文档库 最新最全的文档下载
当前位置:文档库 › 双级主减速器设计

双级主减速器设计

双级主减速器设计
双级主减速器设计

第1章绪论

1.1 概述

1.1.1 主减速器的概述

主减速器是汽车传动系中减小转速、增大扭矩的主要部件,它是依靠齿数少的锥齿轮带动齿数多的锥齿轮。对发动机纵置的汽车,其主减速器还利用锥齿轮传动以改变动力方向。由于汽车在各种道路上行使时,其驱动轮上要求必须具有一定的驱动力矩和转速,在动力向左右驱动轮分流的差速器之前设置一个主减速器后,便可使主减速器前面的传动部件如变速器、万向传动装置等所传递的扭矩减小,从而可使其尺寸及质量减小、操纵省力[1]。

对于载货汽车来说,要传递的转矩较乘用车和客车,以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,所以选择功率较大的发动机,这就对传动系统有较高的要求,而主减速器在传动系统中起着非常重要的作用。

随着目前国际上石油价格的上涨,汽车的经济性日益成为人们关心的话题,这不仅仅只对乘用车,对于重型载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝,因为重型载货汽车所采用的发动机都是大功率,大转矩的,装载质量在十吨以上的载货汽车的发动机,最大功率在140KW以上,最大转矩也在700N m以上,百公里油耗是一般都在34L左右。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。

因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的传动系便成了有效节油的措施之一。所以设计新型的主减速器已成为了新的课题。

1.1.2 主减速器设计的要求

驱动桥中主减速器的设计应满足如下基本要求:

1、所选择的主减速比应能保证汽车既有最佳的动力性和燃料经济性。

2、外型尺寸要小,保证有必要的离地间隙;齿轮其它传动件工作平稳,噪音小。

3、在各种转速和载荷下具有高的传动效率;与悬架导向机构与动协调。

4、在保证足够的强度、刚度条件下,应力求质量小,以改善汽车平顺性。

5、结构简单,加工工艺性好,制造容易,拆装、调整方便。

本设计主要研究双级主减速器的结构与工作原理,并对其主要零部件进行了强度

1-半轴2-圆锥滚子轴承3-支承螺栓4-主减速器从动锥齿轮5-油封

6-主减速器主动锥齿轮7-弹簧座8-垫圈9-轮毂10-调整螺母

图1.1 驱动桥

1.1.3主减速器型式及其现状

主减速器的结构形式,主要是根据其齿轮类型、主动齿轮和从动齿轮的安装

(1)主减速器齿轮的类型在现代汽车驱动桥中,主减速器采用得最广泛的是螺旋锥齿轮和双曲面齿轮。

螺旋锥齿轮如图1.2(a)所示主、从动齿轮轴线交于一点,交角都采用90度。螺旋锥齿轮的重合度大,啮合过程是由点到线,因此,螺旋锥齿轮能承受大的载荷,而且工作平稳,即使在高速运转时其噪声和振动也是很小的。

双曲面齿轮如图1.2(b)所示主、从动齿轮轴线不相交而呈空间交叉。和螺旋锥齿轮相比,双曲面齿轮的优点有:

①尺寸相同时,双曲面齿轮有更大的传动比。

②传动比一定时,如果主动齿轮尺寸相同,双曲面齿轮比螺旋锥齿轮有较大轴径,较高的轮齿强度以及较大的主动齿轮轴和轴承刚度。

图1.2 螺旋锥齿轮与双曲面齿轮

③当传动比一定,主动齿轮尺寸相同时,双曲面从动齿轮的直径较小,有较大的

离地间隙。

④工作过程中,双曲面齿轮副既存在沿齿高方向的侧向滑动,又有沿齿长方向的纵向滑动,这可以改善齿轮的磨合过程,使其具有更高的运转平稳性。

双曲面齿轮传动有如下缺点:

①长方向的纵向滑动使摩擦损失增加,降低了传动效率。

②齿面间有大的压力和摩擦功,使齿轮抗啮合能力降低。

③双曲面主动齿轮具有较大的轴向力,使其轴承负荷增大。

④双曲面齿轮必须采用可改善油膜强度和防刮伤添加剂的特种润滑油。

(2)主减速器主动锥齿轮的支承形式及安装方式的选择现在汽车主减速器主动锥齿轮的支承形式有如下两种:

①悬臂式悬臂式支承结构如图1.3所示,其特点是在锥齿轮大端一侧采用较长的轴径,其上安装两个圆锥滚子轴承。为了减小悬臂长度a和增加两端的距离b,以改善支承刚度,应使两轴承圆锥滚子向外。悬臂式支承结构简单,支承刚度较差,多用于传递转钜较小的轿车、轻型货车的单级主减速器及许多双级主减速器中。

图1.3锥齿轮悬臂式支承

②骑马式骑马式支承结构如图1.4所示,其特点是在锥齿轮的两端均有轴承支承,这样可大大增加支承刚度,又使轴承负荷减小,齿轮啮合条件改善,在需要传递较大转矩情况下,最好采用骑马式支承。

图1.4主动锥齿轮骑马式支承

(3)从动锥齿轮的支承方式和安装方式的选择从动锥齿轮的两端支承多采用圆

锥滚子轴承,安装时应使它们的圆锥滚子大端相向朝内,而小端相向朝外。为了防止从动锥齿轮在轴向载荷作用下的偏移,圆锥滚子轴承应用两端的调整螺母调整。主减速器从动锥齿轮采用无辐式结构并用细牙螺钉以精度较高的紧配固定在差速器壳的凸缘上[5]。

(4)主减速器的轴承预紧及齿轮啮合调整支承主减速器的圆锥滚子轴承需预紧以消除安装的原始间隙、磨合期间该间隙的增大及增强支承刚度。分析可知,当轴向力于弹簧变形呈线性关系时,预紧使轴向位移减小至原来的1/2。预紧力虽然可以增大支承刚度,改善齿轮的啮合和轴承工作条件,但当预紧力超过某一理想值时,轴承寿命会急剧下降。主减速器轴承的预紧值可取为以发动机最大转矩时换算所得轴向力的30%。

主动锥齿轮轴承预紧度的调整采用套筒与垫片,从动锥齿轮轴承预紧度的调整采用调整螺母。

(5)主减速器的减速形式主减速器的减速形式分为单级减速、双级减速(如图2.5)、单级贯通、双级贯通、主减速及轮边减速等。减速形式的选择与汽车的类型及使用条件有关,有时也与制造厂的产品系列及制造条件有关,但它主要取决于由动力性、经济性等整车性能所要求的主减速比i o的大小及驱动桥下的离地间隙、驱动桥的数目及布置形式等。通常单极减速器用于主减速比i o≤7.6的各种中小型汽车上。

1.1.4.差速器型式发展现状

根据汽车行驶运动学的要求和实际的车轮、道路以及它们之间的相互联系表明:汽车在行驶过程中左右车轮在同一时间内所滚过的行程往往是有差别的。例如,拐弯时外侧车轮行驶总要比内侧长。另外,即使汽车作直线行驶,也会由于左右车轮在同一时间内所滚过的路面垂向波形的不同,或由于左右车轮轮胎气压、轮胎负荷、胎面磨损程度的不同以及制造误差等因素引起左右车轮外径不同或滚动半径不相等而要求

(a) 单级主减速器 (b) 双级主减速器

图1.5主减速器

车轮行程不等。在左右车轮行程不等的情况下,如果采用一根整体的驱动车轮轴将动力传给左右车轮,则会由于左右车轮的转速虽然相等而行程却又不同的这一运动学上的矛盾,引起某一驱动车轮产生滑转或滑移。这不仅会是轮胎过早磨、无益地消耗功率和燃料及使驱动车轮轴超载等,还会因为不能按所要求的瞬时中心转向而使操纵性变坏。此外,由于车轮与路面间尤其在转弯时有大的滑转或滑移,易使汽车在转向时失去抗侧滑能力而使稳定性变坏。为了消除由于左右车轮在运动学上的不协调而产生的这些弊病,汽车左右驱动轮间都有差速器,后者保证了汽车驱动桥两侧车轮在行程不等时具有以下不同速度旋转的特性,从而满足了汽车行驶运动学的要求。

差速器的结构型式选择,应从所设计汽车的类型及其使用条件出发,以满足该型汽车在给定的使用条件下的使用性能要求。

差速器的结构型式有多种,大多数汽车都属于公路运输车辆,对于在公路上和市区行驶的汽车来说,由于路面较好,各驱动车轮与路面的附着系数变化很小,因此几乎都采用了结构简单、工作平稳、制造方便、用于公路汽车也很可靠的普通对称式圆锥行星齿轮差速器,作为安装在左、右驱动车轮间的所谓轮间差速器使用;对于经常行驶在泥泞、松软土路或无路地区的越野汽车来说,为了防止因某一侧驱动车轮滑转而陷车,则可采用防滑差速器。后者又分为强制锁止式和自然锁止式两类。自锁式差速器又有多种结构式的高摩擦式和自由轮式的以及变传动比式的。

1.2 主要涉及内容及方案

其主要的内容为有:1.主减速比的计算;2.主减速比的分配;3.一级齿轮传动机构的设计和校核;4.二级齿轮传动的设计和校核;5.轴承的选择和校核;6.轴的选择。为了达到增大离地间隙和柱减速器的功能要求,在这些内容中最重要的是如何合理的分配好主减速比。在这个过程中,只有反复的通过计算,不断调整一、二级的减速比。

主要方案:运用齿轮传动原理,先用圆锥齿轮改变其转矩的方向,并同时达到减速增扭的目的。让后再通过圆柱齿轮副最终达到我们自己所需要的速度和扭矩。

第2章 主减速器的结构设计与校核

2.1设计题目的主要参数

技术参数:

发动机最大功率 P emax kW/n p (r/min) 250/2700(3000) 发动机最大转矩 T emax N·m/n r (r/min) 1460/1600 装载质量 kg 31000 汽车总质量 kg 15100 最大车速 km/h 120 最小离地间隙 mm >180 轮胎(轮辋宽度-轮辋直径) 英寸 12.0-20

2.2主减速比的确定

主减速比对主减速器的结构型式、轮廓尺寸、质量大小以及当变速器处于最高档位时汽车的动力性和燃料经济性都有直接影响。0i 的选择应在汽车总体设计时和传动系的总传动比T i 一起由整车动力计算来确定。可利用在不同0i 下的功率平衡图来研究0i 对汽车动力性的影响。对发动机与传动系参数作最佳匹配的方法来选择0i 可使汽车获得最佳的动力性和燃料经济性[5]。

对于具有很大功率储备的轿车、长途公共汽车尤其是竞赛车来说,在给定发动机最大功率P max e 及其转速p n 的情况下,所选择的0i 值应能保证这些汽车有尽可能高的最高车速m ax a v 。这时0i 值应按下式来确定: gh

a p r i v n r i max 0377

.0 (2.2)

式中 r r ——车轮的滚动半径,r r =

2

r

d =0.6m ,单位m ; gh i ——变速器最高档传动比; m ax a v ——最高车速;

p n ——发动机最大功率时的转速。

对于其他汽车来说,为了得到足够的功率储备而最高车速稍有下降,0i 一般选得比上式求得的大10%~25%,即按下式选择:

0i =(0.377~0.472)LB

FH gh a p

r i i i v n r max (2.3)

式中 r r ——车轮的滚动半径,m ; gh i ——变速器最高档传动比;

FH i ——分动器和加力器的最高档传动比; LB i ——轮边减速器的传动比。

本设计中没有分动器和加力器,所以FH i =1;也没有轮边减速器,所以LB i =1。按以上两式求得的0i 值应该与同类汽车的相应值作比较,并考虑到主、从动主减速器齿轮可能有的齿数,将0i 值予以校正并最后确定下来。由式(2.2)得,取功率储备系数为0.472,即:

0i =0.472

LB

FH gh a p

r i i i v n r max (2.4)

把r r =0.6m 、p n =3000r/min 、m ax a v =120、FH i =1、LB i =1、gh i =0.9代入式(2.4)中,算的0i =7.8。并与同类汽车比较也传动比也相差不大,最终确定0i =7.8因为0i 大于了7.6,所以得采用双级主减速器。

2.3主减速器结构方案确定

1主减速器齿轮的类型 螺旋锥齿轮能承受大的载荷,而且工作平稳,即使在高速运转时其噪声和振动也是很小的。本次设计采用螺旋锥齿轮。 2主减速器主动锥齿轮的支承形式及安装方式的选择 本次设计选用: 主动锥齿轮:悬臂式支撑(圆锥滚子轴承) 从动锥齿轮:骑马式支撑(圆锥滚子轴承) 3从动锥齿轮的支承方式和安装方式的选择

从动锥齿轮的两端支承多采用圆锥滚子轴承,安装时应使它们的圆锥滚子大端相

向朝内,而小端相向朝外。为了防止从动锥齿轮在轴向载荷作用下的偏移,圆锥滚子轴承应用两端的调整螺母调整。主减速器从动锥齿轮采用无辐式结构并用细牙螺钉以精度较高的紧配固定在差速器壳的凸缘上[5]。

4主减速器的轴承预紧及齿轮啮合调整

支承主减速器的圆锥滚子轴承需预紧以消除安装的原始间隙、磨合期间该间隙的增大及增强支承刚度。分析可知,当轴向力于弹簧变形呈线性关系时,预紧使轴向位移减小至原来的1/2。预紧力虽然可以增大支承刚度,改善齿轮的啮合和轴承工作条件,但当预紧力超过某一理想值时,轴承寿命会急剧下降。主减速器轴承的预紧值可取为以发动机最大转矩时换算所得轴向力的30%。

主动锥齿轮轴承预紧度的调整采用波形套筒,从动锥齿轮轴承预紧度的调整采用调整螺母。

5主减速器的减速形式

主减速器的减速形式分为单级减速、双级减速、单级贯通、双级贯通、主减速及轮边减速等。减速形式的选择与汽车的类型及使用条件有关,有时也与制造厂的产品系列及制造条件有关,但它主要取决于由动力性、经济性等整车性能所要求的主减速比的大小及驱动桥下的离地间隙、驱动桥的数目及布置形式等。

本次设计采用双级减速,主要从传动比及它是载重量超过6t的重型货车和保证离地间隙上考虑。

2.4 差速器的选择

差速器的结构型式选择,应从所设计汽车的类型及其使用条件出发,以满足该型汽车在给定的使用条件下的使用性能要求。

差速器的结构型式有多种,大多数汽车都属于公路运输车辆,对于在公路上和市区行驶的汽车来说,由于路面较好,各驱动车轮与路面的附着系数变化很小,因此几乎都采用了结构简单、工作平稳、制造方便、用于公路汽车也很可靠的普通对称式圆锥行星齿轮差速器,作为安装在左、右驱动车轮间的所谓轮间差速器使用;对于经常行驶在泥泞、松软土路或无路地区的越野汽车来说,为了防止因某一侧驱动车轮滑转而陷车,则可采用防滑差速器。后者又分为强制锁止式和自然锁止式两类。自锁式差速器又有多种结构式的高摩擦式和自由轮式的以及变传动比式的。但对于本设计的车型来说只选用普通的对称式圆锥行星齿轮差速器即可。

本次设计选用:普通锥齿轮式差速器,因为它结构简单,工作平稳可靠,适用于本次设计的汽车驱动桥

2.5 主减速齿轮计算载荷的计算

通常是将发动机最大转矩配以传动系最低档传动比时和驱动车轮打滑时这两种情况下作用于主减速器从动齿轮上的转矩(?j je T T ,)的较小者,作为载货汽车计算中用以验算主减速器从动齿轮最大应力的计算载荷。即

T TL e je K i T T η???=0max /n=53496 (m N ?) (3.1)

LB

LB r

j i r G T ???=

η??2=96935(m N ?) (3.2)

式中:m ax e T ——发动机最大转矩1460m N ?;

TL i ——由发动机到所计算的主加速器从动齿轮之间的传动系最低档传动比;

TL i =0i 1i =7.8×5.2=40.56

m a x m a x 1m a x 0(c o s s i n )

r t g T

G f r i T i ααη?+?≥

根据同类型车型的变速器传动比选取1i =7.64 T η——上述传动部分的效率,取T η=0.9; 0K ——超载系数,取0K =1.0; n ——驱动桥数目1;

2G ——汽车满载时驱动桥给水平地面的最大负荷,N ;但后桥来说还应考虑到汽

车加速时负荷增大量,可初取:

2G =满G ×9.81×60%=182466n

LB LB i ,η——分别为由所计算的主减速器从动齿轮到驱动轮之间的传动效率和减

速比,分别取0.96和1;

由式(3.1),式(3.2)求得的计算载荷,是最大转矩而不是正常持续转矩,不能用它作为疲劳损坏依据。对于公路车辆来说,使用条件较非公路用车辆稳定,其正常持续转矩是根据所谓平均牵引力的值来确定的,即主加速器的平均计算转矩为

jm T =

)()(P H R LB LB r

T a f f f n

i r G G ++???+η=48579(m N ?) (3.3)

式中:a G ——汽车满载总重15100×9.81N=148131

T G ——所牵引的挂车满载总重,N, 仅用于牵引车取T G =0;

R f ——道路滚动阻力系数,货车通常取0.015~0.020,可初取R f =0.018; H f ——汽车正常使用时的平均爬坡能力系数。货车通常取0.05~0.09,可初取

H f =0.07;

P f ——汽车性能系数

])(195.016[1001

max

e T a P T G G

f +-=

(3.4) 当

max

)

(195.0e T a T G G +=48.39>16时,取P f =0

2.6 主减速器齿轮参数的选择

1齿数的选择 对于普通双级主减速器,由于第一级的减速比i 01比第二级的i 02小些(通常i 01/ i 02≈1.4~2.0),这时,第一级主动锥齿轮的齿数z 1可选的较大,约在9~15范围内。第二级圆柱齿轮传动的齿数和,可选在68±10的范围内。

2节圆直径地选择 根据从动锥齿轮的计算转矩(见式3.2,式3.3并取两者中较小的一个为计算依据)按经验公式选出:

322

j d T K d ?==229.5~288.7mm (3.5)

式中:2d K ——直径系数,取2d K =13~16;

j T ——计算转矩,m N ?,取?j T ,je T 中较小的,第一级所承受的转矩:

j T =

02

i T je =12158.10(m N ?)

计算得,2d =206.27~254mm ,初取2d =230mm 。

3齿轮端面模数的选择 2d 选定后,可按式22/z d m =算出从动齿轮大端模数,并用下式校核

3t m j m K T =?= 17.45

4齿面宽的选择 汽车主减速器螺旋锥齿轮齿面宽度推荐为:F=0.1552d =38.75mm ,可初取F 2=40mm 。

5螺旋锥齿轮螺旋方向 一般情况下主动齿轮为左旋,从动齿轮为右旋,以使二齿轮的轴向力有互相斥离的趋势。

6螺旋角的选择 螺旋角应足够大以使≥F m 1.25。因F m 愈大传动就愈平稳噪声就愈低。螺旋角过大时会引起轴向力亦过大,因此应有一个适当的范围。在一般机械制造用的标准制中,螺旋角推荐用35°。

2.7 主减速器螺旋锥齿轮的几何尺寸计算与强度计算

2.7.1 主减速器螺旋锥齿轮的几何尺寸计算

主减速器圆弧齿螺旋锥齿轮的几何尺寸计算 双重收缩齿的优点在于能提高小齿轮粗切工序。双重收缩齿的齿轮参数,其大、小齿轮根锥角的选定是考虑到用一把实用上最大的刀顶距的粗切刀,切出沿齿面宽方向正确的齿厚收缩来。当大齿轮直径大于刀盘半径时采用这种方法是最好的。

主减速器锥齿轮的几何尺寸计算见表2.1。

表2.1 主减速器锥齿轮的几何尺寸计算用表

序号 项 目 计 算 公 式

计 算 结 果 1 主动齿轮齿数 1z

11 2 从动齿轮齿数

2z

23 3 模数 m

10㎜

4 齿面宽 b

2b =40㎜

5 工作齿高 m H h g 1= =g h 17㎜

6 全齿高 m H h 2=

h =18.88㎜

7 法向压力角 α

α=22.5°

8 轴交角 ∑

∑=90°

9

节圆直径

d =m z

=1d 110㎜ 2d =230㎜

10 节锥角

=1γarctan 2

1

z z 2γ=90°-1γ

1γ=27.47°

2γ=62.53°

序号 项 目 计 算 公 式

计 算 结 果 11 节锥距 A 0=

11sin 2γd =2

2

sin 2γd

A 0=140.91㎜ 12 周节 t=3.1416

m

t=31.416㎜

13

齿顶高

21a g a h h h -=

m k h a a =2

1a h =11.347mm

2a h =5.66mm 14 齿根高 f h =a h h -

1f h =7.533mm

2f h =13.22mm

15 径向间隙 c=g h h -

c=1.88㎜

16

齿根角

arctan A h f

f =θ

1f θ=3.06°

2f θ=5.36°

17 面锥角

211f a θγγ+=;122f a θγγ+=

1a γ=32.83°

2a γ=65.59° 18

根锥角

1f γ=11f θγ-

2f γ=22f θγ-

1f γ=24.41°

2f γ=57.17°

19

齿顶圆直径

1111cos 2γa a h d d +=

2a d =221cos 2γa h d + 1a d =150.14㎜

2a d =255.22㎜

20 节锥顶点止齿轮外缘距离

112

1sin 2γa k h d A -= 21

2d A k =22sin γa h - 1k A =119.766㎜ 2k A =59.978㎜ 21

理论弧齿厚

21s t s -=

m S s k =2

1s =27.38mm 2s =10.32mm

22 齿侧间隙 B=0.305~0.406

0.356mm

23

螺旋角

β

β=35°

2.7.2 主减速器螺旋锥齿轮的强度计算

在完成主减速器齿轮的几何计算之后,应对其强度进行计算,以保证其有足够的强度和寿命以及安全可靠性地工作。在进行强度计算之前应首先了解齿轮的破坏形式

及其影响因素。

螺旋锥齿轮的强度计算:

(1)主减速器螺旋锥齿轮的强度计算 ①单位齿长上的圆周力

F

P

p =

(3.6) 式中:p ——单位齿长上的圆周力,N/mm;

P ——作用在齿轮上的圆周力,N ,按发动机最大转矩m ax e T 和最大附着力矩

两种载荷工况进行计算;

按发动机最大转矩计算时:

F d i T p g e ???=2

101

3

max =1019N/mm (3.7)

按最大附着力矩计算时:

F d r

G p r ????=2

102

32?=771/N mm (3.8)

虽然附着力矩产生的p 很大,但由于发动机最大转矩的限制p 最大只有1019 N/mm 可知,校核成功。

②轮齿的弯曲强度计算。汽车主减速器螺旋锥齿轮轮齿的计算弯曲应力

)/(2mm N w σ为

J

m z F K K K K T v m

S j w ?????????=

2

03102σ (3.9)

式中:0K ——超载系数1.0; s K ——尺寸系数s K =4

4

.25m

=0.792121; m K ——载荷分配系数1.1~1.25;

v K ——质量系数,对于汽车驱动桥齿轮,档齿轮接触良好、节及径向跳

动精度高时,取1;

J ——计算弯曲应力用的综合系数,见图3.1,210.3,0.35J J ==。

图3.1 弯曲计算用综合系数J

je T 作用下: 从动齿轮上的应力2w σ=455.37MPa<700MPa ;

jm T 作用下: 从动齿轮上的应力'

2w σ=125.36MPa<210.9MPa ;

当计算主动齿轮时,j T /Z 与从动相当,而12J J <,故1w σ<2w σ,'1w σ<'2w σ

综上所述,故所计算的齿轮满足弯曲强度的要求。

汽车主减速器齿轮的损坏形式主要时疲劳损坏,而疲劳寿命主要与日常行驶转矩即平均计算转矩jm T 有关,jm je T T 或只能用来检验最大应力,不能作为疲劳寿命的计算依据。

(2)轮齿的接触强度计算 螺旋锥齿轮齿面的计算接触应力j σ(MPa)为: J

F K K K K K T d C v f m s j p j ????????=

3

011

102σ (3.10)

p C ——材料的弹性系数,对于钢制齿轮副取232.6mm N /2

1

; 注:0K =1, s K =1, m K =1.11, s K =1

f K ——表面质量系数,对于制造精确的齿轮可取1;

J —— 计算应力的综合系数,2J =0.1875,见图3.2所示; jm σ=666.7MPa

je σ=2373.45MPa

图3.2 接触强度计算综合系数J

2.8 第二级齿轮模数的确定

2.8.1、材料的选择和应力的确定

齿轮所采用的钢为20CrMnTi 渗碳淬火处理,齿面硬度为56~62HRC ,

a HLim MP 1500=σ,a FE MP 850=σ[9]。由于齿轮在汽车倒档时工作的时间很少,并且一档时的转矩比倒档时的转矩大,所有我们可以认为齿轮只是单向工作。斜齿圆柱齿轮的螺旋角β可选择在16°~20°这里取β=16°,法向压力角α=?20。

由1

2

02z z i =

=2.00,21z z +=6810±=58~78 取21z z +=68得1z =18,2z =36,修正传动比

0236

2.0018i =

=,其二级从动齿轮所受的转矩

212158.103.0036474.30T N m =?=。

取1,25.1==H F S S [查李仲生主编的《机械设计》书表11-5];取8.189

,5.2==E H Z Z [查李仲生主编的《机械设计》书表11-4]得: a F

FE

F F MP S 25

.1850

][][21=

=

=σσσ=680a MP

a a H

H L i m H H MP MP S 15001

1500

][][21==

=

=σσσ

2、齿轮的弯曲强度设计计算

][2F Sa Fa n

F Y Y bdm KT

σσ≤=

=680a MP (2.21) 式中:K ——载荷系数,齿轮按8级精度制造取3.1=K ; T ——所计算齿轮受的转矩; b ——齿宽;

d ——计算齿轮的分度圆直径; n m ——模数;

Fa Y ——齿型系数,由当量齿数β31cos z z v =

=

16

cos 17

3=19,β32cos z z v =

=5616

cos 51

3=

及可得1Fa Y =2.96;35.22=Fa Y [查李仲生主编的《机械设计》书图11-8];

Sa Y ——应力修正系数,可得1Sa Y =1.55,70.12=Sa Y [由v z 查李仲生主编的《机械设计》书图11-9]。

00675.068055.196..2][111=?=F Sa Fa Y Y σ﹥00588.0680

70

.135.2][222=?=F Sa Fa Y Y σ 故应对小齿轮进行弯曲强度计算: 法向模数 3

211

12

11c o s ]

[2βσφF Sa Fa d n Y Y Z KT m ?≥ 式中:d φ——齿宽系数,d φ=0.8,[查李仲生主编的《机械设计》书(表11.6)]。

把已知数代入上式得:

32111211cos ][2βσφF Sa Fa d n Y Y Z KT m ?≥=322

3

16cos 68055.196.217

8.01090.89434.12 ??????=1.1 由李仲生主编的《机械设计》书表4-1取1n m =mm [10]。

2.9双级主减速器的圆柱齿轮基本参数的选择

表2.2正常齿标准斜齿圆柱齿轮传动的几何尺寸计算

名称

代号

计算公式

齿顶高 a h

a h =1an n h m *=,其中1=an h

顶隙

c

c =

0.25n n c m *=,其中

25.0=n c

齿根高 f h

f h =a h +c =1.25 3.5n m =

齿高 h

h =a h +f h =2.25 4.5n m =

分度圆直径

d

d =

72cos n m z

β

= 顶圆直径 a d a d =d +a h 2=d +279n m = 根圆直径

f d

f d =d -f h 2=d -2.570n m =

中心距

a

a

122d d +=()

121302cos n m z z β

+=

2.10 主减速器齿轮的材料及热处理

汽车驱动桥主减速器的工作相当繁重,与传动系其他齿轮比较,它具有载荷大、工作时间长、载荷变化多、带冲击等特点。其损坏形式主要有齿根弯曲折断、齿面疲劳点蚀(剥落)、磨损和擦伤等。据此对驱动桥齿轮的材料及热处理应有以下要求:

1具有高的弯曲疲劳强度和接触疲劳强度以及较好的齿面耐磨性,故齿表面应有高的硬度;

2轮齿芯部应有适当的韧性以适应冲击载荷,避免在冲击载荷下轮齿根部折断; 3钢材的锻造、切削与热处理等加工性能良好,热处理变形小或变形规律性易控制,以提高产品质量、减少制造成本并降低废品率;

4选择齿轮材料的合金元素时要适应我国的情况。例如:为了节约镍、铬等我国发展了以锰、钒、硼、钛、钼、硅为主的合金结构钢系统。

汽车主减速器和差速器圆锥齿轮与双曲面齿轮目前均用渗碳合金钢制造。常用的钢号CrMnMo CrMnTi 22,20,MnVB CrNiMo 20,20,及TiB Mn 220,在本设计中采用了

20。

CrMnTi

用渗碳合金钢制造齿轮,经渗碳、淬火、回火后,齿轮表面硬度可高达HRC58~64,,而芯部硬度较低,当m≤8时为HRC32~45。

对于渗碳深度有如下的规定:当端面模数m≤5时,为0.9~1.3mm。

由于新齿轮润滑不良,为了防止齿轮在运行初期产生胶合、咬死或擦伤,防止早期磨损,圆锥齿轮与双曲面齿轮副草热处理及精加工后均予以厚度为0.005~0.010~0.020mm的磷化处理或镀铜、镀锡。这种表面镀层不应用于补偿零件的公差尺寸,也不能代替润滑。

对齿面进行喷丸处理有可能提高寿命达25%。对于滑动速度高的齿轮,为了提高其耐磨性进行渗硫处理。渗硫处理时温度低,故不会引起齿轮变形。渗硫后摩擦系数可显著降低,故即使润滑条件较差,也会防止齿轮咬死、胶合和擦伤等现象产生。

2.11 主减速器的润滑

主加速器及差速器的齿轮、轴承以及其他摩擦表面均需润滑,其中尤其应注意主减速器主动锥齿轮的前轴承的润滑,因为其润滑不能靠润滑油的飞溅来实现。为此,通常是在从动齿轮的前端近主动齿轮处的主减速壳的内壁上设一专门的集油槽,将飞溅到壳体内壁上的部分润滑油收集起来再经过近油孔引至前轴承圆锥滚子的小端处,由于圆锥滚子在旋转时的泵油作用,使润滑油由圆锥滚子的下端通向大端,并经前轴承前端的回油孔流回驱动桥壳中间的油盆中,使润滑油得到循环。这样不但可使轴承得到良好的润滑、散热和清洗,而且可以保护前端的油封不被损坏。为了保证有足够的润滑油流进差速器,有的采用专门的倒油匙。

为了防止因温度升高而使主减速器壳和桥壳内部压力增高所引起的漏油,应在主减速器壳上或桥壳上装置通气塞,后者应避开油溅所及之处。

加油孔应设置在加油方便之处,油孔位置也决定了油面位置。放油孔应设在桥壳最低处,但也应考虑到汽车在通过障碍时放油塞不易被撞掉。

2.12 本章小结

本章根据所给参数确定了主减速器的参数,对主减速器齿轮计算载荷的计算、齿轮参数的选择,螺旋锥齿轮的几何尺寸计算与强度计算并对主减速器齿轮的材料及热处理,轴承的预紧,主减速器的润滑等做了必要的交待。选择了机械设计、机械制造的标准参数。

第3章差速器设计

3.1差速器的作用

根据汽车行驶运动学的要求和实际的车轮、道路的特征,为了消除由于左右车轮在运动学上的不协调而产生的弊病,汽车左右驱动轮间都有差速器,保证了汽车驱动桥两侧车轮在行程不等时具有以下不同速度旋转的特性,从而满足了汽车行驶运动学的要求。

差速器作用:分配两输出轴转矩,保证两输出轴有可能以不同角速度转动。本次设计选用的普通锥齿轮式差速器结构简单,工作平稳可靠,适用于本次设计的汽车驱动桥。

3.2 对称式圆锥行星齿轮差速器

由于本车为中型载货汽车,则普通的对称式圆锥行星齿轮差速器(如图4.1)由差速器左

图3.1 普通的对称式圆锥行星齿轮差速器

壳为整体式,2个半轴齿轮,4个行星齿轮,行星齿轮轴,半轴齿轮以及行星齿轮垫片等组成。由于其结构简单、工作平稳、制造方便、用在公路汽车上也很可靠等优点,所以本设计采用采用该结构。

由于差速器壳是装在主减速器从动齿轮上,故在确定主减速器从动齿轮尺寸时,应考虑差速器的安装。差速器的轮廓尺寸也受到从动齿及主动齿轮导向轴承支座的限制。普通圆锥齿轮差速器的工作原理图,如图4.2所示:

二级斜齿圆柱齿轮减速器设计说明书DOC

目录 一课程设计书 2 二设计要求2三设计步骤2 1. 传动装置总体设计方案 3 2. 电动机的选择 4 3. 确定传动装置的总传动比和分配传动比 5 4. 计算传动装置的运动和动力参数 5 5. 设计V带和带轮 6 6. 齿轮的设计 8 7. 滚动轴承和传动轴的设计 19 8. 键联接设计 26 9. 箱体结构的设计 27 10.润滑密封设计 30 11.联轴器设计 30 四设计小结31 五参考资料32

一. 课程设计书 设计课题: 设计一用于带式运输机上的两级展开式圆柱齿轮减速器.运输机连续单向运转,载荷变化不大,空载起动,卷筒效率为0.96(包括其支承轴承效率的损失),减速器小批量生产,使用期限8年(300天/年),两班制工作,运输容许速度误差为5%,车间有三相交流,电压380/220V 表一: 二. 设计要求 1.减速器装配图一张(A1)。 2.CAD绘制轴、齿轮零件图各一张(A3)。 3.设计说明书一份。 三. 设计步骤 1. 传动装置总体设计方案 2. 电动机的选择 3. 确定传动装置的总传动比和分配传动比 4. 计算传动装置的运动和动力参数 5. 设计V带和带轮 6. 齿轮的设计 7. 滚动轴承和传动轴的设计 8. 键联接设计 9. 箱体结构设计 10. 润滑密封设计 11. 联轴器设计

1.传动装置总体设计方案: 1. 组成:传动装置由电机、减速器、工作机组成。 2. 特点:齿轮相对于轴承不对称分布,故沿轴向载荷分布不均匀, 初步确定传动系统总体方案如:传动装置总体设计图所示。 选择V 带传动和二级圆柱斜齿轮减速器(展开式)。 传动装置的总效率a η 5423321ηηηηηη=a =0.96×3 98.0×295.0×0.97×0.96=0.759; 1η为V 带的效率,1η为第一对轴承的效率, 3η为第二对轴承的效率,4η为第三对轴承的效率, 5η为每对齿轮啮合传动的效率(齿轮为7级精度,油脂润滑. 因是薄壁防护罩,采用开式效率计算)。

汽车主减速器设计

主减速器设计 3.2 主减速器设计 3.2.1 主减速器的结构型式 主减速器的结构型式,主要是根据其齿轮类型、主动齿轮和从动齿轮的安置方法以及减速型式的不同而异。 (1)主减速器齿轮的类型 在现代汽车驱动桥上,主减速器采用得最广泛的是螺旋锥齿轮和双曲面齿轮。在双级主减速器中,通常还要加一对圆柱齿轮(多采用斜齿圆柱齿轮),或一组行星齿轮。在轮边减速器中则常采用普通平行轴式布置的斜齿圆柱齿轮传动或行星齿轮传动。在某些公共汽车、无轨电车和超重型汽车的主减速器上,有时也采用蜗轮传动。 (2)主减速器主动锥齿轮的支承型式及安置方法 在壳体结构及轴承型式已定的情况下,主减速器主动齿轮的支承型式及安置方法,对其支承刚度影响很大,这是齿轮能否正确啮合并具有较高使用寿命的重要因素之一。 现在汽车主减速器主动锥齿轮的支承型式有以下两种: 悬臂式 齿轮以其轮齿大端一侧的轴颈悬臂式地支承于一对轴承上。为了增强支承刚度,应使两轴承支承中心间的距离齿轮齿面宽中点的悬臂长度大两倍以上,同时比齿轮节圆直径的70%还大,并使齿轮轴径大于等于悬臂长。当采用一对圆锥滚子轴承支承时,为了减小悬臂长度和增大支承间的距离,应使两轴承圆锥滚子的小端相向朝内,而大端朝外,以缩短跨距,从而增强支承刚度。 (3)主减速器从动锥齿轮的支承型式及安置方法 主减速器从动锥齿轮的支承刚度依轴承的型式、支承间的距离和载荷在支承之间的分布而定。为了增加支承刚度,支承间的距离应尽可能缩小。两端支承多采用圆锥滚子轴承,安装时应使他们的圆锥滚子的大端相向朝内,小端相背朝外。为了防止从动齿轮在轴向载荷作用下的偏移,圆锥滚子轴承也应预紧。 轿车和轻型载货汽车主减速从动锥齿轮采用无辐式结构并用细牙螺钉以精度较高的紧配合固定在差建界壳的突缘上。这种方法对增强刚性效果较好,中型和重型汽车主减速从动锥齿轮多采用有幅式结构并有螺栓或铆钉与差速器壳突缘连结。 (4)主减速器的轴承预紧及齿轮啮合调整 支承主减速器齿轮的圆锥滚子轴承需预紧以消除安装的原始间隙、磨合期间该间隙的增大及增强支承刚度。预紧力的大小与安装形式、载荷大小、轴承刚度特性及使用转速有关。 主动锥齿轮轴承预紧度的调整,可通过精选两轴承内圈间的套筒长度、调整垫圈厚度、轴承与轴肩之间的调整垫片等方法进行。近年来采用波形套筒调整轴承预紧度极为方便,波形套筒安装在两轴承内圈间或轴承与轴肩间。 (5)主减速器的减速型式 主减速器的减速型式分为单级减速、双级减速、双速减速、单级贯通、双级贯通、主减速及轮边减速等。 单级主减速器 由于单级主减速器具有结构简单、质量小、尺寸紧凑及制造成本低廉的优点,广

一级减速器设计说明书

机械设计课程设计说明书设计题目:一级直齿圆柱齿轮减速器班级学号: 学生姓名: 指导老师: 完成日期:

设计题目:一级直齿圆柱齿轮减速器 一、传动方案简图 二、已知条件: 1、有关原始数据: 运输带的有效拉力:F= KN 运输带速度:V=S 鼓轮直径:D=310mm 2、工作情况:使用期限8年,2班制(每年按300天计算),单向运转,转速误差不得超过±5%,载荷平稳; 3、工作环境:灰尘; 4、制造条件及生产批量:小批量生产; 5、动力来源:电力,三相交流,电压380/220V。 三、设计任务: 1、传动方案的分析和拟定 2、设计计算内容 1) 运动参数的计算,电动机的选择; 3) 带传动的设计计算; 2) 齿轮传动的设计计算; 4) 轴的设计与强度计算; 5) 滚动轴承的选择与校核; 6) 键的选择与强度校核; 7) 联轴器的选择。 3、设计绘图: 1)减速器装配图一张; 2)减速器零件图二张;

目录 一、传动方案的拟定及说明.......................................... 二、电机的选择 .................................................................... 1、电动机类型和结构型式....................................................... 2、电动机容量................................................................. P.......................................................... 3、电动机额定功率 m 4、电动机的转速 ............................................................... 5、计算传动装置的总传动....................................................... 三、计算传动装置的运动和动力参数.................................. 1.各轴转速................................................................... 2.各轴输入功率为(kW) ........................................................ 3.各轴输入转矩(N m) ........................................................ 四、传动件的设计计算.............................................. 1、设计带传动的主要参数....................................................... 2、齿轮传动设计............................................................... 五、轴的设计计算.................................................. 1、高速轴的设计............................................................... 2、低速轴的设计............................................................... 六、轴的疲劳强度校核.............................................. 1、高速轴的校核............................................................... 2、低速轴的校核............................................................... 七、轴承的选择及计算.............................................. 1、高速轴轴承的选择及计算..................................................... 2、低速轴的轴承选取及计算..................................................... 八、键连接的选择及校核............................................ 1、高速轴的键连接............................................................. 2、低速轴键的选取............................................................. 九、联轴器的选择.................................................. 十、铸件减速器机体结构尺寸计算表及附件的选择...................... 1、铸件减速器机体结构尺寸计算表............................................... 2、减速器附件的选择 (22) 十一、润滑与密封.................................................. 1、润滑....................................................................... 2、密封.......................................................................

二级减速器设计说明书

二级减速器设计 学院:继续教育学院 专业班级: 学号: 学生姓名: 指导教师: 2016 年10月

摘要 减速器具有传递效率较高,传动性能平稳,零件结构紧凑的良好特点,因此被广泛的应用于各种各样的机械设备上面,最为突出的就是在重载传动方面的贡献最为巨大。进入21世纪人们对于减速的各个方面提出了更多的要求,尤其是在重载,寿命,速度,噪音等方面。 减速器是国家的生产的和核心关键与用于许多的方面,尤其是在机械的传动方面,在这个行业的减速器有轮减速器、行星齿轮减速器及蜗杆减速器,而且还包括了一些传动装置,如有增速装置的减速器、有调速装置的减速器、还有柔性传动装置的减速器在内的复合的传动装置等。产品的运用的方面在冶金方面、有色金属方面、煤炭方面、建筑建材方面、船利船舶方面、水利水电方面、电力电工方面、工程机械及石化方面等行业。 我国的减速器发展已经发展了将近50年了,在我国的各行各业都有所涉及,在我国的军工的方面也是比较多运用,食品安全方面、电力方面、建筑建材方面、冶金方面、水泥建筑方面、环保节能方面、电子电工方面、筑路修路方面、水利水电方面、化工放米娜、矿山方面、输送运输方面、橡胶树脂方面、石油石化方面等对于减速器的要求需求还是比较大的。 本文的研究对象是最基础也是最为广泛的二级减速器,主要针对的有带传动和齿轮的传动设计和计算,轴、键等相关零件的最优选择,以便达到各个零件之间的相互配合,使整个减速装置达到最优的效果。 【关键词】:二级减速器、带传动、齿轮传动、轴、键

目录 摘要 (1) 目录 (2) 第一章引言 (7) 1.1减速器的介绍 (7) 1.2减速器的世界发展趋势 (7) 1.3国内的减速器 (7) 1.4国外的减速器 (8) 第二章电动机的选择 (8) 2.1电动机类型的选择 (9) 2.2电动机功率的选择 (9) 2.3确定电动机的转速 (11) 第三章计算总传动比及分配各级的传动比 (13) 3.1总传动比 (13) 3.2分配各级传动比 (13) 第四章计算传动装置的传动和动力参数 (14) 4.1电动机轴的计算 (14) 4.2Ⅰ轴的计算(减速器高速轴) (14)

减速器设计说明书

目录 一、设计任务书 (1) 初始数据 (1) 设计步骤 (2) 二、传动装置总体设计方案 (2) # 传动方案特点 (2) 计算传动装置总效率 (3) 三、电动机的选择 (3) 电动机的选择 (3) 确定传动装置的总传动比和分配传动比 (4) 四、计算传动装置的运动和动力参数 (5) 五、V带的设计 (5) 六、齿轮传动的设计 (8) : 高速级齿轮传动的设计计算 (8) 低速级齿轮传动的设计计算 (12) 七、传动轴和传动轴承及联轴器的设计 (15) 高速轴的设计 (15) 中速轴的设计 (20) 低速轴的设计 (26) 八、键联接的选择及校核计算 (31) 高速轴键选择与校核 (31) ~ 低速轴键选择与校核 (31) 九、轴承的选择及校核计算 (31) 高速轴的轴承计算与校核 (31) 中速轴的轴承计算与校核 (32) 低速轴的轴承计算与校核 (33) 十、联轴器的选择 (33)

十一、减速器的润滑和密封 (34) 减速器的润滑 (34) | 减速器的密封 (35) 十二、减速器附件及箱体主要结构尺寸 (35) 附件的设计 (35) 箱体主要结构尺寸 (37) 设计小结 (38) 参考文献 (38) … 一、设计任务书 初始数据 设计带式运输机的传动装置,连续单向运转,工作中有轻微震动,空载启动,运输带允许误差为5%。工作年限:8年,每天工作班制:1班制,每年工作天数:300天,每天工作小时数:8小时。三相交流电源,电压380/220V。 装置总体设计方案 2、电动机的选择 3、计算传动装置的运动和动力参数 4、V带的设计 5、齿轮传动的设计 | 6、传动轴和传动轴承及联轴器的设计 7、键联接的选择及校核计算 8、轴承的选择及校核计算

主减速器设计

第三节 主减速器设计 一、主减速器结构方案分析 主减速器的结构形式主要是根据齿轮类型、减速形式的不同而不同。 主减速器的齿轮主要有螺旋锥齿轮、双曲面齿轮、圆柱齿轮和蜗轮蜗杆等形式。 1.螺旋锥齿轮传动 螺旋锥齿轮传动(图5-3a)的主、从动齿轮轴线垂直相交于一点,齿轮并不同时在全长上啮合,而是逐渐从一端连续平稳地转向另一端。另外,由于轮齿端面重叠的影响,至少有两对以上的轮齿同时啮合,所以它工作平稳、能承受较大的负荷、制造也简单。但是在工作中噪声大,对啮合精度很敏感,齿轮副锥顶稍有不吻合便会使工作条件急剧变坏,并伴随磨损增大和噪声增大。为保证齿轮副的正确啮合,必须将支承轴承预紧,提高支承刚度,增大壳体刚度。 图5—3 主减速器齿轮传动形式 a)螺旋锥齿轮传动 b)双曲面齿轮传动 c)圆柱齿轮传动 d)蜗杆传动 2.双曲面齿轮传动 双曲面齿轮传动(图5-3b)的主、从动齿轮的轴线相互垂直 而不相交,主动齿轮轴线相对从动齿轮轴线在空间偏移一距离 E ,此距离称为偏移距。由于偏移距E 的存在,使主动齿轮螺 旋角1β大于从动齿轮螺旋角2β(图5—4)。根据啮合面上法向 力相等,可求出主、从动齿轮圆周力之比 2121cos cos ββ=F F (5-1) 图5-4双曲面齿轮副受力情况 式中,F 1、F 2分别为主、从动齿轮的圆周力;β1、β2分别为主、从动齿轮的螺旋角。 螺旋角是指在锥齿轮节锥表面展开图上的齿线任意一点A 的切线TT 与该点和节锥顶 点连线之间的夹角。在齿面宽中点处的螺旋角称为中点螺旋角(图5—4)。通常不特殊说 明,则螺旋角系指中点螺旋角。 双曲面齿轮传动比为 1 12211220cos cos ββr r r F r F i s == (5-2)

一级圆柱齿轮减速器装配图(最好有尺寸标注)和设计说明书

仅供参考一、传动方案拟定第二组第三个数据:设计带式输送机传动装置中的一级圆柱齿轮减速器(1)工作条件:使用年限10年,每年按300天计算,两班制工作,载荷平稳。(2)原始数据:滚筒圆周力F=1.7KN;带速V=1.4m/s;滚筒直径D=220mm。运动简图二、电动机的选择1、电动机类型和结构型式的选择:按已知的工作要求和条件,选用Y系列三相异步电动机。2、确定电动机的功率:(1)传动装置的总效率:η总=η带×η2轴承×η齿轮×η联轴器×η滚筒=0.96×0.992×0.97×0.99×0.95 =0.86 (2)电机所需的工作功率:Pd=FV/1000η总=1700×1.4/1000×0.86 =2.76KW 3、确定电动机转速:滚筒轴的工作转速:Nw=60×1000V/πD =60×1000×1.4/π×220 =121.5r/min 根据【2】表2.2中推荐的合理传动比范围,取V带传动比Iv=2~4,单级圆柱齿轮传动比范围Ic=3~5,则合理总传动比i的范围为i=6~20,故电动机转速的可选范围为nd=i×nw=(6~20)×121.5=729~2430r/min 符合这一范围的同步转速有960 r/min 和1420r/min。由【2】表8.1查出有三种适用的电动机型号、如下表方案电动机型号额定功率电动机转速(r/min)传动装置的传动比KW 同转满转总传动比带齿轮 1 Y132s-6 3 1000 960 7.9 3 2.63 2 Y100l2-4 3 1500 1420 11.68 3 3.89 综合考虑电动机和传动装置尺寸、重量、价格和带传动、减速器的传动比,比较两种方案可知:方案1因电动机转速低,传动装置尺寸较大,价格较高。方案2适中。故选择电动机型号Y100l2-4。 4、确定电动机型号根据以上选用的电动机类型,所需的额定功率及同步转速,选定电动机型号为Y100l2-4。其主要性能:额定功率:3KW,满载转速1420r/min,额定转矩2.2。 三、计算总传动比及分配各级的传动比1、总传动比:i总=n电动/n筒=1420/121.5=11.68 2、分配各级传动比(1)取i带=3 (2)∵i总=i齿×i 带π∴i 齿=i总/i带=11.68/3=3.89 四、运动参数及动力参数计算1、计算各轴转速(r/min)nI=nm/i带=1420/3=473.33(r/min) nII=nI/i齿=473.33/3.89=121.67(r/min) 滚筒nw=nII=473.33/3.89=121.67(r/min) 2、计算各轴的功率(KW)PI=Pd×η带=2.76×0.96=2.64KW PII=PI×η轴承×η齿轮=2.64×0.99×0.97=2.53KW 3、计算各轴转矩Td=9.55Pd/nm=9550×2.76/1420=18.56N?m TI=9.55p2入/n1

(学号为的参考)展开式二级圆柱齿轮减速器课程设计说明书

机械设计课程设计 题目题号:展开式二级圆柱齿轮减速器学院: 专业班级: 学生姓名: 学号: 指导教师: 成绩: 2013 年12 月29 日

目录 一课程设计任务书 (3) 二设计要求 (3) 三设计步骤 (4) 1.传动装置总体设计方案 (5) 2.电动机的选择 (5) 3.确定传动装置的总传动比和分配传动比 (7) 4.传动装置的运动和动力参数计算 (7) 5.设计V带和带轮 (9) 6.齿轮的设计 (12) 7.轴的设计计算 (22) 8.滚动轴承的选择及寿命计算 (28) 9.键联接的选择及校核计算 (30) 10.联轴器的选择 (31) 11.减速器箱体及附件 (32) 12.润滑密封设计 (36) .四设计小结 (38) .五参考资料 (39)

机械设计课程设计成绩评阅表 2、每项得分=分值×等级系数(等级系数:A为1.0,B为0.8,C为0.6,D为0.4) 3、总体评价栏填写“优”、“良”、“中”、“及格”、“不及格”

一课程设计任务书 展开式二级圆柱齿轮减速器的设计 1.设计题目 开式 (3)使用期限 工作期限为十年,检修期间隔为三年。 (4)生产批量及加工条件 小批量生产。 2.设计任务 1)选择电动机型号; 2)确定带传动的主要参数及尺寸;

3)设计减速器; 4)选择联轴器。 3.具体作业 1)减速器装配图一张; 2)零件工作图二张(大齿轮,输出轴); 3)设计说明书一份。 4.数据表 (1)单班制工作,空载启动,单向、连续运转,工作中有轻微振动。运输带速度允许速度误差为±5%。 (2)使用期限 工作期限为十年,检修期间隔为三年。 (3)生产批量及加工条件

汽车主减速器设计

主减速器设计 3、2 主减速器设计 3、2、1 主减速器的结构型式 主减速器的结构型式,主要就是根据其齿轮类型、主动齿轮与从动齿轮的安置方法以及减速型式的不同而异。 (1)主减速器齿轮的类型 在现代汽车驱动桥上,主减速器采用得最广泛的就是螺旋锥齿轮与双曲面齿轮。在双级主减速器中,通常还要加一对圆柱齿轮(多采用斜齿圆柱齿轮),或一组行星齿轮。在轮边减速器中则常采用普通平行轴式布置的斜齿圆柱齿轮传动或行星齿轮传动。在某些公共汽车、无轨电车与超重型汽车的主减速器上,有时也采用蜗轮传动。 (2)主减速器主动锥齿轮的支承型式及安置方法 在壳体结构及轴承型式已定的情况下,主减速器主动齿轮的支承型式及安置方法,对其支承刚度影响很大,这就是齿轮能否正确啮合并具有较高使用寿命的重要因素之一。 现在汽车主减速器主动锥齿轮的支承型式有以下两种: 悬臂式 齿轮以其轮齿大端一侧的轴颈悬臂式地支承于一对轴承上。为了增强支承刚度,应使两轴承支承中心间的距离齿轮齿面宽中点的悬臂长度大两倍以上,同时比齿轮节圆直径的70%还大,并使齿轮轴径大于等于悬臂长。当采用一对圆锥滚子轴承支承时,为了减小悬臂长度与增大支承间的距离,应使两轴承圆锥滚子的小端相向朝内,而大端朝外,以缩短跨距,从而增强支承刚度。

(3)主减速器从动锥齿轮的支承型式及安置方法 主减速器从动锥齿轮的支承刚度依轴承的型式、支承间的距离与载荷在支承之间的分布而定。为了增加支承刚度,支承间的距离应尽可能缩小。两端支承多采用圆锥滚子轴承,安装时应使她们的圆锥滚子的大端相向朝内,小端相背朝外。为了防止从动齿轮在轴向载荷作用下的偏移,圆锥滚子轴承也应预紧。 轿车与轻型载货汽车主减速从动锥齿轮采用无辐式结构并用细牙螺钉以精度较高的紧配合固定在差建界壳的突缘上。这种方法对增强刚性效果较好,中型与重型汽车主减速从动锥齿轮多采用有幅式结构并有螺栓或铆钉与差速器壳突缘连结。 (4)主减速器的轴承预紧及齿轮啮合调整 支承主减速器齿轮的圆锥滚子轴承需预紧以消除安装的原始间隙、磨合期间该间隙的增大及增强支承刚度。预紧力的大小与安装形式、载荷大小、轴承刚度特性及使用转速有关。 主动锥齿轮轴承预紧度的调整,可通过精选两轴承内圈间的套筒长度、调整垫圈厚度、轴承与轴肩之间的调整垫片等方法进行。近年来采用波形套筒调整轴承预紧度极为方便,波形套筒安装在两轴承内圈间或轴承与轴肩间。 (5)主减速器的减速型式 主减速器的减速型式分为单级减速、双级减速、双速减速、单级贯通、双级贯通、主减速及轮边减速等。 单级主减速器 由于单级主减速器具有结构简单、质量小、尺寸紧凑及制造成本低廉的优点,广泛用在主减速比i0<7、6的各种中、小型汽车上。单级主减速器都就是采用一对

一级减速器设计使用说明

一级减速器设计说明书 课题:一级直齿圆柱齿轮减速器设计 学院:机电工程 班级:2015机电一体化(机械制造一班)姓名:陈伟 学号:1558020120104 指导老师:童念慈

目录 一、设计任务书———————————————————— —— 二、电动机的选择———————————————————— — 三、传动装置运动和动力参数计算————————————— — 四、V带的设计————————————————————— — 五、齿轮传动设计与校核————————————————— — 六、轴的设计与校核——————————————————— — 七、滚动轴承选择与校核计算——————————————— — 八、键连接选择与校核计算———————————————— — 九、联轴器选择与校核计算———————————————— — 十、润滑方式与密封件类型选择——————————————

— 十一、设计小结————————————————————— 十二、参考资料————————————————————— 一、设计任务说明书

1、减速器装配图1张; 2、主要零件工作图2张; 3、设计计算说明书 原始数据:(p10表1-4)1-A输送带的工作拉力;F=2000 输送带工作速度:V=1.3m/s 滚筒直径:D=180 工作条件:连续单向运载,载荷平稳,空载起动,使用期限15年,每年300个工作日,每日工作16小时,两班制工作,运输带速度允许误差为5% 传动简图:

二、电动机的选择 工作现场有三相交流电源,因无特殊要求,一般选用三相交流异步电动机。 最常用的电动机为Y 系列鼠笼式三相异步交流电动机,其效率高,工作可靠,结构简单,维护方便,价格低,适用于不易燃、不易爆,无腐蚀性气体和无特殊要求的场合。本装置的工作场合属一般情况,无特殊要求。故采用此系列电动机。 1.电动机功率选择 1选择电动机所需的功率: 工作机所需输出功率Pw=1000 FV 故Pw= 1000 8 .12000?= 3.60 kw 工作机实际需要的电动机输入功率Pd=η w p 其中54321ηηηηηη= 查表得:1η为联轴器的效率为0.98 2η 为直齿齿轮的传动效率为0.97 3η 为V 带轮的传动效率为0.96 54.ηη 为滚动轴承的效率为0.99 故输入功率Pd= 98 .099.099.096.097.098.0 3.60 ?????=4.09KW

西华大学 二级减速器课程设计说明书

课程设计说明书 课程名称:机械设计课程设计课程代码: 题目:二级斜齿圆柱齿轮减速器学生姓名:张伟荣 学号: 3120130316205 年级/专业/班: 13级机电2班 学院(直属系) :机械工程学院 指导教师:杜强

机械设计课程设计任务书 学院名称:机械工程学院专业:机械电子工程年级:2013级 学生姓名: 张伟荣学号: 3120130106205 指导教师: 杜强 一、设计题目带式运输机的减速传动装置设计 二、主要内容 ⑴决定传动装置的总体设计方案; ⑵选择电动机,计算传动装置的运动和动力参数; ⑶传动零件以及轴的设计计算;轴承、联接件、润滑密封和联轴器的选择及校验计算; ⑷机体结构及其附件的设计; ⑸绘制装配图及零件图;编写计算说明书并进行设计答辩。 三、具体要求 ⑴原始数据:运输带线速度v = 1.76 (m/s) 运输带牵引力F = 2700 (N) 驱动滚筒直径D = 470 (mm) ⑵工作条件: ①使用期5年,双班制工作,单向传动; ②载荷有轻微振动; ③运送煤、盐、砂、矿石等松散物品。 四、完成后应上交的材料 ⑴机械设计课程设计计算说明书; ⑵减速器装配图一张; ⑶轴类零件图一张; ⑷齿轮零件图一张。

五、推荐参考资料 ⑴西华大学机械工程与自动化学院机械基础教学部编.机械设计课程设计指导 书,2006 ⑵秦小屿.机械设计基础(第二版).成都:西南交大出版社,2012 指导教师杜强签名日期 2015 年 6 月 25日 系主任审核日期 2015 年 6 月 25 日

目录 一.传动方案的拟定……………………………………………………………………… 二.电动机的选择及传动装置的运动和动力参数计算………………………………… 三.传动零件的设计计算…………………………………………………………… 四.轴的结构设计及强度计算…………………………………………………………… 五.滚动轴承的选择与寿命计算…………………………………………………………… 六.键的强度计算…………………………………………………………… 七.联轴器的选择…………………………………………………………… 八.减速器机体结构设计及附件设计……………………………………………………………总结………………………………………………………………………………………… 参考文献……………………………………………………………………………………

货车主减速器结构设计

工程技术大学 课程设计 题目:中型货车主减速器结构设计 班级:汽车 学号: 姓名: 指导教师: 完成日期: 2011.12.25

一、设计题目 中型货车主减速器结构设计 二、设计参数 驱动形式:4*2后驱最高车速:98km/h 轴距: 4700mm 最大爬坡度:30% 轮距: 1900mm/1900mm 汽车长宽高: 7000mm/2000mm/2300mm 整备质量:3650kg 变速器传动比:5.06 4.016 3.09 1.71 1 4.8 额定载质量:4830kg 轮胎型号: 8.25-16 前后轴负荷: 1900kg/1750kg 3060kg/5420kg 离地间隙:300mm 前后悬架长度:1100mm/1200mm 三、设计要求 (1)总装图1张(2)零件图2张(3)课程设计说明书(5000~8000字)1份 四、进度安排(参考) (1)熟悉相关资料和参考图2天(2)确定基本参数和主要结构尺寸2天(3)设计计算3天(4)绘制总装配草图4天(5)绘制总装配图2天(6)绘制零件图2天(7)编写说明书3天(8)准备及答辩3天 五、指导教师评 成绩: 指导教师 日期

摘要 主减速器是汽车驱动桥的重要组成部分,本设计通过对国内外汽车主减速器结构和特点的分析和根据给定数据的计算,从发动机的最大功率和最大转矩入手,估算主减速器的传动比并选定减速器的类型。设计主减速器齿轮,校核其强度并选定减速器主动锥齿轮、差速器半轴齿轮和行星齿轮等。通过理论的计算和对主减速器实际工作情况的分析,设计了能够满足中型货车使用要求的单级主减速器。 关键词:主减速器;锥齿轮;减速装置;差速器;驱动桥

机械设计基础课程设计一级减速器设计说明书

机械设计基础课 程设计说明书设计题目:机械设计基础课程设计 学院: 专业: 学号: 学生姓名: 指导教师: 完成日期: 机械设计课程计算内容 一、传动方案拟定 (3) 二、电动机的选择 (4) 三、确定传动装置总传动比及分配各级的传动比 (5) 四、传动装置的运动和动力设计 (5) 五、普通V带的设计 (6) 六、齿轮传动的设计 (7) 七、轴的设计 (9) 八、滚动轴承的选择 (13) 九、键连接的选择与校核 (14) 十、轴连接器选择 (15) 十一、减速器箱体和附件的选择 (15)

十二、润滑与密封 (16) 十三、设计小结 (16) 十四、参考书目 (17) 设计课题:机械设计基础课程设计设计一个带式输送机传动装置,已知带式输送机驱动卷筒的驱动功率,输送机在常温下连续单向工作,载荷平稳,环境有轻度粉尘,结构无特殊限制,工作现场有三相交流电源。 原始数据: 传送带卷筒转速n (r/min)= 78r/min w (kw)=3.2kw 减速器输出功率p w 使用年限Y(年)=6年 设计任务要求: 1,主要部件的总装配图纸一张 2,A1,典型零件的总做图纸2张 3,设计说明书一份(20页左右)。 计算过程及计算说明: 一,传动方案拟定。 设计单级圆柱齿轮减速器和一级带传动。 1,使用年限6年,工作为双班工作制,载荷平稳,环境有轻度粉尘。 (r/min)=78 r/min 2、原始数据:传送带卷筒转速n w 减速器输出功率p (kw)=3.2kw w 使用年限Y(年)=6年 方案拟定:1

采用V带传动与齿轮传动的组合,即可满足传动比要求,同时由于带传动具有良好的缓冲,吸振性能,适应大起动转矩工况要求,结构简单,成本低,使用维护方便。 1.电动机 2.V 带传动 3.圆柱齿轮减速器 4.连轴器 5.滚筒 二、运动参数和动力参数计算 (1)电动机的选择 1、电动机类型和结构的选择:选择Y 系列三相异步电动机,此系列电动机属于一般用途的全封闭自扇冷电动机,其结构简单,工作可靠,价格低廉,维护方便,适用于不易燃,不易爆,无腐蚀性气体和无特殊要求的机械。 2. 、电动机容量选择: 电动机所需工作功率为: 式(1):Pd =PW/ηa () 由电动机至运输带的传动总效率为: η总 =η1×η22×η3 式中:η1、η2、η3、η4分别为带传动、轴承、齿轮传动。 η1=0.96 η2=0.99 η3=0.987η η总=0.91 所以:电机所需的工作功率: Pd =PW/ηa =3.2/0.91=3.52 kw 3.额定功率p ed =5.5 . 查表 二十章 20-1 4. 根据手册P7表1推荐的传动比合理范围,取圆柱齿轮传动一级减速器传动比范围I’=3~6。

双级展开式斜齿圆柱齿轮减速器设计说明书

武汉工程大学机械设计课程设计设计计算说明书 题目: 双级展开式斜齿圆柱齿轮减速器 院系: 机电工程学院 班级:机电3班 姓名: 学号:

指导教师: 目录 一、设计任务书 (2) 二、传动方案的分析与拟定 (2) 三、电动机的选择与计算 (3) 四、传动比的分配 (4) 五、传动装置的运动及动力参数的选择和计算 (5) 六、传动零件的设计计算和轴系零部件的初步选择 (6) 七、联轴器的选择及计算 (17) 八、键连接的选择及计算 (18) 九、轴的强度校核计算 (19) 十、润滑和密封 (22) 十一、箱体及附件的结构设计和选择 (23) 十二、设计小结 (24) 十三、参考资料 (25)

计算与说明主要结果 一设计任务书 设计带式传输机传动装置中的双级圆柱齿轮减速器。 设计数据及工作条件: 1、带式输送机的原始参数 鼓轮直径D(mm) 450 输送带速度v(m/s) 0.90 输出转矩T(N·m) 400 2、工作条件与技术要求 (1)工作环境:一般条件,通风良好; (2)载荷特性:连续工作,近乎平稳,正向运转; (3)使用期限:8年,每日两班制工作; (4)卷筒效率:96.0= η; (5)运输带允许误差:±5% ; (6)生产规模:成批生产. 设计注意事项:T=400N·m; V=0.90m/s; D=450mm

1.设计由减速器装配图1张,零件图2张(包括低速轴和低速轴上大齿轮),以及设计计算说明书一份组成; 2.设计中所有标准均按我国标准采用,设计说明书应按规定纸张及格式编写; 3.设计图纸及设计说明书必须按进度完成,经指导教师审查认可后,才能给予评分或答辩。 二 传动方案的分析与拟定 根据已知条件计算出工作机滚筒的转速为 min /22.38min /450 14.390 .0100060100060r r D v w =???=??= πη 为防止过载以及过载而引起的安全事故,可拟定传动方案为:外部V 带传动+内部双级圆柱齿轮传动。 机构整体布置如图所示: min /22.38r w =η

汽车主减速器设计说明书

摘要 汽车主减速器是汽车传动中的最重要的部件之一.它能够将万向传动装置产来的发动机转矩传给驱动车轮,以实现降速增扭。 本次设计的是有关十米高一级客车后桥主减速器设计总成。并要使其具有通过性。本次设计的内容包括有:方案选择,结构的优化与改进。齿轮与齿轮轴的设计与校核,以及轴承的选用与校核.并且在设计过程中,描述了主减速器的组成和差速器的差速原理和差速过程。 方案确定主要依据原始设计参数,对比同类型的减速器及差速器,确定此轮的传动比,并对其中重要的齿轮进行齿面接触和齿轮弯曲疲劳强度的校核。而对轴的设计过程中着重齿轮的布置,并对其受最大载荷的危险截面进行强度校核,轴承的选用力求结构简单且满足要求。 主减速器及差速器对提高汽车行驶平稳性和其通过性有着独特的作用,是汽车设计的重点之一。 关键词:主减速器;差速器;转速;行星齿轮;传动比

Abstract Automobil reduction final drive is one of the best impossible parts in automobile gearing。It can chang speed and driving tuist within a big scope . The problem of this design is ten meters passager car reduction final unit ,it’ s properly in common use 。The design of scheme,the better design and improvement of structure ,the design and calibration of gear and gear shiftes , and the select of bearings ,and also the design explain the construction of differential action 。 The ting of the scheme desierment main deside。The drive ratio of gear ,according to orginal design parameter and constrasting the same type reduction final drive ang differential assay . It realize planet gear in the design of structure . It put to use alteration better gears transmission in the design of gear ,and compare the root contact tired strength of some important gears and the face twirl tired strength . It eraphaize pay attention to the place of gears。Compare the strength of the biggest load dangraes section。It require structure simple and accord with demand in select of bearings 。 Key words :Reduction final ,Differential ,Rotational speed ,Plantet gear , Drive ratio

一级减速器设计说明书(1)-一级减速器设计

机械设计课程设 计说明书 设计题目:一级直齿圆柱齿轮减速器班级学号: 学生姓名: 指导老师: 完成日期:

设计题目:一级直齿圆柱齿轮减速器 一、传动方案简图 二、已知条件: 1、有关原始数据: 运输带的有效拉力:F=1.47 KN 运输带速度:V=1.55m/S 鼓轮直径: D=310mm 2、工作情况:使用期限 8 年, 2 班制(每年按 300 天计算),单向运转,转速误差不得超过± 5%,载荷平稳; 3、工作环境:灰尘; 4、制造条件及生产批量:小批量生产; 5、动力来源:电力,三相交流,电压380/ 220V 。 三、设计任务: 1、传动方案的分析和拟定 2、设计计算内容 1)运动参数的计算,电动机的选择;3)带传动的设计计算; 2)齿轮传动的设计计算;4)轴的设计与强度计算; 5)滚动轴承的选择与校核;6)键的选择与强度校核; 7)联轴器的选择。 3、设计绘图: 1)减速器装配图一张; 2)减速器零件图二张;

目录 一、传动方案的拟定及说明...................................................................................................................................................错误!未定义书签。 二、电机的选择.................................................................................................................................................................................错误!未定义书签。 1、电动机类型和结构型式 ........................................................................................................................................错误!未定义书签。 2、电动机容量......................................................................................................................................................................错误!未定义书签。 3、电动机额定功率P m...........................................................................................................................................错误!未定义书签。 4、电动机的转速 ................................................................................................................................................................错误!未定义书签。 5、计算传动装置的总传动 ........................................................................................................................................错误!未定义书签。 三、计算传动装置的运动和动力参数...........................................................................................................................错误!未定义书签。 1.各轴转速............................................................................................................................................................................错误!未定义书签。 2.各轴输入功率为( kW ) ........................................................................................................................................错误!未定义书签。 3.各轴输入转矩(N m).......................................................................................................................................错误!未定义书签。 四、传动件的设计计算...............................................................................................................................................................错误!未定义书签。 1、设计带传动的主要参数 ........................................................................................................................................错误!未定义书签。 2、齿轮传动设计 ................................................................................................................................................................错误!未定义书签。 五、轴的设计计算...........................................................................................................................................................................错误!未定义书签。 1、高速轴的设计 ................................................................................................................................................................错误!未定义书签。 2、低速轴的设计 (12) 六、轴的疲劳强度校核 (13) 1、高速轴的校核 (13) 2、低速轴的校核 (13) 七、轴承的选择及计算 (17) 1、高速轴轴承的选择及计算 (17) 2、低速轴的轴承选取及计算 (18) 八、键连接的选择及校核 (19) 1、高速轴的键连接 (19) 2、低速轴键的选取 (19) 九、联轴器的选择 (20) 十、铸件减速器机体结构尺寸计算表及附件的选择 (20) 1、铸件减速器机体结构尺寸计算表 (20) 2、减速器附件的选择 (22) 十一、润滑与密封 (21) 1、润滑 (21) 2、密封 (21) 十二、参考文献 (24)

相关文档