文档库 最新最全的文档下载
当前位置:文档库 › 信号与系统实验傅里叶变换

信号与系统实验傅里叶变换

信号与系统实验傅里叶变换
信号与系统实验傅里叶变换

信号与系统实验

10.1利用fourier 函数求下列信号的傅里叶变换F(jw),并用ezplot 函数绘出其幅度频谱|F(jw)|和相位频谱d (w )。 <1>f 1(t)=(sin(2*pi*t)/(2*pi*t))2 syms tphaseimre

f=sin(2*pi*t)/(2*pi*t); F=fourier(f); subplot(3,1,1) ezplot(f); title('?-í?')

axis([-pi pi -0.3 1.1]) subplot(3,1,2) ezplot(abs(F)) title('·ù?èí?') axis([-3*pi 3*pi 0.3 0.6]) im=imag(F);

re=real(F);

phase=atan(im/re);

subplot(3,1,3) ezplot(phase) title('?à??í?')

axis([-3*pi 3*pi -0.5 0.5])

<2>f 2(t)=sin(2*pi*(t-2))/(2*pi*(t-2)) syms tphaseimre

f=sin(2*pi*(t-2))/(2*pi*(t-2)); F=fourier(f); subplot(3,1,1) ezplot(f); title('?-í?')

axis([-pi 2*pi -0.3 1.1]) subplot(3,1,2) ezplot(abs(F)) title('·ù?è?×')

axis([-3*pi 3*pi 0.3 0.6]) im=imag(F); re=real(F); phase=atan(im/re); subplot(3,1,3) ezplot(phase) title('?à???×')

axis([-3*pi 3*pi -0.5 0.5])

-3-2-1012

3

t 原图

-8-6-4-20246

8

w

幅度谱

-8-6-4-20246

8

x 相位谱-3

-2

-1

1

23456

00.51t 原图

-8

-6

-4

-2

024

68

0.4w 幅度谱

-8

-6

-4

-2

02468

-0.5

0.5w

相位谱

10.2试用ifourier函数求下列傅里叶变换的逆变换,并画出其时域波形。

<1>F(iw)=1/2Sa2(w/4);

syms tw

F=8*(sin(w/4))^2/(w^2);

f=ifourier(F,t)

ezplot(f);

axis([-0.8 0.8 -0.2 1.1]);

title('ê±óò2¨D?')

输出为:f =

-(4*fourier(cos(w/2)/w^2, w, -t) + 4*pi*t*(2*heaviside(t) - 1))/(2*pi)

报错:Error using inlineeval (line 15)

Error in inline expression ==> -(4.*fourier(cos(w./2)./w.^2, w, -t) + 4.*pi.*t.*(2.*heaviside(t) - 1))./(2.*pi)

Undefined function 'fourier' for input arguments of type 'double'.

Error in inline/feval (line 34)

INLINE_OUT_ = inlineeval(INLINE_INPUTS_, INLINE_OBJ_.inputExpr, INLINE_OBJ_.expr);

Error in ezplotfeval (line 54)

z = feval(f,x(1),y(1));

Error in ezplot>ezimplicit (line 258)

u = ezplotfeval(f, X, Y);

Error in ezplot (line 154)

hp = ezimplicit(cax, f{1}, vars, labels, args{:});

Error in sym/ezplot (line 61)

h = ezplot(fhandle(f));

Error in Untitled (line 4)

ezplot(f);

调试过很多次了,仍然出不来图像。

10.3 已知信号f (t )的波形如图所示,使用MATLAB 傅里叶变换数值算法,解决一以下问题:

<1>求f1(t)的傅里叶变换F1(jw),并绘制出其幅度频谱|F1(jw )|以及相位频谱曲线。

<2>求f2(t)=f(t-2)的傅里叶变换F2(jw)|,并绘制出其幅度频谱|F2(jw )|以及相位频谱曲线。观察分析傅里叶变换的时移特性。 (1)

dt=0.005; t=-2:dt:2;

f=(t/2+1/2).*((t>=-1)&(t<=1));

N=2000;

k=0:N;

W=2*pi*k/(N*dt); F=f*exp(-1i*t'*W)*dt;

phase=angle(F); F=abs(F);

subplot(3,1,1); plot(t,f);

xlabel('t'); ylabel('f(t)');

title('f(t)'); subplot(3,1,2);

plot(W,F);

xlabel('\omega'); ylabel('\omega'); title('f(t)μ??μà?ò?±???F(\omega)'); subplot(3,1,3);

plot(W,phase); axis([0,200,-5,5]); xlabel('\omega');

ylabel('\omega'); title('f(t)μ??μà?ò?±????à??(\omega)');

(2) dt=0.005;

t=0:dt:4; f=((t-2)/2+1/2).*(((t-2)>=-1)&((t-2)<=1));

N=2000; k=0:N;

W=2*pi*k/(N*dt);

F=f*exp(-1i*(t+2)'*W)*dt; phase=angle(F); F=abs(F);

-2-1.5-1-0.500.51 1.52

0.5

1

t

f (t )

f(t)0200400600800100012001400

1

2ωω

f(t)的傅里叶变换F(ω)

020406080100120140160180200

-5

5ωω

f(t)的傅里叶变换相位(ω)

00.51 1.52 2.53 3.54

t f (t )

f(t)

0200400600800100012001400

ωω

f(t)的傅里叶变换F(ω)

020406080100120140160180200

ωωf(t)的傅里叶变换相位(ω)

subplot(3,1,1); plot(t,f); xlabel('t'); ylabel('f(t)'); title('f(t)'); subplot(3,1,2); plot(W,F); xlabel('\omega'); ylabel('\omega');

title('f(t)μ??μà?ò?±???F(\omega)'); subplot(3,1,3); plot(W,phase); axis([0,200,-5,5]); xlabel('\omega'); ylabel('\omega');

title('f(t)μ??μà?ò?±????à??(\omega)');

10.5 如图所示电路为二阶低通滤波器。设R = sqrt (L/2C ),L = 0.4H ,C = 0.05F ,R = 2欧,试用matlab 编程绘制该系统频率响应H (jw )的幅频响应及相频响应曲线,并求出H(jw)的截止频率。 b=[0.1,0]; a=[0.02,-0.7,0];

[h,w]=freqs(b,a,100); h1=abs(h);

h2=angle(h);

subplot(2,1,1);

plot(w,h1); grid

xlabel('???μ?ê(\omega)'); ylabel('·ù?è');

title('H(j\omega)μ?·ù?μì?D?');

subplot(2,1,2); plot(w,h2*180/pi);

grid

xlabel('???μ?ê(\omega)'); ylabel('?à??£¨?è£?');

title('H(j\omega)μ??à?μì?D?');

0100200300400500600700800

9001000

0.050.1

0.15

0.2角频率(ω)

幅度H(j ω)的幅频特性

01002003004005006007008009001000

-200

-150

-100

-50角频率(ω)

相位(度)

H(j ω)的相频特性

傅里叶变换在信号处理中的应用

傅里叶变换在信号处理中的应用 姓名董柱班级电气工程及其自动化学号1109141013 摘要: 傅里叶变换是一种特殊的积分变换。通过傅里叶变换把信号的从时域变换到频域研究,采用频域法较之经典时域的方法有很多突出的优点,虽然傅里叶分析不是信息科学与技术领域中唯一的变换域方法,但是不得不承认,在此领域中,傅里叶变换分析始终有着广泛的应用,通过傅里叶变换实现信号的滤波,调制,抽样是傅里叶变换在信号处理中最主要的作用。通过对信号的调制可以将信号的低频成分调制到高频,实现频谱搬移,减少马间串扰,提高抗噪声新能,有利于信号的远距离传输,另外,对信号采样可以使连续信号离散化,有利于用计算机对信号进行处理,总之,傅里叶变换在信号处理中有着非常重要的作用。傅里叶变换是学习其他频域变换的基础。 关键词: 傅里叶变换,时域,频域,信号处理,信息科学与技术,滤波,调制,抽样。 一傅里叶变换 1.定义 f(t)是t的函数,如果t满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。则有下图①式成立。称为积分运算f(t)的傅立叶变换, ②式的积分运算叫做F(ω)的傅立叶逆变换。F(ω)叫做f(t)的像函数,f(t)叫做 F(ω)的像原函数。F(ω)是f(t)的像。f(t)是F(ω)原像。 ① 傅里叶变换 傅里叶逆变换 2.分类 连续傅立叶变换:一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅立叶变换”。“连续傅立叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。 f(t) = \mathcal^[F(ω)] = \frac{\sqrt{2π}} \int\limits_{-\infty}^\infty F(ω)e^{iωt}\,dω.

MAtlab傅里叶变换实验报告

班级信工142 学号 22 姓名何岩实验组别实验日期室温报告日期成绩报告内容:(目的和要求,原理,步骤,数据,计算,小结等) 1.求信号的离散时间傅立叶变换并分析其周期性和对称性; 给定正弦信号x(t)=2*cos(2*pi*10*t),fs=100HZ,求其DTFT。 (a)代码: f=10;T=1/f;w=-10:0.2:10; t1=0:0.0001:1;t2=0:0.01:1; n1=-2;n2=8;n0=0;n=n1:0.01:n2; x5=[n>=0.01]; x1=2*cos(2*f*pi*t1); x2=2*cos(2*f*pi*t2); x3=(exp(-j).^(t2'*w)); x4=x2*x3; subplot(2,2,1);plot(t1,x1); axis([0 1 1.1*min(x2) 1.1*max(x2)]); xlabel('x(n)');ylabel('x(n)'); title('原信号x1'); xlabel('t');ylabel('x1'); subplot(2,2,3);stem(t2,x2); axis([0 1 1.1*min(x2) 1.1*max(x2)]); title('原信号采样结果x2'); xlabel('t');ylabel('x2'); subplot(2,2,2);stem(n,x5); axis([0 1 1.1*min(x5) 1.1*max(x5)]); xlabel('n');ylabel('x2'); title('采样函数x2'); subplot(2,2,4);stem(t2,x4); axis([0 1 -0.2+1.1*min(x4) 1.1*max(x4)]); xlabel('t');ylabel('x4'); title('DTFT结果x4'); (b)结果: 2.用以下两个有限长序列来验证DTFT的线性、卷积和共轭特性; (n) x1(n)=[1 2 3 4 5 6 7 8 9 10 11 12];x2(n)=R 10 (1)线性:(a)代码: w=linspace(-8,8,10000); nx1=[0:11]; nx2=[0:9]; x1=[1 2 3 4 5 6 7 8 9 10 11 12];

MAtlab 傅里叶变换 实验报告

陕西科技大学实验报告 班级信工142 学号22 姓名何岩实验组别实验日期__________ 室温_____________ 报告日期________________ 成绩报告内容:(目的和要求,原理,步骤,数据,计算,小结等) 1.求信号的离散时间傅立叶变换并分析其周期性和对称性; 给定正弦信号x(t)=2*cos(2*pi*10*t),fs=100HZ, 求其DTFT (a)代码: f=10;T=1/f;w=-10:0.2:10; t1=0:0.0001:1;t2=0:0.01:1; n1=-2; n2=8; n0=0; n=n 1:0.01: n2; x5=[ n>=0.01]; x1=2*cos(2*f*pi*t1); x2=2*cos(2*f*pi*t2); x3=(exp(-j)4(t2'*w)); x4=x2*x3; subplot(2,2,1);plot(t1,x1); axis([0 1 1.1*mi n(x2) 1.1*max(x2)]); xlabel('x( n)');ylabel('x( n)'); title('原信号x1'); xlabel('t');ylabel('x1'); subplot(2,2,3);stem(t2,x2); axis([0 1 1.1*mi n(x2) 1.1*max(x2)]); title(' 原信号采样结果x2'); xlabel('t');ylabel('x2'); subplot(2,2,2);stem( n, x5); axis([0 1 1.1*mi n(x5) 1.1*max(x5)]); xlabel(' n');ylabel('x2'); title(' 采样函数x2'); subplot(2,2,4);stem(t2,x4); axis([0 1 -0.2+1.1*mi n(x4) 1.1*max(x4)]); xlabel('t');ylabel('x4'); title('DTFT 结果x4'); (b)结果:

Chirp信号的傅里叶变换的特征比较.

Chirp信号的傅里叶变换的特征比较 Chirp信号即线性调频信号是瞬时频率在某个范围内随时间变化的正弦波,因其良好的频带利用率,具有较强的抗干扰、抗多途效应和抗多普勒衰减以及良好的频带利用率等优点,因此在通信、声呐、雷达等领域具有广泛的应用。本文就瞬时频率范围(信号的调频宽度)和信号的持续时间(信号的周期)对傅里叶变换后的chirp函数的频谱函数的影响做出讨论,运用MATLAB仿真分析比较。 一.信号的调频宽度上下限对频谱函数的影响 1)高频宽度300情况下的频谱函数。信号的采样频率为43000,扫描时间为0.05,初始频率设为19700,结束频率位置为20000。 2)低频宽度300情况下的频谱函数。信号的采样频率为2000,信号的持续时间为0.05,初始频率设为40,结束频率设置为340。 由上面两幅图可以看出,当它们满足,幅度谱的大小基本都在 0.01和0.015之间,这是因为它们的调频上下限之差相同都是300,且时间周 期都为0.05。由公式可知,幅度与信号的调频宽度(表示傅里叶变换后的频带宽度)和时间周期有关。 二.信号的调频宽度对频谱函数的影响 1)高频宽度10000情况下的频谱函数。信号的采样频率为48000,扫描时间为0.05,初始频率设为10000,结束频率位置为20000。

2)低频宽度80情况下的频谱函数。信号的采样频率为1000,信号的持续时间为0.05,初始频率设为40,结束频率设置为120。 上面两图在频带宽度内的幅度谱差异很明显,这是因为只有当时,近似程度才更高。 三.信号的持续时间对频谱函数的影响 1)低频宽度80情况下的频谱函数。信号的采样频率为1000,chirp 脉冲为0.05,信号的持续时间为2,初始频率设为40,结束频率设置为120。 上图的信号周期是2,发射脉冲长度为0.05与之前其它参数相同的图4比较可知,频带宽度基本相同,在频带宽度内的幅度谱没有太大变化,只是频点上的曲线多了些波动。

常用函数傅里叶变换

信号与系统的基本思想:把复杂的信号用简单的信号表示,再进行研究。 怎么样来分解信号?任何信号可以用Delta 函数的移位加权和表示。只有系统是线性时不变系统,才可以用单位冲激函数处理,主要讨论各个单位冲激函数移位加权的响应的叠加能得到总的响应。 线性系统(齐次性,叠加定理) 时不变系统 对一个系统输入单位冲激函数,得到的响应为h(t).表征线性时不变系统的非常重要的东西,只要知道了系统对单位冲击函数的响应,就知道了它对任何信号的响应,因为任何信号都可以表示为单位冲激函数的移位加权和。 例如:d(t)__h(t) 那么a*d(t-t0)__a*h(t-t0) -()= ()(t-)d f t f τδττ∝∝? 的响应为-y()=()(-)t f h t d τττ∝ ∝ ? 记为y(t)=f(t)*h(t),称为f(t)和h(t)的卷积 总结为两点:对于现行时不变系统,任何信号可以用单位冲激信号的移位加权和表示,任何信号的响应可以用输入函数和单位冲激函数响应的卷积来表示 连续时间信号和系统的频域分析 时域分析的重点是把信号分解为单位冲激函数的移位加权和,只讨论系统对单位冲激函数的响应。而频域的分析是把信号分解为各种不同频率的正弦函数的加权和,只讨论系统对sinwt 的响应。都是把信号分解为大量单一信号的组合。

周期函数可以展开为傅里叶级数,将矩形脉冲展开成傅里叶级数,得到傅里叶级数的系数 n A sin F = T x x τ 其中0=2 nw x τ。 取样函数sin ()=x S a x 。产生一种震荡,0点的值最大,然后渐渐衰减直至0 第一:对于傅里叶级数的系数,n 是离散的,所以频谱也是离散状的每条谱线都出现在基波频率的整数倍上,其包络是取样函数。 第二:谱线的间距是0w .。零点是0=2nw x τ,02w =T π是谱的基波频率。如果τ不变,T 增大,那么0w 减小,当T 非常大的时候,0w 非常小,谱线近似连续,越来越密,幅度越来越小。 傅里叶变换:非周期函数 正变换:--F jw)= ()iwt f t e dt ∝ ∝?( 反变换:-1()=()2jnwt f t F jw e dw π ∝∝ ? 常用函数的傅里叶变换(典型非周期信号的频谱)

快速傅里叶变换实验报告..

快速傅里叶变换实验报告 班级: 姓名: 学号:

快速傅里叶变换 一.实验目的 1.在理论学习的基础上,通过本实验加深对快速傅立叶变换的理解; 2.熟悉并掌握按时间抽取FFT 算法的程序; 3.了解应用FFT 进行信号频谱分析过程中可能出现的问题,例如混淆、泄漏、栅栏效应等,以便在实际中正确应用FFT 。 二.实验内容 1.仔细分析教材第六章‘时间抽取法FFT ’的算法结构,编制出相应的用FFT 进行信号分析的C 语言(或MATLAB 语言)程序; 2.用FFT 程序分析正弦信号 ()sin(2)[()(*)],(0)1y t f t u t u t N T t u π=---∞<<+∞=设 分别在以下情况进行分析并讨论所得的结果: a ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.000625s b ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.005s c ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.0046875s d ) 信号频率f =50Hz ,采样点数N=32,采样间隔T=0.004s e ) 信号频率 f =50Hz ,采样点数N=64,采样间隔T=0.000625s f ) 信号频率f =250Hz ,采样点数N=32,采样间隔T=0.005s g ) 将c ) 信号后补32个0,做64点FFT 三.实验要求 1.记录下实验内容中各种情况下的X (k)值,做出频谱图并深入讨论结果,说明参数的变化对信号频谱产生哪些影响。频谱只做模特性,模的最大值=1,全部归一化;

2.打印出用C 语言(或MATLAB 语言)编写的FFT 源程序,并且在每一小段处加上详细的注释说明; 3.用C 语言(或MATLAB 语言)编写FFT 程序时,要求采用人机界面形式: N , T , f 变量均由键盘输入,补零或不补零要求设置一开关来选择。 四.实验分析 对于本实验进行快速傅里叶变换,依次需要对信号进行采样,补零(要求补零时),码位倒置,蝶形运算,归一化处理并作图。 此外,本实验要求采用人机界面形式,N,T,F 变量由键盘输入,补零或不补零设置一开关来选择。 1.采样 本实验进行FFT 运算,给出的是正弦信号,需要先对信号进行采样,得到有限 长序列()n x , N n ...... 2,1,0= Matlab 实现: t=0:T:T*(N-1); x=sin(2*pi*f*t); 2.补零 根据实验要求确定补零与否,可以用if 语句做判断,若为1,再输入补零个数, 并将补的零放到采样得到的序列的后面组成新的序列,此时新的序列的元素个数等于原采样点个数加上补零个数,并将新的序列个数赋值给N 。 Matlab 实现: a=input('是否增加零点? 是请输入1 否请输入0\n'); if (a) ZeroNum=input('请输入增加零点的个数:\n'); else ZeroNum=0; end if (a) x=[x zeros(1, ZeroNum)];%%指令zeros(a,b)生成a 行b 列全0矩阵,在单行矩阵x 后补充0 end N=N+ZeroNum; 3.码位倒置 本实验做FFT 变换的级数为M ,N M 2log =

信号与系统实验报告3实验3 傅里叶变换及其性质

信息工程学院实验报告 课程名称: 实验项目名称:实验3 傅里叶变换及其性质 实验时间:2015/11/17 班级:通信141 姓名: 学号: 一、实 验 目 的: 学会运用MATLAB 求连续时间信号的傅里叶(Fourier )变换;学会运用MATLAB 求连续时间信号的频谱图;学会运用MATLAB 分析连续时间信号的傅里叶变换的性质。 二、实 验 设 备 与 器 件 软件:Matlab 2008 三、实 验 原 理 3.1傅里叶变换的实现 信号()f t 的傅里叶变换定义为: ()[()]()j t F F f t f t e dt ωω∞ --∞ ==? , 傅里叶反变换定义为:1 1()[()]()2j t f t F F f e d ωωωωπ ∞ --∞ == ? 。 信号的傅里叶变换主要包括MATLAB 符号运算和MATLAB 数值分析两种方法,下面分别加以探讨。同时,学习连续时间信号的频谱图。 3.1.1 MATLAB 符号运算求解法 MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函数fourier( )和ifourier( )。Fourier 变换的语句格式分为三种。 (1)F=fourier(f):它是符号函数f 的Fourier 变换,默认返回是关于ω的函数。 (2)F=fourier(f,v):它返回函数F 是关于符号对象v 的函数,而不是默认的 ω,即 ()()j v t F v f t e d t ∞ --∞ =? 。 (3)F=fourier(f,u,v):是对关于u 的函数f 进行变换,返回函数F 是关于v 的函数,即 ()()jvu F v f t e du ∞ --∞ =?。 傅里叶反变换的语句格式也分为三种。 (1)f=ifourier(F):它是符号函数F 的Fourier 反变换,独立变量默认为ω,默认返回是关于x 的函数。 (2)f=ifourier(F,u):它返回函数f 是u 的函数,而不是默认的x 。 (3)f=ifourier(F,u,v):是对关于v 的函数F 进行反变换,返回关于u 的函数f 。

实验三傅里叶变换及其性质

信息工程学院实验报告 课程名称:信号与系统 实验项目名称:实验3 傅里叶变换及其性质实验时间:2013-11-29 班级: 姓名: 学号: 一、实验目的: 1、学会运用MATLAB 求连续时间信号的傅里叶(Fourier )变换; 2、学会运用MATLAB 求连续时间信号的频谱图; 3、学会运用MATLAB 分析连续时间信号的傅里叶变换的性质。 二、实验环境: 1、硬件:在windows 7 操作环境下; 2、软件:Matlab 版本7.1 三、实验原理: 3.1傅里叶变换的实现 信号()f t 的傅里叶变换定义为: ()[()]()j t F F f t f t e dt ωω∞ --∞ == ? , 傅里叶反变换定义为:1 1 ()[()]()2j t f t F F f e d ωωωωπ ∞ --∞ == ? 。 信号的傅里叶变换主要包括MATLAB 符号运算和MATLAB 数值分析两种方法,下面分别加以探讨。同时,学习连续时间信号的频谱图。 3.1.1 MATLAB 符号运算求解法 MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函数fourier( )和ifourier( )。Fourier 变换的语句格式分为三种。 (1)F=fourier(f):它是符号函数f 的Fourier 变换,默认返回是关于ω的函数。 (2)F=fourier(f,v):它返回函数F 是关于符号对象v 的函数,而不是默认的ω,即()()jvt F v f t e dt ∞ --∞ = ? 。 (3)F=fourier(f,u,v):是对关于u 的函数f 进行变换,返回函数F 是关于v 的函数,即 ()()jvu F v f t e du ∞ --∞ =? 。 傅里叶反变换的语句格式也分为三种。 (1)f=ifourier(F):它是符号函数F 的Fourier 反变换,独立变量默认为ω,默认返回是关于x 的函数。 (2)f=ifourier(F,u):它返回函数f 是u 的函数,而不是默认的x 。 (3)f=ifourier(F,u,v):是对关于v 的函数 F 进行反变换,返回关于u 的函数f 。

快速傅里叶变换实验报告

快速傅里叶变换实验报告

————————————————————————————————作者:————————————————————————————————日期: ?

快速傅里叶变换实验报告 机械34班 刘攀 2013010558 一、 基本信号(函数)的FF T变换 1. 000()sin()sin 2cos36x t t t t π ωωω=+++ 1) 采样频率08s f f =,截断长度N =16; 取02ωπ=rad/s,则0f =1Hz ,s f =8Hz ,频率分辨率 f ?=s f f N ?= =0.5Hz 。 最高频率c f =30f =3Hz ,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2) 采样频率08s f f =,截断长度N=32; 取02ωπ=rad/s ,则0f =1Hz,s f =8Hz ,频率分辨率f ?=s f f N ?==0.25Hz 。 最高频率c f =30f =3H z,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度04T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2. 00()sin()sin116x t t t π ωω=++ 1) 采样频率08s f f =,截断长度N=16; 取02ωπ=ra d/s,则0f =1Hz ,s f =8Hz,频率分辨率f ?=s f f N ?==0.5H z。 最高频率c f =110f =11H z,s f <2c f ,故不满足采样定理,会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图:

傅里叶变换实验报告

南昌大学实验报告 学生姓名:学号:6100209228 班级:电子093班 实验类型:□验证□综合■设计□创新实验日期:2011-04-8 实验成绩: 傅里叶变换 (一)实验目的 1、掌握对不同的函数进行傅里叶变换的程序编写; 2、熟悉生成联系周期信号的方法; 3、练习matlab编程。 (二) 实验内容 1.请编写函数F=fsana(t,f,,N),计算周期信号f的前N个指数形式的傅立叶级数系数,t表示f对应的抽样时间(均为一个周期);再编写函数f=fssyn(F,t),由傅立叶级数系数F合成抽样时间t对应的函数。设计信号验证这两个是否正确。 定义F=fsana(t,f,N)。 function F=fsana(t,f,N) omg1=2*pi/(max(t)-min(t)); k=[0:N]'; F=1/length(t)*exp(-j*kron(k*omg1,t.'))*f 定义f=fssyn(F,t) function f=fssyn(F,t) omg1=2*pi/(max(t)-min(t)); N=floor(length(F)/2); k=[0:N]; f=exp(j*kron(t,k*omg1))*F; 运行所定义的函数 T1=2*pi; %一个周期时域范围 N1=300; %时域抽样点数

t=linspace(0,T1-T1/N1,N1)'; %生成抽样时间点 f=cos(t); %生成抽样函数值 subplot(2,2,1) plot(t,f); title ('原函数') N=10; F1=fsana(t,f,N); %调用fsana函数求解前N项傅立叶级数系数 subplot(2,2,2) stem(abs(F1),'s'); %绘制离散的幅度曲线 title('前N项傅立叶级数系数幅度曲线'); f2=fssyn(F1,t); %调用fssyn函数求原时域函数 subplot(2,2,3) plot(t,f2,'k'); title('傅立叶逆变换后时域函数'); 运行结果

傅里叶变换_百度文库.

傅里叶变换,拉普拉斯变换和Z 变换的意义来源:于理扬的日志 傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中, 傅里叶变换的典型用途是将信号分解成幅值分量和频率分量。 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数或者它们的积分的线性组合。在不同的研究领域, 傅里叶变换具有多种不同的变体形式, 如连续傅里叶变换和离散傅里叶变换。 傅里叶变换是一种解决问题的方法,一种工具,一种看待问题的角度。理解的关键是:一个连续的信号可以看作是一个个小信号的叠加, 从时域叠加与从频域叠加都可以组成原来的信号,将信号这么分解后有助于处理。 我们原来对一个信号其实是从时间的角度去理解的,不知不觉中,其实是按照时间把信号进行分割, 每一部分只是一个时间点对应一个信号值, 一个信号是一组这样的分量的叠加。傅里叶变换后, 其实还是个叠加问题, 只不过是从频率的角度去叠加, 只不过每个小信号是一个时间域上覆盖整个区间的信号, 但他确有固定的周期,或者说,给了一个周期,我们就能画出一个整个区间上的分信号,那么给定一组周期值(或频率值,我们就可以画出其对应的曲线,就像给出时域上每一点的信号值一样,不过如果信号是周期的话,频域的更简单,只需要几个甚至一个就可以了,时域则需要整个时间轴上每一点都映射出一个函数值。 傅里叶变换就是将一个信号的时域表示形式映射到一个频域表示形式;逆傅里叶变换恰好相反。这都是一个信号的不同表示形式。它的公式会用就可以,当然把证明看懂了更好。 对一个信号做傅里叶变换,可以得到其频域特性,包括幅度和相位两个方面。幅度是表示这个频率分量的大小, 那么相位呢, 它有什么物理意义?频域的相位与时域的相位有关系吗?信号前一段的相位(频域与后一段的相位的变化是否与信号的频率成正比关系。

快速傅里叶变换实验报告

快速傅里叶变换实验报告 快速傅里叶变换实验报告 机械34班刘攀 2019010558 一、基本信号(函数)的FFT变换 1. x(t)=sin(ω0t+)+sin2ω0t+cos3ω0t 6 1) 采样频率fs=8f0,截断长度N=16; 取ω0=2πrad/s,则f0=1Hz,fs=8Hz,频率分辨率?f=?f=fs=0.5Hz。 Nπ最高频率fc=3f0=3Hz,fs>2fc,故满足采样定理,不会发生混叠现象。截断长度T=2T0,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下: 幅值误差?A=0,相位误差??=0。 2) 采样频率fs=8f0,截断长度N=32; 取ω0=2πrad/s,则f0=1Hz,fs=8Hz,频率分辨率?f=?f=fs=0.25Hz。 N最高频率fc=3f0=3Hz,fs>2fc,故满足采样定理,不会发生混叠现象。截断长度T=4T0,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下: 幅值误差?A=0,相位误差??=0。 2. x(t)=sin(ω0t+π 6)+sin11ω0t 1) 采样频率fs=8f0,截断长度N=16; 取ω0=2πrad/s,则f0=1Hz,fs=8Hz,频率分辨率?f=?f=fs=0.5Hz。 N最高频率 fc=11f0=11Hz,fs 漏,但在整周期截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图:

由上图可以看出,并未体现出11f0的成分,说明波形出现混叠失真。为了消除混叠 现象,应加大采样频率,使之大于等于 22Hz。 f0处的幅值误差?A=0,11f0处由于出现 了混叠现象,幅值误差没有意义;相位误差??=0。 2) 采样频率fs=32f0,截断长度N=32; 取ω0=2πrad/s,则f0=1Hz,fs=32Hz,频率分辨率?f=?f=fs=1Hz。 N最高频率 fc=11f0=11Hz,fs>2fc,故满足采样定理,不会发生混叠现象。 漏,但在整周期截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图: 该频谱图体现出了f0和11f0的成分,说明未失真,且幅值均为1,。幅值误差?A=0,相位误差??=0。 3. x(t)=0t 1) 采样频率fs=8f0,截断长度N=16; 取ω0=2πrad/s,则f0=1Hz,fs=8Hz,频率分辨率?f=?f=fs=0.5Hz。 N最高频率f cf 0Hz,fs>2fc,故满足采样定理,不会发生混叠现象。 频谱图: 在忽略旁瓣信号的情况下,可近似认为: x(t)≈0.9098cos(3ω0t+56.9520?) 故幅值误差?A=0.9096-1=-0.0904,相位误差??=56.9520?。 2) 采样频率fs=32f0,截断长度N=32; 取ω0=2πrad/s,则f0=1Hz,fs=32Hz,频率分辨率?f=?f=fs=1Hz。N最高频率f cf 0Hz,fs>2fc,故满足采样定理,不会发生混叠现象。 频谱图: 在忽略旁瓣信号的情况下,可近似认为:

常用傅立叶变换表

时域信号 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移, 变换2的频域对应4 如果值较大,则会收缩 到原点附近,而会扩 散并变得扁平. 当 | a | 趋向 无穷时,成为 Delta函数。 5 傅里叶变换的二元性性质。通过 交换时域变量和频域变量 得到. 6 傅里叶变换的微分性质 7 变换6的频域对应 8 表示和的卷积—这

9 矩形脉冲和归一化的sinc 函数 10 变换10的频域对应。矩形函数是理想的低通滤波器,sinc 函数是这类滤波器对反因果冲击的响应。 11 tri 是三角形函数 12 变换12的频域对应 13 高斯函数 exp( ? αt 2) 的傅里叶变换是他本身. 只有当 Re(α) > 0时,这是可积的。 14 15 16 a>0 17 变换本身就是一个公式

18 δ(ω) 代表狄拉克δ函数分布. 这 个变换展示了狄拉克δ函数的重要 性:该函数是常函数的傅立叶变换 19 变换23的频域对应 20 由变换3和24得到. 21 由变换1和25得到,应用了欧拉公 式: cos(at) = (e iat + e?iat) / 2. 22 由变换1和25得到 23 这里, n是一个自然数. δ(n)(ω) 是狄拉克δ函数分布的n阶微分。这 个变换是根据变换7和24得到的。 将此变换与1结合使用,我们可以变 换所有多项式。 24 此处sgn(ω)为符号函数;注意此变 换与变换7和24是一致的. 25 变换29的推广. 26 变换29的频域对应. 27 此处u(t)是单位阶跃函数; 此变换 根据变换1和31得到.

信号处理中傅里叶变换简介

傅里叶变换 一、傅里叶变换的表述 在数学上,对任意函数f(x),可按某一点进行展开,常见的有泰勒展开和傅里叶展开。泰勒展开为各阶次幂函数的线性组合形式,本质上自变量未改变,仍为x,而傅里叶展开则为三角函数的线性组合形式,同时将自变量由x变成ω,且由于三角函数处理比较简单,具有良好的性质,故被广泛地应用在信号分析与处理中,可将时域分析变换到频域进行分析。 信号分析与处理中常见的有CFS(连续时间傅里叶级数)、CFT (连续时间傅里叶变换)、DTFT(离散时间傅里叶变换)、DFS(离散傅里叶级数)、DFT(离散傅里叶变换)。通过对连续非周期信号x c(t)在时域和频域进行各种处理变换,可推导出以上几种变换,同时可得出这些变换之间的关系。以下将对上述变换进行简述,同时分析它们之间的关系。 1、CFS(连续时间傅里叶级数) 在数学中,周期函数f(x)可展开为 由此类比,已知连续周期信号x(t),周期为T0,则其傅里叶级数为 其中,

为了简写,有 其中, 为了与复数形式联系,先由欧拉公式e j z=cos z+jsin z得 故有

令 则 对于D n,有 n≤0时同理。 故 CFS图示如下:

Figure 1 理论上,CFS对于周期性信号x(t)在任意处展开都可以做到无误差,只要保证n从-∞取到+∞就可以。在实践中,只要n取值范围足够大,就可以保证在某一点附近对x(t)展开都有很高的精度。 2、CFT(连续时间傅里叶变换) 连续非周期信号x(t),可以将其看成一连续周期信号的周期T0→∞。当然,从时域上也可以反过来看成x(t)的周期延拓。将x(t)进行CFS展开,有 若令 则 有

MAtlab傅里叶变换实验报告

M A t l a b傅里叶变换实 验报告 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

班级信工142 学号 22 姓名何岩实验组别 实验日期室温报告日期成绩 报告内容:(目的和要求,原理,步骤,数据,计算,小结等) 1.求信号的离散时间傅立叶变换并分析其周期性和对称性; 给定正弦信号x(t)=2*cos(2*pi*10*t),fs=100HZ,求其DTFT。(a)代码: f=10;T=1/f;w=-10::10; t1=0::1;t2=0::1; n1=-2;n2=8;n0=0;n=n1::n2; x5=[n>=]; x1=2*cos(2*f*pi*t1); x2=2*cos(2*f*pi*t2); x3=(exp(-j).^(t2'*w)); x4=x2*x3; subplot(2,2,1);plot(t1,x1); axis([0 1 *min(x2) *max(x2)]); xlabel('x(n)');ylabel('x(n)'); title('原信号x1'); xlabel('t');ylabel('x1'); subplot(2,2,3);stem(t2,x2); axis([0 1 *min(x2) *max(x2)]); title('原信号采样结果x2'); xlabel('t');ylabel('x2'); subplot(2,2,2);stem(n,x5); axis([0 1 *min(x5) *max(x5)]); xlabel('n');ylabel('x2'); title('采样函数x2'); subplot(2,2,4);stem(t2,x4); axis([0 1 +*min(x4) *max(x4)]); xlabel('t');ylabel('x4'); title('DTFT结果x4'); (b)结果: 2.用以下两个有限长序列来验证DTFT的线性、卷积和共轭特性;

图像的傅里叶变换实验报告

计算机科学与技术系 实验报告 专业名称计算机科学与技术 课程名称数字图像处理 项目名称Matlab语言、图像的傅里叶变换 班级 14计科2班 学号 1404011023 姓名卢爱胜 同组人员张佳佳、王世兜、张跃文 实验日期 2016.11.30

一、实验目的与要求: (简述本次实验要求达到的目的,涉及到的相关知识点,实验的具体要求。) 实验目的: 1了解图像变换的意义和手段; 2熟悉傅立叶变换的基本性质; 3熟练掌握FFT 变换方法及应用; 4通过实验了解二维频谱的分布特点; 5通过本实验掌握利用MATLAB 编程实现数字图像的傅立叶变换。 6评价人眼对图像幅频特性和相频特性的敏感度。 实验要求: 应用傅立叶变换进行图像处理 傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。通过实验培养这项技能,将有助于解决大多数图像处理问题。对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。 二、实验内容 (根据本次实验项目的具体任务和要求,完成相关内容,可包括:实验目的、算法原理、实验仪器、设备选型及连线图、算法描述或流程图、源代码、实验运行步骤、关键技术分析、测试数据与实验结果、其他 ) 1.傅立叶(Fourier )变换的定义 对于二维信号,二维Fourier 变换定义为: 2()(,)(,)j ux uy F u v f x y e dxdy π∞∞ -+-∞-∞= ?? 逆变换: 2()(,)(,)j ux uy f x y F u v e dudv π∞∞ +-∞-∞= ?? 二维离散傅立叶变换为: 11 2()00 1(,)(,)i k N N j m n N N i k F m n f i k e N π---+===∑∑ 逆变换:

用Matlab对信号进行傅里叶变换实例

目录 用Matlab对信号进行傅里叶变换 (2) Matlab的傅里叶变换实例 (5) Matlab方波傅立叶变换画出频谱图 (7)

用Matlab对信号进行傅里叶变换 1.离散序列的傅里叶变换DTFT(Discrete Time Fourier Transform) 代码: 1 N=8; %原离散信号有8点 2 n=[0:1:N-1] %原信号是1行8列的矩阵 3 xn=0.5.^n; %构建原始信号,为指数信号 4 5 w=[-800:1:800]*4*pi/800; %频域共-800----+800 的长度(本应是无穷,高频分量很少,故省去) 6 X=xn*exp(-j*(n'*w)); %求dtft变换,采用原始定义的方法,对复指数分量求和而得 7 subplot(311) 8 stem(n,xn); 9 title('原始信号(指数信号)'); 10 subplot(312); 11 plot(w/pi,abs(X)); 12 title('DTFT变换') 结果: 分析:可见,离散序列的dtft变换是周期的,这也符合Nyquist采样定理的描述,连续时间信号经周期采样之后,所得的离散信号的频谱是原连续信号频谱的周期延拓。 2.离散傅里叶变换DFT(Discrete Fourier Transform)

与1中DTFT不一样的是,DTFT的求和区间是整个频域,这对 结果图:

分析:DFT只是DTFT的现实版本,因为DTFT要求求和区间无穷,而DFT只在有限点内求和。 3.快速傅里叶变换FFT(Fast Fourier Transform) 虽然DFT相比DTFT缩减了很大的复杂度,但是任然有相当大的计算量,不利于信息的实时有效处理,1965年发现的DFT解决了这一问题。 实现代码: 1 N=64; %原离散信号有8点 2 n=[0:1:N-1] %原信号是1行8列的矩阵 3 xn=0.5.^n; %构建原始信号,为指数信号 4 Xk=fft(xn,N); 5 subplot(221); 6 stem(n,xn); 7 title('原信号'); 8 subplot(212); 9 stem(n,abs(Xk)); 10 title('FFT变换') 效果图: 分析:由图可见,fft变换的频率中心不在0点,这是fft算法造成的,把fft改为fftshift可以将频率中心移到0点。

傅里叶变换光学系统-实验报告

实验10 傅里叶变换光学系统 实验时间:2014年3月20日 星期四 一、 实验目的 1. 了解透镜对入射波前的相位调制原理。 2. 加深对透镜复振幅、传递函数、透过率等参量的物理意义的认识。 3. 观察透镜的傅氏变换力图像,观察4f 系统的反傅氏变换的图像,并进行比较。 4. 在4f 系统的变换平面插入各种空间滤波器,观察各种试件相应的频谱处理图像。 二、 实验原理 1. 透镜的FT 性质及常用函数与图形的关学频谱分析 透镜由于本身厚度的不同,使得入射光在通过透镜时,各处走过的光程差不同,即所受时间延迟不同,因而具有相位调制能力。假设任意点入射光线在透镜中的传播距离等于改点沿光轴方向透镜的厚度,并忽略光强损失,即通过透镜的光波振幅分布不变,仅产生位相的变化,且其大小正比于透镜在该点的厚度。设原复振幅分布为(,)L U x y 的光通过透镜后,其复振幅分布受到透镜的位相调制后变为(,)L U x y ': (,)(,)exp[(,)]L L U x y U x y j x y ?'= (1) 若对于任意一点(x ,y )透镜的厚度为(,)D x y ,透镜的中心厚度为0D 。光线由该点通过透镜时在透镜中的距离为(,)D x y ,空气空的距离为0(,)D D x y -,透镜折射率为n ,则该点的位相延迟因子(,)t x y 为: 0(,)exp()exp[(1)(,)]t x y jkD jk n D x y =- (2) 由此可见只要知道透镜的厚度函数(,)D x y 就可得出其相位调制。在球面镜傍轴区域,用抛物面近似球面,并引入焦距f ,有: 22012 111(,)()()2D x y D x y R R =-+- (3) 12 111(1)()n f R R =-- (4) 220(,)exp()exp[()]2k t x y jknD j x y f =-+ (5) 第一项位相因子0exp()jknD 仅表示入射光波的常量位相延迟,不影响位相的空间分布,即波面形状,所以在运算过程中可以略去。当考虑透镜孔径后,有: 22(,)exp[()](,)2k t x y j x y p x y f =-+ (6)

常用傅里叶变换

时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 1 线性 2 时域平移 3 频域平移,变换2 的频域对应 4 如果值较大,则 会收缩到原 点附近,而 会扩 散并变得扁平.当 | a | 趋向无穷 时,成为狄拉克δ 函数。 5 傅里叶变换的二元 性性质。通过交换 时域变量和频域 变量得到. 6 傅里叶变换的微分 性质

7 变换6的频域对应8 表示和 的卷积—这就是卷 积定理 9 变换8的频域对应。[编辑]平方可积函数 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 10 矩形脉冲和归一 化的sinc函数 11 变换10的频域对 应。矩形函数是理 想的低通滤波器, sinc函数是这类 滤波器对反因果 冲击的响应。

12 tri是三角形函数 13 变换12的频域对应 14 高斯函数exp( ? αt2)的傅里叶变换是他本身.只有当Re(α) > 0时,这是可积的。 15 光学领域应用较多 16 17 18 a>0 19 变换本身就是一个公式

20 J0(t)是0阶第一 类贝塞尔函数。 21 上一个变换的推 广形式; T n(t)是第 一类切比雪夫多 项式。 22 U n (t)是第二类切 比雪夫多项式。[编辑]分布 时域信号 角频率表示的 傅里叶变换 弧频率表示的 傅里叶变换 注释 23 δ(ω)代表狄拉克δ函数 分布.这个变换展示了狄 拉克δ函数的重要性:该 函数是常函数的傅立叶 变换 24 变换23的频域对应

25 由变换3和24得到. 26 由变换1和25得到,应用了欧拉公式: cos(at) = (e iat + e?iat) / 2. 27 由变换1和25得到 28 这里, n是一个自然数.δ(n)(ω)是狄拉克δ函数分布的n阶微分。这个变换是根据变换7和24得到的。将此变换与1结合使用,我们可以变换所有多項式。 29 此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的. 30 变换29的推广. 31 变换29的频域对应. 32 此处u(t)是单位阶跃函数;此变换根据变换1和31得到.

快速傅里叶变换实验报告

快速傅里叶变换实验报告 机械34班 刘攀 58 一、 基本信号(函数)的FFT 变换 1. 000()sin()sin 2cos36 x t t t t π ωωω=+++ 1) 采样频率08s f f =,截断长度N=16; 取02ωπ=rad/s ,则0f =1Hz ,s f =8Hz ,频率分辨率f ?=s f f N ?==。 最高频率c f =30f =3Hz ,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2) 采样频率08s f f =,截断长度N=32; 取02ωπ=rad/s ,则0f =1Hz ,s f =8Hz ,频率分辨率f ?=s f f N ?==。 最高频率c f =30f =3Hz ,s f >2c f ,故满足采样定理,不会发生混叠现象。 截断长度04T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图如下:

幅值误差0A ?=,相位误差0??=。 2. 00()sin()sin116 x t t t π ωω=++ 1) 采样频率08s f f =,截断长度N=16; 取02ωπ=rad/s ,则0f =1Hz ,s f =8Hz ,频率分辨率f ?=s f f N ?==。 最高频率c f =110f =11Hz ,s f <2c f ,故不满足采样定理,会发生混叠现象。 截断长度02T T =,整周期截取,不会发生栅栏效应。理论上有一定的泄漏,但在整周期 截取的情况下,旁瓣上的采样都约为 0,泄漏现象没有体现出来。 频谱图:

相关文档
相关文档 最新文档