文档库 最新最全的文档下载
当前位置:文档库 › Al-Rich Zeolite Beta by Seeding in the Absence of Organic Template

Al-Rich Zeolite Beta by Seeding in the Absence of Organic Template

Al-Rich Zeolite Beta by Seeding in the Absence of Organic Template
Al-Rich Zeolite Beta by Seeding in the Absence of Organic Template

https://www.wendangku.net/doc/d513008655.html,/cm Published on Web 08/18/2009

r 2009American Chemical Society

4184Chem.Mater.2009,21,4184–4191

DOI:10.1021/cm900462u

Al-Rich Zeolite Beta by Seeding in the Absence of Organic Template

Gerardo Majano,?Luc Delmotte,?Valentin Valtchev,?and Svetlana Mintova*,?

?

Laboratoire Catalyse &Spectrochimie,ENSICAEN,Universit e

de Caen -CNRS,6,boulevard du Mar e chal Juin,14050Caen,France,and ?

Institut de Science des Mat e riaux de Mulhouse (IS2M )LRC CNRS 7228,

Universit e

de Haute Alsace,3rue Alfred Werner,68093Mulhouse,France Received February 16,2009.Revised Manuscript Received July 31,2009

Low-and no-template precursor suspensions are studied to clarify the effects of Si/Al ratio,seed

content,heating temperature,and crystallization time on the syntheses of Al-rich zeolite Beta.Syntheses using 2.5wt %seeds resulted in well-shaped octahedral Al-rich Beta crystals with sizes between 0.4and 1μm after either 6days hydrothermal treatment at 125°C or 12days at 100°C.The crystalline Beta product has Si/Al ratios as low as 3.9(16.4Al atoms per unit cell),which are comparable to the natural counterpart of zeolite Beta,the mineral Tschernichite,and give the material high hydrophilic properties.The tetrahedral coordination of aluminum in the Al-rich Beta and their stability upon calcinations is demonstrated by NMR spectroscopy and TG analysis.The seed method opens new perspective in the development of economically and environmentally friendly synthesis approach for Al-rich zeolite Beta,where the amount of organic template is reduced significantly.

Introduction

The synthesis of zeolites,crystalline aluminosilicate framework type materials,has been extensively investi-gated for a long time;a small part of these investigations are carried out with basic zeolites,and from these even a smaller fraction concerns Al-rich materials.The term “Al-rich”depends on the framework types under con-sideration and is generally used for materials with a Si/Al ratio below 5.To date,only nine zeolite structures with

large pore openings (>5A

)have been synthesized with a high content of framework aluminum.1

BEA-type zeolite possesses a three-dimensional system of intersecting channels with pore openings with size of

6.6?6.7A

.2The intriguing structural and chemical properties of zeolite Beta make it an important material in diverse acid-catalyzed reactions including FCC pro-cesses.3,4Since its first synthesis by Wadlinger et al.in 1967,this zeolite has been prepared exclusively from precursor gels or suspensions with organic structure directing agents (SDA)such as tetraethyl ammonium hydroxide (high-silica product)and dibenzyl-dimethy-lammonium hydroxide (pure-silica product).5,6Because of the abundant use of organic additives in the precursor mixtures,zeolite Beta is obtained as a high-silica material with crystallite sizes in the nanometer range.The typical Si/Al ratio of synthetic zeolite Beta is in the range of 12to 30.7

However,in 1991,the discovery of the mineral Tscher-nichite,with an Al-rich BEA-type structure (Si/Al=3.3),expanded the possibilities for using a broader chemical compositions and synthesis conditions to prepare materi-als with increased aluminum content.8,9

High-and pure-silica zeolites have found applications where the hydrophobicity and high acidity of the material are of significant importance.On the other hand,high aluminum content in zeolites results in a higher density of the acid sites,high hydrophilicity,and large ion-exchange capacity.In addition,acid/base pair sites are available in Al-rich zeolites,and their strength can be tuned by ion-exchange of the charge balancing cations,and thus the base strength increases in the sequence Li

*Corresponding author.Fax:t33231452822.E-mail:mintova@ensicaen.fr.

(1)Payra,P.;Dutta,P.K.Zeolites:A Primer.In The Handbook of

Zeolite Science and Technology ;Auerbach,S.M.,Carrado,K.A.,Dutta,P.K.,Eds.;CRC Press:London,2003;pp 1-20.

(2)Baerlocher,C.;Meier,W.M.;Olson,D.H.Atlas of Zeolite

Framework Types ,5th ed.;Elsevier:Amsterdam,2001.

(3)Van Bekkum,H.;Kouwenhoven,H.W.Progress in the use of

zeolites in organic synthesis.In Introduction to Zeolite Science and

Practice ;Cejka,J.,Van Bekkum,H.,Corma,A.,Sch ::

uth,F.,Eds.;Elsevier:London,2007;pp 947-998.(4)Corma,A.;Gonz a lez-Alfaro,V.;Orchill e s,A.V.Appl.Catal.,A

1999,187,245.

(5)Wadlinger,R.L.;Kerr,G.T.;Rosinski,E.J.1967.

(6)van der Waal,J.C.;Rigutto,M.S.;van Bekkum,H.J.Chem.Soc,

https://www.wendangku.net/doc/d513008655.html,mun.1994,1241.

(7)Mintova,S.;Valtchev,V.;Onfroy,T.;Marichal,C.;Kn ::

ozinger,

H.;Bein,T.Microporous Mesoporous Mater.2006,90,237.

(8)Smith,J.V.;Pluth,J.J.;Boggs,R.C.;Howard,D.G.J.Chem.Soc,

https://www.wendangku.net/doc/d513008655.html,mun.1991,6,363.

(9)Boggs,R.C.;Howard,D.G.;Smith,J.V.;Klein,G.L.Am.

Mineral.1993,78,822.

(10)Barthomeuf,D.J.Phys.Chem.1984,88(1),42.

(11)Joshi,U.D.;Joshi,P.N.;Tamhankar,S.S.;Joshi,V.V.;Rode,C.

V.;Shiralkar,V.P.Appl.Catal.,A 2003,239(1-2),209.(12)Caro,J.;Noack,M.;K ::olsch,P.Adsorption 2005,11(3),215.

(13)Dyer,A.Ion-exchange properties of zeolites and related materials.

In Introduction to Zeolite Science and Practice ,3rd ed.;Cejka,J.,Van

Bekkum,H.,Corma,A.,Sch ::

uth,F.,Eds.;Elsevier:London,2007;V ol.168,pp 525-553.

Article Chem.Mater.,Vol.21,No.18,20094185

as a shape selective basic catalyst for reactions such as Knoevenagel condensation,14transesterification,15 hydrocarbon oxidation,16and alkylation.17Moreover, through ion-exchange with transition metal cations Al-rich zeolite Beta may increase the repertoire of basic catalyst supports.18

Steaming and acid leaching have been used for the dealumination of zeolite Beta.19The counterpart to these procedures,desilication in basic media has been applied to introduce additional mesoporosity in the materials.20 However,this procedure results in only a marginal in-crease of the Al content.Thus,the increasing of frame-work aluminum is usually carried out during syntheses. Vaudry et al.have achieved Si/Al ratios for zeolite Beta as low as7.7,21later other groups have reported materials with ratios of5from low-SDA thick gels and by addition of Al species during the synthesis process.22,23As stated by Gabelica et al.,the template content plays a crucial role in aluminum insertion during the synthesis of Al-contain-ing zeolites.24Nonetheless,for counterbalancing the charge of more Al framework atoms,more and smaller cations are needed,and thus the replacement of organic cations by alkali-metal cations is expected to increase the aluminum content in the structure.This is achieved with Ca2tcations in the case of Tschernichite(BEA-type structure).21-23However,calcium-governed hydrother-mal synthesis of zeolites is usually performed at very high temperatures(>300°C),which is not favorable from a practical point of view.In fact,there is a limit on lowering the organic SDA content in the synthesis of zeolites with big pore openings,which is caused by the difficulty of alkali cations to stabilize the zeolite channel(voids) because of their size.For instance,the bulky tetraethyl ammonium cations can be decreased to a R/SiO2ratio of 0.10for obtaining of pure BEA phase,while below this value only amorphous products have been obtained.25,26 Recently,Xie et al.have claimed a template-free synthesis of zeolite Beta;regretfully,no comment about aluminum content is given.27A very interesting approach for pre-paration of zeolite Beta with low Si/Al ratio by using nucleation gel is reported by Zhou.28In this case,the very low amount of TEA.OH is introduced not in a direct form,but as a complex precursor gel containing all the sources(silica,alumina and sodium),which are needed for the synthesis of zeolite Beta.It is clearly demonstrated that this precursor gel did not contain any crystalline phase,but did,however,stimulate the crystallization of high alumina zeolite Beta at a very low consumption of organic template.

In this work,we present the crystallization of Al-rich zeolite Beta(Si/Al ratios as low as3.9)in the absence of organic structure-directing agent(template)by use of nanosized zeolite Beta seeds.The reactivity of the silica source and synthesis conditions have been varied in order to obtain highly crystalline zeolite Beta.

Experimental Section

Colloidal silica solution or freshly freeze-dried powder (Aldrich,SM-3030wt.%in water)as silica source and aluminum isopropoxide(Aldrich,99.99%)as aluminum source were used for preparation of precursor suspensions.Tetraethyl ammonium hydroxide(TEAOH,Aldrich,35wt.%in water)as organic SDA for the preparation of Beta seeds,and sodium hydroxide(NaOH,85%,Riedel de Ha

::en)for the preparation of Al-rich precursor suspensions were applied.

Synthesis of Zeolite Beta Seeds.Zeolite Beta is prepared from precursor suspensions containing organic template with follow-ing compositions(samples denominated A-b)

a Na2O:

b TEAOH:0:25Al2O3:25SiO2:297H2O where a is7.65,6.7,1.6,and0.35,whereas b is1,3,5,and9, respectively.Initially,aluminum isopropoxide was dissolved in a solution containing NaOH,TEAOH,and distilled water,and finally the silica source was added to the clear suspensions and stirred for30min.The obtained precursor suspensions were hydrothermally treated in stati

c conditions at100and130°C for>4and3days,respectively(Table1). The crystalline materials were purifie

d in thre

e steps con-sisting o

f high-speed centrifugation at20000rpm for45min, removal of the mother liquor,and redispersion in double deionized water usin

g an ultrasonic bath.The concentrated zeolite Beta suspensions were freeze-dried prior to charac-terization.

Synthesis of Al-Rich Zeolite Beta.Precursor suspensions with following chemical compositions were prepared and used for crystallization of Beta zeolite

7:5Na2O:a Al2O3:25SiO2:375H2O

where a is0.25,0.5,and0.75.The silica source(B syntheses, freeze-dried silica powder;and C syntheses,colloidal silica solution)was dissolved in a solution of NaOH,aluminum isopropoxide,and distilled water.Dry nanosized zeolite Beta (sample A-9)synthesized and purified through the procedure described in section2.1was added as seeds(2.5,0.5,and0.1wt% in relation to SiO2content in the precursor reacting mixtures). The mixtures were agitated until a fluid gel was obtained and then hydrothermally treated in static conditions at100-125°C

(14)Corma,A.;Forn e s,V.;Mart?n-Aranda,R.M.;Garc?a,H.;Primo,

J.Appl.Catal.1990,59(1),237.

(15)Meyer,U.;Hoelderich,W.F.Appl.Catal.,A1999,178(2),159.

(16)Li,J.;Tai,J.;Davis,R.J.Catal.Today2006,116(2),226.

(17)Kulkarni,S.J.;Madhavi,G.;Rao,A.R.;Mohan,K.V.V.K.

https://www.wendangku.net/doc/d513008655.html,mun.2008,9(4),532.

(18)Davis,R.J.J.Catal.2003,216(1-2),396.

(19)Batonneau-gener,I.;Yonli,A.;Hazael-pascal,S.;Pedro Marques,

J.;Madeira Lopes,J.;Guisnet,M.;Ram^o a Ribeiro,F.;Mignard, S.Microporous Mesoporous Mater.2008,110(2-3),480.

(20)Groen,J.C.;Peffer,L.A.A.;Moulijn,J.A.;P e rez-Ram?rez,J.

Microporous Mesoporous Mater.2004,69,29.

(21)Vaudry,F.;di Renzo,F.;Fajula,F.;Schulz,P.Stud.Surf.Sci.

Catal.1994,84,163.

(22)Borade,R.B.;Clearfield,A.Microporous Mater.1996,5,289.

(23)Shanjiao,K.;Tao,D.;Qiang,L.;Aijun,D.;Yanying,Z.;Huifang,

P.J.Porous Mater.2008,15,159.

(24)Gabelica,Z.;Dewaele,N.;Maistriau,L.;Nagy,J.B.;Derouane,E.

G.Zeolite Synthesis;American Chemical Society:Washington D.C.,

1989;V ol.398.

(25)Camblor,M. A.;Corma, A.;Mifsud, A.;P e rez-Pariente,J.;

Valencia,S.Stud.Surf.Sci.Catal.1997,105,341.

(26)Carvalho,M.W.N.C.;Cardoso,D.Stud.Surf.Sci.Catal.1997,

105,349.

(27)Xie,B.;Song,J.;Ren,L.;Ji,Y.;Li,J.;Xiao,F.-S.Chem.Mater.

2008,20(14),4533.(28)Qun,Z.;Bao-Zong,L.;Shi-Lun,Q.;Wen-Qin,P.Chem.J.Chin.

Univ.1999,20(5),693.

4186Chem.Mater.,Vol.21,No.18,2009Majano et al.

for2-12days(Table1).The obtained materials were purified according to the procedure described above and freeze-dried.

Characterization

The crystallinity and phase purity of the samples were deter-mined by X-ray powder diffraction using a PANalytical X’Pert Pro diffractometer in Debye-Scherrer geometry with Cu K R radiation. Information for the crystal size and morphology of the samples was obtained by scanning electron microscopy(SEM)using a Phillips XL30microscope.The porosity of the samples is probed by nitrogen sorption measurements carried out on a Micromeritics ASAP2040instrument(the Al-rich BEA samples were measured without calcination).Prior to the measurements,all samples were degassed at90°C for1h and then at300°C for15h in a vacuum. Infrared analysis of Beta samples was performed with a Bruker Equinox55FRA106/S spectrometer(32scans,4cm-1). Solid-state27Al and29Si MAS NMR spectra were collected with a Bruker Avance II400FT spectrometer.The29Si MAS,1H decoupled,NMR spectra were recorded at79.495MHz with a pulse length of2.08μs,a recycle time of80s and a spinning rate of4kHz;the27Al MAS NMR spectra were recorded at104.261 MHz with a pulse length of0.65μs and a spinning rate of25kHz. Prior to27Al NMR measurements,zeolite Beta powders were saturated with water in order to reveal all Al species(24h in desiccators with a saturated solution of NH4Cl in water). Elemental analyses of all samples were performed using a Phillips MagiX X-ray fluorescence spectrometer.The stability and thermal behavior of zeolite Beta were investigated on a Setaram Labsys analysis instrument with a heating ramp of 5°/min under air flow.

Pyridine adsorption measurements were carried out on sample A-9after calcination at550°C for10h in air with a ramp of 1°/min.Samples A-9,B-1,and C-3(Table1)were stirred6h in excess of a1M ammonium nitrate solution,followed by centri-fugation at20000rpm and redispersion in distilled water.The procedure was carried out three times and finally the materials were freeze-dried and calcined at the conditions described above.

Results and Discussion

Synthesis conditions,phases and characteristic proper-ties for the most relevant samples described in the present work are summarized in Table1.The template commonly used for synthesis of zeolite Beta,TEAOH,was progres-sively replaced by sodium in the samples A-9to A-1. Inclusion of other cations such as Litand Ktin compo-sitions B and C showed a drastic detrimental influence on the crystallization process producing either amorphous material,Mordenite(MOR)or mixtures with Analcime (ANA).29It is reported that in the natural Tschernichite, the Ca2tplays a crucial role in the stabilization of the structure.30Nonetheless,seeded syntheses with calcium cations were unsuccessful and hindered the growth of any phase in the precursor suspensions.Most probably,the low crystallization temperatures employed for this study were the reason for the absence of structure directing effect of the calcium cations.Therefore,Natwas used as charge balancing cation in all investigated systems.Fully crystalline samples were obtained after6days treatment of the precursor mixtures at temperatures below125°C (Table1).Faster crystallization was achieved by using the more reactive freshly freeze-dried silica(B samples), whereas the precursor suspensions prepared with the colloidal silica solution(C samples)required3more days to reach a similar degree of crystallinity.Thus,the colloidal silica(C-type samples)was chosen for further study of the crystallization kinetics of zeolite Beta free of organic additive,because the very fast crystallization of B-type results often in formation of side phases.Further-more,the use of other alumina sources such as Al(OH)3 and NaAlO2caused a faster crystallization but also gave MOR as an impurity.For further discussion,mainly samples A-9(used for seeding)and B-1,C-1,and C-3will be considered(Table1).

The crystalline yield from the syntheses batch(amount of solid obtained in relation to SiO2and Al2O3used for

Table1.Synthesis conditions and physicochemical characteristics of zeolite Beta synthesized from precursor mixtures containing2.5wt.%seeds

sample conditions SiO2/TEA2O a phase crystallinity(%)b yield(%)c Si/Al d Na/Al d

surface area(m2/g)

A-9100°C,4days6BEA10040260.07500

A-5130°C,3days10BEA10039220.3583

A-3130°C,3days17BEA10029130.3524

A-1130°C,3days50BEA10028110.8538

B-0125°C,9days¥BEAtMOR61 4.8 1.1376

B-1125°C,6days¥BEA10024 4.5 1.2425

B-2150°C,2days¥MORtECR-1 5.6 1.2

B-3150°C,18h¥amorphous9.0 2.3

C-1100°C,12days¥BEA e98-9910 3.9 1.2355

C-2100°C,9d¥BEA32 4.6 1.1221

C-3125°C,9days¥BEA8726 5.4 1.3284

C-4125°C,6days¥BEA35 5.6 1.6112

C-5125°C,4days¥BEA35 5.9 1.981

C-6125°C,2days¥BEA23

C-7130°C,3days¥BEAtGIStMOR8 2.4131

C-8140°C,3days¥GIStMOR 5.4 1.5

C-9160°C,3days¥MOR 6.2 1.2

C-1090°C,28days¥BEA15

a initial precursor suspensions.

b A-9is used as reference sample.

c Calculate

d on th

e basis o

f the crystalline solid in relation to SiO

2tAl2O3in the initial mixture.d Final solid product.e Traces of GIS.

(29)Mostowicz,R.;Testa,F.;Crea,F.;Aiello,R.;Fonseca,A.;Nagy,

J.B.Zeolites1997,18,308.

(30)Alberti, A.;Gruciani,G.;Galli, E.;Merlino,S.;Millini,R.;

Quartieri,S.;Vezzalini,G.;Zanardi,S.J.Phys.Chem.B2002,

106,10277.

Article Chem.Mater.,Vol.21,No.18,20094187

preparation of the initial mixture)is about 25-30%and remains mostly unaffected by changing the water content in the reaction mixture and the ratio TEA 2O/Na 2O below 0.2(for A samples),as can be seen from Figure 1.Only at low crystallization temperature (100°C,sample B-1)does the yield of zeolite Beta decrease below 10%.It is im-portant to notice that the aluminum content in the mother solution is the limiting factor for the crystallization of Beta zeolite as seen from the Si/Al ratios of the remaining mother liquors (see Figure 1).In all cases,the homoge-neity of the mixture was particularly important,as any nondissolved silica easily starts to transform into MOR instead of BEA type molecular sieve.

Different factors influencing the crystallization process related to the presence of seeds were studied,including the seed content,particle size,chemical composition,calcina-tion of seeds,and the impact of the TEA ttrapped inside the noncalcined seeds.It is found that the crystallite size increases with lowering the seed and template contents in the reacting mixture,and some crystallites even reach the micrometer size range.Between the precursor mixtures containing 10and 2.5wt %seeds,no remarkable change in the crystallite size was observed,whereas the use of 0.5wt %seeds result in octahedral crystals with sizes around 1μm.For further discussion only the systems containing 2.5wt.%seeds will be considered,as this quantity is found to be favorable for further optimization of the synthesis process.Beta seeds (Si/Al =26)in colloidal suspensions (50nm)were also used in order to obtain less aggregated samples and more homogeneous precursor suspensions.In addition,Al-rich Beta seeds (Si/A l <4.5)were used for the synthesis;however,no crystalline product was obtained.

The samples seeded by calcined Beta nanoparticles (Si/Al =26)did not yield any crystalline phase.A possible reason can be a deactivation of the crystalline surface by additional condensation of the high silica seeds upon calcination but not because of the absence of TEA tin the seed crystals.The presence of TEA tfrom the seeds was considered to have a negligible impact on the crystal-lization process because of its extremely low concentra-tion and limited liberation into the synthesis mixture.To verify this,a modified synthesis of template-containing sample A-1was carried out.In this synthesis,the seed content was lowered to 0.1wt %while retaining the same

amount of TEAOH (SiO 2/TEA 2O =50)in the precursor suspension.When the template in the seeds is taken into account,then the quantity of template used in the afore-mentioned synthesis is several times more than in synth-eses carried out only with uncalcined seeds (syntheses of samples B and C with 2.5wt %).However,this experi-ment gave poor crystalline yield (<5%).The purpose of this experiment was to simulate a partial dissolution of the seeds (low seed content)and an integration of the template (high template content)into the reacting system.Thus,this demonstrates that the presence of seeds with active surfaces promotes the crystallization of BEA phase and not the low amount of organic template occluded in the channels of the seeds.

An increase of aluminum in the precursor mixtures slowed down the crystallization https://www.wendangku.net/doc/d513008655.html,ing a suspen-sion with SiO 2/Al 2O 3ratio of 100,it was possible to prepare zeolite Beta without giving any nondesired phase.However,the increase of the starting SiO 2/Al 2O 3ratio above 250resulted in the crystallization of MFI phase.X-ray diffraction patterns of high-Al BEA samples along with the parent A-9seeds and selected samples of series B and C are depicted in Figure 2.All samples show the characteristic zeolite Beta peaks.The highest crystal-linity was achieved by sample B-1after 6days,followed by C-1(12days)and sample C-3(9days).An induction period of several days is observed for all samples as seen in the case of composition C,where the same degree of crystallinity was measured for a crystallization period of 4days.XRD patterns of Al-rich samples show a competi-tion between the Bragg reflections of the Si-rich phase at 22.5°2θwith the ones of the Al-rich phase at 22.1°2θ.The position of the signal of the Al-rich Beta has also been observed in the X-ray pattern of natural zeolite Tscher-nichite.31The change of the position of these peaks can be attributed to the higher amount of framework aluminum in comparison to the synthetic zeolite Beta,but also to the open channel network of Beta samples without any organic additives.The XRD diffractograms of Beta samples free of template are also characterized by a sharpness of the peaks at lower 2θdegree (7.05°2θ)in comparison to the standard sample A-9.This indicates larger crystalline domains in the Al-rich Beta

samples

Figure 1.Relation between the crystalline yield of Beta zeolite and TEA 2O/Na 2O ratios of the precursor suspensions;2.5wt %Beta seeds were used for the syntheses below a TEA 2O/Na 2O ratio of 0.2(Si/Al R is the ratio of the remaining mother liquor after

synthesis).

Figure 2.XRD patterns of Beta sample used for seeding (A-9)in comparison to Al-rich Beta (samples B and C)and starting mixture.Dotted line denotes the position of the peaks at 7.0and 22.1°2θ(asterisks mark GIS impurity).

(31)Szostak,R.;Lillerud,K.P.;St ::

ocker,M.J.Catal.1994,148,91.

4188Chem.Mater.,Vol.21,No.18,2009Majano et al.

and an approximate ratio of polymorphs A and B of 0.5in comparison to the standard sample A-9with a ratio of 0.6.32

The morphological features of the precursor mixture and the crystals used as seeds (sample A-9)for the synthesis of Al-rich Beta are shown in Figure 3.The crystalline seeds with size of 100nm are composed of smaller individual particles with size around 10-20nm,which during further crystallization fuse together and give the final crystals smoother features.This has been previously observed in the crystallization of templated zeolite Beta.33These seeds can hardly be seen in the

precursor mixture because of the small amount and well-disintegrated aggregates during the agitation and aging of the precursor mixtures prior the hydrothermal treatment.The obtained products from syntheses B-1,C-1,and C-3(Figure 3c -f)are very homogeneous and consist of intergrown crystals possessing a truncated octahedral morphology,typical for zeolite Beta.The individual size of these crystals lies between 400and 600nm,and seem to be composed of smaller particles of the same size as the seeds (Figure 3f).

All samples show sorption isotherms characteristic of microporous materials,as can be seen from the N 2-sorption data depicted in Figure 4.No calcination was performed prior to nitrogen sorption measurements of Al-rich samples.Samples B-1and A-9exhibited surface areas of 425and 500m 2/g,respectively (Table 1).

The

Figure 3.SEM micrographs of (a)amorphous precursor gel for sample B-1,(b)A-9seeds,and Al-rich BEA samples (c)B-1,(d)C-3,and (e)C-1at low magnification and (f)C-1at high magnification.

(32)Treacy,M.M.J.;Higgins,J.B.Collection of Simulated XRD

Powder Patterns for Zeolites ,4th ed.;Elsevier:Amsterdam,2001.(33)Hould,N.D.;Lobo,R.F.Chem.Mater.2008,20,5807.

Article Chem.Mater.,Vol.21,No.18,20094189

nitrogen sorption isotherms for the Al-rich Beta samples show no textural porosity due to intergrowth and large zeolite crystals (Figure 4a).The surface area of the high-Al Beta samples gradually increases with improving crystallinity of the samples from 81to 425m 2/g (Table 1).The contribution of the template from the seeds to the Al-rich material is minimal as seen in Figure 4a;where the surface area liberated after calcination (550°C,10h in air with a ramp of 1°/min)is about 2.3%(447m 2/g)in comparison to the noncalcined sample .

To assess the quantity of water and organic template coming from the seeds in the samples,we carried out thermogravimetrical (TG/DTA)measurements on zeolite Beta powders saturated with water (24h in desiccators with a saturated solution of NH 4Cl in water).A TG curve with a steep decrease in the range of 25-250°C,characteristic of hydrophilic micropor-ous materials was observed in all Al-rich samples.The TG data of sample B1representative for the whole set of Al-rich materials is shown in Figure 5a.The sample B-1shows an 11%weight loss with a light endothermic signal until 250°C assigned to adsorbed water and afterward a 2%weight loss with exothermic response attributed to the elimination of the organic template (TEAOH)from the seeds used in the syntheses of Al-rich Beta samples.In the case of the standard zeolite Beta (sample A-9)the exothermic responses measured are about 3.5%weight loss from adsorbed water and about 13%weight loss with a strong exothermic re-sponse coming from the high amount of organic tem-plate (Figure 5b).The usual weight loss of high silica zeolite Beta is about 17-18wt %taking into account the surface water.Thus in the case of sample A-9,the total weight loss is 16.5wt %,which falls into the range measured for colloidal zeolite Beta synthesized from fluoride-free media.

Important conclusions for the assessment of the crys-tallinity of aluminosilicates are made based on 27Al MAS NMR spectroscopy.All synthesized samples show the presence of only tetrahedrally coordinated aluminum,seen as a signal at 53.4ppm for the standard high-Si sample A-9,and at 56.6ppm for all Al-rich samples (Figure 6A).This low field shift reflects the higher Al content in the second coordination sphere of the frame-work Al atoms.27Al spectra of Al-rich BEA also show some asymmetry and peak broadening due to the many different Si -O -Al species present in the samples (see Figure 6Aa,b).The H-form of the standard high-Si (A-9)sample shows a low degree of dealumination due to the calcination process as can be seen from the 27Al NMR spectrum,whereas the Al-rich samples show a small quantity of aluminum at 3.6ppm that can be due to octahedrally distorted Al and a broad signal related to pentacoordinated aluminum at 28.0ppm.3429

Si MAS decoupled NMR spectra of Al-rich zeolite Beta (Figure 6B a,b)showed four distinct sites for the silicon with different number of Al-neighbors:a)Si-(OAl)0at -115.5,Si(OAl)0/Si(OAl)1at -110.0,Si(OAl)2at -105.2,and Si(OAl)3at -99.8ppm.35,36As expected,in the case of Al-rich BEA,the peaks related with Al-coordination grew in intensity due to the higher alumi-num content.The 29Si spectra of Al-rich samples show an increase in intensity of the signal at -110.0ppm together with a decrease of the peaks at -105.2and -98.8ppm after treatment for conversion into the H-form.The A-9seeds show also the same behavior but less

accentuated,

Figure 4.Nitrogen adsorption -desorption isotherms for samples (a)B-1and (b)A-9

seeds.

Figure 5.TG-DTA analyses of as-synthesized samples (a)B-1and (b)A-9seeds.

(34)Gilson,J.-P.;Edwards,G.C.;Peters,A.W.;Rajagopalan,K.;

Wormsbecher,R.F.;Roberie,T.G.;Shatlock,M.P.J.Chem.Soc,https://www.wendangku.net/doc/d513008655.html,mun.1987,91.

(35)Fyfe,C.A.;Feng,Y.;Grondey,H.;Kokotailo,G.T.;Gies,H.

Chem.Rev.1991,91,1525.

(36)Camblor,M.A.;Corma,A.;Valencia,S.J.Mater.Chem.1998,8,

2137.

4190Chem.Mater.,Vol.21,No.18,2009Majano et al.

where the signals at -105.2and -99.8ppm increase in intensity and overlay into a peak at -102.2ppm,which can be attributed to dealumination of the sample with an increase of silanol groups (see Figure 6B c).The char-acteristics of Al-rich BEA samples are also in accordance with the studies made by Szostak on Tschernichite,the natural analogue of zeolite Beta.31

X-ray fluorescence spectroscopy measurements show a high aluminum concentration,resulting in Si/Al ratios as low as 3.9(16.4Al atoms per unit cell),which is not achievable by templating the zeolite with TEA t,as only 6-8cations can be accommodated into the unit cell of zeolite Beta.The measured Si/Al ratios for the Al-rich zeolite Beta are very close to the natural Tschernichite possessing a Si/Al of 3.3.31,37On the other hand,the crystallization of zone crystals can be expected coming from the seeds,thus higher Si content in the core and high Al concentration in the shell.By closely monitoring the chemical composition of the crystalline products as well as the obtained phases,a good insight into the crystal-lization process of Al-rich zeolite Beta can be provided.In the initial precursor mixture with a SiO 2/Al 2O 3ratio of 50,it was possible to generate nucleation sites starting from the high-Si BEA seeds.The inclusion of aluminum was induced by the absence of an organic template in the mixture,as this forces the creation of fresh nucleation sites around the surface of the seeds and thus to counter-balance the Al with sodium.In turn,the abundance of sodium cations induces the inclusion of more aluminum in the BEA structure.Nonetheless,the excess of sodium in the mother liquor is also responsible for the appearance of

other phases at higher synthesis temperatures.The speed of crystallization of the metastable BEA phase does not change,as it is dependent on the proximity of seeds,however more stable and denser phases such as Gismon-dine (GIS)and MOR 2nucleate in the suspension apart from the seeds,because the composition of the initial mixture fits better the crystallization field of these zeolites at high temperature.

Essentially,zeolite Beta crystallizes first because the initial SiO 2/Al 2O 3ratio (50)lies outside the typical com-positions favoring the growth of competing phases such as MOR (30-40)and GIS (3.5).At temperatures higher than 125°C,the speed of nucleation for zeolite Beta is slower without any organic template (for instance TEAOH)and the overall composition of the mother liquor starts to change and favor the formation of denser phases.This is supported by the long time syntheses at 100°C for a period of up to 12days in which no other phase than BEA is crystallized.At temperatures higher than 150°C,the formation of MOR as impurity and ECR-1in very small amount points toward a fast con-sumption of Si species from the synthesis mixture,this results in products with higher Si/Al ratios (samples B-2and B-3).38The simultaneous formation of MOR phase in the system together with BEA phase after 18h at 150°C and further increasing of the MOR phase with further crystallization (48h)is observed (see Figure A in the Supporting Information).This result shows that high temperature and short synthesis time stimulates the for-mation of MOR in the investigated system.The GIS phase starts to crystallize before and along MOR phase at intermediate temperatures (130-150°C)because the lower temperature is detrimental for MOR crystal-lization.

The acid sides of the Al-and Si-rich zeolite Beta samples have been characterized using pyridine adsorp-tion followed by FTIR spectroscopy.The total number of acid sites was measured by stepwise dosage of pyridine on dried samples in H-form at 200°C.The acid sites after desorption of pyridine at 200°C for 1h were taken into consideration for further quantification following the method developed by Emeis.39The Al-rich BEA (sample B-1)shows a higher quantity of acid sites (0.54mmol/g)than the sample A-9(0.25mmol/g)(see the IR spectra in Figure E and Table B in the Supporting Information).

Conclusions

Al-rich zeolite BEA zeolite with Si/Al ratios as low as 3.9was successfully synthesized starting from precursor suspensions without organic structure-directing agent in the presence of zeolite seeds.It was found that the crystal-line yield of zeolite Beta synthesized with seeding is low in comparison to the traditional templated syntheses.The slow crystallization kinetics and narrowness of

crystallization

Figure 6.(A)27Al MAS and (B)29Si MAS decoupled NMR spectra of (a)B-1H-form,(b)B-1as-synthesized,(c)A-9H-form,and (d)A-9as-synthesized Beta samples.

(37)Szostak,R.;Pan,M.;Lillerudo,K.P.J.Phys.Chem.1995,99,

2104.

(38)Hsia Chen,C.S.;Schlenker,J.L.;Wentzek,S.E.Zeolites 1996,17,

393.

(39)Emeis,C.A.J.Catal.1993,141,347.

Article Chem.Mater.,Vol.21,No.18,20094191

field for Al-rich zeolite Beta may explain the scarcity of the material Tschernichite in nature.

Our results clearly show that the crystallization of zeolite Beta initiated by seeds(e2.5wt.%)can only be successfully carried out using low synthesis temperatures (<125°C)as higher temperatures easily induce the for-mation of MOR as seen in samples B-2and C-7to C-9. Also,the Beta crystals show large sizes around400nm and no crystals with sizes below200nm are present.These results are in a good agreement with the work of Kim and Ahn reporting the crystallization of MOR from the unseeded precursor suspensions at high temperatures.40 Although the used precursor mixtures and synthesis conditions need further optimization to improve the crystalline yield and decrease the degree of aggregation, the obtained Beta samples show interesting acid/base properties and may be useful for catalytic studies in direct comparison to zeolite Y(FAU-type structure).This synthesis approach also opens new ways for the develop-ment of an economic and environmentally friendly synth-esis procedure for Al-rich zeolite Beta without the use of template.

Acknowledgment.Financial support from the Six Frame-work Project“SOILCY”and ANR-PNANO“SRIF”is greatly appreciated.

Supporting Information Available:Additional figures(PDF). This material is available free of charge via the Internet at http:// https://www.wendangku.net/doc/d513008655.html,.

(40)Kim,G.J.;Ahn,W.S.Zeolites1991,11,745.

基金从业资格考试试题及参考答案

1.证券投资组合的期望收益率等于组合中证券期望收益率的加权平均值,其中对权数的表述正确的是( )。基金从业资格考试试题及参考答案 A.所使用的权数是组合中各证券未来收益率的概率分布 B.所使用的权数之和可以不等于1 C.所使用的权数是组合中各证券的投资比例 D.所使用的权数是组合中各证券的期望收益率 【答案】C 【解析】有n项资产A1,…,An构成资产组合A=w1A1+…+wnAn,其中wi是权数,为投资于资产Ai的资金所占总资金的比例,若Ai的期望收益率为ri,则资产组合A的期望收益率r为 r=w1+r1+…+wnrn。 2. 在某企业中随机抽取7名员工来了解该企业2013年上半年职工请假情况,这7名员工2013年上半年请假天数分别为:1、5、3、10、0、7、2。这组数据的中位数是( )。 A.3 B.10 C.4 D.0 【答案】A 【解析】对于一组数据来说,中位数就是大小处于正中间位置的那个数值。例如,对于X的一组容量为5的样本,从小到大排列为X1,…,X5,这组样本中的中位数就是X5;如果换成容量为10的样本 X1,…,X10,由于正中间是两个数X5,X6,可用它们的平均数(X5+X6)来作为这组样本的中位数。本题中,该组数据从小到大的顺序为:0、1、2、3、5、7、10,居于中间的数据是3。v基金从业资格考试准考证 3. 企业的财务报表中,现金流量表的编制基础是( )。 A.权责发生制 B.收付实现制 C.现收现付制 D.即收即付制 【答案】B 【解析】现金流量表,也叫财务状况变动表,所表达的是在特定会计期间内,企业的现金(包含现金等价物)的增减变动等情形。该表不是以权责发生制为基础编制的,而是根据收付实现制(即实际现金流入和现金流出)为基础编制的。 4.关于单利和复利的区别,下列说法正确的是( )。 A.单利的计息期总是一年,而复利则有可能为季度、月或日 B.用单利计算的货币收入没有现值和终值之分,而复利就有现值和终值之分 C.单利属于名义利率,而复利则为实际利率 D.单利仅在原有本金上计算利息,而复利是对本金及其产生的利息一并计算利息 【答案】D基金从业资格考试真题 【解析】按照单利计算利息,只要本金在计息周期中获得利息,无论时间多长,所生利息均不加入本金重复计算利息;按照复利计算利息,每经过一个计息期,要将所生利息加入本金再计利息。 5.1年和2年期的即期利率分别为s1=3%和s2=4%,根据无套利原则及复利计息的方法,第2年的远期利率为( )。 A.2% B.3.5% C.4% D.5.01% 【答案】D 【解析】将1元存在2年期的账户,第2年末它将增加至(1+s2)2;将1元存储于1年期账户,同时1年后将收益(1+s1)以预定利率f贷出,第2年收到的货币数量为(1+s1)(1+f)。根据无套利原则,存在(1+s2)2=(1+s1)(1+f),则f=(1.04)2/1.03-1=0.0501=5.01%。

近义词和反义词

一、近义词和反义词 近义词(同义词) 读音不同而意思相同或相近的词叫近义词。 恰当地运用近义词,可以表现不同的感情和风格,这就需要我们了解近义词之间的细微的差别。

二、常见句式 按不同的作用,句子可以分为基本类型:陈述句、疑问句、祈使句、感叹句、肯定句、否定句、设问句、反问句、“把”字句和“被”字句。 1、陈述句 只要意思是在告诉别人一件事,都可以上视作陈述句。(陈述句的语调一般是平的,句末用句号。)例:我交上了作业。 2、疑问句 当我们对某一件事不明白或不理解时,就要用一句话去问别人,这句话就叫做疑问句。(疑问句的语调一般是上扬的,句末用问号。)例:你吃饭了吗? 3、祈使句 是用来要求别人做某件事或不做某件事的句子叫祈使句。(句子末尾的语调一般向下降,句末用句号,语气较强的用感叹号。)例:请你赶快把书送回去。 4、感叹句 带有喜欢、厌恶、痛恨、悲伤、快乐、惊讶、愤怒、恐惧等强烈感情的这类句子叫做感叹句。(末尾的语调一般是下降的,句末大都用感叹号。) 例:昨天是我的眼睛骗了我,那“鸟的天堂”的却是鸟的天堂。 5、肯定句 肯定一件事的句子叫肯定句。(肯定句中往往没有明确表示肯定的词语。)例:他是我妈妈。

6、否定句 否定一件事的句子叫否定句。(否定句中常用“不”“没”“没有”“否认”等词来表示否定。)例:他不是我妈妈。 7、设问句 说话或写文章时,为了强调自己的看法和结论,先提出一个问题,然后紧跟着把自己的看法说出来,也就是自问自答,这就叫设问句。例:是谁创造了人类世界?是我们劳动群众。 8、反问句 反问句提出问题,只问不答把答案巧妙地藏在问话里,读者可以从中体会到明确的答案。(反问句中一般都有明显的反问词语出现,如:“难道”“不是…..吗”等。) 例:万里长城难道不是劳动人民智慧和汗水的结晶吗? 9、“把”字句 在句子中“把”字来表示处置关系,这样的句子叫做“把”字句。“把”字没有什么实在的含义,只表示一种“处置”与“被处置的关系。”“把”字常用在两种事物的名称之间,表示前者处置了后者。 10、“被”字句 在句子中“被”字来表示处置关系,这样的句子叫做“被”字句。表示一种“处置”与“被处置”的关系,只不过他所表示的关系与“把”字恰恰相反。例:我被老师批评了

基金从业科目二计算公式

基金从业-科目二计算公式

————————————————————————————————作者:————————————————————————————————日期:

科目二计算公式 1.资产=负债+所有者权益收入-费用=利润 2.净现金流(NCF)公式:NCF=CFO+CFI+CFF 3.流动比率=流动资产÷流动负债 4.速动比率=(流动资产存货)÷流动负债 5.资产负债率=负债÷资产,资产负债率是使用频率最高的债务比率。 6.权益乘数(杠杆比率)=资产÷所有者权益=1÷(1-资产负债率) 负债权益比=负债÷所有者权益=资产负债率÷(1-资产负债率) 数值越大代表财务杠杆比率越高,负债越重。 7.利息倍数=EBIT÷利息,EBIT是息税前利润。 利息倍数衡量企业对于长期债务利息保障程度。资产负债率、权益乘数和负债权益比衡量的是对于长期债务的本金保障程度。 8.存货周转率=年销售成本÷年均存货 存货周转天数=365天÷存货周转率 9.应收账款周转率=销售收入÷年均应收账款 应收账款周转天数=365天÷应收账款周转率 10.总资产周转率=年销售收入÷年均总资产 总资产周转率越大,说明企业的销售能力越强,资产利用效率越高。 11.销售利润率=净利润÷销售收入 12.资产收益率=净利润÷总资产 13.净资产收益率(权益报酬率)=净利润÷所有者权益=(净利润/总资产)×(总资产/所有者权益)=资产收益率×权益乘数=(净利润/销售收入)×(销售收入/总资产)×权益乘数=销售利润率×总资产周转率×权益乘数———杜邦恒等式 14.FV=PV×(1+i)^n (FV,i,n), PV= FV ÷(1+i)^n(PV,i,n) FV表示终值,即在第n年年末的货币终值;n表示年限;i表示年利率;PV表示本金或现值。 15.ir=in-P (费雪方程式)

基金从业资格考试题库历年真题练习题

基金从业资格考试题库历年真题练习题 一、单选题(共60题,每题0.5分,共30分。以下备选答案中只有一项最符 合题目要求,不选、错选均不得分) 1.与股票、债券不同,证劵投资基金反映的经济关系是(C)。 A.所有权关系 B.债权债务关系 C.信托关系 D.合伙投资关系 2.1879年,英国公布(A),使投资基金脱离了原来的契约形态, 发展成为股份有限公司式的组织形式。 A.《股份有限公司法》 B.《投资基金管理办法》 C.《投资顾问法》D.《投资公司法》 3.开放式基金的买卖价格以(C)为基础。 A.市场供求关系 B.市场存款利率 C.基金份额净值 D.基金份额总额 4.下列各项中,不是基会合同的当事人的是(A)。 A.基金销售机构 B.基金份额持有人 C.基金管理人 D.基金托管人 5.以其他证券投资基金为投资对象,其投资组合由各种各样的基金组成 的基金称为(B)。 A.指数基金 B.基金中的基金 C.伞型基金 D.信托投资单位 6.根据中国证监会对基金类别的分类标准,(B)以上的基金资产投资于股票的为股票基金。 A.50% B.60% C.70% D.80% 7.个别证券特有的风险是(C)。 A.操作风险 B.系统性风险 C.非系统性风险 D.管理运作风险 网址:https://www.wendangku.net/doc/d513008655.html,/

8.QDⅡ为应付赎回、交易清算等临时用途借入现金的比例不得超过基金、集合计划资产净值的(C)。 A.5% B.8% C.10% D.20% 9.封闭式基金合同生效的条件之一是,基金份额持有人人数要达到(B)人以上。 A.100 B.200 C.500 D.1000 10.通过证券营业部进行发售封闭式基金份额的方式称为(A)。 A.网上发售 B.网下发售 C.回拨机制 D.回购机制 11.根据有关规定,开放式基金的认购费率不得超过申购金额的(C)。 A.1% B.2% C.5% D.8% 12.由于ETF基金标的指数调整而出现的现金替代属于(D)。 A.可能现金替代 B.禁止现金替代 C.可以现金替代 D.必须现金替代 13.关于基金管理公司主要股东应具备的条件,下列说法不正确的是(A)。 A.注册资本不低于5亿元人民币 B.持续经营3个以上完整的会计年度,公司治理健全 C.从事证券经营等金融资产管理业务 D.最近3年没有因违法违规行为受到行政处罚或者刑事处罚 14.考察基金产品线的内涵角度一般不包括(D)。 A.产品线的长度 B.产品线的宽度 C.产品线的深度 D.产品线的高度 15.下列不属于基金管理公司内部控制机制的是(A)。 A.风险控制制度 B.员工自律 网址:https://www.wendangku.net/doc/d513008655.html,/

小学语文必考近义词和反义词

近义词和反义词是小学语文学习的重点和难点,也是必考题型之一。 另外学好近义词和反义词还有助于孩子在作文时的遣词造句,对准确表达文意起到至关重要的作用。(收藏了,没事儿就考考孩子) 1.单字类 观──看 寒──冷 舟──船 暖──热 鸣──叫 入──进 归──回 遥──远 瞅──看 藏──躲 绝──尽 叫──喊 望──看 看──瞧 铺──展 去──往 2.词语类 来回──往返 立刻──马上 赶快──赶紧 突然──忽然 寒冷──严寒 坚决──果断 恐惊──恐惧 暗香──幽香 荒芜──荒凉 得意──自得 听见──闻声 农夫──农民 慈祥──慈爱 飞翔──翱翔 详细──具体 每天──天天 赛过──胜过 好像──似乎 闻名──著名 满意──满足 新居──新房 捕获──捕捉 海疆──海域 天涯──天边 结实──坚固 遇到──碰到 轻巧──轻便 整齐──整洁 证明──证实 评比──评选 注意──注重 供应──供给 辛苦──辛劳 认识──熟悉 预报──预告 舒畅──愉快 立刻──连忙 突然──忽然 四周──四面 精彩──出色 笨重──粗笨 直立──竖立 听从──服从 绝技──特技 附近──四周 惊叹──赞叹 柔美──优美 洒脱──潇洒

疾驰──奔驰 奇丽──秀丽 淘气──调皮著名──闻名 震惊──震动 预测──猜测特殊──特别 小扣──轻敲 相宜──适宜 毕竟──究竟 陶醉──沉醉 苏醒──清醒恬静──舒适 寄居──借居 恐惧──惧怕轻微──稍微 仍旧──仍然 清晰──清楚哀求──请求 贵重──珍贵 挺秀──挺拔抚摸──抚摩 特别──特殊 依赖──依靠 纯熟──熟练 幽静──清幽 陌生──生疏安顿──安置 挽救──拯救 天涯──天际颤动──颤抖 自在──安闲 打扮──妆扮管理──治理 判断──判定 捕获──捕捉温和──暖和 惊奇──惊异 简朴──简单 增援──支援 关键──要害 疲劳──疲惫惊疑──惊奇 审视──审阅 愣住──停住眺望──远望 防备──防御 抵挡──抵抗挖苦──讥讽 疑惑──迷惑 夸耀──炫耀轻蔑──轻视 强盛──强大 侮辱──欺侮 严肃──严厉 清澈──清亮 打扰──打搅形状──外形 悄悄──静静 温和──温顺暴躁──急躁 灌溉──浇灌 淹没──沉没冲毁──冲垮 灾害──灾难 胜负──胜败气愤──生气 告别──离别 如果──假如 准备──预备 耀眼──刺眼 光芒──光线美丽──漂亮 洁白──雪白 惊奇──惊异中央──中心 宽阔──宽广 矗立──耸立优美──美丽 新颖──新奇 庄严──庄重

基金从业泽格考试科目二:《证券投资基金基础知识》完美无错字修订版

科目二:《证券投资基金基础知识》 第6章投资管理基础 一、资产负债表含义 1.资产负债表也称为企业的“第一会计报表”。资产负债表报告了企业在某一时点的资产、负债和所有者权益的状况,报告时点通常为会计季末、半年末或会计年末,反映了企业在特定时点的财务状况,是企业经营管理活动结果的集中体现。 2.会计恒等式:资产=负债+所有者权益 3.所有者权益包括:股本、资本公积、盈余公积、未分配利润四部分 二、利润表 1.利润表亦称损益表,反映一定时期(如一个会计季度或会计年度)的总体经营成果,揭示企业财务状况发生变动的直接原因。利润表是一个动态报告 2.利润表由三个主要部分构成。第一部分是营业收入;第二部分是与营业收入相关的生产性费用、销售费用和其他费用;第三部分是利润。 三、现金流量表 1.现金流量表也叫账务状况变动表,所表达的是在特定会计期间内,企业的现金的增减变动等情形,反映企业的现金流量,评价企业未来产生现金净流量的能力;评价企业偿还债务、支付投资利润的能力,谨慎判断企业财务状况; 2.现金流量表的基本结构分为:经营活动产生的现金流量;投资活动产生的现金流量;筹资活动产生的现金流量三部分 四、财务报表分析概念 财务报表分析是指通过对企业财务报表相关财务数据进行解析,挖掘企业经营和发展的相关信息,从而为评估企业的经营业绩和财务状况提供帮助。 五、销售利润率 1.销售利润率=净利润/销售收入;销售利润率是指每单位销售收入所产生的利润 2.一般来说,其他条件不变时,销售利润率越高越好;但当其他条件可变时,销售利润率低也并不总是坏事,因为如果总体销售收入规模很大,还是能够获得不错的净利润总额,薄利多销就是这个道理。 六、资产收益率 1.资产收益率=净利润/总资产;资产收益率计算的是每单位资产能带来的利润 2.资产收益率是应用最为广泛的衡量企业盈利能力的指标之一。资产收益率高,表明企业有较强的利用资产创造利润的能力,企业在增加收入和节约资金使用等方面获得了良好效果。 3.资产收益率的特点是它所考虑的净利润仅仅是股东可以获得的利润,而资产即是包 括股东资产和债权人资产在内的总资产。

基金从业考试知识点

基金从业考试分类高频考点汇总“门槛类”知识点 开放式基金最小规模:2亿元 封基最小募集规模:核准额80% QDII认购门槛:1000元 ETF申赎门槛:30万元 基金净值计算错误报告门槛:0.25% 基金净值计算错误报告并公告门槛:0.5% 合资基金公司外资持股:49%以下 合资基金公司港资持股:50%以上可 深交所A股佣金起点:5元 QFII持个股限制:10%以下 分级基金合并募集认申购门槛:5万元 分级基金分开募集B类认申购门槛:5万元 股基认购费:不超1.5% B股无过户费,有结算费:0.05%,不超500港元货基销售服务费率:0.25% 纽交所石油期货最小交易单位:1000桶 芝加哥小麦最小交易单位:5000蒲 “最” 的知识点

最大对冲基金:布里奇沃特 最大大宗商品管理公司:贝莱德 最大PE:高盛 最大基础设施投资公司:麦格里 最大不动产投资公司:世邦魏理仕 最先出现的金融期货:外汇期货 按名义金额计算,交易量最大衍生工具:互换合约 最难预测趋势:短期趋势 欧洲最大资产管理中心:英国 全球第一基金分销中心:卢森堡 “资格条件类” 知识点 基金公司注册资本:1亿元 基金主要法人股东净资产:2亿元 基金主要自然人股东金融资产:3000万元,10年资管经验 持股5%以上基金非主要法人股东净资产:5000万元 持股5%以上基金非主要自然人股东金融资产:1000万元,5年资管经验 基金申请QDII条件:2年基金业务,2亿净资产,200亿管理资产 券商申请QDII条件:1年资管业务,8亿净资本,20亿管理资产,净资本占净资产70% QDII境外托管人条件:10亿美元实收资本,1000亿美元托管资产 QDII境外投顾条件:5年投资管理,100亿美元管理证券资产 合资基金公司境外股东条件:3年无处罚,3亿元实收资本 QFII托管人条件:80亿元实收资本 QFII设立条件:

小学英语近义词反义词同音词辨析和练习

小学英语同音词、近义词、反义词归纳 一、小学英语同音词 B—bee—be no—know C—see—sea hi—high I—eye for—four R—are son—sun T—tea our—hour U—you pair—pear Y—why here—hear to—two—too there—their by—bye—buy right—write aren’t—aunt father—farther who’s—whose c-see(看见)-sea(海洋) b-be(是;成为)-bee(蜜蜂) y-why(为什么) for(为)-four hi(喂)-high(高) no(不)-know(知道) by(通过)-bye(再见) son(儿子)-sun(太阳) our(我们的)-hour(小时) right(对的)-write(写) meet(遇见)-meat(肉) hear(听见)-here(这儿) there(在那里)-their(他/她/它们的) dear(亲爱的)-deer(鹿)pear(梨)-pair(一双/副……) father(父亲)-farther(较远地) weight(重量)-wait(等待) it's(它是)-its(它的) who's(谁是)-whose(谁的) 二、小学英语近义词 toilet — WC listen —hear class —lesson everyone —everybody glass —cup large —big glad —happy like —love little —small photo —picture purse— wallet start —begin home—house learn—study beautiful—pretty usually —often look —see cycle —bike near —beside hi —hello quick —fast garden —park desk —table speak —say —talk river —lake go home —come home a moment ago— just now a lot of —lots of — many be good at —do well in of course —sure be from —come from take a walk —go for a walk take a bus —by bus would like —want look for— find 三、小学英语反义词 big(大的)----- small(小的)bad(坏的)----- good(好的) bright(明亮的)----- dark(黑暗的)black(黑的)----- white(白的) beautiful(美的)----- ugly(丑的)cold(冷的)----- hot(热的) cool(凉爽的)----- warm(温暖的)come(来)----- go(去) cry(哭)----- laugh(笑)clever(聪明的)----- stupid(笨的)different(不同的)----- same (相同的)difficult(难的)----- easy(容易的) dirty(脏的)----- clean(干净的)day(白天)----- night(夜晚) early(早的)----- late(迟的)fast(快的)----- slow(慢的) glad(高兴的)----- sad(悲伤的)inside(里面的)----- outside(外面的) in(里面)----- out(外面)large(大的)----- little(小的) left(左)----- right(右)quiet(安静的)----- noisy(吵闹的) new(新的)----- old(旧的)loose(松的)----- tight(紧的) like(喜欢)----- hate(厌恶)open(开)----- close(关)

2015年基金从业资格考试真题及答案

2015年基金从业资格考试真题及答案 一、单项选择题(共 80 题,每题 0.5 分)以下各小题所给出的 4 个选项中,只有 1 个选项符合题目要求,请将正确选项的代码填入括号内。 1.按()的不同,有价证券可分为政府证券、政府机构证券和公司证券。 A.证券购买主体 B.证券承销主体 C.证券发行主体 D.证券销售主体 2.以下关于货币证券的说法正确的是()。 A.货币证券是指本身能使持有人或第三者取得货币索取权的有价证券 B.货币证券是指本身能使持有人或第三者取得货币管理权的有价证券 C.货币证券是指本身能使持有人或第三者取得货币支配权的有价证券 D.货币证券是指本身能使持有人或第三者取得货币使用权的有价证券 3.证券是指各类记载并代表一定权利的()。 A.商品凭证 B.法律凭证 C.货币凭证 D.资本凭证 4.公募证券是指发行人通过中介机构向()公开发行的证券。 A.不特定的社会公众投资者 B.特定的机构投资者 C.特定的社会公众投资者 D.原有的证券持有人 5.证券市场服务机构不包括()。 A.证券登记结算机构、证券投资咨询公司和资产评估机构 B.会计师事务所、律师事务所 C.证券信用评级机构 D.证券交易所 6.证券业协会属于()。 A.证券监管机构 B.证券市场中介机构 C.自律性组织 D.证券服务机构 7.股票按股东享有权利的不同,可以分()。 A.普通股募和优先股票 B.记名股票和无记名股票 C.有面额股票和无面额股票 D.份额股票和比例股票 网址:https://www.wendangku.net/doc/d513008655.html,/

8、()指在中国境外注册、在我国香港上市但主要业务在中国内地或大部分股东权益来自中国内地公司的股票 A.红筹股 B.蓝筹股 C.外资股 D.国家股 9.以下关于记名股票的说法不正确的是()。 A.是在股票票面和股份公司的股东名册上记载股东姓名的股票 B.股份有限公司向法人发行的股票应当为记名股票 C.股份有限公司向发起人发行的股票可以另立户名 D.公司发行的股票可以为记名股票,也可以为无记名股票 10.以下关于债券的叙述错误的是()。 A.发行人是借入资金的经济主体 B.投资者是出借资金的经济主体 C.发行人需要在一定时期付息还本 D.债券反映了发行者和投资者之间委托代理关系,而且是这一关系的法律凭证 11.债券票面上的基本要素不包括()。 A.债券的票面价值 B.债券的到期期限 C.债券的票面利率 D.债券的持有人名称 12.在公司证券中,通常将银行及非银行金融机构发行的证券称为()。 A.股票 B.公司债券 C.商业票据 D.金融债券 13.()的利率在最低票面利率的基础上参照预先确定的某一基准利率予以定期调整。 A.零息债券 B.浮动利率债券 C.息票累积债券 D.附息债券 14.中央政府债券也称国债,通常由一国()发行。 A.中央银行 B.财政部 C.公益机构 D.证券监管机构 网址:https://www.wendangku.net/doc/d513008655.html,/

四年级-近义词和反义词

四年级语文(上册) 1、观潮 近义词:屹立—矗立霎时—刹那依旧—照旧颤动—颤抖逐渐—渐渐犹如—好像 反义词:宽阔—狭窄沸腾—平静风号浪吼—风平浪静人声鼎沸—万簌俱寂 2、雅鲁藏布大峡谷 近义词:奇异—离奇关注—关心预料—预测人迹罕至—荒芜人烟 反义词:强烈—微弱奇特—寻常巨大—微小 3、鸟的天堂 近义词:不可计数—数不胜数应接不暇—目不暇接 反义词:光明—黑暗静寂—吵闹茂盛—枯萎 4、火烧云 近义词:镇静—冷静凶猛—猛烈笑盈盈—笑呵呵 反义词:凶猛—温和镇静—慌张恍恍惚惚—清清楚楚 5、爬山虎的脚 近义词:舒服—舒适牢固—坚固空隙—间隙均匀—平均 反义词:弯曲—笔直牢固—薄弱均匀—不等仔细—粗心舒服—难受 6、蟋蟀的住宅 近义词:出名—有名隐蔽—遮蔽慎重—谨慎挖掘—发掘简单—简明搜索—搜查随遇而安—入乡随俗 反义词:慎重—轻率粗糙—光滑柔弱—刚强干燥—湿润简朴—奢华 7、世界地图引出的发现 近义词:静谧—宁静偶然—偶尔豪放—豪爽坐卧不安—如坐针毡 反义词:偶然—必然崭新—陈旧不可思议—可想而知 8、巨人的花园 近义词:喧闹—吵闹允许—许可训斥—斥责凝视—注视荒凉—荒寂孤独—孤单 反义词:漂亮—丑陋喧闹—寂静荒凉—繁华允许—禁止任性—约束 — 9、幸福是什么 近义词:宽阔—广阔恢复—复原诧异—惊异激动—冲动清理—整理仍旧—依旧茂密—茂盛 反义词:宽阔—狭窄简单—复杂谦虚—骄傲清澈—浑浊茂密—稀疏 10、去年的树 近义词:寒冷—酷寒朋友—好友融化—消融 反义词:朋友—敌人融化—凝固寒冷—炎热 11、小木偶的故事 近义词:神奇—神秘热闹—喧闹愤怒—愤恨灵活—敏捷重要—重大 反义词:亲热—冷淡愤怒—愉快撒谎—诚实

基金从业资格证考试私募股权考试试题答案

1、单项选择题(共100题,每小题1分,共100分)。以下备选项中只有一项最符合题目要求,不选、错选均不得分。 1 单只私募证券投资基金管理规模金额达到()元以上的,应当持续在每月结束之日起5个工作日以内向投资者披露基金净值信息。 A 1亿 B 1 000万 C 3 000万 D 5 000万 答案:D 解析: 单只私募证券投资基金管理规模金额达到5 000万元以上的,应当持续在每月结束日起5个工作日以内自投资者披露基金净值信息。 2 根据《私募投资基金信息披露管理办法》,信息披露义务人、投资者及其相关机构应当依法对所获取的私募基金非公开披露的全部信息、商业秘密、个人隐私等信息负有()。 A 管理义务 B 保密义务 C 托管义务 D 暂存义务 答案:B 解析: 根据《私募投资基金信息披露管理办法》,信息披露义务人、投资者及其相关机构应当依法对所荻取的私募基金非公开披露的全部信息、商业秘密、个人隐私等信息负有保密义务。 3 根据《合伙企业法》,可以作为合伙企业普通合伙人的是()。 A 国有独资公司 B 具有完全民事行为能力的自然人 C 国有企业 D 社会团体 答案:B 解析: 具有完全民事行为能力的自然人,可以作为合伙企业的普通合伙人。 4 既可以作为股权投资基金的投资管理人,也可以扮演资金募集人的股权投资基金组织形式是()。 A 公司型 B 信托型 C 有限合伙型 D 以上均不是 答案:B 解析: 信托型可以作为股权投资基金的投资管理人,也可以扮演资金募集人。 5 私募基金管理人发生重大事项的,应当在()个工作日内向基金业协会报告。 A 10 B 3 C 5

D 15 答案:A 解析: 发生重大事项的,应当在个10工作日内向基金业协会报告。 6 基金管理人、基金托管人职责终止,在()个月内没有新基金管理人、新基金托管人承接,私募基金合同终止。 A 12 B 6 C 3 D 1 答案:B 解析: 基金管理人、基金托管人职责终止,在六个月内没有新基金管理人、新基金托管人承接,私募基金合同终止。 7 私募基金财产清算账册及文件的保存,说明私募基金财产清算账册及文件由私募基金管理人保存()年以上。 A 5 B 10 C 1 5 D 20 答案:B 解析: 私募基金财产清算账册及文件的保存,说明私募基金财产清算账册及文件由私募基金管理人保存10年以上。 8 根据《私募投资基金监督管理暂行办法》,资产不低于()万元的单位可认定为合格投资者。 A 5 000 B 3 000 C 1 000 D 2 000 答案:C 解析: 根据《私募投资基金监督管理暂行办法》,资产不低于1 000万元的单位认定合格投资者。 9 股权投资基金本身从()寻找可投资项目。 A 全球范围 B 北美范围 C 亚洲范围 D 欧洲范围 答案:A 解析: 股权投资基金本身从全球范围寻找可投资项目。 10 股权投资基金的主要参与者有()。 Ⅰ.被投资企业

基金从业资格考试试题及答案

1、以下( D)项不属于证券 A.提货单 B.运货单 C.保险单 D.发票 2、按证券发行主体的不同,有价证券可分为:(B ) A.政府证券、金融证券和公司证券 B.政府证券、政府机构证券和公司证券 C.政府证券、公司证券和企业证券 D.金融证券、公司证券和企业证券基金从业考试时间 3、银行证券不包括:(D ) A.银行汇票 B.银行本票 C.银行支票 D.银行股票 4、证券市场的特征不包括:(B ) A.证券市场是价值直接交换的场所 B.证券市场是信用直接交换的场所 C.证券市场是财产权利直接交换的场所 D.证券市场是风险直接交换的场所 5、证券市场的构成不包括:(C ) A.股票市场 B.债券市场 C.货币市场 D.基金市场 6、世界上第一家股票交易所成立于:( C) A.英国 B.法国 C.荷兰 D.意大利 7、股票代表着其持有者(即股东)对股份公司的所有权,这种所有权是一种综合权利,不包括如下权利:(C )基金从业考试真题 A.参加股东大会 B.投票表决 C.参与公司的决策和经营 D.收取股息或分享红利 8、优先股票的股息率( C)。 A.高于普通股 B.低于普通股 C.是固定的 D.与普通股呈正相关 9、股票的每股净资产又称为股票的(B )。 A.票面价值 B.账面价值 C.市场价值

D.内在价值 10、根据市场的功能划分,证券市场可分为( C) A.一级市场和初级市场 B.证券发行市场和初级市场 C.证券发行市场和证券交易市场 D.二级市场和次级市场 11、通过向投资者发行基金份额,能够在短期内募集大量的资金用于投资,表现了证券投资基金的 (A )特征。基金从业 A、集合投资 B、专业管理 C、风险共担 D、分散风险 12、证券投资基金在美国被称为(B ) A、证券投资信托基金 B、共同基金 C、信托产品 D、单位信托基金 13、1940年,美国制订世界上第一部系统规范的投资基金法(A )。 A、《投资公司法》 B、《投资基金法》 C、《证券投资基金法》 D、《投资信托法》 14、2003年10月,(C )颁布,并于2004年6月1日实施,推动基金业在更加规范的法制轨道上稳健发展 A、证券法 B、开放式证券投资基金试点办法 C、证券投资基金法 D、证券投资基金管理暂行办法 15、截至2008年6月底,我国共有(D )家基金管理公司 A、50 B、53 C、58 D、60 16、按照《基金法》规定,股票型基金的股票投资比重必须在( B)以上。 A、80% B、60% C、50% D、30% 17、股票交易价格在每一交易日内始终处于变动之中,但是开放式股票型基金净值的计算一般(C )进行一次。 A、每分钟 B、每小时 C、每天 D、每周 18、债券型基金的久期越长,净值对于利率变动的波动幅度越(D ),所承担的利率风险越( )。 A、小,低 B、小,高 C、大,低 D、大,高 19、混合型基金的风险一般( C)股票型基金,( )债券型基金。 A、高于,低于 B、高于,高于 C、低于,高于 D、低于,低于 20、股票型基金费用率较高,基金托管费率每年在( C)左右。 A、% B、1% C、% D、%基金从业资格考试 21、一般来说,一个厌恶风险的投资者应选择久期较( A)的债券型基金,而风险承受能力较高的投资者可以选择久期较( )的债券型基金。

基金从业资格考试真题整理下载

第1题:管理人内部控制度公司为( ),通过制定和实施一系列组织机制、管理方法、操作程序与控制措施而形成的系统。基金从业资格考试真题整理下载 Ⅰ.防范风险 Ⅱ.化解风险 Ⅲ.保护资产的安全与完整 Ⅳ.促进经营活动的有效展开 A、Ⅰ.Ⅱ.Ⅲ.Ⅳ B、Ⅱ.Ⅲ.Ⅳ C、Ⅰ.Ⅱ.Ⅲ D、Ⅰ.Ⅲ.Ⅳ 正确答案:A 管理人内部控制度公司为防范和化解风险,保护资产的安全与完整,促进经营活动的 有效展开,通过制定和实施一系列组织机制、管理方法、操作程序与控制措施而形成的系统。 第2题:股权投资基金管理人至少( )名高管人员应当取得基金从业资格。基金从业资格考试题库 A、一 B、五 C、三 D、两 正确答案:D 股权投资基金管理人至少两名高管人员应当取得基金从业资格。 第3题:基金管理人在公司型私募股权投资基金中存在形式为( ) A、股东身份或内部管理层的身份基金从业押题 B、公司董事身份或内部管理层的身份 C、公司董事身份或外部管理公司的身份 D、股东身份或外部管理公司的身份 正确答案:C 基金管理公司在公司型私募股权投资基金的身份为属于公司董事或外部管理公司身份。 第4题:基金销售支付机构从事公开募集基金销售支付业务的,应当按照( )的规定进行备案。 A、基金业协会 B、证券业协会 C、中国证监会 D、中国银监会 正确答案:C 基金销售支付机构从事公开募集基金销售支付业务的,应当按照中国证监会的规定进 行备案。基金从业资格证题 第5题:国内私募股权投资基金"公司+有限合伙"模式的优点包括( )。基金从业考试题型 Ⅰ.资产配置丰富 Ⅱ.通过投资决策委员会进行决策 Ⅲ.降低管理团队的个人风险 Ⅳ.避免双重征悦 A、Ⅰ.Ⅱ.Ⅳ B、Ⅲ.Ⅳ C、Ⅰ.Ⅱ.Ⅲ D、Ⅱ.Ⅲ 正确答案:D "公司+有限合伙"模式的优点:(1)降低管理团队的个人风险,公司制实行有限责任制, 一旦基金面临不良状况,作为有限责任的管理公司可以成为风险隔离墙;(2)基金由管理公司管理,有限合 伙人LP和普通合伙人GP一道遵循既定协议,通过投资决策委员会进行决策。 第6题:国有股权非上市转让的特殊要求是根据以下哪些法律法规制定( )。 Ⅰ.《公司法》基金从业考试题目 Ⅱ.《股份有限责任公司国有股权管理暂行办法》

小学英语近义词_反义词_同音词辨析和练习

小学英语近义词_反义词_同音词辨析和练习 一、小学英语同音词 B—bee—be no—know C—see—sea hi—high I—eye for—four R—are son—sun T—tea our—hour U—you pair—pear Y—why here—hear to—two—too there—their aunt father—farther who’s—whose by—bye—buy right—write aren’t— c-see(看见)-sea(海洋) b-be(是;成为)-bee(蜜蜂) y-why(为什么) for(为)-four hi(喂)-high(高) no(不)-know(知道) by(通过)-bye(再见) son(儿子)-sun(太阳) our(我们的)-hour(小时) right(对的)-write(写) meet(遇见)-meat(肉) hear(听见)-here(这儿) there(在那里)-their(他/她/它们的) dear(亲爱的)-deer(鹿)pear(梨)-pair(一双/副……) father(父亲)-farther(较远地) weight(重量)-wait(等待) it's(它是)-its(它的) who's(谁是)-whose(谁的) 二、小学英语近义词 toilet — WC listen —hear class —lesson everyone —everybody glass —cup large —big glad —happy like —love little —small photo —picture purse— wallet start —begin home—house learn—study beautiful—pretty usually —often look —see cycle —bike near —beside hi —hello quick —fast garden —park desk —table speak —say —talk river —lake go home — a moment ago— just now a lot of —lots of — many be good at —do well in of course —sure be from ——go for a walk take a bus —by bus would like —want look for— find 三、小学英语反义词 big(大的)----- small(小的)bad(坏的)----- good(好的) bright(明亮的)----- dark(黑暗的)black(黑的)----- white(白的) beautiful(美的)----- ugly(丑的)cold(冷的)----- hot(热的) cool(凉爽的)----- warm(温暖的)e(来)----- go(去) cry(哭)----- laugh(笑)clever(聪明的)----- stupid(笨的) different(不同的)----- same (相同的)difficult(难的)----- easy(容易的) dirty(脏的)----- clean(干净的)day(白天)----- night(夜晚) early(早的)----- late(迟的)fast(快的)----- slow(慢的) glad(高兴的)----- sad(悲伤的)inside(里面的)----- outside(外面的) in(里面)----- out(外面)large(大的)----- little(小的) left(左)----- right(右)quiet(安静的)----- noisy(吵闹的) new(新的)----- old(旧的)loose(松的)----- tight(紧的)

证券从业、基金从业考试后这13个问题,别告诉我你不知道!汇总

证券、基金考试后这13个问题,别告诉我你不知道! 7月份的证券和基金考试都已经结束,很多考生们咨询趣哥关于考后的问题,在这里,对大家问得比较多得问题汇总一下,有几条一定要注意! 基金考后关心的6大问题 1成绩合格标准基金从业资格考试实行百分制,60分为成绩合格分数线。基金从业资格考试成绩单科没通过的考生,继续报考未通过的科目即可。基金从业资格考试两科成绩都未通过的考生,两科都需要重新报考。 2成绩单打印要求登录中国基金业协会网站—“从业人员管理”—“考试平台”—“考试成绩查询”窗口查询打印成绩合格证。在打印成绩合格证时,请先在浏览器工具Internet选项中的高级选项中选中打印背景颜色和图像;并在页面设置中去掉页眉和页脚;打印纸选择A4;页边距为8。 3成绩有效期基金从业资格考试已通过科目一和科目二的,应当在四年内通过所 在机构向基金业协会申请注册基金从业资格;超过四年未通过所在机构向基金业协会申请注册基金从业资格的,需重新参加科目一和科目二考试,或补齐最近两年的后续培训学时后,通过所在机构向基金业协会申请注册基金从业资格。基金从业成绩四年有效期认定为从取得考试成绩合格证之日起开始计算。 4合格证≠资格证基金从业资格成绩合格证不是基金从业资格证书,合格证是单科成绩或两科成绩合格的证明。基金从业资格证书是从事基金行业的资格证书,基金从业资格考试成绩证书并不等同于从业资格证书。如果你顺利通过了基金从业资格考试,你的首要目标是登陆基金业协会网站自行打印基金从业资格考试成绩合格证。如果你要想申请到基金从业资格证书的话则还需要由基金从业人员所在机构统一打印资格证书,并取得所在机构加盖的公章。 5申请机构基金从业资格可申请机构包括基金管理人、商业银行(含在华外资法人银行、证券公司、期货公司、保险机构、证券投资咨询机构、独立基金销售机构以及中国证监会认定的其他机构。

基金从业资格考试历年真题及答案

基金从业资格考试历年真题及答案 一、单选题(本大题共60小题,每小题0.5分,共30分。以下各小题以给出 的4个选项中,只有一项最符合要求) 1、资源配置策略中的买入并持有策略对市场流动性的要求( )。 A.较高 B.适中 C.较低 D.极高 标准答案: b 2、证券投资基金诞生于( )。 A.美国 B.英国 C.德国 D.法国 标准答案: b 解析:证券投资基金是证券市场发展的必然产物,在发达国家已有百 年的历史。证券投资基金作为社会化的理财工具,起源于英国的投资信托公司。 3、开放式基金是通过投资者向( )申购或赎回实现流通的。 A.基金托管人 B.基金受托人 C.基金管理公司 D.证券交易市场 标准答案: c 解析:投资者投资于开放式基金时,他们可以随时向基金管理公司或销售 机构申购或赎回。 网址:https://www.wendangku.net/doc/d513008655.html,/

4、时间加权收益率反映了( )在不取出的情况下的收益率,其计算将不受分自影响。 A.分红再投资 B.1元投资 C.100元投资 D.基金份额净值投资 标准答案: b 解析:时间加权收益率反映了1元投资在不取出的情况下(分红再投资)的收益率,其计算将不受分红多少的影响,可以准确地反映基金经理的真实投资表现,现已成为衡量基金收 益率的标准方法。 5、在二级市场买卖ETF时,申报价格最小变动单位为( )。 A. 0.0001元 B.0.001元 C.0.1元 D.0.01元 标准答案: b 6、基金招募说明书的内容不包括以下( )方面。 A.风险警示内容 B.基金份额发售方式 C.基金合同摘要 D.基金持有人结构及前十名基金持有人 标准答案: d 解析:基金招募说明书应当包括下列内容:(1)基金募集申请的核准文件名称和核准日期;(2)基金管理人、基金托管人的基本情况;(3)基金合同和基金托管协议的内容摘要;(4) 网址:https://www.wendangku.net/doc/d513008655.html,/

近义词和反义词

A 爱慕—喜爱安然—安稳遨游—游览奥秘—神秘懊悔—后悔 B 报酬—酬劳悲哀—悲伤崩塌—倒塌必然—必定避免—幸免便宜—廉价哺育—培育 C 猜测—推测才干—才能采用—采纳诧异—惊诧颤动—抖动沉浸—沉醉 惩罚—惩处迟延—拖延耻笑—讥笑炽热—酷热憧憬—向往酬谢—答谢 啜泣—抽泣创造—制造绰号—外号慈悲—慈善慈祥—慈爱葱茏—葱郁 聪明—聪慧催促—督促璀璨—明亮 D 打扮—装扮打搅—打扰胆怯—害怕淡忘—忘却调皮—淘气叮嘱—嘱咐 陡崖—悬崖妒忌—嫉妒对付—应付对照—对比 E 恩赐—赏赐 F 发布—公布发誓—宣誓发展—进展繁殖—生殖反抗—抵抗防御—防备 妨碍—阻碍分量—重量分外—格外愤怒—愤慨锋利—锐利服侍—侍侯 浮现—出现赋予—给予 G 告别—告辞恭敬—尊敬估计—估量鼓励—鼓舞固然—当然故意—有意 关心—关怀管理—治理贯通—贯穿瑰宝—珍宝 H 含糊—模糊寒冷—严寒和蔼—和气宏伟—雄伟欢跃—喜悦环绕—围绕 荒芜—荒凉回顾—回忆汇集—汇合获取—猎取祸患—祸害 J 机灵—灵巧积累—积存即将—马上疾驰—飞奔寄托—寄予讥笑—嘲笑 坚固—牢固坚毅—坚强艰苦—艰难艰难—困难建造—建筑交织—

娇嫩—柔嫩节制—克制竭力—尽力解救—拯救谨防—防备谨慎—慎重 惊险—危险精密—周密精致—精巧敬仰—仰慕境界—境地居然—竟然 绝望—无望 K 开辟—开发开辟—开拓慷慨—大方可惜—惋惜空暇—空闲恐怖—恐惧 控制—操纵款待—招待愧疚—内疚 L 劳苦—劳累冷艳—艳丽黎明—拂晓立即—马上灵便—灵活领略—领会 浏览—扫瞄隆重—盛大沦陷—沦落罗列—排列 M 满意—中意漫步—闲逛茂密—茂盛朦胧—模糊弥漫—布满密切—紧密 勉励—鼓励勉强—牵强藐视—轻视泯灭—消灭明丽—明媚明艳—鲜艳 摹仿—模仿蓦地—突然模范—榜样 N 鸟瞰—俯视凝结—凝聚凝视—注视挪移—移动 O 偶尔—间或 P 判断—推断批评—批判疲惫—疲乏疲倦—疲乏僻静—偏僻漂亮—美丽 飘荡—漂浮飘拂—漂动品格—品行平生—终生平庸—平凡平整—平坦 普通—一般 Q 欺凌—凌辱奇妙—奇异歧视—卑视气魄—气势气势—气概启示—启发 清晰—清楚乾坤—天地潜伏—埋伏谴责—责备惬意—满意亲密—亲热 轻蔑—轻视轻盈—轻快清澈—清亮清纯—纯洁清晰—清楚驱赶

相关文档
相关文档 最新文档