文档库 最新最全的文档下载
当前位置:文档库 › 锂电池在电动自行车上的市场分析报告

锂电池在电动自行车上的市场分析报告

锂电池在电动自行车上的市场分析报告
锂电池在电动自行车上的市场分析报告

锂电池在电动自行车上的市场分析报告1、电动自行车及其蓄电池的发展

1.1、电动自行车的发展前景

电动自行车工业的快速发展,使其实现了生产化。电动自行车得到了用户和社会的认可。其中重要的贡献是科技的贡献,最重要的是2个部件的进步:一是电机,另外就是蓄电池。

21世纪是“绿色环保”的世纪,环境保护和能源节约问题已成为新世纪最为突出的两大主题。这两大问题成为了“绿色交通工具”研究开发和推广应用的积极因素。电动自行车以其自身所具有的质量轻。速度低,售价低廉,省时省力,绿色环保等突出优点拥有着较为广阔的市场前景。

1.2、电动自行车用蓄电池使用的现状及发展前景

电动自行车用蓄电池目前市场使用最为广泛的是铅酸蓄电池。作为电动自行车电源的铅酸蓄电池以其具有的污染小、噪音低、使用时间长、稳定、可靠、应用方便等优点成为电动自行车的主流产品。但是铅酸蓄电池本身也存在着巨大的缺陷,所以业内也一直在寻找代替铅酸电池的新的电动自行车的电池的新材料。关于新的电动自行车电源的发展及改进问题,现在看好的电动自行车用新电源有3种:锂离子蓄电池、氢镍蓄电池、锌空气电池。

其中锂离子的发展现状也具有一定的市场。在安全性好、循环性能好、比容量高的新型价廉正极材料的发展的推动下,电动自行车车用的锂离子蓄电池已接近实用。有几家公司已可提供较成熟的、装有电池管理系统(BMS)的电动自行车车用锂离子蓄电池。也有专门生产车用锂电池的蓄电池的电动自行车的厂家。很多业内人士认为电动自行车用的锂电池蓄电池将是首先商业化,大批量在车上使用的动力型电池;它将是继铅酸蓄电池之后所占比例较大的实用化电池,也将成为用于高端电动自行车产品的电池。

业内人士表示,节能环保是电动自行车的发展方向,随着技术的进步,锂电池电动自行车有望取代目前的铅酸电池电动自行车。“从欧美等发达国家的经验看,锂电池是未来电动

自行车的发展方向。”宁波市电动车同业公会会长谷德才介绍,铅酸电池可能造成环境污染,因此在欧美等发达国家锂电池电动车的普及率较高,市场占有率在50%以上,而目前宁波市区电动自行车有50万辆,锂电池电动自行车只有5000辆左右,占有率在1%左右。“锂电池轻巧、环保,废弃后不会产生环境污染,一旦应用技术成熟,市场销量加大,锂电池电动自行车的价格肯定会降下来。”谷德才说。

2、电动自行车锂离子蓄电池的优缺点

2.1、锂离子蓄电池的优点

电池的锂电池蓄电池的能量比铅酸电池大一倍多,目前用铅蓄电池的电动自行车充电一次可行驶50~70km,改用同重量的锂电池蓄电池可行驶100~150km,它的充放电次数也高,存在的问题是:价格较高,为铅酸电池的6倍,每部车配套需1800~2000元,再则现有规格都是适用于手机、笔记本电脑的小型号,有待开发出10Ah以上的较大型号,这种蓄电池目前只能用于豪华型自行车或电动摩托车,但是它的降价的潜力较大,前景很好。

锂电池电动自行车具有的优点是其寿命长、重量轻、体积小。绿源专卖店里有一种外形小巧的锂电池电动自行车,重量只有16公斤左右,电池只有一本书大小,才2.5公斤重,可以放在包里拎着走,还可以用来给电脑充电,而与之马力相当的铅酸电池重量则在15公斤左右。不过,这种电动车价格比较贵,要2800多元一辆。“这种车上市才一周,价格比较高,但销量比预想的好,一周时间就卖出好几辆。”绿源电动车负责人张先生介绍,这种车采用了锂电池,充电一次可跑30公里左右。捷安特、普利司通等品牌专卖店里也有锂电池电动车。“锂电池电动自行车的动力性能和铅酸电池差不多,充电6~8小时,根据电池容量不同可跑30~45公里,重量只有铅酸电池的1/5左右。”捷安特的销售人员告诉说,锂电池电动自行车最大的优点是寿命长,一组电池可用4~5年,而铅酸电池寿命只有2年左右。

2.2、锂离子蓄电池的缺点

锂电池存在的缺点是价格偏高、市场份额仅1%。目前锂电池电动自行车的价格普遍比铅酸电池电动车高出几百元到一千元,因此销量不大。“两者相差800多元,如果只差两三百元我可能会考虑下。”正在选购电动自行车的张女士最后还是买了传统的铅酸电池电动车。

3.电动自行车市场概述以及车用锂离子电池市场概述

3.1、电动自行车市场概述

电动自行车的全球销量约2000万辆,其中采用锂电池为:国内市场0.3%左右,国际市场售价为1000-2000美金,国内市场电动自行车售价为1300-2000人民币,电动摩托车2000-5000人民币,发展趋势为时尚化,轻便化。对于生产电动自行车的品牌介绍如下。出口的厂家有:捷安特、飞鸽、凯特、顺地、耀马、大行、依莱达;高端:阿米尼、新日、捷安特;中端:小羚羊、绿能、亮绿、卡摩等。其市场占有率排序为捷安特、飞鸽等。其市场分布为:苏锡常地区约占45%市场,浙江永康占20%,上海周边占15%,天津周边占15% ,深圳部分厂商占5%。

图1电动自行车不同类电池市场份额

3.2、锂电池市场概述

下图为电动自行车不同类的市场份额显示:

图2 电动自行车不同类电池市场份额

注:目前铅酸电池在中低端市场占据垄断地位,在高端市场后劲乏力,其中低端市场占比接近 100%,中档市场占比约 80%,高端市场占比约8%;镍氢电池由于总的市场份额较低,主要集中在中高档市场;锂电池在高端市场目前占据主导地位,随着成本的降低,其中端市场份额将

大幅上升;

下图为电动自行车不同类电池市场份额:

图3 电动自行车不同类电池市场份额

注:铅酸电池价格是以24V12AH的最主流应用规格为例;镍氢电池的价格是以24V8000mah的最主流应用规格为例;锂电池是以 24V10AH 为例,便于对比趋势;

3.3 锂电池行业价格走势及影响因素

图4 2010-2013年国内电动自行车锂电池组价格水平预测注:三类电动自行车用蓄电池市场占比在2007-2010年在逐渐变化:其中铅酸蓄电池比重从95%以上下降到87.6%;锂电池比重从 6.2%上升到超过10%,并继续呈扩大趋势;镍氢电池比重从 4.3%下降到1% 左右,预计将淡出电动自行车领域。

下图是影响锂电池行业的价格因素:

图 5 影响锂电池行业的价格因素

中国十大锂电池电动车排名

中国十大锂电池电动车排名 近年来,国家对绿色环保节能事业越来越重视,动力锂电池技术的也越来越成熟,锂电池电动车行业迅速升温,消费者对锂电池电动车也越来越认可。目前,锂电池电动车款型很多,2013年,各大电动车企业更是推出了很多非常具有特色的新款锂电池电动车,下面我们就一起来看一下吧。 1,雅迪电动车A系列 品牌:雅迪电动车 车系:锂电车 车型:A201成车 额定电压:48V电池 类型:锂电池整车 净重:≤35Kg车载

重量:≤75Kg 爬坡能力:≤10° 续行里程:≤40Km 2.雅迪电动车M802 雅迪电动车M802配置参数 电动车电池:48V10Ah电池 电动车轮胎:20"×1.75" 电动车电机:铝合金高速无刷有齿辐条轮电机电动车车架:20"铝合金折叠车架

3.欧派电动车小神童 欧派电动车小神童配置参数 电动车电池:48V10Ah锂电池 电动车电机:250W辐条电机 电动车控制器:限流15A,锂电专用续行里程:40Km 4.新日电动车俊逸A 新日电动车俊逸A配置参数

电动车电池:36V10Ah 电动车电机:高速辐条电机 电动车制动类型:前后V型 电动车外形尺寸:1370×600×1000mm 5.爱玛电动车轻彩— L 爱玛电动车轻彩— L配置参数 电动车电池:48V/10Ah环保锂离子动力电池电动车电机:无刷高速铝轮一体电机 动力模式:1.电动2.助力骑行3.巡航 电动车车架:16"钢架

6.绿源电动车JJB-4812L 绿源电动车JJB-4812L配置参数 电动车电池:48V12AH 电动车电机:48V350W400rpm 电动车充电器:48V-20E-L/220V/锰锂电动车外形尺寸:1450*600*1020mm 7.台铃电动车杰铃 台铃电动车杰铃配置参数

电动自行车锂电池管理系统方案

文献综述 题目:电动自行车锂电池管理系统 前言:作为电动汽车以及混合动力汽车飞速发展的基础,电池管理系统的研究备受国内外的重视。锂电池组由于其优良的性能,在近年来得到广泛的应用。锂电池管理系统的出现,使安全高效地管理和使用锂电池组变得更加容易。本文概括地介绍了国内外锂电池管理系统领域的研究现状,并对其进行简要分析。 锂电池管理系统实现的功能包括:数据监测、荷电状态(SOC)估计、热管理、均衡管理、数据通信、数据显示与报警。其中SOC测量方法有传统的开路电压法、内阻法和安时积分法,以及新兴的模糊逻辑算法、自适应神经模糊推断算法、卡尔曼滤波估计算法、线性模型法和阻抗光谱法等。均衡管理可分为能量耗散型和能量非耗散型两大类[。 正题:美国Villanova大学和US Nanocorp公司已合作多年,对各种类型的电池SOC进行基于模糊逻辑的预测。美国约翰逊控制技术公司利用可变阻抗元

件来确定单元的温度是否超过预定门限值,时刻监控电池组温度。美国托莱多大学提出BMS基本结框图(图1)。把BMS简化成1个电子控制单元ECU和1个电荷均衡器。ECU功能有数据采集、处理、传送、控制,还控制均衡器、车载充电器等。 德国研究员认为电气控制需要实现控制制充电过程:包括均衡充电;根据SOC、电池健康状态SOH和温度来限定放电电流。电气控制中需要结合所使用的电池技术和电池类型来设定一个控制充电和放电的算法逻辑,以此作为充放电控制的标准。CAN总线是德国BOSCH公司在20世纪80年代初为解决汽车中众多的控制与测试仪器之间的数据交换而开发的一种通信协议。现已广泛用于电池管理系统。德国Kaiserse Lautern大学采用主辅模块的分布式管理结构,辅模块相当于独立式均衡器,主模块完成管理系统的功能,具有较强的均衡能力。 我国的BMS研究从开始至今,虽然相比美国、日本还差距很大,成果却也比较显著。在国家863计划2005年第一批立项研究课题中,就分别有北京理工大学承担的混合动力轿车(EQ7200HEV)用镍氢动力电池组及管理模块、苏州星恒电源有限公司承担的燃料电池轿车用高功率型锂离子动力电池组及其管理系统、北京有色金属总院承担的解放牌混合动力城市客车用锂离子电池及管理模块等课题。 近年来BMS技术发展得十分迅速,国内外的研究也是如火如荼。短短十几年时间,我国的BMS开发已初具规模。许多高校、企业都投入大量时间在BMS 的研究上,有很多方面已进入实用阶段。现在借着国家推广电动汽车的契机,更是掀起了一股研发的新浪潮。 但是与发动机技术、整车开发技术相比,现阶段的BMS技术还相当不成熟。

中国锂电池行业上下游产业链分析报告

深圳中企智业投资咨询有限公司

中国锂电池行业上下游产业链分析 (最新版报告请登陆我司官方网站联系) 公司网址: https://www.wendangku.net/doc/dd12774454.html, 1

目录 中国锂电池行业上下游产业链分析 (3) 第一节锂电池行业上下游产业链概述 (3) 第二节锂电池上游行业发展状况分析 (3) 一、上游原材料市场发展现状 (3) 1、正极材料 (4) 2、负极材料 (4) 3、电解液 (5) 4、隔膜 (6) 二、上游原材料供应情况分析 (6) 三、上游原材料价格走势分析 (7) 第三节锂电池下游行业需求市场分析 (7) 一、下游行业发展现状分析 (7) (1)手机市场 (8) (2)平板电脑和笔记本电脑市场 (8) (2)电动自行车市场 (9) 二、下游行业需求状况分析 (9) 三、下游行业需求前景分析 (10) 2

中国锂电池行业上下游产业链分析 第一节锂电池行业上下游产业链概述 锂电池上游是金属矿产资源,下游为各种数码产品、电动工具以及电动汽车行业。 图表- 1:锂电池行业产业链 锂电池上游材料包含正极材料、负极材料、电解液、隔膜以及其他材料,而其行业源头则为金属矿产资源行业。金属矿产资源行业为锂电池制造行业提供了锂、镍、锌等初始原料。 锂电池的下游客户包含电子产品行业、电动工具制造行业、新能源汽车制造业以及相关新能源存储行业。 除此之外,一个完整的锂电池产业链还应包括锂电池的回收利用。 第二节锂电池上游行业发展状况分析 一、上游原材料市场发展现状 目前中国在四大关键材料领域中,正极材料、负极材料和电解液都已逐步自给,只有隔膜材料还高度依赖进口,但是发展速度也非常快。 3

电动自行车用铁锂电池使用说明书

使用标准:Q/HGY06-2007电动自行车用铁锂电池使用说明书 THE TECHNICAL MANUUAL OF IRON-LITHIUM BATTERY FOR ELECTRIC BICYCLE 哈尔滨光宇电源股份有限公司 HAEBIN COSLIGHT POWER CO., LTD

目录 1. 产品规格与结构 2. 磁盘性能指标 2. 产品性能 技术指标 安全性能 3. 产品使用方法 电池充电 电池放电 电池存贮与补充充电 4. 电池使用维护及注意事项 5. 质量保证

企业简介 哈尔滨光宇电源股份有限公司位于哈尔滨市开发区迎宾路集中区太南路8 号,占地面积12万平方米,建筑面积10万平方米。 公司在追求与完美品质结合的同时,一贯秉承科技创新的经营理念,凭借雄厚的经济实力和专业经验,与国内多所高校和研究机构建立了长期的合作关系,依托国内电动车市场的高速发展,率先采用国际最先进技术,自主研发出铁锂动力电池,获得多项国家专利,电池各项性能指标达到世界领先水平。光宇电源已经成为中国锂动力电池行业最具核心竞争力的企业之一。 哈尔滨光宇电源股份有限公司从日本引进全自动化锂电池生产线,主要设备包括和膏机、涂布机、辊压机、分切机、卷绕机、全自动组装一体机,充放电检测设备、激光焊接机和注夜机等相近设备。 公司先后通过ISO9001、QS9000、ISO14000和OHSA18001管理体系认证,产品通过了美国UL认证、德国T ǖV认证,有利地保证了产品从设计、制造、服务等方面均达到国际领先水平。 1. 产品规格与结构 1.1产品规格

1.2产品结构

2017年三元锂电池行业前景分析报告

2017年三元锂电池行业前景 分析报告 (此文档为word格式,可任意修改编辑!) 2017年8月

正文目录 一、全球视角:汽车电动化浪潮来袭,新能源汽车产业崛起 (6) (一)全球的汽车电动化浪潮正在来袭 (6) (二)我国已成为全球最大的新能源汽车消费国 (9) 二、我国情况:政策风云发幻,产业运行砥砺前行 (11) (一)政策引领我国新能源汽车行业砥砺前行 (12) (二)新能源汽车产销量逐步恢复,下半年逐月增长 (14) 三、三元锂电池大势所趋,行业回暖高增长可持续 (15) (一)三元锂具备高能量密度,引领电池技术发展方向 (17) (二)三元锂贴合政策要求,推荐目录见微知著 (19) 2.1 补贴政策——高能量密度电池车型可获得1.1~1.2倍补贴 (20) 2.2 积分政策——高能量密度电池车型获得1.2倍积分概率更大 (21) 2.3推荐目录——三元锂电池比例提升至约70% (23) (三)海外Model 3放量在即,指明三元锂方向 (26) (四)三元锂材料价格已进入上行通道,印证行业需求持续回暖 (28) (五)三元锂需求测算,到2020年渗透率达80%,复合增速88% (30) 四、湿法隔膜锦上添花,逐步突破海外封锁 (33) (一)隔膜决定电池安全性能,行业壁垒较高 (33) (二)湿法隔膜能够提升能量密度,干法工艺转湿法有难度 (35) (三)湿法隔膜国产化率有望稳步提升,未来三年需求持续增长 (38) 五、主要公司分析 (40) (一)当升科技 (40) (二)国轩高科 (41) (三)科恒股份 (42) (四)创新股份 (43) 六、风险提示 (44)

铅酸电池、锂电池等各种电动车电池优缺点分析

目前市场上电动自行车使用的电池品种很多。除了使用量最大的阀控密封式铅酸蓄电池以外,还有镍氢电池、镍镉电池、锂离子电池、锌空电池等等。这些蓄电池都具有各自独特的优点,以下我们就来分别认识一下各电池的特性与功用。 铅酸电池 其中,以铅酸蓄电池为数量最多。铅酸蓄电池的价格最低,也最常用,中国是全世界铅酸蓄电池最大的生产国。其含污染的成分比较少,可回收性好。缺点是比容小。也就是说,在同样的容量下,电池重量和体积都大。目前的铅酸蓄电池基本上是由浮充类型的电池发展而来的。浮充电池不适应快速充电和大电流放电,虽然技术人员的花费了大量的心血进行了卓有成效的改进,可以进入实用了,但是其寿命还是非常不理想的。胶体电池 胶体电池属于铅酸蓄电池的一种发展分类,最简单的做法,是在硫酸中添加胶凝剂,使硫酸电液变为胶态。电液呈胶态的电池通常称之为胶体电池。广义而言,胶体电池与常规铅酸电池的区别不仅仅在于电液改为胶凝状。例如非凝固态的水性胶体,从电化学分类结构和特性看同属胶体电池。又如在板栅中结附高分子材料,俗称陶瓷板栅,亦可视作胶体电池的应用特色。近期已有实验室在极板配方中添加一种靶向偶联剂,大大提高了极板活性物质的反应利用率,据非公开资料表明可达到70wh/kg的重量比能量水平,这些都是现阶段工业实践及有待工业化的胶体电池的应用范例。 胶体电池与常规铅酸电池的区别,从最初理解的电解质胶凝,进一步发展至电解质基础结构的电化学特性研究,以及在板栅和活性物质中的应用推广。其最重要的特点为:用较小的工业代价,沿已有150年历史的铅酸电池工业路子制造出更优质的电池,其放电曲线平直,拐点高,比能量特别是比功率要比常规铅酸电池大20%以上,寿命一般也比常规铅酸电池长一倍左右,高温及低温特性要好得多。 镍氢电池 镍氢电池的比容比铅酸蓄电池好很多,单体电池的寿命也比较好,其大电流充放电特性也比铅酸蓄电池好。问题是镍氢电池串连电池组的管理问题比较多,一旦发生过充电以后,就会形成单体电池隔板熔化的问题,导致整组电池迅速失效。所以,国产的镍氢电池的关键技术问题还是充电器和电池管理系统的问题,而这个问题还没有引起各个电池制造商和车厂足够的重视。所以,镍氢电池的发展收到很大的制约。镍镉电池镍镉电池的大电流特性比镍氢电池好,其抗过充电特性也比镍氢电池好,中国又是世界上镍镉电池的生产大国。一些人提出镉污染的问题,中国现在还在大量的向欧洲出口镍镉电池及其应用产品,欧洲到2006年才开始限制。据中央电视台播放的消息,神州五号还是采用镍镉电池的。这是其相对比较高的可靠性的优点使该品种电池还在应用与宇航设备上。这样看,电动自行车方面过早的使镍镉电池退出应用是否有一些过激?而镍镉电池的成本和充电器的成本都明显低于镍氢电池,只要回收处理好了,还是应该保留这个电池品种的。

锂离子电池圆柱工艺流程图及电池英文词汇表

圆柱机械封口工艺流程

电池行业词汇表 国际电工委员会,International Electrical Commission 正级positive(cathode) 负极negative(anode) 电解液basis electrolyte 正极片positive plates 负极片negative plates 隔膜纸separators 盖帽caps 外壳cases 绝缘层insulation layers PVC膜商标管PVC、trademarked tubes 连接片Connections plates 不锈钢片stainless steel plates 纯镍片nickel plates 镀镍钢片nickel plating steel plates 引出片Lead plates 焊锡tin soldered 点焊spot welding 插头Plugs 温控开关thermal switches 过流保护器polyswitches 限流电阻current-limited resistances 纸箱纸盒Boxes and cases 塑料壳类Plastic shells 电池电压的限制Voltage limitation 电压voltage 内阻impedance 容量capacity 内压gas pressure 自放电率self-discharge rate 循环寿命cycle life 密封性能sealing 安全性能safety

储存性能storage 过充over-charge 过放over-discharge 可焊性soldering 耐腐蚀性causticity proof 温度震荡实验temperature shock test 开路open circuit 参数/变量parameters 安全筏safety vent 正极眼positive pin 鼓底bottom plumping up 凸肚belly protruding 漏液leakage

锂电池行业市场现状及预测分析报告

锂电池行业市场现状及预测分析报告 (2012-2016)

锂电池行业市场现状及预测分析报告 前言 锂电池性能优越,用途广泛,前景最为广阔。相对于铅酸电池、镍镉电池、镍氢电池等二次电池,锂电池具有能量密度高、循环寿命长、自放电率小、无记忆效应和绿色环保等突出优势。锂电池随着技术的不断进步已经在人们的生活中得到了广泛的应用,如便携式电子产品、新能源交通工具等领域。 工信部牵头制定的《节能与新能源汽车产业规划(2011-2020年)》已基本完成。发展新能源汽车已经上升为国家战略,国家已提出了发展方向、战略目标、主要任务及政策措施,新能源汽车发展正面临千载难逢的历史机遇。随着一系列新能源汽车扶持政策即将出台,中国新能源汽车在“十二五”期间将快速发展,届时将带动锂电池材料快速增长。 全球锂电行业现状:电芯和材料市场是日、韩、中占据绝对份额,日、韩企业的技术处于领先地位。全球锂电池产业目前主要集中在日本、中国和韩国,随着中国、韩国锂电池制造技术的开发和提升,日本锂电池出货量的比例在逐渐降低。中国锂电池材料企业发展迅速,但从综合技术实力来看,日、韩企业仍处于领先地位,中国落后日本大约2-3年时间,处于大而不强的阶段,具有较大提升空间。 目前整个市场对锂电在新能源汽车领域的应用前景已经有了很多论述。但是对锂电池在传统领域的应用前景的关心却很少。现在我们关心的是如果新能源汽车的发展进程低于预期,锂电产品在非汽车领域的需求是否能够支撑行业继续向前发展!带着这一问题,我们细致地研究了锂二次电池在目前的主要应用领域内的应用前景,结果让我们对锂电行业未来的发展充满信心。 本报告首先介绍了锂电池行业相关概述、中国锂电池产业运行环境等,接着分析了中国锂电池行业的现状,然后介绍了中国锂电池行业竞争格局。随后,报告对中国锂电池行业做了重点企业经营状况分析,最后分析了中国锂电池产业发展前景与投资预测。您若想对锂电池产业有个系统的了解或者想投资锂电池行

揭秘!锂电池制造工艺全解析

揭秘!锂电池制造工艺全解析 锂电池结构 锂离子电池构成主要由正极、负极、非水电解质和隔膜四部分组成。目前市场上采用较多的锂电池主要为磷酸铁锂电池和三元锂电池,二者正极原材料差异较大,生产工艺流程比较接近但工艺参数需变化巨大。若磷酸铁锂全面更换为三元材料,旧产线的整改效果不佳。对于电池厂家而言,需要对产线上的设备大面积进行更换。

锂电池制造工艺 锂电池的生产工艺比较复杂,主要生产工艺流程主要涵盖电极制作的搅拌涂布阶段(前段)、电芯合成的卷绕注液阶段(中段),以及化成封装的包装检测阶段(后段),价值量(采购金额)占比约为(35~40%):(30~35)%:(30~35)%。差异主要来自于设备供应商不同、进口/国产比例差异等,工艺流程基本一致,价值量占比有偏差但总体符合该比例。 锂电生产前段工序对应的锂电设备主要包括真空搅拌机、涂布机、辊压机等;中段工序主要包括模切机、卷绕机、叠片机、注液机等;后段工序则包括化成机、分容检测设备、过程仓储物流自动化等。除此之外,电池组的生产还需要Pack 自动化设备。 锂电前段生产工艺 锂电池前端工艺的结果是将锂电池正负极片制备完成,其第一道工序是搅拌,即将正、负极固态电池材料混合均匀后加入溶剂,通过真空搅拌机搅拌成浆状。配料的搅拌是锂电后续工艺的基础,高质量搅拌是后续涂布、辊压工艺高质量完成的基础。 涂布和辊压工艺之后是分切,即对涂布进行分切工艺处理。如若分切过程中产生毛刺则后续装配、注电解液等程序、甚至是电池使用过程中出现安全隐患。因此锂电生产过程中的前端设备,如搅拌机、涂布机、辊压机、分条机等是电池制造的核心机器,关乎整条生产线的质量,因此前端设备的价值量(金额)占整条锂电自动化生产线的比例最高,约35%。

解析电动自行车锂电池组保护电路设计

解析电动自行车锂电池组保护电路设计 发表时间:2019-12-23T09:45:32.933Z 来源:《电力设备》2019年第18期作者:周长山 [导读] 摘要:锂电池具有能量密度高、使用寿命长、自放电率较小等特点,常用于储能系统,也是目前电动车行业的首选能源。 (哈尔滨光宇电源股份有限公司黑龙江哈尔滨 150078) 摘要:锂电池具有能量密度高、使用寿命长、自放电率较小等特点,常用于储能系统,也是目前电动车行业的首选能源。锂电池组由单体锂电池串联而成。由于受锂电池自身和生产加工的制约,单体锂电池存在电阻、电压、容量等方面的差异,加之电池组装顺序不同,以及产生热量后的散热速率、自放电速率的差别等,因此,加强锂电池组保护电路的研究具有重要意义。本文中,主要对锂电池组保护电路设计展开相关概述。 关键词:锂电池;电池组;保护电路 引言 锂离子电池是目前已经商业化应用的电池中比能量最高的品种,因此在电动车设计中被广泛关注。现有的电池设计和制造技术难以保持电池单体参数的一致性,在实际装车使用时,由于安装位置的不同、散热状况的差别、周围环境的变化等因素,一定程度上使得电池参数的不一致性更加显著,这些参数差异会导致一个电池组内各电池单体间的不均衡问题,使其具有不同的荷电状态和端电压,严重降低电池组性能,甚至产生安全隐患。 1锂电池和电池组建模 针对锂电池管理研究,首先要明确锂离子电池的动态和静态特性。电池和电池组建模仿真能够反映电池充放电特性,是开展机理研究的重要手段。 1.1锂电池模型 锂电池模型通过电池电压、温度等可测量参数对电池的内部性能进行描述,并对参数变化进行预测。常用的锂电池模型包括电化学模型、数学模型和等效电路模型。 电化学模型是根据电池内部化学反应过程构建模型。从电化学原理出发,准确模拟电池内部电离子的传输、扩散、电化学反应、热力学现象,描述电池离子浓度的分布梯度,分析电池衰减机制和健康状态。电化学模型通常由多个偏微分方程构成,模型较复杂。 数学模型是依据实验数据,运用经验公式和数理方法建立电池经验模型,从理论上分析锂电池的一般规律。常用的数学模型有Kinetic 模型和离散马尔科夫链电池模型,但都仅关注电池外特征,难以描述电池机理过程和电池的电压?电流外特征。 等效电路模型是采用电容、电阻等电子元器件搭建电池模型,描述充放电过程中电池特性,能够较好地反映电池的动态特性,常用于电池荷电状态估算。等效电路模型具有简单直观、精度较高、计算量较小的优点。常用的等效电路模型有Rint模型、Thevenin模型、PNGV 模型。Rint模型简单,但忽略了温度、电解液浓度等因素对电池特性的影响。Thevenin模型考虑温度、电流倍率的影响,模型参数容易辨识,具有一定的动态和静态性能,但无法同时描述电池充放电过程中内部电解液发生的浓度差和电化学两种极化现象,且不能准确描述电池实时动态。在Thevenin模型基础上,增加一组RC回路,组成二阶RC等效电路模型,能兼顾电池的稳态特性和暂态特性,但无法排除自放电和温度的影响。PNGV模型则能很好地体现电池动态性能。 1.2锂电池组建模 由于单体电池状态变化、电池包内温度分布情况和电池成组方式等因素都会影响电池组特性,因此电池组建模更加困难。常用的电池组模型包括神经网络模型、电化学模型和等效电路模型。 国内学者经常会根据电池的电化学特性构建电池组电化学模型,利用卡尔曼滤波和最小二乘法分别建立在线和离线参数辨识方法,并通过实验对模型进行验证。国外学者则倾向于根据统计方法搭建电池组模型,缺点是精度由电池参数辨识的准确性决定,缺乏工程验证。学者们大多将并联电池模组简化为一个大电池模型,再将大电池模型串联组成电池组模型。假设各单体电池参数完全相同,进行整体参数辨识和仿真,但是忽略了电池连接方式对电池组性能的影响,无法对电池模组中各单体电池一致性衰减过程进行准确描述。为提高模型精度,山东大学王丽梅等人进一步考虑电池连接件阻抗和极柱引出位置等影响因素,采用Thevenin模型构建电池组等效电路模型,对电池组充放电性能进行仿真,如图1所示。 图1 基于 Thevenin 模型的并联电池模组等效电路模型 针对电池组的模型构建通常简化处理,常忽略电池参数差异。在储能系统中,电池数量多,电池参数呈离散式分布,若不能充分考虑电池参数差异问题,电池组模型精度将无法满足实际应用中的设计要求。 2锂电池组均衡管理控制策略 主动型和被动型是目前锂电池均衡管理控制策略的两种主要形式。被动型均衡管理控制策略也称耗散型均衡管理控制策略,在每个单体电池上并联一个可控的电阻进行分流,将容量大的电池中多余的电量以热量的形式消耗掉,从而实现整组电池电压的均衡。主动型均衡管理控制策略主要利用电路拓扑开关结构和算法进行融合,实现电量的转移,分为电量消耗型均衡管理控制策略和非电量消耗型均衡管理控制策略。电量消耗型属于电量浪费,非电量消耗型则是通过储能元件将电量多的部分传递给电量较少的电池。非电量消耗型均衡管理控

锂电池电动自行车优缺点分析

锂电池电动自行车优缺点分析 发布:2011-08-23 | 作者: | 来源: haoxiaofeng | 查看:3799次 | 用户关 注: 锂离子电池被称为性能最为优越的可充电电池,有“终极电池”之称。相对于传统的铅酸电池以及镍氢、镉镍电池而言,锂离子电池问世的时间很短,其产业化和市场应用迄今只有十多年的时间,但却是可充电电池中发展最快的。目前,锂离子电池正处于性能不断提高、成本不断降低、应用领域快速扩大、市场份额急剧增长的阶段,并逐步取代了镍氢、镉镍等电池。随着手机、笔记本电脑、蓝牙、便携式摄像机、数码相机、MP3、MP4、PDA 锂离子电池被称为性能最为优越的可充电电池,有“终极电池”之称。相对于传统的铅酸电池以及镍氢、镉镍电池而言,锂离子电池问世的时间很短,其产业化和市场应用迄今只有十多年的时间,但却是可充电电池中发展最快的。目前,锂离子电池正处于性能不断提高、成本不断降低、应用领域快速扩大、市场份额急剧增长的阶段,并逐步取代了镍氢、镉镍等电池。 随着手机、笔记本电脑、蓝牙、便携式摄像机、数码相机、MP3、MP4、PDA 和电动工具等消费和便携式电子产品的持续走强,锂离子电池的市场需求一直保持相当高的增长速度,市场对于锂离子电池的巨大需求,以及人力、物力、财力的不断大规模投入,引导锂离子电池行业逐渐走强,进而促进了电池成本、材料、安全性、性能、电池管理系统、充电器等各方面的发展,最终使锂离子电池在电动自行车乃至电动汽车方面的应用成为可能。 宁波的电动自行车市场刮起了一股新能源风,不少品牌都推出了锂电池电动自行车。与目前广泛使用的铅酸蓄电池比,锂电池的优点在于寿命更长,重量更轻,锂电池与目前电动自行车广泛使用的铅酸蓄电池和部分使用的锂电能量电池相比,电池寿命将会延长,综合使用成本有望大幅降低。不过,价格偏高暂时阻碍了这种新能源车的推广普及。 >>>优点 寿命长重量轻体积小 昨天上午,记者走访了百丈路、三号桥附近的不少电动自行车专卖店,发现不少商家把锂电池电动车放在了最显眼的位置。 绿源专卖店里有一种外形小巧的锂电池电动自行车,重量只有16公斤左右,电池只有一本书大小,才2.5公斤重,可以放在包里拎着走,还可以用来给电脑充电,而与之马力相当的铅酸电池重量则在15公斤左右。不过,这种电动车价格比较贵,要2800多元一辆。“这种车上市才一周,价格比较高,但销量比预想的好,一周时间就卖出好几辆。”绿源电动车负责人张先生介绍,这种车采用了锂电池,充电一次可跑30公里左右。

锂电池生产工艺分析

璽电池生产工艺分析 关于循环不合格的分析 一、正负极活性材料的物化结构性质的影响 正负极活性材料的物化结构性质对锂离子的嵌入和脱嵌有决定性的影响,因而影响电池的循环寿命。正负极活性材料的结构是主要的影响因素,使用容易脱嵌的活性材料充放电循环时,活性材料的结构变化较小,而且这种微小变化是可逆的,因而有利于延长充放电循环寿命。 1、材料在充放电过程中的结构稳定性 材料在充放电过程中的结构稳定性有利于提高其充放循环性能。如尖晶石材料LiXMn204,具有优越的循环性能,其主要原因之一便是在锂离子的嵌入和胶出过程中,单元晶胞膨胀、收缩率小于1%,即体积变化小;LiXMn204(X大于等于1)电极在充放过程中容量损失严重,主要是因为在充放电过程中,其颗粒表面发生John- Teller畸变效应,单元晶胞膨胀严重,使结构完整性破坏。对材料进行适当的离子掺杂可有效提高材料的结构稳定性。如对尖晶石结构LiXMn2O4进行适量的钻(Co) 掺杂,因钻使该材料的晶格参数变小,在循规蹈矩环过程中晶体结构趋于稳定,从而有效改善了其循环稳定性。 2、活性材料的料度分布及大小影响 活性材料的粒度对其循环性能影响很大。研究表明:活性材料的粒度在一定范围与材料的循环性能正相关;活性材料的粒度分布越宽,其循环性能就越差,因为当粒度分布较宽时,其孔隙度差,从而影响其对电解液的毛细管作用而使阻抗表现较大,当充电到极限电位时,大颗粒表面的锂离子会过度脱嵌而破坏其层状结构,而不利于循环性能。 3、层状结构的取向性及片度的影响

具有高度取向性和高度层状有序结构且层状结构较厚的材料,因锂离子插入的方向性强,使用其大电流充电放循环时性能不佳,而对于一些具有无序性层状结构 (混层结构)或层结构较薄的材料,山于其锂离子脱嵌速率快,且锂脱嵌引起的体积变化较小,因而其充放循环过程中容降率较小,且耐老化。 4、电极材料的表面结构和性质的影响 改善电极材料的表面结构和性质可有效抑制有机溶剂的共插入及其与电解液间的不良反应,如在石黑表面包覆一层有机聚合物热解碳,在一些正极活性材料如LiC002, LiC0XNil-X02等表层涂覆一层玻璃态复合氧化物如 LiO-A12O3-SiO2, Li20-2B203等可显著改善材料的充放电循环性能及电池的安全性。 二、电极涂层粘结强度的影响 正负极涂层的粘结强度足够高时,可防止充放循环过程中正负极优其是负极的粉化脱落或涂层因过度膨胀收缩而剥离基片,降低循环容降率;反之,如果粘结强度达不到要求,则随循环次数的增加,因涂层剥离程度加重而使电池内阻抗不断增大,循环容量下降加剧。具体说来,包括以下儿方面的因素。 1、胶粘剂的材料选择 LI前常用的粘合剂为水溶性有机氟粘合剂(PVDF, PTFE等),其粘结强度受物理化学性能参数如分子量、热稳定性、热收缩率、电阻率、熔融及软化温度以及在溶剂中的溶胀饱合度、化学稳定性等的影响;此外,正极和负极所用的粘结剂及溶剂均要非常纯,以免因杂质存在而使电极中的粘结剂氧化和老化,从而降 低电池的循环性能。 2、胶粘剂的配制

锂电池生产工艺修订稿

锂电池生产工艺 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

锂离子电池工艺流程 正极混料 原料的掺和: (1)粘合剂的溶解(按标准浓度)及热处理。 (2)钴酸锂和导电剂球磨:使粉料初步混合,钴酸锂和导电剂粘合在一起,提高团聚作用和的导电性。配成浆料后不会单独分布于粘合剂中,球磨时间一般为2小时左右;为避免混入杂质,通常使用玛瑙球作为球磨介子。 干粉的分散、浸湿: (1)原理:固体粉末放置在空气中,随着时间的推移,将会吸附部分空气在固体的表面上,液体粘合剂加入后,液体与气体开始争夺固体表面; 如果固体与气体吸附力比与液体的吸附力强,液体不能浸湿固体;如果固体与液体吸附力比与气体的吸附力强,液体可以浸湿固体,将气体挤出。 当润湿角≤90度,固体浸湿。 当润湿角>90度,固体不浸湿。 正极材料中的所有组员都能被粘合剂溶液浸湿,所以正极粉料分散相对容易。 (2)分散方法对分散的影响: A、静置法(时间长,效果差,但不损伤材料的原有结构); B、搅拌法;自转或自转加公转(时间短,效果佳,但有可能损伤个别 材料的自身结构)。 1、搅拌桨对分散速度的影响。搅拌桨大致包括蛇形、蝶形、球形、桨形、 齿轮形等。一般蛇形、蝶形、桨型搅拌桨用来对付分散难度大的材料或配料的初始阶段;球形、齿轮形用于分散难度较低的状态,效果佳。 2、搅拌速度对分散速度的影响。一般说来搅拌速度越高,分散速度越快, 但对材料自身结构和对设备的损伤就越大。 3、浓度对分散速度的影响。通常情况下浆料浓度越小,分散速度越快,但 太稀将导致材料的浪费和浆料沉淀的加重。 4、浓度对粘结强度的影响。浓度越大,柔制强度越大,粘接强度 越大;浓度越低,粘接强度越小。 5、真空度对分散速度的影响。高真空度有利于材料缝隙和表面的气体排 出,降低液体吸附难度;材料在完全失重或重力减小的情况下分散均匀的难度将大大降低。 6、温度对分散速度的影响。适宜的温度下,浆料流动性好、易分散。太热 浆料容易结皮,太冷浆料的流动性将大打折扣。 稀释。将浆料调整为合适的浓度,便于涂布。 原料的预处理 (1)钴酸锂:脱水。一般用120 oC常压烘烤2小时左右。 (2)导电剂:脱水。一般用200 oC常压烘烤2小时左右。 (3)粘合剂:脱水。一般用120-140 oC常压烘烤2小时左右,烘烤温度视分子量的大小决定。 (4) NMP:脱水。使用干燥分子筛脱水或采用特殊取料设施,直接使用。 2.1.2物料球磨

电动自行车锂电池组保护电路设计

电动自行车锂电池组保护电路设计 近期,国家多部门联合发文对电动自行车产业进行了整改,要求电动自行车的整车重量应不大于40kg,最高车速应不高于[1]20km/h.据此标准,目前国内大多数电动自行车无法达标,而其中一大原因就是存在于动力源铅酸电池。由于此类电池的比能量较小,导致其体积和重量均较大,加上生产过程中易造成铅污染,如今已严重制约着电动自行车产业。 锂电池问世时间并不长,但由于其具有的比能量大,体积小,重量轻,循环寿命长,无记忆效应,无污染等特点[2],已成为未来电动自行车能源的新发展方向,目前国外的电动自行车已开始推广使用。锂电池工作电压在2.7~4.2V区间,可采用多节电池的串联和并联来满足电动自行车所需电压和电量的要求。锂电池的使用要求不能过充电、过放电、过电流,否则将降低电池寿命,严重时会导致电池爆炸。因此,需要设计一款专用保护电路对每节电池进行管理,以保证锂电池的正常充放电。在此完成了一款电动自行车锂电池保护电路的研究与设计。 1设计需求 单个锂电池型号为RFE-N18650,如图1所示,标称电压为3.6V.锂电池组采用4并10串的结构,如图2所示,标称电压为36V,标称容量为9Ah.该锂电池组的保护要求为:充电上限电压43V,放电截止电压27V.图1单节锂电池保护电路要能实现对每级电池的充放电保护,要求如下:(1)每级电池充电电压4.3V;(2)每级电池放电电压2.7V.锂电池组工作过程中,还需实现以下功能: (1)负载短路保护; (2)躲避电动机的瞬时启动电流; (3)锂电池组各级电压在充放电过程中能保持基本均衡。 2电路总体实现方案 锂电池组的保护电路实现方案如图3所示,由2块电路板组成。保护板1用于监视各级锂电池电压,通过保护IC产生保护信号,例如禁止充电、禁止放电等;保护板2接收来自保

锂电池英文生产过程

Mixing(配料) Mix solvent and bound separately with positive and negative active materials. Make into positive and negative pasty materials after stirring at high speed till uniformity. Coating(涂布) Now, we are in coating line. We use back reverse coating. This is the slurry-mixing tank. The anode(Cathode)slurry is introduced to the coating header by pneumaticity from the mixing tank. The slurry is coated uniformly on the copper foil, then the solvent is evaporated in this oven. There are four temperature zones, they are independently controlled. Zone one sets at 55 degree C, zone two sets at 65 degree C, zone three sets at 80 degree C, zone four sets at 60 degree C. The speed of coating is 4 meters per minute. You see the slurry is dried. The electrode is wound to be a big roll and put into the oven. The time is more than 2 hours and temperature is set at 60 degree C. Throughout the coating, we use micrometer to measure the electrode thickness per about 15 minutes. We do this in order to keep the best consistency of the electrode. Vocabulary: coating line 涂布车间 back reverse coating 辊涂 coating header 涂布机头 Al/copper foil 铝/铜箔 degree C 摄氏度 temperature zones 温区 wind to be a(big)roll 收卷 evenly/uniformly 均匀 oven 烘箱 evaporate 蒸发 electrode 极片 Cutting Cut a roll of positive and negative sheet into smaller sheets according to battery specification and punching request. Pressing Press the above positive and negative sheets till they become flat. Punching Punching sheets into electrodes according to battery specification, Electrode After coating we compress the electrode with this cylindering machine at about 7meters per minute. Before compress we clean the electrode with vacuum and brush to eliminate any particles. Then the compressed electrode is wound to a big roll. We use micrometer to measure the compressed electrode thickness every 10 minutes. After compressing we cut the web into large pieces. We tape the cathode edge to prevent any possible internal short. The large electrode with edge taped is slit into smaller pieces. This is ultrasonic process that aluminum tabs are welded onto cathodes using ultrasonic weld machine. We tape the weld section to prevent any possible internal short. And finally, we clean the finished electrodes with vacuum and brush. Vocabulary: cylindering 柱形辊压 vacuum 真空 particle 颗粒 wound 旋紧卷绕 micrometer 千分尺 internal short 内部短路 slit 分切 ultrasonic 超声波 weld 焊接

2018年锂电池行业分析报告

2018年锂电池行业分析报告

摘要 作为第三代电池技术,锂电池凭借着储能比能量高、循环寿命长、无污染等优点已经在电子产品领域取得了广泛的应用。同时,随着电动车行业的快速发展,大容量的动力锂电池市场前景广阔。 近年来,全球锂电池发展迅速,2011年全球锂离子电池(可充电的二次锂电池)市场规模达到153亿美元,同比增长29.7%,预计到2018年锂电池产业的产值将达到约320亿美元,其中电动汽车锂电池产值将占50%以上,超过160亿美元。2011年中国锂电池市场规模增速高于全球增速,2011年达到了397亿元人民币,同比增长43%,全年锂电池产量达到29.7亿颗,同比增长28.6%。保守估计,2018年中国锂电池行业市场规模可达到了900亿元人民币。 锂电池巨大的市场潜力除了归功于其性能优点,也离不开近年来相关产业政策的支持。近年来,国家多次明确支持锂电池技术的研发,并且制定了具体的奖励措施,例如国家对锂离子电池出口退税从13%上调至17%。同时我国和世界其他国家对于电动汽车发展的鼓励政策也直接刺激了对动力锂电池的需求。 目前全球锂电池产业目前主要集中在日本、中国和韩国三国,并且值得注意的是,近年来韩国企业发展迅速,去年三星已经取代日本三洋成为世界上最大的锂电池制造企业。中国锂电池制造业基地主要集中在广东、山东、江苏、浙江、天津等地。主要企业有比亚迪、欣旺达电子、天津力神电池等。

锂电池的生产工艺复杂,技术门槛极高。其核心材料主要是正极 材料、电解液和隔膜。其中正极材料是锂电池中最关键的原材料,决 定了电池的安全性能和电池能否大型化,约占锂电池电芯材料成本的 三分之一。目前,正极材料主要是钴酸锂、镍酸锂、锰酸锂、钴镍锰 酸锂、磷酸铁锂等,负极材料为石墨。正是因为锂电池技术门槛高,该行业存在很高的利润水平。整个行业的毛利润率水平在50%以上,其中,隔膜和正极材料生产企业利润率最高。 采用磷酸铁锂作为正极材料的锂电池普遍为业内看好,在磷酸铁 锂电池领域,国内领军企业比亚迪已经制造出了全球首款基于磷酸铁 锂电池的电动汽车F3DM。 目录 摘要 (1) 一、................ 锂电池行业主管部门及相关产业政策4 (一)行业界定 (4) (二)行业主管部门 (4) (三)相关产业政策 (4) 二、行业基本情况 (6) (一)行业概述 (6) (二)市场容量 (10) (三)行业竞争格局 (12)

48V电动车锂电池保护板

适用范围: 13串锂电池组,额定放电电流<20A,充电电流<3A 特点 ■高精度电压检测电路 ■低静态功耗 ■低温度系数 ■强抗干扰能力 一、主要技术参数 二、保护板功能说明 1、将锂电池与保护板按接线图连接 保护电路分别检测串联电池组中每只电池的电压和电流,控制电池组的充放电 过程。电池组中每只电池的电压均在过充检测电压和过放检测电压之间,并且

输出无短路现象时,MOS管导通,通P+、P-可对电池组进行放电操作; 2、电池组过放保护功能 串联电池组中的任意一只电池的电压下降到过放检测电压并且达到过放延时时 间时,过放保护功能启动,切断放电MOS管,禁止电池组对外输出电流,保护电 池组安全,电路板进入休眠状态,电路板消耗电流为休眠电流以下,进入休眠状 态的电路只有在连接充电器后,并且电池电压超过过放恢复电压后才能恢复; 3、电池组过充保护功能 通过P+和C-对电池组充电过程中,当任何一节电池电压上升到电池过充检测电 压,并且超过过充延时时间时,过充保护功能启动,切断充电MOS管,禁止对电 池组充电,保护电池组安全,当电池组连接负载放电或者电池电压下降到过充恢 复电压以下时,过充状态被恢复; 4、电池组短路保护功能 当电池组放电端口P+和P-发生短路时,保护电路会在短路保护延时时间后,切 断放电MOS管,禁止电池组对外放电,当外部短路被移除后,电路自动恢复; 5、电池组过流保护功能 当电池组放电端口P+和P-发生过电流现象时,保护电路会在过流保护延时时间 后,切断放电MOS管,禁止电池组对外放电,当外部短路被移除后,电路自动 恢复。 6、电池组充电均衡功能 由于电池的匹配或者外界环境影响而导致电池组中每只电池电池电压产生差异 时,若串联各组之间的电池电压差异超过设置值时允许均衡电路工作,均衡在充 电过程中启动,均衡电阻对相对容量最高的电池组进行放电,均衡电流为均衡吸 收电流值,以此来降低电池组电压上升速度,当串联各组电池电压差异小于设置 值时时,禁止均衡电路工作,无任何均衡电

相关文档
相关文档 最新文档