文档库 最新最全的文档下载
当前位置:文档库 › 几款经典电子管前级线路的特色2

几款经典电子管前级线路的特色2

几款经典电子管前级线路的特色2
几款经典电子管前级线路的特色2

几款经典电子管前级线路的特色几款经典电子管前级

2007-03-12 16:39:26来源:詹海峰《音响技术》关键字: 电子管前级几款经典电子管前级线路的特色

电子管在音响应用方面,最简单又最实用的莫过于作前级放大,因为前级不需要昂贵又复杂的输出变压器,同时也由于它需要的工作电源电压高,这使得讯号的放大倍数较大、动态裕量高,即使是放大到几十伏电压也不会因为供电压的限制而造成削波失真。

我十年前的音源是飞利浦早期的16bit CD机,出于电子管前级能给干硬的数码声增添音乐韵味和改善听感,也由于因它较易制作和回报率高,这些年来也制作过不少不同线路几款前级,当然这不是想研究出什么伟大的经典之作,但边学边玩的制作乐趣也让人得到一定享受和进步。前一段时间笔者再从收藏箱中将这几部前级取出来并略经改良以重温旧梦。这几部前级各具特色,值得电子管爱好者他细玩赏聆听,为了吸引更多读者制作胆机,也期望能抛砖引玉,笔者在这里向各位介绍和比较这些前级线路及它们的音效特色,以供读者作参考。

6N11一级共阴极放大线路

6N11的国外型号为6DJ8,用6N11制作一级共阴极放大的前级线路如图1.此机是笔者制作的第一部电子管前级,当年为了求简单和制作容易,高压不设稳压线路,当然采用稳压供电时效果更好,现为了取得较好的音效,笔者给它加了一个简单的三端稳压电源,并且原来串在电源中的5W2.5K电阻也用一个小型扼流圈替换,这使得滤波效果更好,电源的质量得到简单的提高。灯丝用稳压直流供电时可减低交流噪声,而用交流供电时,虽对电子管寿命有益,但对信噪比的影响较大,而且灯丝接地点须反复试验才有较好的效果,结果灯丝还

是采用了直流稳压供电。

本线路简单易制,成功率极高,不失为电子管爱好者入门之选。

6N11(6DJ8)电子管原本是用于电脑或电视机的高频VHF放大的Cascode线路,英国音响杂志“Class Audio”曾有两篇文章探讨这个电子管的优缺点。其中一篇的作者以测量多个6DJ8的技术指标来证明该电子管在各方面表现都不理想,如它的屏流偏置为15MA时,互导率虽高达12500microhms,,但是一般音频放大电路选择偏置于典型的1.5MA时,互导率仅为780—800microhms,因此该文作者表示这种电子管只能用在高偏流的阴极输出线路上。而另一篇文章的作者表示应该测试更多牌子的同类电子管才可作定论。虽然该管在过去争议颇多,但是目前很多电子管厂如Audio Research、Sonic Frontiers、Conrad-Johnson

及近期的BAT甚至多个品牌的国产前级都使用该管,由此可见它的声音自然有不凡之处。

在这部前级中除耦合电容改用较佳的Wima、Solen电容外,电阻还是用低噪无磁的国

产军工大红袍,当年这些电阻售价只有一枚0.1元,可异目前这种电阻越来越少。整流管用IN5407,高低压电源共用一个50W左右的环形电源变压器。这个线路笔者没有尝试加入负回馈,读者可以自己尝试,但此时要注意反馈电阻要接往的是栅极而不是阴极,这与两极共阴极放大输出端的波形是反相的,如入阴极,会使阴极极电位下降,相对栅极电位提高而形成正反馈。除了加设负回馈,当然也可尝试换用不同品牌的电容作校声试验,也可通过改变输出电容数值或改变负载电阻数值等作进一步尝试。目前市场上拆机旧装二手电容贷源充足,数值也较齐全,品牌不少,笔者曾试用了Wima、Solen、Rel和美国斯碧铁壳油浸电容以及国产天逸、新德克等,结果是Wima音质通透,速度适中,但音乐味有些偏淡;Solen音色高贵偏冷,动态较好;斯碧铁壳油浸电容韵味足,通透感中上,各方面表现较为平均;而REL音色醇厚,新德克韵味不错,但通透性、分析力稍感欠缺。

这个一级共阴极放大前级的特点是音质通透、音乐的背景宁静,分析力较高,全频表现相当均衡,但由于只是一级放大,因此它的放大能力、力度及控制力只是中级水平,声底偏向清冷和不够柔润。如果换用英国大循的ECC88或德律风根的ECC88时音质的柔润性可有所提高,使用飞利浦的6DJ8时声音有些甜美柔和,当改用改良型号管如俄国Sovtek场感

均有较大水平的提高,而用国产6N11时,人声方面表现尚可,分析力也有一定水平,可惜通透感以及音场之宽深感与进口名管相差不小。

6SN7两级放大负反馈线路

第二款前级是用一个6SN7作两极放大带负反馈前级线路,见图2.笔者在这个线路中是用曙光的6S8P电子管,高压电源采用6Z4作整流,并采用两个充气稳压管(WY3P+WY3P 串联)作稳压,灯丝则采用交流供电,但灯丝接地采用双臂电阻平衡法,以减小交流噪声。

这个线路也十分容易制作,它的声音特色是中音的厚润感及顺滑度一流,但力度则较一般,音场也收敛了一些,不知是不是因为中频表现太好反而令高低频显得失色,它的频域延伸和动态、瞬态都不算十分突出,音色有点像经典的LS3/5A.从HI-FI传真的角度来看,它的音效表现并不全面,但它也极讨人欢心,特别是播放小提琴弦乐和人声进让人十分满意。这个线路如能使用前苏联的6H8C或美国GE的6SN7电子管时力度感和音场的分析力会有

一定的提高,但美国GE七十年代生产的6SN7的声音顺滑度不及6H8C,除非找到六十年化的产品。相对用6N11一级阴极放大和下一部SRPP 6N10前级来讲,它的个性较强,对人听感影响最在的中频段十分出色。

6N10 SRPP前级放大线路

第三部前级是用6N10作SRPP线路,如图3.这个线路目前在烧友中流传较广,相信较多读者都焊装过,SRPP名为分流调节推挽线路(Shunt Regulatde Push-Pull),这种线路具有线性优良、失真率低、放大率高、动态大及输出阻抗低等优点,它的各项性能均优于一般的两极共阴RC交连或末级作阴极跟随器的典型电路,符合作为理想前级的条件。

SRPP的原理是下面的一个三极管作共阴极接地放大,其增益取决于屏极阻抗,大部分发生于上面那个三极管身上,而上面的三极管为一恒流源,作为下面那个三极管的有源变动活性负载。另外,上面那个三极管也可以当作是一个阴极跟随耦合器,讯号由下面的三极管

屏极输出送到上面三极管栅极。

这个SRPP线路也容易制作成功,在该前级中,高压电源虽然也进行了稳压处理。至于没有采用胆稳压,而是使用了三端集成块悬浮处理。至于灯丝则进行直流串联供电。6N10用作SRPP线路时音效没有什么值得赞扬和批评之处,通透度、顺滑度和力度只是稍好水平,在失真及分析力、音场方面也能称得上一流,而且性能较为稳定。这个SRPP线路目前不少发烧友都喜爱用6N11来制作,用6N11作SRPP放大时,通透感、分析力会比6N10作SRPP 好一些,但声音厚度及柔润感会降低,带来的结果是音色会淡一些,音乐感相对欠缺,而用飞利浦的6DJ8或英国大盾的EC88来焊装这种线路时,鱼与熊掌兼收的可能性会理大一些。

Marantz7前级放大器

在电子管前级中Marantz7的地位是至高无上的,玩电子管的发烧友没有听过Marantz7的大名者,相信已经极少。在50年代末推出的Marantz7主线路如图4,电路中,V1、V2用作电压放大,V3接成阴极跟随器作为信号缓冲,它的作用相当于用NPN管接成射随器,其电路最在特色就是整体环路反馈设计,这是Marantz7成名的一个主要因素。但由于它为

了防止高频自激,在V1和V2之间接上一个22PF电容,构成高频局部反馈降低高频放大倍数,同时输出端接一个三极阴一阴型负反馈网络,这个网络高频高阻抗十分三极阴一阴型负反馈网络,这个网络高频高阻抗十分小(约在20千欧以下),这种设计疑对V3构成相当大负担。

高频开环增益不够、负反馈对高频失真的改善也并不理想,但奇怪的是发烧界对Marantz7的音效印象还不错。这个制作中,V1、V2、V3笔者先是采用北京生产的出口管12AX7,但负反馈网络改接到第二级见图4之虚线部分,并取消防自激的C*22PF电容,这样可有效改善失真。12AX7属于高U管,放大倍数很大,但其内阻也较大,V3采用12AX7时似乎并非是最好的选择,我曾用美国的5751、12AU7代换过,此时高频有所改善,动态更大,音场的稳定性更好一些,用12AU7作阴极输出时,胆味相12AX7和5751少一些。12AU7可用6N10或ECC82代替,东芝的5963音效也有一定素质,它们的管脚是一样的,灯丝可采用6.3V或12.6V供电,在本机中采用交流6.3V供电。

Marantz7的分析力与高低频伸延度不见得十分出色,特别与当代最出色的电子管前级如Matisse Refernce,Audio Research Referance 1,Convergent SL-1等相比时这些不足会时隐时现,但Marantz7最吸引人的地方是那种难以言传的中频音色美,我认为它的音色还是偏向阳光类型,能将音乐中的光辉以及力感发挥无遗,重播铜管乐时,乐器的“亮度”十足,播放弦乐时,琴声也柔韧有质感,人声更是感情丰富。

笔者这个改装过的Marantz7线路音效评价颇高(V1、V2用5751,V3用Amperexr的12AU7),音色柔美顺滑,质感浓烈,高低频重放的表现尚可称得上一流,有一定的延伸度和力度感,但中频更佳,与两级6SN7负反馈放大线路相比,Marantz7线路更胜一筹。如果V1、V2都采用德律风根的ECC803S,V3也用德律风根ECC802C的话,我相信这个Marantz7能让自己不想再用其他前级。

如何看懂放大电路图

能够把微弱的信号放大的电路叫做放大电路或放大器。例如助听器里的关键部件就是一个放大器。 放大电路的用途和组成 放大器有交流放大器和直流放大器。交流放大器又可按频率分为低频、中源和高频;接输出信号强弱分成电压放大、功率放大等。此外还有用集成运算放大器和特殊晶体管作器件的放大器。它是电子电路中最复杂多变的电路。但初学者经常遇到的也只是少数几种较为典型的放大电路。 读放大电路图时也还是按照“逐级分解、抓住关键、细致分析、全面综合”的原则和步骤进行。首先把整个放大电路按输入、输出逐级分开,然后逐级抓住关键进行分析弄通原理。放大电路有它本身的特点:一是有静态和动态两种工作状态,所以有时往往要画出它的直流通路和交流通路才能进行分析;二是电路往往加有负反馈,这种反馈有时在本级内,有时是从后级反馈到前级,所以在分析这一级时还要能“瞻前顾后”。在弄通每一级的原理之后就可以把整个电路串通起来进行全面综合。 下面我们介绍几种常见的放大电路: 低频电压放大器 低频电压放大器是指工作频率在20 赫~20 千赫之间、输出要求有一定电压值而不要求很强的电流的放大器。 (1 )共发射极放大电路 图1 (a )是共发射极放大电路。C1 是输入电容,C2 是输出电容,三极管VT 就是起放大作用的器件,RB 是基极偏置电阻,RC 是集电极负载电阻。1 、3 端是输入,2 、3 端是输出。3 端是公共点,通常是接地的,也称“地”端。静态时的直流通路见图1 (b ),动态时交流通路见图1 (c )。电路的特点是电压放大倍数从十几到一百多,输出电压的相位和输入电压是相反的,性能不够稳定,可用于一般场合。 (2 )分压式偏置共发射极放大电路 图2 比图1 多用3 个元件。基极电压是由RB1 和RB2 分压取得的,所以称为分压

几款经典电子管前级线路的特色2

几款经典电子管前级线路的特色 2007-03-12 16:39:26来源:詹海峰《音响技术》关键字: 电子管前级几款经典电子管前级线路的特色 电子管在音响应用方面,最简单又最实用的莫过于作前级放大,因为前级不需要昂贵又复杂的输出变压器,同时也由于它需要的工作电源电压高,这使得讯号的放大倍数较大、动态裕量高,即使是放大到几十伏电压也不会因为供电压的限制而造成削波失真。 我十年前的音源是飞利浦早期的16bit CD机,出于电子管前级能给干硬的数码声增添音乐韵味和改善听感,也由于因它较易制作和回报率高,这些年来也制作过不少不同线路几款前级,当然这不是想研究出什么伟大的经典之作,但边学边玩的制作乐趣也让人得到一定享受和进步。前一段时间笔者再从收藏箱中将这几部前级取出来并略经改良以重温旧梦。这几部前级各具特色,值得电子管爱好者他细玩赏聆听,为了吸引更多读者制作胆机,也期望能抛砖引玉,笔者在这里向各位介绍和比较这些前级线路及它们的音效特色,以供读者作参考。 6N11一级共阴极放大线路 6N11的国外型号为6DJ8,用6N11制作一级共阴极放大的前级线路如图1.此机是笔者制作的第一部电子管前级,当年为了求简单和制作容易,高压不设稳压线路,当然采用稳压供电时效果更好,现为了取得较好的音效,笔者给它加了一个简单的三端稳压电源,并且原来串在电源中的5W2.5K电阻也用一个小型扼流圈替换,这使得滤波效果更好,电源的质量得到简单的提高。灯丝用稳压直流供电时可减低交流噪声,而用交流供电时,虽对电子管寿命有益,但对信噪比的影响较大,而且灯丝接地点须反复试验才有较好的效果,结果灯丝还是采用了直流稳压供电。

换能器前置放大电路设计

项目支持:北京市科技攻关项目,农业节水灌溉监测与控制设备研制与开发(D0706007040191)国家“十一五”科技支撑计划农产品流通过程信息化关键技术与系统研发(2006BAD10A04) 国家“十一五”科技支撑计划灌区地下水开发利用关键技术(2006BAD11B05) 微弱信号检测的前置放大电路设计 张石锐1,2,郑文刚2*,黄丹枫1,赵春江2 (1.上海交通大学农业与生物学院上海市 200240 2.国家农业信息化工程技术研究中心北京市 100097) 摘要:针对精准农业中对微弱信号检测的技术需求,论文设计了以电流电压转换器,仪表放大器和低通滤波器为主要结构的微弱信号检测前置放大电路。结合微弱信号的特点讨论了电路中噪声的抑制和隔离,提出了电路元件的选择方法与电路设计中降低噪声干扰的注意事项。本文利用集成程控增益仪表放大器PGA202设计了微弱信号检测前置放大电路,并利用微弱低频信号进行了测试,得到了理想的效果。 关键字:精准农业、微弱信号检测、仪表放大器、前置放大电路 中图分类号:TN721.5 文献标识码:A The design of preamplifier circuit based on weak signal detection ZHANG Shi-rui1,2,ZHENG Wen-gang2,HUANG Dan-feng1,ZHAO Chun-jiang2 (1. School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China 2. National Engineering Research Center for Information Technology in Agriculture, Beijing, 100097, China) Abstract:Combined with the demand of the detection of weak signal in precision agriculture, the article introduced the circuit principle of deigning preamplifier circuit whit I/V Conversion level, instrumentation amplifier level and low-pass filter level. At the same time the article discussed the circuit's noise suppression and isolation according to the characteristics of the weak signal, and gave the method of choosing elements and noise reduction. Finally, gave the design of the weak signal detection pre-amplifier using the program-controlled integrated instrumentation amplifier PGA202. Key words: precision agriculture ,weak signal detection, instrumentation amplifier, preamplifier 1、引言 精准农业主要是依据实时获取的农田环境和农作物信息,对农作物进行精确的灌溉、施肥、喷药,最大限度地提高水、肥和药的利用效率,减少环境污染,获得最佳的经济效益和生态效益[1]。农田环境和农作物信息的准确获取取决于可靠的生物传感技术。如常规精准灌溉主要关注空气的温度、湿度和土壤的含水量,利用这些参数的变化控制对农作物的灌溉,而作物自身产生的一些信号能够更准确的反映其自身的生理状况,通过检测这些信号控制灌溉可以使灌溉更精确。目前精准灌溉技术正朝着以环境信息和农作物生理信息相结合为控制依据的方向发展,为此各种生物传感器如植物电信号传感器、植物茎流传感器等应运而生。但一般作物自身生理状况产生的信号极其微弱,往往电流信号只能达到纳安级,电压信号也只能达到微伏级。为有效的利用这些信号,应首先对其进行调理,本文根据植物生理信号的特点设计了适合此类微弱信号检测的前置放大电路。 2、电路基本结构 生物传感器所产生的信号一般为频率较低的微弱信号,检测不同的植物生理参数,可能得到电压或电流信号。对于电流信号,应首先把电流信号转换成为电压信号,通过放大电路的放大,最后利用低通滤波器,滤除混杂在信号中的高频噪声。微弱信号检测前置放大电路的整体结构如图1。

简单的前级多级音频放大器

如图是一个由晶体三极管VT1~VT3组成的多级音频放大器。VT1与外围阻容元件组成了典型的阻容耦合放大电路,担任前置音频电压放大;VT2、VT3组成了两级直接耦合式功率放大电路,其中:VT3接成发射极输出形式,它的输出阻抗较低,以便与8Ω低阻耳塞式耳机相匹配。 驻极体话筒B接收到声波信号后,输出相应的微弱电信号。该信号经电容器C1耦合到VT1的基极进行放大,放大后的信号由其集电极输出,再经C2耦合到VT2进行第二级放大,最后信号由VT3发射极输出,并通过插孔XS送至耳塞机放音。 电路中,C4为旁路电容器,其主要作用

是旁路掉输出信号中形成噪音的各种谐波成份,以改善耳塞机的音质。C3为滤波电容器,主要用来减小电池G的交流内阻(实际上为整机音频电流提供良好通路),可有效防止电池快报废时电路产生的自激振荡,并使耳塞机发出的声音更加清晰响亮。 元器件选择 VT1、VT2选用9014或3DG8型硅NPN 小功率、低噪声三极管,要求电流放大系数β≥100;VT3宜选用3AX31型等锗PNP小功率三极管,要求穿透电流Iceo尽可能小些,β≥30即可。 B选用CM-18W型(φ10mm×6.5mm)高灵敏度驻极体话筒,它的灵敏度划分成五个挡,分别用色点表示:红色为-66dB,小黄为-62dB,大黄为-58dB,兰色为-54dB,白色>-52dB。本制作中应选用白色点产品,以获得较高的灵敏度。B也可用蓝色点、高

灵敏度的CRZ2-113F型驻极体话筒来直接代替。 XS选用CKX2-3.5型(φ3.5mm口径)耳塞式耳机常用的两芯插孔,买来后要稍作改制方能使用。改制方法参见图2所示,用镊子夹住插孔的内簧片向下略加弯折,将内、外两簧片由原来的常闭状态改成常开状态就可以了。改制好的插孔,要求插入耳机插头后,内、外两簧片能够可靠接通,拔出插头后又能够可靠分开,以便兼作电源开关使用。耳机采用带有CSX2-3.5型(φ3.5mm)两芯插头的8Ω低阻耳塞机。 R1~R5均用RTX-1/8W型碳膜电阻器。C1~C3均用CD11-10V型电解电容器,C4用CT1型瓷介电容器。G用两节5号干电池串联而成,电压3V。

5款较常用的电子管前级制作电路图

5款较常用的电子管前级制作电路图 第一款介绍为1/2 6DJ8电子管作一级共阴极放大,见图①。由於是实验关系,只求了解各线路的特性及优缺点,也为求简单易制成功,除此机外,全不设稳压线路,特别是高压,相信在一般聆听环境,区别不会太显著,当然是设稳压电路更好。零件方面,除交连电容用较佳品种如VitaminQ、Rel Cap、Wima外;电阻除了6DJ8SRPP用东京光音外,其他均用0.5元一只货色;整流管用Mur1100E;电源变压器分别高低压各用一只,每只约10到20元,效果也算好。另外,以下各比试结论均只以300B单端电子管后级及KEF IS 3/5A为配搭器材,结论当然有其局限性。本线路简单易制,不失为初学者入门之选,成功率极高,也可尝试校声乐趣,即改变输出电容数值,改变负载电阻数值或加设负反馈等。交连电容牌子方面,曾以300B后级最后交连至强放电子管的位置作试听,试用了Mitppmfx、RelCappp、Kimber及Vitamin Q,结果是Mit音质细微通透,但却欠了动态;Rel Cap声厚而有力;Kimber音色通透高贵;SpragueVita-rain Q则醇厚顺滑兼备,泛音丰富,而动态也最好,表现最全面。笔者喜用一些旧的Vitamin0,因不用煲而数值也十分准确。音效方面,此机背景聆静,音质通透,分析力高,全频表现算平均,力度及控制力一般,但却少了厚度及顺滑音色,声底偏向干及清。曾试用1.8mA及4.5mA作偏流,高偏流时声音较细致。笔者未试过加入负反馈,读者可自行尝试,听声选择合乎自己的音色。要注意反馈电阻要接到栅极而不是阴极,因一级共阴极放大输出波形是反相的,如接人阴极,便会使阴极电位下降,相对地是栅极电位提高了而形成正反馈,这区别於两极共阴极放大电路把反馈电阻接回第一级阴极。 6DJ8一级共阴极放大,输出电容并了多只Wima 电容 6SN7 SRPP线路 第二款是6SN7SRPP线路,相信不少读者试制过此线路,见图②。名为分路调节推挽线(Shunt regulated push-pull),一般人相信该线路有下列优点:失真率低、线性度优良、放大率高、过荷量宽及输出阻抗低等。原理是下级电子管为共阴极,其增益取决於屏极阻抗,大部分发生於上级电子管身上,上级电子管为一恒流源,作为下级电子管的有源负载,另外,也作为一阴极跟随器,信号由下级电子管屏极输送至上级电子管栅极。R1及R2均为同值。但上级电子管绝对不是能达到百分百的恒流目的,故后

2.4G放大器电路原理图

2.4G 射频双向功放的设计与实现 在两个或多个网络互连时,无线局域网的低功率与高频率限制了其覆盖范围,为了扩大覆盖范围,可以引入蜂窝或者微蜂窝的网络结构或者通过增大发射功率扩大覆盖半径等措施来实现。前者实现成本较高,而后者则相对较便宜,且容易实现。现有的产品基本上通信距离都比较小,而且实现双向收发的比较少。本文主要研究的是距离扩展射频前端的方案与硬件的实现,通过增大发射信号功率、放大接收信号提高灵敏度以及选择增益较大的天线来实现,同时实现了双向收发,最终成果可以直接应用于与IEEE802.11b/g兼容的无线通信系统中。 双向功率放大器的设计 双向功率放大器设计指标: 工作频率:2400MHz~2483MHz 最大输出功率:+30dBm(1W) 发射增益:≥27dB 接收增益:≥14dB 接收端噪声系数:< 3.5dB 频率响应:<±1dB 输入端最小输入功率门限:

6N11电子管前级放大器

6N11电子管前级放大器 2018年2月21日17:06 6N11电子管前级放大器电子管放大器的音色是发烧友们 所喜好的,下面介绍一个用6N11制作的胆前级。放大器分前级和后级,我们常说的功放是将两者合二为一的机器。前级主要作用是对输入的微弱信号进行电压放大,以推动后续的功率放大管。一般情况下。前级放大器因工作电流较小,元器件比较简单,材料容易购买而制作相对容易。自制放大器时线路的选取很重要,考虑到业余条件的限制,DIY时选取简洁线路较容易取得成功。在设计电压放大级时主要考虑是有足够的增益,频响和失真、噪声等特性。在晶体管(俗称“石”)和电子管(俗称“胆”)放大器中,由于电子管的放大因数(μ)很大,往往用一个电子管就相当于用几个晶体管构成的电路,因此两者比较电子管功放制作的成功率远高于晶体管机。用于前级电压放大的电子管,一般有6N1、6N3、6N11、12AX7、12AT7、12AU7、6SL7、6SN7、6SJ7和EF86等多种三极管和五极管。由于等效输入噪声较大,6SJ7、EF86等五极管现在一般已不常采用。了解一只电子管的特点和衡量它的性能,常用跨导(S)、内阻(Ri)、放大因数(μ)表示,其中跨导是电子管栅压对屏流的控制能力;内阻是当栅极电压为定值时,屏极电压的变化量与相应的屏极电流变化量之比,内阻

越小,电子管的负载能力、频响方面要好些,应优先采用;放大因数是用来表示放大品质的量。跨导、内阻、放大因数三者的关系是:μ=S×Ri。前级电压放大用电子管,常常按它们的放大因数分成高μ、中μ、低μ类型。μ值大于35的叫高μ管。如以上列举的12AX7、12AT7、6SL7。μ值大的管子,放大倍数较大,但输入范围较小。适合做小信号前级和功放的第一级。μ值在20-35之间的称为中μ管.如12AU7、6SN7、6N3、6N11等,它们的特点是输入范围要大一些,有相对较小的失真。6N11(国外同类产品称为6DJ8或6922)是高频低噪声双三极九脚电子管。它的板极为非封闭形,两片板极的中间部分贴近栅极,两三极管之间有屏蔽板隔离,所以使用时。米勒效应引起输入电容的增加部分较少,频响容易做得很宽。由于这一特点,6N11以前主要用于高频电压放大。常被用于示波器的X、Y轴偏向放大。6N11的内阻比12A系列电子管低,兼之它的跨导大,噪声低,既能充分体现电子管的大动态长处,又有晶体管频响宽、速度高的特点,因此近年来在高保真音响设备中被广泛使用。国内外很多功放的输入级,甚至在CD唱机的数码转换器中都能看到它的踪影。下面是采用一个6N11电子管即能完成立体声左右声道放大的前级放大器它以Simpleisbest(简洁是好)的宗旨设计,线路非常简洁实用,而且音质水平较高,非常适合爱动手的入门爱好者制作。该线路为经典的阻容耦合单级

6922电子管胆前级放大电路

6922 电子管胆前级放大电路 2018 年4 月2 日17 :58 665 6922 电子管胆前级放大电路和韵T99 是欧博音响公司的五周年纪 念版前级,其外形秀巧,电路简洁,音质纯静而无音染。 T99 前级放大电路如图所示。从图中可见,它除了两个电子三极管之外,几乎就没有什么元件了,所以在介绍它之前先说一说电子管及其在音频设备应用中的地位。电子管的物理特性在某些方面仍优于晶体管,如近代的6N15 、6N3 电子管,其电极间距离10 -3m 量级,在几百伏屏压下电子在真空中的速度达107m/s ,渡越时间为10 -10s 量级,对于10MHz 的频率周期为10-8s 。在这个渡越时间内,各电极的电压相位基本无变化,因此电子管可以毫无困难地工作到300?500MHz,也就是说,在音频放大中根本不必考虑电子管的频率特性问题,任何一种电子管都至少可满足10kHz 的音频放大要求。另外在100kW 以上的高频大功率放大器中,电子管仍独步天下,晶体管则望尘莫及,因此目前在军事领域和高科技领域仍在部分使用电子管。至于普遍认为电子管高频特性不如晶体管,并不是管子本身的问题,而是由于电子管在做电压放大时其内阻与分布电容所形 成的低通电路以及在做功率放大时输出变压器的漏感等寄生 参量造成的。总之,电子管目前仍是优秀的音频放大器件,只是电路设计和变压器制作不能马虎。从听感及欣赏角度而言,晶体管和电子管应该说各有千秋,不可一概而论。电子管音色温暖、甜润、耐听,空气感及空间信息的融合性好,这在音响界已成为共识,而晶体管具有瞬态反应快、分析力高、对音像细节的镌刻更深入等优点。

电子管(三极管)是由阴极K、屏极(阳极)A、栅极G组成 的。阴极是电子管电子流的源泉,当阴极被灯丝加热到一定程度时,就会不断地向空间发射电子。在屏极与阴极间加上直流电压,使屏极电位高于阴极电位时,在屏极电场的作用下,从阴极发射的电子就会源源不断地奔向屏极,即所谓的真空管正向导通。根据电流方向与电子流方向相反的定理,电流便从屏极流向阴极,这就是所谓的屏流 la。栅极是决定 电子管放大作用的电极,位于阴极和屏极之间靠近阴极的位置。栅极的作用是抑制由阴极向屏极发射电子。当栅极加上相对于阴极为负的电压即栅负压,便在管内屏、阴之间形成两个电场:一是屏极的正电压产生的正电场,对空间电荷区的电子起吸引作用;二是栅极负压产生的负电场,对空间电荷区的电子起排斥作用,栅极电压越负,排斥作用越强,屏极电流就越小。改变栅负压即可改变屏极电流。而栅极比屏极更靠近阴极,对屏极电流的抑制作用远比屏极电压更大,约大 4?100倍。栅极电压的微小变化,便能引起屏极电流 的较大变化,从而实现电子管的电流放大作用 了解了电子管的放大原理之后,再来看T99 前级放大电路。T99 前级电路是一种典型的分流调整式推挽放大电路(SRPP) ,如附图所示。两个电子三极管(6922)V1 和V2 起调整式电压放大作用,R5 、R6 为自给偏压电阻,C3 是输出耦合电容,R7 为交流负载电阻,W1 是音量控制电位器。SRPP 是一个非常精采的电路设计。对于该电路的原理说法不一,从电路名称上看应是推挽电路,国

音频前级放大器

音频前级三段均衡放大器 电路原理图 AR1_A AR1_B C9 AR1_C AR1_D 123J1IN R8 GND R9_A GND GND R2 R17 123J2OUT R1_A C10 C1 C2 R33 C3 R27 GND GND R18 R28 GND R19 R10 R3 R34 R20 R11_A C4 GND GND R21 R24 R12 C8 R9 R4 R26 R13_A R7 GND AR2_A GND AR2_B R13_B AR2_C R32 AR2_D R16 R14 R9_B R11_B GND R25 R5 R6 R22R15 R1_B GND C5 R31 C6 R23 C7 R30

元件参数表 R1 R2 R3 R4 R5 R6 50k 10k 10k 10k 10k 10k R7 R8 R9 R10 R11 R12 10k 10k 100k 电位器 10k 100k 电位器 10k R13 R14 R15 R16 R17 R18 100k 电位器 10k 10k 10k 10k 330k R19 R20 R21 R22 R23 R24 10k 330k 10k 10k 330k 10k R25 R26 R27 R28 R29 R30 330k 10k 2.2k 2.2k 2.2k 2.2k R31 R32 R33 R34 C1 C2 2.2k 2.2k 10k 33k 473涤纶电容 682涤纶电容 C3 C4 C5 C6 C7 C8 472涤纶电容 152涤纶电容 473涤纶电容 682涤纶电容 472涤纶电容 152涤纶电容 C9 C10 AR1 AR2 J1 J2 475薄膜电容 475薄膜电容 TL084 TL084 3P 2.54mm 3P 2.54mm 供电部分电路 C5 C8 GND GND 1 23 4 D1 BRIDGE T1 + C6 7812 IC1 + C3 7912 IC2+C2 + C1 C7 C4 +12 -12 ~220V 元件参数表 T1 D1 C1 C2 C3 C4 12V 10W+10W 2W10 25V2200μF 25VV2200μF 16V470μF 104纸介电容 C5 C6 C7 C8 IC1 IC2 104纸介电容 16V470μF 104纸介电容 104纸介电容 7812 7912 + - +12 -12 连接典例

几款经典电子管前级线路的特色

几款经典电子管前级线路的特色 詹海峰《音响技术》2000年6期 电子管在音响应用方面,最简单又最实用的莫过于作前级放大,因为前级不需要昂贵又复杂的输出变压器,同时也由于它需要的工作电源电压高,这使得讯号的放大倍数较大、动态裕量高,即使是放大到几十伏电压也不会因为供电压的限制而造成削波失真。 我十年前的音源是飞利浦早期的16bit CD机,出于电子管前级能给干硬的数码声增添音乐韵味和改善听感,也由于因它较易制作和回报率高,这些年来也制作过不少不同线路几款前级,当然这不是想研究出什么伟大的经典之作,但边学边玩的制作乐趣也让人得到一定享受和进步。前一段时间笔者再从收藏箱中将这几部前级取出来并略经改良以重温旧梦。这几部前级各具特色,值得电子管爱好者他细玩赏聆听,为了吸引更多读者制作胆机,也期望能抛砖引玉,笔者在这里向各位介绍和比较这些前级线路及它们的音效特色,以供读者作参考。 6N11一级共阴极放大线路 6N11的国外型号为6DJ8,用6N11制作一级共阴极放大的前级线路如图1。此机是笔者制作的第一部电子管前级,当年为了求简单和制作容易,高压不设稳压线路,当然采用稳压供电时效果更好,现为了取得较好的音效,笔者给它加了一个简单的三端稳压电源,并且原来串在电源中的5W2.5K电阻也用一个小型扼流圈替换,这使得滤波效果更好,电源的质量得到简单的提高。灯丝用稳压直流供电时可减低交流噪声,而用交流供电时,虽对电子管寿命有益,但对信噪比的影响较大,而且灯丝接地点须反复试验才有较好的效果,结果灯丝还是采用了直流稳压供电。 本线路简单易制,成功率极高,不失为电子管爱好者入门之选。 6N11(6DJ8)电子管原本是用于电脑或电视机的高频VHF放大的Cascode线路,英国音响杂志“Class Audio”曾有两篇文章探讨这个电子管的优缺点。其中一篇的作者以测量多个6DJ8的技术指标来证明该电子管在各方面表现都不理想,如它的屏流偏置为15MA时,互导率虽高达12500microhms,,但是一般音频放大电路选择偏置于典型的 1.5MA时,互导率仅为780—800microhms,因此该文作者表示这种电子管只能用在高偏流的阴极输出线路上。而另一篇文章的作者表示应该测试更多牌子的同类电子管才可作定论。虽然该管在过去争议颇多,但是目前很多电子管厂如Audio Research、Sonic Frontiers、Conrad-Johnson及近期的BAT甚至多个品牌的国产前级都使用该管,由此可见它的声音自然有不凡之处。 在这部前级中除耦合电容改用较佳的Wima、Solen电容外,电阻还是用低噪无磁的国产军工大红袍,当年这些电阻售价只有一枚0.1元,可异目前这种电阻越来越少。整流管用IN5407,高低压电源共用一个50W左右的环形电源变压器。这个线路笔者没有尝试加入负回馈,读者可以自己尝试,但此时要注意反馈电阻要接往的是栅极而不是阴极,这与两极共阴极放大输出端的波形是反相的,如入阴极,会使阴极极电位下降,相对栅极电位提高而形成正反馈。除了加设负回馈,当然也可尝试换用不同品牌的电容作校声试验,也可通过改变输出电容数值或改变负载电阻数值等作进一步尝试。目前市场上拆机旧装二手电容贷源充足,数值也较齐全,品牌不少,笔者曾试用了Wima、Solen、Rel和美国斯碧铁壳油浸电容以及国产天逸、新德克等,结果是Wima 音质通透,速度适中,但音乐味有些偏淡;Solen音色高贵偏冷,动态较好;斯碧铁壳油浸电容韵味足,通透感中上,各方面表现较为平均;而REL音色醇厚,新德克韵味不错,但通透性、分析力稍感欠缺。 这个一级共阴极放大前级的特点是音质通透、音乐的背景宁静,分析力较高,全频表现相当均衡,但由于只是一级放大,因此它的放大能力、力度及控制力只是中级水平,声底偏向清冷和不够柔润。如果换用英国大循的ECC88或德律风根的ECC88时音质的柔润性可有所提高,使用飞利浦的6DJ8时声音有些甜美柔和,当改用改良型号管如俄国Sovtek场感均有较大水平的提高,而用

自己DIY制作马蹄斯电子管胆前级(附电路图)

自己DIY制作马蹄斯电子管胆前级(附电路图) 电子管输入阻抗比较高,安装完后,尽量装箱接地,可以做到静如深海。最简单也可以用个月饼罐来做即可。GE 5670效果测试,现在市场价格涨价很利害。成本高了很多现在1个管子价格高达30元。材料使用已算高端,不要和那些6N3和普通件的前级比价格,觉得价格贵可以换6N3,都兼容制作无比简单,还免调试,如果没60V的电源,拿个双24或者双33的牛,中间抽头不接就是,一样的.以马蹄斯电路为蓝本制作,电路简洁,采用美国全新原盒GE 5670 2枚。如果觉得美国全新原盒GE 5670价格高的话,可以自己买6N3代换,价格少了20多元。估计60多元一套就搞定.电位器是用台湾16形电位器,GE 5670管的高度也比 6N3矮很多,装箱也好装机器不用露出机外。材料配套使用非常好,偶合是全新WIMA和瑞典EVOX 电阻是美国DALE(不喜欢DALE的非标值也可以选718电阻)灯丝电压是LM317稳压成6V。电子管座也是镀金的. 主电容是拆机BC 1500UF ,虽然是拆机但声音很好,比日系高压电容好不少pcb尺寸是132mmx99mm 体积不大可以方便放在小机器内,胆机不用露出箱体电路放大倍数是10倍,觉得大的话可以减小22K的数值即可.变压器要求60VX1 9VX1 (可带误差)60V电流有100MA-200MA就可以了, 8v要

求电流大一点,灯丝耗电大一些.PCB原设计是BD139 后用C5171觉得更暖一点,这里温度很低,不需要散热.全机是免调试,安装无错误就直接开声,电子管输入电阻高,注意装箱和做好屏蔽,使信噪比最高。材料美国全新原盒GE 56702PCB1瑞典evox 3u34美国DALE阻18LED1台湾电位器1LM317 ON全新1BC1500U-100V原装拆机 1BC2200uf`1整流管8稳压管2471电容2WIMA 4741散热X119脚电子管座镀金2220UF 松下3

电子管前级

和田茂氏电子管前置放大器 由于电子管(俗称“胆”)在音质、音色上有着优异和独特的特色,另外也因为其电路较简单稳定,制作与调试都比晶体管机更方便,因此电子管在音响方面的应用近十年来又再兴起,特别是在业余土炮发烧圈里更是热度高涨。 电子管的Hi—Fi功放应用电路早在五六十年代就达到设计的高峰了,经过三四十年后,现在常见的应用电路和电子管基本上还没有什么改变,与当时的面貌相差无几,土炮发烧友如能自己选读自修一些有关于电子管理论常识,定能事半功倍。 电子管在音响应用方面,最简单而又最实用的地方莫过于用它作前级信号放大,因为前级无需要复杂和昂贵的输出变压器,这点比用作后级功放简单得多。同时也由于它需要的工作电源电压高,放大倍数较大,即使放大到几十伏电压也不会因为电源电压限制而造成削波失真,在这方面就算是Hi-End级的晶体管前级也无法提供如此高的输出信号! 笔者十年前因购买的CD音源是较早期的16bit机种,出于电子管能给尖利干硬的数码声增添音乐韵味、改善听感,也因电子管前级较易制作及回报率高,多年来也尝试制作过不同线路音效的多款电子管前级,当然也不是指望能研制出什么伟大经典线路,但最少也能享受制作的乐趣。 在电子管前级中,在50年代末推出的Marantz 7的地位可以称得上至高无上,现在玩电子管的发烧友中没有听过Marantz 7的大名者,相信已经没有多少人。Marantz 7的主线路如图1所示,(本刊在1999年第2期有详细仿制文章。)电路中,VRl、VR2用作电压放大,VR3

接成阴极跟随器作为信号缓冲,VR3的作用相当于用NPN管连接的射随器。Marantz 7电路最大特色就是整体环路反馈设计,这也是Marantz 7赖以成名的一个主要因素。但由于Marantz 7输出端是接上一个三级阴——阴型负反馈网络,此网络高频高端阻抗约在20kf~以下,这显然太小了,这种设计无疑对VR3造成相当大负担。另外,为了防止高频自激,Marantz 7在VRl和VR2之间接上一个22PF电容,构成高频局部负反馈,这种设计也降低高频放大倍数。Marantz 7这个传统线路在高频端造成高频开环增益不够,负反馈对高频失真的改善并不是十分理想,但令人感到困惑的是电子管发烧界对它的主观音效感受相当高。不少见多识广的资深发烧友认为:与当代最出色的电子管前级例如Audio Research SP—11,Convergent SL —1,Matisse Reference、c-j Premier 7(Seven)等前级相比,Marantz 7并非无敌,至少它的分析力与高低频伸延度就不见得特别出色,而分析力和频域延伸度却是Matisse和Audio Research的强项。尽管Marantz 7的声底异常通透,瞬变表现令人满意,但它最吸引人之处还是那种难以言传的中频音色美。笔者相信不少人都认为它的音色属于阴柔型,但实际上,Marantz 7的音色还是偏向阳刚一派,它能将音乐中的光辉、力感发挥无遗,重播铜管乐时,乐器的“亮度”也有十分的耀人光辉,播放弦乐时,琴声柔韧而有实质感,人声感情更是丰富。这与法国名牌Jadis胆机将音乐中的阴柔美感淋漓尽致表现可以称为异曲同工之妙,如果Marantz 7不作任何修改,音色平衡度会偏高,但只要最后一级的耦合电容值为0.33~0.47μF时,其音效之佳已足以令人满意。

(2013全国一等奖)射频宽带放大器..

2013年全国大学生电子设计大赛 2013年全国大学生电子设计大赛论文 【本科组】 射频宽带放大器系统设计报告 2013年9月7日

射频宽带放大器 摘要:本系统基于压控对数放大器设计,由前级放大模块,增益控制模块,(带宽预置),后级功率放大模块,键盘及显示模块组成。具有射频宽带数字程控功能。在前级放大中,用电压反馈型放大器OPA657,OPA2694和宽带压控放大器VCA820放大输入信号,输出放大一定倍数的电压,经后级OPA2694的放大电路达到大于1V的有效值输出,其中电流反馈型放大器OPA657的输入偏置电流比较小,对后级电路的调理起到简化作用,VCA820的使用方便了增益控制,可以手动和程控。经验证,本方案完成了全部基本功能和扩展功能。 关键词:压控对数放大器电压反馈放大器射频宽带放大 一、系统方案论证 1.可控增益放大器的方案论证 方案一:采用场效应管或三极管控制增益。主要利用场效应管可变电阻区(或三极管等效为压控电阻)实现增益控制,由于题目要求的频带较高。该方案采用大量分立元件,电路复杂,稳定性差。 方案二:采用多路选择器来来改变放大器跨接的电阻的值实现增益控制。该方案需求每一级放大器都要加多路选择器,不能实现连续调节,影响高频的频率特性,容易引起放大器的自激。 方案三:根据题目对放大电路增益可控的要求,考虑直接选取可调增益的运放实现(如VCA820)。其特点是以db为单位进行调节,可控增益±20dB,可以用单片机方便的预制增益。 综合比较,基于电路集成度高,条理清晰,控制方便,易于数字化单片机处理的考虑,选择方案三。 2.射频宽带放大器选择的方案论证 方案一:采用电压反馈放大器OPA846、OPA847、OPA657等电压放大器,该系列的运算放大器的增益带宽积很高,但该系列的去补偿的电压反馈放大器由于寄生电容过大会引起放大器的震荡,而手工焊接的板子不能够保证寄生电容很小,难于调试,用PCB电路板有益于电路调试。 方案二:采用电流反馈放大器OPA691,OPA2694,特别是OPA2694的电压压摆率高达4300V/us,在增益和大信号的调理中表现更好的带宽和失真度,但是输入失调电流比较高,题目要求的1db增益起伏难以实现。 综合比较,基于带宽和失真度的考虑,选择方案一中低失调电流的OPA657。 二、理论分析与计算 1.放大器带宽增益积 (1)电压反馈型(VFB)运算放大器的增益和带宽存在一定的关系:从对应的波特图上可以看出,从直流到由反馈环路的主极点决定的截止频率Fc之间,增益是恒定不变的,在该频率以上,如果频率升高一倍,增益就会减半。运算放大器的-3dB带宽就是Fc,增益越高,带宽越窄,带宽增益积BW·u A =常数,

运算放大器基本电路

一:比例运算电路定义:将输入信号按比例放大的电路,称为比例运算电路。分类:反向比例电路、同相比例电路、差动比例电路。(按输入信号加入不同的输入端分)比例放大电路是集成运算放大电路的三种主要放大形式(1)反向比例电路输入信号加入反相输入端,电路如图(1)所示:输出特性:因为:,所以:从上式我们可以看出:Uo与Ui是比例关系,改变比例系数,即可改变Uo的数值。负号表示输出电压与输入电压极性相反。反向比例电路的特点: 一:比例运算电路 定义:将输入信号按比例放大的电路,称为比例运算电路。 分类:反向比例电路、同相比例电路、差动比例电路。(按输入信号加入不同的输入端分) 比例放大电路是集成运算放大电路的三种主要放大形式 (1)反向比例电路输入信号加入反相输入端,电路如图(1)所示: 输出特性:因为:, 所以: 从上式我们可以看出:Uo与Ui是比例关系,改变比例系数,即可改变Uo的数值。负号表示输出电压与输入电压极性相反。 反向比例电路的特点: (1)反向比例电路由于存在"虚地",因此它的共模输入电压为零.即:它对集成运放的共模抑制比要求低 (2)输入电阻低:r i=R1.因此对输入信号的负载能力有一定的要求. (2)同相比例电路 输入信号加入同相输入端,电路如图(2)所示: 输出特性:因为:(虚短但不是虚地);;

所以: 改变R f/R1即可改变Uo的值,输入、输出电压的极性相同 同相比例电路的特点: (1)输入电阻高;(2)由于(电路的共模输入信号高),因此集成运放的共模抑制比要求高 (3)差动比例电路 输入信号分别加之反相输入端和同相输入端,电路图如图(3)所示: 它的输出电压为: 由此我们可以看出它实际完成的是:对输入两信号的差运算。二:和、差电路 (1)反相求和电路 它的电路图如图(1)所示:(输入端的个数可根据需要进行调整)其中电阻R'为: 它的输出电压与输入电压的关系为: 它可以模拟方程:。它的特点与反相比例电路相同。它可十

FM Acoustics FM-155前级放大器

一生一世的承诺FM Acoustics FM-155前级 瑞士FM Acoustics的老总Mr Manuel Huber便是一位完美主义者。据Manuel表示,FM所采用的零件全都以人工精密配对,所有零件的误差率不超过0.1%!反观其他著名发烧厂家,所使用的零件误差率高达5 ~ 20%!FM除了使用极高质量的金属膜电阻(故障率是一千四百万份之一)之外,每一个零件在装配之前都得经过“魔鬼”式的测试。当零件安装完毕后,每一块模件及线路板都得再次经过检验、测试与调校。在组装器材时,亦不断地重复测试与调校。在整个装配过程中,每一个部件都得经过3 ~ 7次的测试。器材完成后,再重新测试、调校、“长煲”及通过耐震测试。你可以想像,在人工极为高昂的瑞士,如此耗时费事的制作方式,是一种多么“奢侈”的行为!Manuel如此执着的目的,只为了在他百年之后,世人还记得在音响史上,曾有人为了个人的梦想、热情及信念,制作过毫不妥协的器材。 由于FM Acoustics的产量非常稀少,因此价格高昂,一般人难得一闻,全球许多发烧音响杂志甚至连测试的机会都没有,更增添了它的神秘感! 在我的发烧系统里,正是以FM Acoustics的FM 255作为监听前级。其实,在我下槌FM 255之前,曾使用FM 155长达一年之久。因此,对这两部前级可说了若指掌。 FM 155的售价为$9,500,而FM 255的售价则高达$30,000!虽然两者的价格相差三倍,但FM 255的表现不见得比FM 155好了三倍。其实,在发烧音响里,价格与表现就有如金字塔,最贵及最难取得的是最后那5 ~ 10%的表现。 据FM Acoustics的总代理表示,FM 155“只卖”$9,500其实是割肉求售的“亏本”价,目的是为了让喜爱FM器材的发烧友有一亲芳泽的机会。FM 155是FM Acoustics特地用来打江山的型号,其制作方式及零件的选择与配对完全与FM 255无异。 FM 155相当小巧,纯铝外壳加上香槟色的面板,相当精致美观。其面板上只有两只旋钮及四个按钮,非常简洁。它虽然“只卖”$9,500大元,但却身轻如燕。在连接粗硬的讯号线时,甚至会将它凌空拔起! FM 155虽然比其他同价前级袖珍得多,但其音乐气质及音响却令许多同价前级相形见拙!它的音乐背景非常宁静,细节丰富,音响和谐。以大音量听各位所熟悉的歌曲Stimela时,音色自始至终保持不变,完全没有粗糙刺耳的现象。FM 155的动态非常态凌厉,在重现“火车”音型的节奏时,动态毫无压缩地暴起暴落,极富张力!歌手在电光火石间,突如其来地对着话筒怒号、狂吹,瞬态表现之迅速,令人目瞪口呆!当你从惊怵中回过神来时,一切已成为过去,留下的是一脸的愕然。能够将突发性音响重现得如此传神的前级,少矣! 以FM 155听古典音乐又是一番不同的感受。它的音色清新纯净,没有刻意的浓妆艳抹,令人久听而不腻,是一种充满了文化气息的音响。Manuel坚持零件及模件必需精确配对、严格测试及确保所有零件在不同的频段具有划一的表现,这一片苦心得到了丰富的回报。 环顾发烧音响市场,万元前级比比皆是。但对零件的选择与配对吹毛求疵得有如FM Acoustics者,绝无仅有!在这个不在乎天长地久的时代里,一生一世的承诺对厂家及消费者已是一种传奇。如果你与Manuel一样,坚持完美,FM 155长达二十五年的保用期是你唯一的选择

6922电子管胆前级放大电路

6922电子管胆前级放大电路 2018年4月2日17:58 665 6922电子管胆前级放大电路 和韵T99是欧博音响公司的五周年纪念版前级,其外形秀巧,电路简洁,音质纯静而无音染。 T99前级放大电路如图所示。从图中可见,它除了两 个电子三极管之外,几乎就没有什么元件了,所以在介绍它之前先说一说电子管及其在音频设备应用中的地位。电子管的物理特性在某些方面仍优于晶体管,如近代的6N15、6N3电子管,其电极间距离10-3m量级,在几百伏屏压下电子在真空中的速度达107m/s,渡越时间为10-10s量级,对 于10MHz的频率周期为10-8s。在这个渡越时间内,各电极的电压相位基本无变化,因此电子管可以毫无困难地工作到300~500MHz,也就是说,在音频放大中根本不必考虑 电子管的频率特性问题,任何一种电子管都至少可满足 10kHz的音频放大要求。另外在100kW以上的高频大功率 放大器中,电子管仍独步天下,晶体管则望尘莫及,因此目前在军事领域和高科技领域仍在部分使用电子管。至于普遍认为电子管高频特性不如晶体管,并不是管子本身的问题,而是由于电子管在做电压放大时其内阻与分布电容所形成 的低通电路以及在做功率放大时输出变压器的漏感等寄生

参量造成的。总之,电子管目前仍是优秀的音频放大器件,只是电路设计和变压器制作不能马虎。从听感及欣赏角度而言,晶体管和电子管应该说各有千秋,不可一概而论。电子管音色温暖、甜润、耐听,空气感及空间信息的融合性好,这在音响界已成为共识,而晶体管具有瞬态反应快、分析力高、对音像细节的镌刻更深入等优点。 电子管(三极管)是由阴极K、屏极(阳极)A、栅极G组 成的。阴极是电子管电子流的源泉,当阴极被灯丝加热到一定程度时,就会不断地向空间发射电子。在屏极与阴极间加上直流电压,使屏极电位高于阴极电位时,在屏极电场的作用下,从阴极发射的电子就会源源不断地奔向屏极,即所谓的真空管正向导通。根据电流方向与电子流方向相反的定理,电流便从屏极流向阴极,这就是所谓的屏流Ia。栅极是决定电子管放大作用的电极,位于阴极和屏极之间靠近阴极的位置。栅极的作用是抑制由阴极向屏极发射电子。当栅极加上相对于阴极为负的电压即栅负压,便在管内屏、阴之间形成两个电场:一是屏极的正电压产生的正电场,对空间电荷区的电子起吸引作用;二是栅极负压产生的负电场,对空间电荷区的电子起排斥作用,栅极电压越负,排斥作用越强,屏极电流就越小。改变栅负压即可改变屏极电流。而栅极比屏极更靠近阴极,对屏极电流的抑制作用远比屏极电压更大,约大4~100倍。栅极电压的微小变化,便能引起屏极电流

相关文档