型代表是美国Dfaganflyer公司研制的Dragan.flyer III和香港银辉(silverlit)玩具制品有限公司研制的X.UFO。Draganflyer III是一款世界著名的遥控航模四旋翼飞行器,主要用于航拍。机体最大长度(翼尖到翼尖)76.2cm,高18cm,重481.19:旋翼直径28cm,重69;有效载荷113.29;可持续飞行16--20min。Draganflyer III采用了碳纤维和高性能塑料作为机体材料,其机载电子设备可以控1书1]4个电机的转速。另外,还使用

四旋翼无人机建模及其PID控制律设计

四旋翼无人机建模及其PID控制律设计 时间:2012-10-27 来源:现代电子技术作者:吴成富,刘小齐,袁旭 关键字:PID无人机建模 摘要:文中对四旋翼无人机进行建模与控制。在建模时采用机理建模和实验测试相结合的方法,尤其是对电机和螺旋桨进行了详细的建模。首先对所建的模型应用PID进行了姿态角的控制。在此基础上又对各个方向上的速度进行了PlD 控制。然后在四旋翼飞机重心进行偏移的情况下进行PID控制,仿真结果表明PID控制律能有效的控制四旋翼无人机在重心偏移情况下的姿态角和速度。最后为了方便控制加入了控制逻辑。 关键词:四旋翼;建模;PID;控制;重心偏移;控制逻辑 四旋翼无人机是一种具有4个旋翼的飞行器,有X型分布和十字型分布2种。文中采用的是X型分布的四旋翼,四旋翼无人机只能通过改变旋翼的转速来实现各种运动。国外对四旋翼无人直升机的研究非常活跃。加拿大雷克海德大学的Tavebi和McGilvrav证明了使用四旋翼设计可以实现稳定的飞行。澳大利亚卧龙岗大学的McKerrow对Dragantlyer进行了精确的建模。目前国外四旋翼无人直升机的研究工作主要集中在以下3个方面:基于惯导的自主飞行、基于视觉的自主飞行和自主飞行器系统。而国内对四旋翼的研究主要有:西北工业大学、国防科技大学、南京航天航空大学、中国空空导弹研究院第27所、吉林大学、北京科技大学和哈工大等。大多数的研究方式是理论分析和计算机仿真,提出了很多控制算法。例如,针对无人机模型的不确定性和非线性设计的 DI/QFT(动态逆/定量反馈理论)控制器,国防科技大学提出的自抗扰控制器可以对小型四旋翼直升机实现姿态增稳控制,还有一些经典的方法比如PID控制等,但是都不能很好地控制四旋翼速度较大的情况。本文对四旋翼无人机设计了另外一种不同的控制方法即四旋翼的四元数控制律设计,仿真结果表明这种控制方法是一种有效的方法。尤其是对飞机的飞行速度较大的情况,其能稳定地控制四旋翼达到预期的效果。 1 四旋翼的模型 文中所研究的四旋翼结构属于X型分布,即螺旋桨M1和M4与M2和M3关于X轴对称,螺旋桨M1和M2与M3和M4关于Y轴对称,如图1所示。对于四旋翼的模型本文主要根据四旋翼的物理机理进行物理建模,并做以下2条假设。

四旋翼飞行器 设计报告

大学生电子设计竞赛 设计报告 摘要:本设计实现基于STM32开发板的十字形四旋翼飞行器,四旋翼由主控制板、陀螺仪、电机模块、超声波测距、电源和投弹打靶模块等六部分组成。其中,控制核心STM32负责飞行器姿态数据接收和飞行姿态控制;陀螺仪采用MPU6050模块,该模块经过卡尔曼滤波处理采集的数据,输出数据,用PID控制算法对数据进行处理,同时,解算出相应电机需要的的PWM增减量,及时调整电机转速,调整飞行姿态,使飞行器的飞行的更加稳定。电机模块通过电调控制无刷直流电机,超声波传感器进行测距,起飞后悬停在一定高度,打靶后降落。 关键词:四旋翼;PID控制;陀螺仪,姿态角,电机控制

2

目录 1系统方案 (1) 1.1控制系统选择方案 (1) 1.2飞行姿态控制方案论证 (1) 1.3角度测量模块的方案论证 (2) 1.4高度测量模块方案论证.............................................. 错误!未定义书签。2理论分析与计算 (2) 2.1控制模块 .................................................................... 错误!未定义书签。 2.2机翼电机 .................................................................... 错误!未定义书签。 2.3飞行姿态控制单元 (3) 3电路与程序设计 (4) 3.1系统总体设计思路 (4) 3.2主要元器件清单......................................................... 错误!未定义书签。 3.3系统框图 .................................................................... 错误!未定义书签。 3.3.1系统硬件框图 ..................................................... 错误!未定义书签。 3.3.2系统软件框图 ..................................................... 错误!未定义书签。4测试方案与测试结果.. (5) 5结论 (6) 3

四旋翼无人机毕业设计

四旋翼无人机毕业设计 目录 摘要 ............................................................................................. 错误!未定义书签。Abstract ................................................................................................ 错误!未定义书签。1绪论 .. (1) 1.1研究背景及意义 (1) 1.2 国内外四旋翼飞行器的研究现状 (1) 1.2.1国外四旋翼飞行器的研究现状 (1) 1.2.2国内四旋翼飞行器的研究现状 (3) 1.3 本文研究内容和方法 (4) 2 四旋翼飞行器工作原理 (5) 2.1 四旋翼飞行器的飞行原理 (5) 2.2 四旋翼飞行器系统结构 (5) 3 四旋翼飞行器硬件系统设计 (7) 3.1 微惯性组合系统传感器组成 (7) 3.1.1 MEMS陀螺仪传感器 (7) 3.1.2 MEMS加速度计传感器 (7) 3.1.3 三轴数字罗盘传感器 (8) 3.2 姿态测量系统传感器选型 (8) 3.3 电源系统设计 (10) 3.4 其它硬件模块 (10) 3.4.1 无线通信模块 (10) 3.4.2 电机和电机驱动模块 (11) 3.4.3 机架和螺旋桨的选型 (12) 3.4.4 遥控控制模块 (13) 4 四旋翼飞行器姿态参考系统设计 (15) 4.1 姿态参考系统原理 (15) 4.2 传感器信号处理 (16) 4.2.1 加速度传感器信号处理 (16) 4.2.2 陀螺仪信号处理 (16) 4.2.3 电子罗盘信号处理 (17) 4.3 坐标系 (17) 4.4 姿态角定义 (18) 4.5 四元数姿态解算算法 (19) 4.6 校准载体航向角 (27) 5 四旋翼飞行器系统软件设计 (29) 5.1 系统程序设计 (29) 5.1.1 姿态参考系统软件设计 (29) 5.1.2 PID控制算法设计 (30)

四旋翼飞行器设计

摘要 本设计采用瑞萨R5F100LEA单片机作为主控制器。超声波传感器实时发送飞行高度数据给主控系统,主控制器通过判断、分析、处理产生控制信号进而控制各个电机,使其在不同的飞行高度具有不同的速度,保证了飞行器在某一高度范围内飞行;主控制器读取MPU6050陀螺仪的数据,通过对采集数据的分析,使飞行器做出相应的姿态调整,来保持飞行器能够平稳飞行;激光传感器能够对白色场地上的黑线进行识别,达到循迹的目的。本设计通过对飞行控制系统的总体框架设计,实现了飞行控制系统的硬件设计和软件设计,并对设计中的关键技术问题进行了研究,最终实现了四旋翼飞行器的一键启动自主飞行控制。 关键词:R5F100LEA 传感器姿态控制四旋翼飞行器

1. 四旋翼自主飞行器简介 1.1 结构形式 四旋翼飞行器采用四个旋翼作为飞行的直接动力源,旋翼对称分布在机体的前后、左右四个方向,四个旋翼处于同一高度平面,且四个旋翼的结构和半径都相同,旋翼1和旋翼3逆时针旋转,旋翼2和旋翼4顺时针旋转,四个电机对称的安装在飞行器的支架端,支架中间空间安放飞行控制计算机和外部设备。四旋翼飞行器的结构形式如图 1.1 所示。 图1.1 四旋翼飞行器结构形式 1.2 工作原理 传统直升机是通过控制舵机来改变螺旋桨的桨距角,从而控制直升机的姿态和位置。四旋翼飞行器与此不同,是通过调节四个电机转速来改变旋翼转速,实现升力的变化,从而控制飞行器的姿态和位置。由于飞行器是通过改变旋翼转速实现升力变化,这样会导致其动力部稳定,所以需要一种能够长期保稳定的控制方法。四旋翼飞行器是一种六自由度的垂直升降机,因此非常适合静态和准静态条件下飞行。但是四旋翼飞行器只有四个输入力,同时却有六个状态输出,所以它又是一种欠驱动系统。

四旋翼飞行器设计资料

四旋翼飞行器的设计 查重98% 四旋翼微型飞行器是一种以4个电机作为动力装置.通过调节电机转速来控制飞行的欠驱动系统;为了实现四旋翼微型飞行器的自主飞行控制,对飞行控制系统进行了初步设计,并且以C8051F020单片机为计算控制单元,给出了飞行控制系统的硬件设计,研究了设计中的关键技术;由于采用贴片封装和低功耗的元器件,使飞行器具有重量轻、体积小、功耗低的优点;经过多次室内试验,该硬件设计性能可靠,能满足飞行器起飞、悬停、降落等飞行模态的控制要求. 一.微小型四旋翼飞行器的发展前景 根据微小型四旋翼飞行器发展现状和相关高新技术发展趋势,预计它将有以下发展前景。 1 )随着相关研究进一步深入,预计在不久的将来小型四旋翼飞行器技术会逐步走向成熟与实用。任务规划、飞行控制、无 G P S 导航、视觉和通信等子系统将进一步健全和完善,使其具有自主起降和全天候抗干扰稳定飞行能力。它未来的主要技术指标:任务半径 5 k m,飞行高度 1 0 0 m,续航时间 1 h ,有效载荷约 5 0 0 g ,完全能够填补目前国际上在该范围内侦察手段的空白。 2 )未来的微型四旋翼飞行器将完全能够达到美国国防预研局对 M A V基本技术指标的要求。随着低雷诺数空气动力学研究的深入,以及纳米和 M E MS 技术的发展,四旋翼 M A V必然取得理论和工程上的突破。它将是一种有 4个旋翼的可飞行传感器芯片,是一

个集成多个子系统 ( 导航与控制、动力与能源、任务与通信等子系统) 的高度复杂ME M S系统;不但能够在空中悬停和向任意方向机动飞行,还 能飞临、绕过甚至是穿过目标物体。此外,它还将拥有良好的隐身功能和信息传输能力。 3 )微小型四旋翼飞行器的编队飞行与作战应 在未来的战争中,微小型四旋翼飞行器的任务之一将是对敌方进行电子干扰并攻击其核心目标。单个微小型飞行器的有效载荷量毕竟有限,难以有效地完成任务,而编队飞行与作战不仅可以极大地提高有效载荷量,还能够增强其突防能力。 二.四旋翼飞行器的国内外研究现状 目前世界上存在的四旋翼飞行器基本上都属于微小型无人飞行器,一般可分为3类:遥控航模四旋翼飞行器、小型四旋翼飞行器以及微型四旋翼飞行器。 (1)遥控航模四旋翼飞行器 遥控航模四旋翼飞行器的典型代表是美国Dfaganflyer公司研制的Dragan.flyer III和香港银辉(silverlit)玩具制品有限公司研制的X.UFO。Draganflyer III是一款世界著名的遥控航模四旋翼飞行器,主要用于航拍。机体最大长度(翼尖到翼尖)76.2cm,高18cm,重481.19:旋翼直径28cm,重69;有效载荷113.29;可持续飞行16--20min。Draganflyer III采用了碳纤维和高性能塑料作为机体材料,其机载电子设备可以控1书1]4个电机的转速。另外,还使用

四旋翼无人飞行器设计学习笔记

1、互补滤波算法 互补滤波器作为一种频域滤波器,常用于融合来自不同传感器测量得到的数据。一般地,互补滤波器包含至少两种频率特性互补的输入信号。例如,对于陀螺仪和加速度计解算姿态这一双输入系统,两个输入量都能分别对姿态角进行解算,其中加速度计输入量包含高频,应通过低通滤波器来滤除;陀螺仪则包含低频噪声(积分漂移),应采用高频滤波器滤队。两者的频率特性互补,可用互补滤波思想进行姿态解算,最终输出较准确信号。 2、四元数表示姿态角 运用互补滤波与卡尔曼滤波思想进行姿态整合的过程归根结底都是利用加速度计解算出的姿态角去修正陀螺仪积分的漂移误差. 这两种方法在姿态融合过程中姿态角的表示形式都是欧拉角表示.但是用欧拉角进行姿态解算在大角度计算时会出现万向节锁(角度为90度时加速度计进行姿态解算的反三解函数无解),为了避免该问题,可采用四元数来解算姿态. 四元数的优点: ·四元数不会存在欧拉角的万向节死锁的问题 ·四元数由4个数组成2个四元数之间更容易插值 ·对四元数规范化正交化计算更加容易 3、MPU6050 DMP内部四元数解算功能 运动控制传感器MPU6050提供了DMP内部四元数解算功能,可以直接输出四元数数据。它除了提供三轴陀螺仪和三轴加速度计传感器的16位ADC信号采集功能之外,还集成了数字低通滤波器和数字运动处理DMP,可以直接输出经低通滤波处理和四元数姿态解算后的四元数数据。将该四元数转换为欧拉角,可以得到准确的俯仰角和橫滚角。 4、PID 控制

由自动控制原理可知,采用角速度反馈闭环控制可有效增加系统稳定性,因此,在进行状态角控制之前需设计姿态角速度增稳内环控制。同时,系统最终控制量为空间位置,因此需要增加外环位置控制。由此得到四轴飞行器俯仰角方向整体控制结构: 4.1、PID 控制 比例控制指的是使用一个比例系数对输入量与期望量的差进行放大或缩小。不过单纯的比例控制会产生静态误差(误差不会收敛于0),所以这时要加入积分控制,对误差进行积分再乘以积分系数,误差累计越大积分控制的比重越大。其优点是可以消除静态误差;其缺点是不稳定,会使系统产生振荡。微分控制是预测系统的变化趋势。当输入的数据缓慢变化时微分项不起作用,当产生一个阶跃响应瞬间发生变化时,微分项发挥作用,做“超前控制”。 4.2串级PID 当将两个PID串联起来,用第一个PID的输出量作为第二个PID的输入量,第一个PID的期望量为期望达到的角度,第二个PID的期望量为此时该轴的角速度,角度环为1级PID为外环,角速度环为2级PID为内环 串级PID较单级PID的优点是,作为内环的角速度由陀螺仪采集数据输出,采集值一般不存在受外界影响的情况,抗干扰能力强,并且角速度变化灵敏,当受外界干扰时,回复迅速,这样使四轴在飞行时抗干扰能力强,飞行更稳定. 4.3PID调试过程详解--P64

基于STM32的微型四旋翼无人机控制系统设计—软件设计

毕业设计(论文)开题报告
题目:基于 STM32 的微型四旋翼无人机控制系统设计—软件设计
院 (系) 专 班 姓 学 导
电子信息工程学院
业电气工程及其自动化 级 名 号 师
2017 年 3 月 9 日

1. 毕业设计(论文)综述(题目背景、国内外相关研究情况及研究意义) 1.1 题目背景 微型无人机飞行器(MUAV,Mirco Unmanned Aerial Vehicle)是一种内置 控制系统,可以远程操控实现自主飞行的设备。其类型包括固定翼微型飞行器、 仿生扑翼微型飞行器及旋翼式微型飞行器。由于它具有隐蔽性强,低成本、低损 耗、零伤亡、高机动性等优点,使其迅速从军事领域拓宽到农业、民用和科研等 领域。在军事领域,因为具有零伤亡,战场生存能力强等特点,非常适合执行高 危险和人类无法参与的任务。在民用上,他也可以代替载人机完成一些任务,比 如救援搜索,灾情勘探,气象监测等。 MUAV 飞行性能主要包括,起飞着陆性能,姿态变换性能。而这些性能的优劣 取决于核心部件--飞行控制系统。随着数字处理器处理速度和能力的不断提高, 设计先进的控制系统已经是大势所趋。先进的飞行控制系统使微型无人机能在没 有外界干预的情况下自主飞行,完成预先规定的任务。由于微型无人机身有限的 负载能力和体积限制, 现在的一些导航系统和飞行控制系统很难直接在微型无人 机上使用,所以对微型无人机的飞行控制系统的研究意义重大! 1.2 国内外相关研究情况 国外对于四旋翼的研究非常的活跃,加拿大的雷克海德大学里面的相关研究 人员很早就证明了采用四旋翼设计思路能够实现飞行器的稳定飞行,澳大利亚的 卧龙岗大学相关研究人员已经对四旋翼有了精确的模型建立。各国研究人员也 以此引发了一个四旋翼的研究热潮。下面对部分研究机构所设计的四旋翼做一个 介绍 1)Microdrones MD4-1000 四旋翼无人飞行
MD4-1000 四旋翼无人机是由德国 MICRODRONES 公司生产, 可垂直起降自动驾 驶。机体云台都是采用特殊的碳纤维材料,机身重量轻、强度高,机臂可折叠, 方便运输。姿态、高度以及航向参考系统集成了加速度计、陀螺仪、电子罗盘、 气压高度计、温度计、湿度计等高精度传感器,相比 MD4-200,它的任务载荷大, 抗风能力强,续航时间更长,姿态控制更加稳定。

相关文档
相关文档 最新文档