文档库 最新最全的文档下载
当前位置:文档库 › 玉米赤霉烯酮等几种毒素的细胞毒性对上皮细胞系的影响

玉米赤霉烯酮等几种毒素的细胞毒性对上皮细胞系的影响

玉米赤霉烯酮等几种毒素的细胞毒性对上皮细胞系的影响
玉米赤霉烯酮等几种毒素的细胞毒性对上皮细胞系的影响

Comparison of in vitro cytotoxicity of Fusarium mycotoxins, deoxynivalenol,T-2toxin and zearalenone on selected human epithelial cell lines

T.W.Calvert,K.E.Aidoo,A.G.G.Candlish& A.R.Mohd Fuat

School of Biological and Biomedical Sciences,Glasgow Caledonian University,Glasgow,G40BA,UK Received1October2004;accepted in revised form6January2005

Abstract

Three human epithelial cell lines(CaCo-2,HEp-2and HeLa)implicated as potential targets for three Fusarium toxins were tested for the extent of survival on exposure to increasing toxin concentration and incubation periods.Cytotoxicity assay using3(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide (MTT)was carried out with deoxynivalenol(DON),T-2toxins and zearalenone(ZON)on CaCo-2,HEp-2 and HeLa cell lines.Of the three cell lines used,HeLa was the most sensitive,eliciting cell death after2days exposure at100ng ml)1with T-2toxin.HeLa was the only cell line to exhibit cytotoxicity towards ZON showing cell death at1000ng ml)1after2days which increased to4days,showing substantial cell death at 200ng ml)1.HEp-2was sensitive to DON showing cell death after2days(100ng ml)1)with complete cell death occurring at200ng ml)1after4days of exposure.Substantial cytoxicity of T-2towards HEp-2 occurred after2days at1000ng ml)1and complete cell death occurred with100ng ml)1at day4.The CaCo-2cell line was generally resistant to the mycotoxins tested between100and1000ng ml)1.This study shows that cytotoxicity of Fusarium toxins to epithelium cell lines is concentration-and time-dependant and results from ZON–HeLa interaction indicate possible cell type-mycotoxin speci?city.

Key words:cytotoxicity,deoxynivalenol,Fusarium,human cell lines,T-2toxin,zearalenone

Introduction

Fusarium spp.may be found on cereals grown under temperate climate,and produce a number of mycotoxins of the class of trichothecenes and other toxins such as zearalenone(ZON)and fumonisin.The trichothecenes and zearalenone are predominantly produced by members of the Fusarium https://www.wendangku.net/doc/da13017142.html,ly F.graminearum, F.sporotrichiodes and F.equiseti.Other species that may be found on harvested or stored grains include F.culmorum, F.verticillioides, F.tricinctum,F.poae,and F.sambucinum[1,2]. The trichothecenes are a group of tricyclic sesquiterpenes,consisting of a shared12, 13-epoxy-trichothec-9-ene ring system.The diver-sity of these particular mycotoxins are derived by an initial cyclisation of the head to tail linkage of three isoprene units,farnesyl pyrophosphate to trichodiene,followed by a numerous species spe-ci?c oxygenations,isomerisations,cyclisations and esteri?cations,which give rise to both type A and B trichothecenes.The type A trichothecenes are T-2toxin and HT2-toxin and they are produced by F.sporotrichioides, F.poae, F.acuminatum, F.equiseti and F.sambucinum,and the type B trichothecenes are deoxynivalenol(DON),3-acetyl DON,15-acetyl DON,nivalenol(NIV)and 4-acetyl NIV(fusarenone X),produced by three closely related F.graminearum, F.cerealis and F.culmorum[2].

Toxicological e?ects of some Fusarium myco-toxins has been documented and because of the large diversity of trichothecene structure,each has its unique mode of action and acuteness of toxicity towards mammalian cell lines and organs.In

Mycopathologia(2005)159:413–419óSpringer2005 DOI:10.1007/s11046-005-0254-4

general,trichothecenes are potent inhibitors of protein synthesis and their mode of action is via inhibition of peptidyl transferase which cause apoptosis and can give rise to immunomodulatory e?ects[3–5].Deoxynivalenol,when exposed to human lymphocytes,has been shown to increase production of interleukin(IL)2at 100–400ng ml)1concentrations[5].Berek et al.

[6]also demonstrated immunosuppressive e?ects of DON,T-2,ZON and3-Acetyl-dexoynivalenol (3-AcDON)on blood mononuclear cells,and concluded that T-2toxin completely suppressed interleukin production from at5ng ml)1and that T-2and DON exhibited total inhibition of cellular proliferation.Other reports have shown that tri-chothecenes may also a?ect cellular membrane integrity and induce metabolic disturbances in animals[7,8]

Zearalenone is a non-steroidal eco-oestrogen known for its ability to kill seedlings and inhibit grain germination by a?ecting ion transport in plasma membranes[9],and has been reported as a non-host-speci?c phytotoxin[10].E?ects on animals include hyperoestrogenism[11],reduced milk production[12]and sterility[13].It has been suggested that14mg ZON kg)1is su?cient to cause infertility[14].In-vitro studies have revealed some information on ZON toxicity towards animal reproductive cells.Zearalenone exposure has been shown to cause testicular germ cell apoptosis in rat male germ cells[15]and inhibition of oocyte maturation accompanied by abnormalities in chromatin structure[16].It was noted that an increase in17b-estradiol was also observed on exposure to ZON with possible implications in hyperoestrogenism and feminisations in domestic animals[16].There is very little information on the cytotoxic e?ects of zearalenone on human cell lines.

The aim of this study was to compare the cytotoxic e?ects of T-2toxin,DON and ZON by MTT assay on selected human epithelial cell lines, which represent possible points of exposure,either directly through inhalation or ingestion. Materials and methods

Chemicals

The mycotoxins,deoxynivalenol(DON),T-2 toxin and zearalenone(ZON)(all purchased from Sigma,Poole,UK)were reconstituted in methanol(Fisher Chemicals,Leicestershire, UK).Dimethyl sulfoxide(DMSO)and3(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide(MTT)(Sigma,Poole,UK)were used for cytotoxic assay and sterile phosphate bu?er saline(PBS)(Cambrex Bio Science,Wokingham UK)for dilution of mycotoxins,representing concentrations of100–1000ng ml)1.

Cell culture

CaCo-2(gut epithelium),HeLa(cervical epithe-lium)and HEp-2(HeLa-derived larynx epithelium) were purchased from European Collection of Cell Cultures(ECCC,Salisbury,UK).The cell cultures were grown and maintained in minimal essential medium(MEM)containing2mM L-glutamine (Cambrex Bio Science,Wokingham UK)and supplemented with100IU ml)1penicillin/ 100l g ml)1streptomycin,10%(v/v)foetal bovine serum and1%(v/v)non-essential amino acid (Gibco,Paisley,UK).When cell lines exhibited80–90%con?uence,3–4ml of trypsin/EDTA(0.05%/ 0.02%,v/v)solution(Gibco,Paisley UK)was added for cellular detachment and washed twice in sterile PBS to ensure trypsin/EDTA removal and seeded into fresh,pre-warmed(37°C)complete media.

Cell line preparation

Once cell lines exhibited80%–90%con?uence as determined by microscopy,detachment was per-formed as previously described,washed twice in PBS,and cell suspension was adjusted to7.0–9.0·105cell ml)1.Nine hundred microlitres of each cell line was pipetted into a24-well plate,and 100l l of each mycotoxin in sterile PBS represent-ing concentrations of100–1000ng ml)1was added followed by a gentle agitation on a rotary shaker (Heidolph Rotamax120,Heidolph Instruments GmBH,Schwabach,Germany)for5min.Imme-diately after agitation,150l l of each sample (N?3)was placed in a well in a sterile96-well microtitre plate(TPP,Trasadingen,Switzerland), and sealed with a sterile breathable sealing mem-brane(Nalge NUNC Hereford,UK)to prevent sample evaporation.The samples were then incu-bated at37°C in a CO2incubator(5%CO2)(DH Auto?ow CO2Air-jacket Incubator,Triple Red,

414

Laboratory Technology,Oxfordshire,UK)for2 and4days.

MTT assay

The assay is based on the respiratory activity of the mitochondrial succinate-tetrazolium reductase system,which converts the yellow tetrazolium salt to a blue formazan dye[17].The amount of for-mazan product produced by the dehydrogenase enzymes was directly proportional to the amount of living cells in culture.After2and4days incubation, 50l l of MTT in PBS(0.4mg ml)1)was added to each well and incubated again at37°C in a CO2 incubator for4h.The supernatant was aspirated and150l l of DMSO was added to dissolve any intracellular formazan crystals and agitated for 15min on a rotary shaker.An ELISA reader (Dynex MRII,Worthing,UK)set at a wavelength of570nm was used to determine survival ability of cell lines through MTT cleavage.The mean optical density(OD)reading was used to calculate the percentage cell death/survival and standard error for each dilution of each test sample.The percentage cell death/survival was calculated using the formula:

%cell survival?

mean OD treated cells

mean OD negative control cells

?100

The percentage cell death was calculated as100)% cell survival.

Statistical analysis

Experiments were carried out in triplicate and average results are expressed with standard error mean(S.E.M).The S.E.M.was calculated on Prizm GraphPad Software v. 3.0(GraphPad Prizm,Graph Pad Software,San Diego,USA). Results and discussion

Gut epithelial cell line,CaCo-2,was found to be resistant to all mycotoxins tested,showing little variation in optical density readings between0and 500ng ml)1.When CaCo-2was exposed to 500ng ml)1of DON,ZON and T-2toxins for 2days,the percentage cell deaths were0.0,<2.0 and0.0respectively.Due to the resistant nature of CaCo-2cell line to the toxins,exposure to4days was not carried out.

Table1shows mean optical density at570nm as a measure of cell death at di?erent concentrations of DON,ZON and T-2toxin on HeLa and HEp-2 cell lines incubated for2and4days.With DON, the cell death on HeLa cell line was over80%at 1000ng ml)1for2days and at300ng ml)1for 4days.However on HEp-2cell line,over70%cell death was achieved with300ng ml)1at day2and over80%at100ng ml)1at day4.Cytotoxic e?ect of T-2toxin on HeLa cell lines was about90%at 100–1000ng ml)1at day2,and therefore the e?ect on day4was also not determined.With HEp-2cell lines,over70%cell death was obtained with 400ng ml)1at day2and over90%with 100ng ml)1at day4.With ZON,cell death on HeLa was less than40%at1000ng ml)1of the toxin in2days but over80%cell death was obtained at concentration of400ng ml)1and above in4days.HEp-2showed slight resistance to ZON in2days and21%cell death at400ng ml)1 in day4.

The di?erence in cytotoxicity on exposure of HEp-2to ZON may be due to larynx like char-acteristics of the original primary HeLa cell line from which HEp-2was derived.Variation in cell death when HEp-2and HeLa cell lines were exposed to ZON,has been reported.Reubal et al.

[18]noted that ZON proved to be less cytotoxic to mammalian cell lines and on occasion enhanced the cleavage activity of the cell types tested.Also, oestrogenic-responsive tumour cells were found to be most sensitive to ZON[19,20]

This study has shown that the degree of cell survival is dependent on concentration of toxin and period of exposure.A cell type-mycotoxin speci?city was observed.HeLa cell line showed cytotoxic response to all the toxins,whereas HEp-2was sensitive to DON and T-2but not to ZON, and CaCo-2showed resistance to all mycotoxins tested.HeLa cell line,exhibited a time and concentration-dependent cytotoxicity(Table1), showing50%cell death between400and 500ng ml)1at2days and50%cell death at 200ng ml)1at4days exposure.Cell necrosis was con?rmed microscopically(Fig1a,b and c),of which the cell morphologies were found to be typical of cell death in all sensitive cell lines. Figure1a represents the control,a con?uent monolayer,taken as0%cell death.Figure1b shows HeLa cell line exhibiting40%cell death with300ng ml)1of DON at2day exposure

415

T a b l e 1.M e a n o p t i c a l d e n s i t y a s a m e a s u r e o f c e l l d e a t h b y d e o x y n i v a l e n o l

M y c o t o x i n c o n c e n t r a t i o n (n g m l )1)

H e L a c e l l l i n e

H E p -2c e l l l i n e

O D

S E M

%C e l l d e a t h O D S E M %C e l l d e a t h O D S E M %C e l l d e a t h O D S E M

%C e l l d e a t h

D O N

01.687±0.12201.537±0.14001.270±0.01600.960±0.09601000.933±0.06844.61.109±0.12327.80.481±0.07062.10.156±0.01583.72001.247±0.24126.00.797±0.06948.10.599±0.06152.80.074±0.00192.23000.977±0.04440.90.309±0.05980.10.339±0.05273.30.069±0.00092.84001.048±0.13537.80.253±0.01083.50.351±0.02772.30.077±0.00391.95000.553±0.10967.20.213±0.02386.10.285±0.03477.50.066±0.00893.110000.303

±0.007

82.00.101±0.03493.40.308±0.03675.70.063

±0.002

93.4

T -2

00.617±0.0280N D N D N D 1.270±0.01600.960±0.09601000.062±0.00189.9N D N D N D 0.864±0.13031.90.066±0.00593.12000.060±0.00190.2N D N D N D 0.629±0.06950.40.067±0.00493.03000.066±0.00489.3N D N D N D 0.425±0.05366.50.060±0.00293.74000.059±0.00190.4N D N D N D 0.312±0.03075.40.077±0.00291.95000.061±0.00190.1N D N D N D 0.320±0.04374.80.062±0.00293.510000.071

±0.003

88.4N D N D N D 0.344±0.05372.9

0.056

±0.001

94.1

Z O N

00.664±0.02200.360±0.02500.856±0.02200.960±0.09601000.650±0.0152.10.288±0.01420.00.854±0.01500.957±0.0940.02000.661±0.0490.50.163±0.00154.70.842±0.0491.60.783±0.04618.43000.642±0.0843.30.080±0.00377.70.793±0.0847.30.873±0.0459.04000.642±0.0343.30.053±0.00185.20.926±0.03400.757±0.07821.15000.541±0.00918.50.050±0.00186.10.947±0.00900.871±0.0519.210000.425

±0.02935.90.059±0.00283.60.864±0.029

0.9

0.902

±0.027

6.0

T -2t o x i n a n d Z e a r a l e n o n e e x p o s e d t o H e L a a n d H E p -2h u m a n c e l l l i n e s ,i n c u b a t e d f o r 2a n d 4d a y s .N D :N o t d e t e r m i n e d .O D :o p t i c a l d e n s i t y a t 570n m .S E M :s t a n d a r d e r r o r m e a n .

416

and Figure 1c indicates 80–100%cell death at 1000ng ml )1at 2day exposure.HEp-2cell line was more sensitive to DON than HeLa exhibiting 50%cell death at 200ng ml )1after 2days,though,increased to 90%cell death at 200ng ml )1at 4days (Table 1).HeLa cell line exhibited cytotoxicity to ZON,showing about 19%cell death at 500ng ml )1after 2days.At 4days,however,a time-dependent cytotoxicity

was observed showing a 55%cell death at 200ng ml )1and 86%cell death at 500ng ml )1.Results from this study suggest that ZON is cytotoxic towards reproductive organs and tissues.Other studies have also shown that ZON may be responsible for male germ cell apoptosis in rats,may cause a cessation of meiotic progression in bovine oocytes and regulation of progesterone synthesis in granulose of porcine ovaries [15,16].CaCo-2is a gut epithelium cell line and was found to be resistant to the toxins.Such observa-tion was also noted with fumonisin B1[21]and ochratoxin A (OTA)[22]in which a lack of cyto-toxic responses for CaCo-2was observed.The data obtained in this study suggests that the toxins may have cytostatic rather than cytotoxic e?ects on CaCo-2,and techniques such as lactate dehy-drogenase (LDH)assay and ?ow cytometry may be used to con?rm such e?ects [23].

T-2toxin exhibited the most cytotoxic response against the three cell lines tested,resulting in a lack of cell survival at 2days exposure.Koshinsky et al.[24]have reported deleterious e?ects of T-2toxin on mitochondrial succinic dehydrogenase,which is a vital compo-nent involved in the MTT reaction.The ability of T-2toxin to exert an e?ect was therefore,expected,though its degree of cytotoxicity was high compared to DON and ZON.Both HeLa and HEp-2cell lines showed cytotoxic responses at 100ng ml )1after 2days of exposure to T-2toxin,HeLa,however,exhibited complete cell death at 100ng ml )1at 2days.Furthermore HEp-2exhibited complete cell death at 100ng ml )1after 4days exposure (Table 1).

Many authors have used cytotoxic screening by MTT assay and have established the technique as,reproducible,accurate and a rapid tool for assay-ing the viability of various cell lines on exposure to mycotoxins [25–29].Reubal et al .[18]also indicate that cell monolayers are useful targets in the MTT assay for investigating the action of mycotoxins.Other colorimetric assays including BrdU uptake [30,31],trypan blue exclusion assay [17]and LDH [31]have been used,however,the MTT assay is the most widely employed among the screening tech-niques.

Other investigations have used non-mammalian or immunological cell lines in determining cytotoxic responses,including B cells [32],leukocytes [33],haematopoietic cells [34],porcine kidney cells

[35],

Figure 1.HeLa cell line exposed to 0ng/ml (a),300ng/ml (b)and 1000ng/ml (c)of deoxynivalenol.Magni?cation -·40objective.

417

bovine peripheral blood cells[36],rabbit reticulo-cyte[37]and insect cell lines such as Spodoptera frugiperda[38].Human epithelium monolayers, however,appear to have received less attention. Deoxynivalenol was investigated for its antiviral and antibody conjugation properties rather than its cytotoxic responses[39,40].CaCo-2on the other hand has been studied as a human colonic model during exposure to DON and OTA[41,42]in which transepthilial transport and di?erentiation was investigated.

In this study,Fusarium toxin,T-2was the most cytotoxic secondary metabolite to HeLa cell lines followed by DON then ZON.HeLa cell line was sensitive to ZON whilst CaCo-2and HEp-2cell lines were sensitive to DON and T-2only,each cell line exhibited a time-and concentration-dependent cytotoxicity.

References

https://www.wendangku.net/doc/da13017142.html,cey J,Ramakrishna N,Hamer A,Magan N,Mar?eet

IC.Grain fungi.In:Aurora DK,Mukerji KG,Marth EH, eds.Handbook of Applied Mycology.New York:Marcel Dekker Inc,1991:121–177.

2.Frisvad JC,Thrane U.Mycotoxins production by com-

mon?lamentous fungi.In:Samson RA,Hoekstra ES, Frisvad JC,Filtenborg O,eds.Introduction to Food-and Airborne-Fungi.Utrecht:CBS,2002:321–331.

3.Eriksen GS,Petterson H.Toxicological evaluation of

trichothecenes in animal feed.Ani.Feed Sci.Tech.2004;

114:205–239.

4.Sun XM,Zhang XH,Wang HY,Cao WJ,Yan X,Zuo

LF,Wang JL,Wang FR.E?ects of sterigmatocystin, deoxynivalenol and a?atoxin G1on apoptosis of human peripheral blood lymphocytes in vitro.Biomed.Environ.

Sci.2002;15(2):145–152.

5.Meky FA,Hardie LJ,Evans SW,Wild CP.Deoxynivale-

nol-induced immunomodulation of human lymphocyte proliferation and cytokine production.Food Chem.Tox-icol.2001;39(8):827–836.

6.Berek L,Petri IB,Mesterhazy A,Teren J,Molnar J.

E?ects of mycotoxins on human immune functions in vitro.Toxicol.In Vitro2001;15(1):25–30.

7.Vila B,Jaradat ZW,Marquardt RR,Frohlich AA.E?ect

of T-2toxin on in vivo lipid peroxidation and vitamin E status in mice.Food Chem.Toxicol.2002;40(4):479–486.

8.Szkudelska K,Szkudelski T,Nogowski L.Short-time

deoxynivalenol treatment induces metabolic disturbances in the rat.Toxicol.Lett.2002;136(1):25–31.

9.Drysdale,RB.The production and signi?cance in phyto-

pathology of toxins produced by species of Fusarium.In: The Applied Mycology of Fusarium.Moss MO and Smith JE eds.Cambridge:Cambridge University Press,1984: 95–10510.Moss M,Smith JE.The Applied Mycology of Fusarium.

Cambridge:Cambridge University Press,1984.

11.Hussein HS,Brasel JM.Toxicity,metabolism,and impact

of mycotoxins on humans and animals.Toxicology2001;

167(2):101–134.

12.Hochsteiner W,Schuh M,Luger K,Baumgartner W.

E?ect of mycotoxin contaminated feed on production parameters of dairy cows.Berl Munch Tierarztl Woc-henschr.2000;113(1):14–21.

13.Coppock RW,Mostrom MS,Sparling CG,Jacobsen B,

Ross SC.Apparent zearalenone intoxication in a dairy herd from feeding spoiled acid-treated corn.Vet.Hum.

Toxicol.1990;32(3):246–248.

14.D’Mello JPC.MacDonald AMC.Mycotoxins.Anim.

Feed Sci.Technol.1997;69:155–166.

15.Kim IH,Son HY,Cho SW,Ha CS,Kang BH.Zearale-

none induces male germ cell apoptosis in rats.Toxicol.

Lett.2003;138(3):185–192.

16.Minervini F,Dell’Aquila ME,Maritato F,Minoia P,

Visconti A.Toxic e?ects of the mycotoxin zearalenone and its derivatives on in vitro maturation of bovine oocytes and17beta-estradiol levels in mural granulosa cell cultures.Toxicol.In Vitro.2001;15(4–5):489–495.

17.Robb J,Norval M,Neil WA.The use of tissue culture for

the detection of mycotoxins.Lett.Appl.Microbiol.10: 161–165.

18.Reubel GH,Gareis M,Amselgruber WM.E?ects of the

Fusarium mycotoxins zeralenone and deoxynivalenol methylthiazol tetrazolium-cleavage activity of monolayer cells.Toxicol.In Vitro.1989;3(4):311–316.

19.Shier WT,Shier AC,Xie W,Mirocha,CJ.Structural

activity relationships for human estrogenic activity in zearalenone mycotoxins.Toxicon39:387–392.

20.Tiemann U,Tomek W,Schneider F,Vanselow J.E?ects

of the mycotoxins alpha-and beta-zearalenol on regula-tion of progesterone synthesis in cultured granulosa cells from porcine ovaries.Reprod.Toxicol.2003;17(6): 673–681.

21.Caloni F,Spotti M,Pompa G,Zucco F,Stammati A,De

Angelis I.Evaluation of Fumonisin B(1)and its metabo-lites absorption and toxicity on intestinal cells line Caco-2.

Toxicon2002;40(8):1181–1188.

22.Berger V,Gabriel AF,Sergent T,Trouet A,Larondelle Y,

Schneider YJ.Interaction of ochratoxin A with human intestinal Caco-2cells:possible implication of a multidrug resistance-associated protein(MRP2).Toxicol.Lett.2003;

140–141:465–476.

23.Gutleb AC,Morrison E,Albertinka JM.Cytotoxicity

assays for mycotoxins produced by Fusarium strains:a review.Environ.Toxicol.Pharm.2002;11:309–320. 24.Koshinsky H,Honour S,Khachatourians G.T-2toxin

inhibits mitochondrial function in https://www.wendangku.net/doc/da13017142.html,mun.1988;151(2):809–814.

25.Hanelt M,Garies M,Kollarczik B.Cytotoxicity of

mycotoxins evaluated by the MTT-cell culture assay.

Mycopathologia1994;128(3):167–164.

26.Kitabatake N,Doi E,Trivedi AB.Toxicity evaluation of

the mycotoxins citirin and ochratoxin A,using several animal cell lines.1993;105(3):429–433.

27.Visconti A,Minervini F,Lucivero G,Gambatesa V.

Cytotoxic and immunotoxic e?ects of Fusarium mycotoxins

418

using a rapid colorimetric bioassay.Mycopatholgia1991: 113(3):181–186.

28.Holt PS,Buckley S,Deloach JR.Detection of the lethal

e?ects of T-2mycotoxin on cells using a rapid colorimetric viability assay.Toxicol.Lett.1987:39(2–3):301–312. 29.Widestrand J,Lundh T,Pettersson H,Lindberg JE.A

rapid and sensitive screening assay for trichothecenes in cereal samples.Food Chem.Toxicol.2003:41:1307–1313.

30.Eriksen GS,Pettersson H,Lundh https://www.wendangku.net/doc/da13017142.html,parative cyto-

toxicity of deoxynivalenol,nivalenol,their acetylated derivatives and de-epoxy metabolites.Food Chem.Tox-icol.2004:42:619–624.

31.Widestrand J,Lundh T,Pettersson H,Lindberg JE.

Cytotoxicity of four trichothecenes evaluated by three colorimetric bioassays.Mycopatholgia1999:147:149–155.

32.Uzarski RL,Pestka https://www.wendangku.net/doc/da13017142.html,parative susceptibility of B

cells with di?erent lineages to cytotoxicity and apoptosis induction by translational inhibitors.J.Toxicol.Environ.

Health A.2003;66(22):2105–2118.

33.Uzarski RL,Isalm Z,Pestka JJ.Potentiation of tricho-

thecene-induced leukocyte cytotoxicity and apoptosis by TNF-alpha and Fas activation.Chem.Biol.Interact.2003;

146(2):105–119.

34.Holme JA,Morrison E,Samuelsen JT,Wiger R,Lag M,

Schwarze PE,Bernhoft A,Refsnes M.Mechanims involved in the induction of apoptosis by T-2and HT-2 toxins in HL-60human promyelocytic leukaemia cells.

Cell Biol.Toxicol.2003;19(10):53–68.

35.Morrison E,Rundberget T,Kosiak B,Aastveit AH,

Bernhoft A.Cytotoxicity of trichothecene and fusarochro-manone produced by Fusarium equiseti strains isolated from Norwegian cereals.Mycopathologia2002;153(1): 49–56.36.Charoenpornsook K,Fitzpatrick JL,Smith JE.The e?ects

of four mycotoxins on the mitogen stimulated prolifera-tion of bovine peripheral blood mononuclear cells in vitro.

Mycopathologia1998;143(2):105–111.

37.Yike I,Allan T,Sorenson WG,Dearborn DG.Highly

sensitive protein translation assay for trichothecene toxic-ity in airborne particulates:comparison with cytotoxic assays.Appl.Environ.Microbiol.1999;65(1):88–94. 38.Fornelli F,Minervini F,Logrieco A.Cytotoxicity of

fungal metabolites to lepidopteran(Spodoptera frugiperda) cell line(SF-9).J.Invertebr.Pathol.2004;85(2):74–79.

39.Tani N,Dohi Y,Onji Y,Yonemasu K.Antiviral activity of

trichothecene mycotoxins(deoxynivalenol,fusarenon-X, and nivalenol)against herpes simplex virus types1and2.

Microbiol.Immunol.1995;39(8);635–637.

40.Chanh TC,Hewetson.Structure/function studies of T-2

mycotoxin with a monoclonal antibody.Immunopharma-cology1991;21(2):83–89.

41.Kasuga F,Hara-Kudo Y,Saito N,Kumagai S,

Sugita-Konishi Y.In vitro e?ect of deoxynivalenol on the di?erentiation of human colonic cell lines CaCo-2 and T84.Mycopathologia1998;142(3)161–167.

42.Maresca M,Mahfoud R,Pfohl-Leszkowicz A,Fantini J.

The mycotoxin ochratoxin A alters intestinal barrier and absorption functions but has no e?ect on chloride secre-tion.Toxicol.Appl.Pharmacol.2001;176(1):54–63. Address for correspondence:Dr.K.E.Aidoo,School of Biological and Biomedical Sciences,Cowcaddens Road,G4 0BA Glasgow,UK

Phone:+44-141-3318514;Fax:+44-141-3313208

E-mail:K.Aidoo@https://www.wendangku.net/doc/da13017142.html,

419

玉米赤霉烯酮定量检测卡说明书

玉米赤霉烯酮荧光定量检测卡 ——检测使用说明书 【产品简介】 玉米赤霉烯酮(ZEN)具有雌激素作用,主要作用于生殖系统,可使家畜,家禽和实验小鼠产生雌性激素亢进症。妊娠期的动物(包括人)食用含玉米赤霉烯酮的食物可引起流产、死胎和畸胎。食用含赤霉病麦面粉制作的各种面食也可引起中枢神经系统的中毒症状,如恶心、发冷、头痛、神智抑郁和共济失调等。 【检测范围】 谷物粮食、饲料等 【产品组成】 1、玉米赤霉烯酮检测卡(内附干燥剂) 2、10X样本稀释液 50ml/瓶 1瓶 3、使用说明书 1份∕盒 【样本处理】 样本稀释液配制:用去离子水将10X样本稀释液按1 : 9体积比进行稀释,即1份10X 样本稀释液加9份去离子水。 样本提取液配制:70%(体积分数)甲醇溶液。 取有代表性的样品500g,用粉碎机粉碎至全部通过20目筛,混匀。 准确称取10.0g均匀粉碎后的样品(或者量取10ml液态样品)于50ml离心管中,再准确加入30ml样本提取液,将离心管盖盖紧密封,用漩涡振荡器振荡1min~2min,静置或于4000rpm 离心2min,得上清液(若样品为食用油取下层液);将上清液(或者下层液)用移液器吸出100ul,于1.5ml离心管中,再加入900ul的样本稀释液混匀,待检。如样品为小麦,需将稀释后的混合提取液用针头式滤器过滤,即为待测溶液。 【操作步骤】 1、使用前请仔细阅读本产品说明书以及荧光免疫层析检测仪操作说明。 2、打开荧光免疫层析检测仪,在主界面点击“系统设置”“检测项目管理”后选择要检测的产品名称,进入待检状态。 3、将检测卡和荧光微孔、样本稀释液恢复至室温。 4、用移液器准确吸取80ul待检样本,(取样时注意不要吸入气泡)垂直缓慢滴加于检测卡加样孔(S)中,加样后开始计时,加样后10分钟读取结果。 6、将检测试剂卡插入荧光免疫层析检测仪的承载器中,按快捷测试键,仪器将自动对测试卡进行扫描,从免疫层析检测仪的显示屏幕上读取/打印检测结果。 【阳性判断值或者参考区间】 阳性判断值:≥60ng/ml。 注:建议各实验室根据实际情况,建立自己的参考范围。 【产品性能指标】 1.准确度:回收率应在(80%~110%)区间内或相对偏差在±15%区间内。 2.线性范围:〔30~300〕ng/ml,线性相关系数r值应不小于0.990。 3.重复性:变异系数CV(%)值应≤15%。 【注意事项】 1、检测前请先完整阅读使用说明书,将检测卡、待检样品恢复至室温。 2、从铝箔袋中取出检测卡,请在1小时内使用。 3、请严格按照操作步骤操作,操作时请勿触摸检测卡显示区。 4、本品为一次性产品,请勿重复使用,过期产品请勿使用。 5、跑条10 min后,请于1分钟内进行读数,时间过长将可能导致结果的不准。 6、检测结果如超出线性范围,可用样品提取液稀释5倍后再次检测,检测结果乘以5倍即为样品的残留浓度。 7、本试剂为筛选试剂,若检测结果显示为阳性,请用其他方法(如GC-MS)复核确证。 8、严格按照使用说明书操作,并在说明书要求的时间内读取结果。 9、使用本试剂过程中的任何问题及建议,请与生产厂商联系。 【储存及有效期】 原包装于4—8℃阴凉避光干燥处储存,切忌冷冻; 有效期12个月,生产日期及批号见外包装。

玉米赤霉烯酮对雄性小鼠生殖系统的毒性作用_董双_何剑斌_张燚_龙淼

董双,何剑斌,张燚,等.玉米赤霉烯酮对雄性小鼠生殖系统的毒性作用.[J].畜牧与兽医,2016,48(6):25-29 Dong S,He J B,Long M,et al.Toxic effects of zearalenone on male reproductive system in mice[J].Animal Husbandry&Veterinary Medicine,2016,48(6):25-29 玉米赤霉烯酮对雄性小鼠生殖系统的毒性作用 董双,何剑斌*,张燚,龙淼* (沈阳农业大学畜牧兽医学院,辽宁沈阳110866) 摘要:为探讨玉米赤霉烯酮(ZEA)对雄性生殖系统的毒性作用,本试验选取清洁级昆明系雄性小鼠93只,随机分成5组:25mg/kg、50mg/ kg、75mg/kg ZEA处理组、溶剂对照组(DMSO)、空白对照组(生理盐水),进行腹腔注射染毒,每天1次,连续5d,于末次染毒后第2天摘眼球采血并脱颈处死动物,分离睾丸和附睾,测定脏器系数、精子密度和活力,睾丸酶的活力水平以及血清睾酮和雌激素的浓度。结果显示,与对照组相比,玉米赤霉烯酮显著地降低小鼠的体重和精液品质,睾丸乳酸脱氢酶(LDH)、碱性磷酸酶(AKP)、酸性磷酸酶(ACP)的活力随着染毒剂量的增加显著升高(P<0.01,P<0.05),血清睾酮和雌激素浓度随染毒剂量的增加显著下降(P<0.01,P<0.05)。该结果提示,玉米赤霉烯酮对雄性小鼠生殖系统具有严重的损伤作用,影响生精功能。 关键词:玉米赤霉烯酮;睾丸;附睾;精液品质 中图分类号:S856.9文献标志码:A文章编号:0529-5130(2016)06-0025-05 Toxic effects of zearalenone on male reproductive system in mice DONG Shuang,HE Jian-bin,LONG Miao,ZHANG Yi (College of Animal Science and Veterinary Medicine,Shenyang Agricultural University,Shenyang110866,China) Abstract:To examine toxic effects of zearalenone(ZEA)on male reproductive system,93clean grade adult male Kunming mice were ran-domly divided into5groups and exposed to intraperitoneal injection of ZEA at25,50and75mg/kg body weight,DMSO and normal saline solution,respectively for5days.The mice were sacrified at the6th day after eyeball blood sampling.The testis and epididymis viscera inde-xes,semen quality,testis enzyme activity and serum concentrations of testosterone and estrogen were assessed.The results showed that com-pared with the control group,ZEA significantly decreased the body weight,semen quality,increased the testis enzyme activity and decreased serum concentrations of testosterone and estrogen(P<0.01,P<0.05).In conclusion,ZEA can hurt male reproductive system and affect the spermatogenic function. Key words:zearalenone;testis;epididymis;semen quality;testosterone 玉米赤霉烯酮(zearalenone,ZEA)是由镰刀菌属的霉菌,如黄色镰孢霉、禾谷镰孢霉、轮枝镰孢霉产生的类雌激素作用的次级代谢产物,是一种大环β-二羟基苯甲酸内酯类[1-2]。这种霉菌毒素存在于各类农作物中,如收割前后的小麦、大麦、玉米、高粱等,以及农产品加工阶段,进而污染世界范围内的人类食物和动物饲料,给全球带来巨大的经济损失。ZEA不仅具有肝肾毒性、遗传毒性、免疫毒性,还 收稿日期:2015-06-30 基金项目:中国博士后科研基金项目(2014M551125);国家自然科学基金项目(31201961、31302152) 作者简介:董双(1989-),女,硕士生,研究方向:临床兽医学*通信作者:何剑斌(1969-),男,硕士生导师,教授,研究方向:临床兽医学,E-mail:hejianbin69@https://www.wendangku.net/doc/da13017142.html,;龙淼(1978-),男,讲师,博士,研究方向:动物营养代谢病及中毒病,E-mail:longjlau@https://www.wendangku.net/doc/da13017142.html, 由于其能够与17β-雌二醇竞争性结合雌激素受体(ER),具有雌激素效应,干扰机体的内分泌系统,产生生殖毒性,进而影响动物的正常生理活动,引起靶器官、靶组织甚至机体的多个系统发生病变[3-5],对人类和动物的健康危害极大。 ZEA作为一种外源性内分泌干扰物,其生殖毒性是当今科研领域的一大研究热点。有研究显示,ZEA对机体的生殖系统损害极大[6]。研究表明玉米赤霉烯酮呈剂量依赖性方式诱导猪卵巢颗粒细胞发生细胞凋亡和细胞坏死,从而减少细胞的增殖[7],还能够引起断奶仔猪发生氧化损伤和炎症反应[8],并且玉米赤霉烯酮还使断奶雌鼠的初情期提前,并干扰雌鼠的早期妊娠[9]。ZEA不仅影响雌性动物的繁殖机能,还损害雄性动物的生殖系统,能够引起大鼠的睾丸萎缩,并诱导生精细胞发生凋亡[10],睾丸间质

玉米及玉米油中玉米赤霉烯酮快速定量检测方案

玉米和玉米油中玉米赤霉烯酮快速定量检测方案 --10min快速定量 一、玉米和玉米油中玉米赤霉烯酮ZEN污染情况 玉米赤霉烯酮(Zearalenone,ZEN)是由镰刀菌产生的一种霉菌毒素,属于二羟基苯甲酸内酯类化合物,具有雌激素活性,分子式为C18H2205,相对分子量318.4。玉米赤霉烯酮ZEN主要污染玉米、小麦、大米、棉籽等粮谷作物,可引起动物和人的雌激素过多综合征,还具有生殖毒性、免疫毒性、基因毒性及可疑致癌性等。 2003年止,根据世界粮农组织公布已有19个国家制定了食物中玉米赤霉烯酮ZENDE 限量标准,欧盟规定精炼玉米油中玉米赤霉烯酮ZEN不得超过200μg/kg。中国标准规定,玉米、小麦及其制品中玉米赤霉烯酮ZEN不得超过60μg/kg,但没有规定植物油中玉米赤霉烯酮的限量标准。但农作物特别是玉米种的玉米赤霉烯酮ZEN检出率很高,而植物油均是以这些农作物为基本原料,因此非常有必要对玉米及玉米油中的玉米赤霉烯酮ZEN进行检测与控制。 二、玉米和玉米油中玉米赤霉烯酮ZEN国家残留限量标准 食品类别 限量标准(μg/kg) 玉米、玉米面(渣、片) 60 大麦、小麦、麦片、小麦粉(面粉) 60 引自:《GB 2761-2011 食品安全国家标准 食品中真菌毒素限量》 三、飞测生物玉米和玉米油中玉米赤霉烯酮快速定量检测方案--10min快速定量 上海飞测生物基于全球领先的荧光定量POCT技术平台,在国内率先推出了玉米赤霉烯酮荧光定量检测试纸条,本产品可在10min快速定量的检测出玉米和玉米油中玉米赤霉烯酮的残留含量,样品前处理简单(仅需8min),检测操作简便,采用荧光免疫定量分析仪读数,结果准确可靠且可现场打印,准确性符合HPLC法的检测结果,适用于各类玉米及玉米油加工企业及检测机构。

玉米赤霉烯酮ELISA说明书

玉米赤霉烯酮ELISA快速检测试剂盒操作说明书 1、简介 本试剂盒采用间接竞争酶联免疫吸附ELISA原理快速定量检测谷物、饲料中的玉米赤霉烯酮(ZearaLenone,ZEN)。 谷物/饲料的前处理包括:提取、过滤、稀释,处理时间大约为20-40分钟。 本试剂盒的检测限为:10 ppb;谷物/饲料中ZEN的回收率≥80%;批内、批间变异系数<15% 。 2、试剂盒组成 A. 24/48/96孔ZEN酶标板: 3/6/12条×8孔 B. 20×浓缩洗涤液:25mL (用蒸馏水稀释20倍使用) 1瓶 C. ZEN抗体: 3/6/12mL 1瓶(红盖) D. 酶标二抗:3/6/12 mL 1瓶(绿盖) E. 显色液:3/6/12 mL 1瓶(蓝盖) F. 终止液:3/6 mL 1瓶(黄盖) G. ZEN标准品:1.5/2mL/瓶(0、30、60、200、500ppb)各1瓶 H. 操作说明书1份 注意:标准品含有低浓度ZEN、终止液含2 N H2SO4,需小心取用;勿在有效期外使用本试剂盒。 3、贮存条件与有效期 2-8℃避光贮存,忌0℃以下冻存,有效期见试剂盒内盖。 4、样品处理程序 ●实验准备:配制60%甲醇水溶液(v/v,60:40)和20%甲醇水溶液(v/v,20:80)。 注意:请精确配制上述溶液,以免影响检测的准确性。 ●称取5 g 具有代表性的粉碎样品于100 mL带塞三角瓶内,准确加入25 mL 60%甲醇水 溶液。 ●将加入了甲醇水溶液的样品放入振荡器内(或用手强力振荡),充分振荡3分钟后,用 whatman 1号滤纸过滤,收集滤液。 ●取滤液2mL,加入6 mL 20%甲醇水溶液,混匀,用whatman 1号滤纸过滤,此为样品 待检液。 注意: 某些样品待检液(如花生等)久置影响检测结果的准确性,为保证检测的准确性,样品

玉米赤霉烯酮的毒性

玉米赤霉烯酮的毒性 雷灼贵 (华南理工大学轻工与食品学院,广东广州510640) 摘要:真菌毒素广泛存在于世界各地的谷物及其副产物当中。玉米赤霉烯酮(Zearalenone, 简称为ZEN) 作为镰刀霉毒素的代表,是一种具强烈致畸作用的生殖系统毒素,对肝脏肾脏均有强烈毒害作用,也是 影响食物安全的重要因素之一。主要对玉米赤霉烯酮的毒素来源、中毒机理、中毒表现以及防治措施 进行论述,其中重点对中毒机理进行综述。 关键词:玉米赤霉烯酮;毒性;雌激素;中毒机理 The toxicity of zearalenone LEI Zhuogui (School of Light Industry and Food Sciences, South China University of Technology, Guangzhou 510640, Gaungdong, China) Abstract:Mycotoxin widely exist in the grain and its by-products all over the world. Zearalenone(ZEN), as the representative of the fusarium toxin, is a teratogenic, mutagenic and carcinogenic mycotoxin, is strong toxic effect on kidney and liver and is also one of the important factors that affect food safety. This pape mainly elaborates the sources, poisoning mechanism, poisoning manifestations as well as the prevention and control measures of Zearalenone, besides,the poisoning mechanism were especially discussed. Key words:zearalenone;toxicity;estrogen;mechanism of toxication 引言 食品安全已成为世界各国普遍关注的焦点问题,它不仅涉及到贸易壁垒中的技术问题,而且涉及到从农场到餐桌的食物链安全保障问题。生物毒素是食源中较为广泛的危害之一,真菌毒素作为影响食品安全的一大类生物毒素,成为科技攻关的核心问题。 玉米赤霉烯酮作为世界上污染粮食最广泛的真菌毒素之一,在谷物以及农副产品中都可检测到ZEN的存在[1]。ZEN作为镰刀霉毒素的代表,不仅影响食物安全,而且通过食物链在人或动物体内富集,危害机体。ZEN不仅可直接污染谷类等作物,进而进入人或动物体内,还可通过被污染的肉、奶等动物性食品进入人体,危害人和动物的健康,造成巨大的经济损失。同时,ZEN本身具有分布广、繁殖快、耐热、代谢产物多、毒性大、残留时间长、难处理等问题,正在引起全世界的关注。因此,对玉米赤霉烯酮毒性的研究具有重要的意义。

玉米赤霉烯酮毒素标准检测规程

玉米赤霉烯酮标准操作规程 1、目的 为了规范亲和柱净化样本中玉米赤霉烯酮的操作流程,特制订本操作规程。 2、范围 本标准适用于粮食、饲料、食品中玉米赤霉烯酮的检测。 3、检出限和定量限 项目 岛津安捷伦 样本检出限 (μg/kg) 样本定量限 (μg/kg) 样本检出限 (μg/kg) 样本定量 限(μg/kg) ZEN 2.96 8.96 75.9 253.2 4、职责 部门名称部门职责 质量管理部1、负责本制度的实施。 2、负责本制度的监督执行。 5、程序 5.1 原理 测定的基础是抗原、抗体反应,抗体连接在柱体内,样品经过提取、过滤后,缓慢的通过玉米赤霉烯酮免疫亲和柱,在免疫亲和柱内毒素与抗体结合,之后洗涤免疫亲和柱除去没有被结合的其他无关物质。用甲醇洗脱玉米赤霉烯酮,然后注入到高效液相色谱仪中用于检测。 5.2 溶液配制 5.2.1 提取液:80%乙腈 ----用量筒移取800mL 乙腈,加入超纯水定容至至1L。 5.2.2 稀释液:0.01M PBST 溶液 ----称取8g NaCl、0.2g KCl、0.2g KH2PO4和1.16g Na2HPO4.12H2O,加入800mL 超纯水溶解,加入2mL Tween-20,定容至1L。 5.2.3 玉米赤霉烯酮标准工作液:用色谱级甲醇将储备工作液分别稀释到1000 ng/ml、 500 ng/ml、200ng/ml、100 ng/ml、50 ng/ml。

5.3 样品前处理 ----20g±0.01g 样品(固体样品需粉碎,并过2mm 分样筛)加入100mL 提取液(80%乙腈-水溶液)混匀; ----高速均质(≥10,000r/min)1min,或摇床(200r/min~300r/min)剧烈振荡20min,用快速定性滤纸过滤,收集滤液; ----取10mL 滤液加入40mL 稀释液稀释,再用微纤维滤纸过滤,并收集滤液作为上样液; ----取25mL 上样液过免疫亲和柱净化。 稀释倍数:1 5.4 净化 ----取出免疫亲和柱,将上方塞子取出斜剪断,再插回亲和柱上;(3mL 的免疫亲和柱去掉上方塞子,安装上转接头,将转接头另一端与注射器固定后使用) ----将柱子与气控操作架上的注射器连接固定,取适量处理后的溶液上样; ----去掉亲和柱下方堵头,调节开关,使液体以1~2 滴/秒速度流出; ----待液体排干后,用10mL 去离子水洗涤2 次,流速2~3 滴/秒; ----待液体排干后,上样1mL 甲醇,流速1 滴/秒,收集洗脱液并定容至1mL; ----洗脱液用0.22μm 微孔滤器过滤后转移至样品瓶用于HPLC分析。 * 每次上样前都要将上次液体完全排干。 * 谷物样本也适用于GB/T 5009.209-2008 5.5 液相测定 5.5.1 液相色谱条件 C18柱:250mm(长)×4.6mm(直径),填料粒径5μm; 流动相:60%乙腈 流速:1.0 mL/min; 柱温:40℃; 进样体积:20μL 荧光检测器: 激发波长:274nm 发射波长:440nm 5.5.2 色谱定量 分别取相同体积样液和标准工作液注入高效液相色谱仪,在上述色谱条件下测定试

玉米赤霉烯酮检测试剂盒说明书

玉米赤霉烯酮(ZEN)ELISA检测试剂盒产品描述: 一、概要 玉米赤霉烯酮(Zearalenone,ZEN)又称F-2 毒素,主要成分为禾谷镰刀菌和黄色镰刀菌等产生的2,4-二羟基苯甲酸内酯类化合物。ZEN 主要污染玉米、麦类、谷物等作物,具有很强的雌性激素作用,可引起猪、大鼠、小鼠、家禽等动物的雌激素过多症和严重的生殖道症状及不孕症,还具有免疫毒性、基因毒性等,对人也有雌激素作用。玉米赤霉烯酮一般用薄层色谱、高效液相色谱法检测, 但因其操作繁杂、费用昂贵而影响实际应用。而使用玉米赤霉烯酮ELISA试剂盒则能够快速而准确的分析样品中玉米赤霉烯酮残留。 本试剂盒是应用ELISA技术研发的新一代真菌毒素检测产品,操作时间低于60min,能最大限度地减少操作误差和工作强度。 二、试验原理 本试剂盒采用间接竞争ELISA方法,在酶标板微孔条上预包被玉米赤霉烯酮抗原,样本中玉米赤霉烯酮和此抗原竞争玉米赤霉烯酮的抗体,酶标二抗催化TMB底物显色,样本吸光值与其含有的玉米赤霉烯酮成负相关,与标准曲线比较再乘以其对应的稀释倍数,即可得出样品中玉米赤霉烯酮的含量。 三、适用范围 可定性、定量检测玉米及玉米制品、饲料等样本中的玉米赤霉烯酮。 四、交叉反应率 玉米赤霉烯酮……………………………………………100% 玉米赤霉酮…………………………………………13% 玉米赤霉醇 (1) 五、检测步骤 测定前应须知: 1、使用之前将所有试剂和需用板条的温度回升至室温(20~25℃)。 2、使用之后立即将所有试剂放回2~8℃。 3、在ELISA分析中的再现性,很大程度上取决于洗板的一致性,正确的洗板操 作是ELISA测定程序中的要点。 4、在所有恒温孵育过程中,避免光线照射,用盖板膜封住微孔板。 5、标品里含有玉米赤霉烯酮,操作时应戴手套操作,避免皮肤接触。 操作步骤: 1、将所需试剂从冷藏环境中取出,置于室温(20~25℃)平衡30min以上,注 意每种液体试剂使用前均须摇匀。 2、取出需要数量的微孔板,将不用的微孔板放进原锡箔袋中并且与提供的干燥 剂一起重新密封,保存于2~8℃。不要冷冻。 3、洗涤工作液在使用前也需回温。

玉米赤霉烯酮

玉米赤霉烯酮 玉米赤霉烯酮(Zearalenone)又称F-2毒素,玉米烯酮. Cas号【17924-92-4】 分子式:C18H22O5 分子量:318.36 它首先从有赤霉病的玉米中分离得到. 玉米赤霉烯酮其产毒菌主要是镰刀菌属(Fusarium)的菌侏,如禾谷镰刀菌(F.graminearum)和三线镰刀菌(F.tricinctum).玉米赤霉烯酮主要污染玉米,小麦,大米, 大麦,小米和燕麦等谷物,其中玉米的阳性检出率为45%,最高含毒量可达到2909mg/kg;小麦的检出率为20%,含毒量为0.364~11.05mg/kg.玉米赤霉烯酮的耐热 性较强,110℃下处理1h才被完全破坏. 2011年4月20日,中华人民共和国卫生部发布了《食品中真菌毒素限量》国家标准,2011年10月20日开始实施,其中对玉米赤酶烯酮的限量标准是:谷物及其制品小麦、小麦粉、玉米、玉米面(渣、片)限量指标60µg/kg。 玉米赤霉烯酮具有雌激素作用,主要作用于生殖系统,可使家畜,家禽和实验小鼠产生 雌性激素亢进症.妊娠期的动物(包括人)食用含玉米赤霉烯酮的食物可引起流产,死胎 和畸胎.食用含赤霉病麦面粉制作的各种面食也可引起中枢神经系统的中毒症状,如恶心,发冷,头痛,神智抑郁和共济失调等. 玉米赤霉烯酮的危害 作者:涂华莱齐德生来源:华中农业大学营养卫生实验室发布时间:2008-03-25 11:17:29阅读数:836 玉米赤霉烯酮首先由赤霉病玉米中分离得出,是玉米赤霉菌的代谢产物,又称为F-2毒素。自从1980年李季伦教授发现植物体内也存在玉米赤霉烯酮以来,立刻受到人们的关注。玉米赤霉烯酮具有雌激素的作用,能引起动物流产、死胎、返情等生殖异常现象,近年来,我国南方不少猪场因使用霉变玉米造成种猪流产、返情现象时有发生,给猪场造成了严重的经济损失,因此,本文对其生物学作用及对动物的危害做了综述。 玉米赤霉烯酮的来源及理化性质 来源与种类

玉米赤霉烯酮的毒害及脱毒技术的研究进展

收稿日期:2007-12-05;修订日期:2008-01-21 作者简介:王金昌(1975-),男,硕士研究生,研究方向:生物技术。 第26卷 第2期2008年4月 江 西 科 学 JI A NGX I SC I ENCE Vo.l 26N o .2 Apr .2008 文章编号:1001-3679(2008)02-0252-05 玉米赤霉烯酮的毒害及脱毒 技术的研究进展 王金昌,涂祖新,王小红,杨一兵 (江西省科学院微生物研究所,南昌市应用微生物重点实验室,江西 南昌330029) 摘要:玉米赤霉烯酮是由镰刀菌产生的一种对人畜有害的霉菌毒素,介绍了玉米赤霉烯酮的毒害及其脱毒技术的最新研究进展。 关键词:玉米赤霉烯酮;毒害;脱毒技术中图分类号:S513 文献标识码:A The D evel op m ent of R esearch on Zearalenone .Toxicity and D etoxificati on WANG Ji n -chang ,TU Zu -x i n ,WANG X i a o -hong ,YANG Y-i b i n g (Institute ofM icrob i o l ogy ,The K ey L aboratory of A pp l y i ng M i c robio l ogy , Jiangx i A cade m y o f Sc iences ,Ji angx i N anchang 330029PRC) Abst ract :Zearalenone is one of the m ost w i d ely d istri b uted m ycotox ins pr oduced by Fusari u m Spe -cies ,w h i c h does har m to an i m a ls and hum ans .The artic le is intended to i n troduce t h e recent deve-l opm ent of research in zeara lenone s 'tox icity and its detox icating technology .K ey w ords :Zearalenone ,Tox ic ity ,Detox icating 0 玉米赤霉烯酮简介 玉米赤霉烯酮(Zearalenone ,ZEN )为白色晶体,其化学名为6-(10羟基-6氧基-十一碳烯基)B -雷锁酸内酯,分子式C 18H 22O 5,其化学结构如图1所示,熔点161e ~163e ,不溶于水,溶于碱性溶液、乙醚、苯及甲醇、乙醇等。现在已经发现ZE N 至少有15种产物,其中2条主要代谢途径是与葡萄糖醛酸结合,还原为玉米赤霉烯醇(Zearalenone ,ZEL),ZEL 有2种非对应的异构体A 和B ,A -ZEL 熔点较低(168e ~169e ),而B -ZEL 熔点较高(174e ~176e )[1] 。ZE N 主要产毒菌株为禾谷镰刀菌,此外,粉红镰刀菌、尖孢镰刀菌、三线镰刀菌、串珠镰刀菌、黄色镰刀 菌以及雪腐镰刀菌等也能产生ZEN 。 图1 ZE N 的化学结构图 1 玉米赤霉烯酮毒性 ZEN 广泛存在于霉变的玉米、高粱、小麦等谷类作物和奶制品中,具有很强的生殖毒害和致癌性。 1.1 ZE N 的生殖毒害 大多数动物对ZEN 都比较敏感,如:猪、肉

薏苡仁中玉米赤霉烯酮(1)

薏苡仁中玉米赤霉烯酮 【来源】本品为禾本科植物薏苡Coix lacryma-jobi L.var.ma-yuen(Roman.)Stapf的干燥成熟种仁。秋季果实成熟时采割植株,晒干,打下果实,再晒干,除去外壳、黄褐色种皮和杂质,收集种仁。 【功能与主治】利水渗湿,健脾止泻,除痹,排脓,解毒散结。用于水肿,脚气,小便不利,脾虚泄泻,湿痹拘挛,肺痈,肠痈,赘疣,癌肿。 【玉米赤霉烯酮】 色谱条件与系统适用性试验:以十八烷基硅烷键合硅胶为填充剂;以乙腈-水(50:50)为流动相;以荧光检测器检测,激发波长λex=232nm,发射波长λem=460nm。理论板数按玉米赤霉烯酮峰计应不低于10000。对照品溶液的制备精密称取玉米赤霉烯酮对照品适量,加甲醇制成每1ml含1ug的溶液,作为贮备溶液。精密量取贮备溶液1ml,置10ml量瓶中,加甲醇稀释至刻度,即得。 供试品溶液的制备:取供试品粉末约20g(过二号筛),精密称定,置于均质瓶中,加入氯化钠4g,精密加入90%乙腈100ml,高速搅拌2分钟(搅拌速度大于11000r/min),离心10分钟(离心速度4000r/min),精密量取上清液10ml,置50ml量瓶中,用水稀释至刻度,摇匀,离心10分钟(离心速度4000r/min),量取上清液20.0ml,通过免疫亲合柱,流速每分钟3ml,用水10ml洗脱(必要时可先用淋洗缓冲液10ml洗脱,再用水10ml洗脱),弃去洗脱液,使空气进入柱子,将水挤出柱子,再用适量甲醇洗脱,收集洗脱液,置2ml量瓶中,并用甲醇稀释至刻度,摇匀,用微孔滤膜(0.22um)滤过,取续滤液,即得。 测定法:分别精密吸取上述对照品溶液5ul、10u1、15μl、20u1、25μ1,注入液相色谱仪,测定峰面积,以峰面积为纵坐标,进样量为横坐标,绘制标准曲线。另精密吸取上述供试品溶液20~50u1,注入液相色谱仪,测定峰面积,从标准曲线上读出供试品中相当于玉米赤霉烯酮的量,计算,即得。 使用色谱条件:仪器配置: 色谱柱:岛津Wondacr act ODS-2(4.6*250mm,5ul)LC-20AT四元泵 流动相:乙腈-水(50:50)DGU-20A5R脱气机 柱温:40RF-20A荧光检测器 激发波长:232nm CTO-10AS VP柱温箱 发射波长:460nm CBM-20A系统控制器 流速:1ml/min SIL-20A自动进样器 进样量:25μl

猪玉米赤霉烯酮中毒的发生和防治措施

龙源期刊网 https://www.wendangku.net/doc/da13017142.html, 猪玉米赤霉烯酮中毒的发生和防治措施 作者:张亚峰 来源:《现代畜牧科技》2016年第10期 摘要:猪发生玉米赤霉烯酮中毒通常是由于食入的玉米等污染有镰刀菌属中的赤霉菌而引起。该病往往呈群发性,具有较高的发病率,但死亡率较低。猪只中毒后会导致生长发育速度缓慢,影响繁殖性能,降低饲料报酬,严重损害养猪生产的经济效益。现主要概述该病的防治措施,为广大养猪户提供参考。 关键词:猪;赤霉烯酮中毒;中毒机理;临床症状;病理变化;防治措施 中图分类号:S858.28 文献标识码:B文章编号:2095-9737(2016)10-0125-01 1 中毒原理 玉米赤霉烯酮主要是由于玉米储存不合理,尤其是在潮湿环境下出现发霉而生长大量的镰刀菌群,从而产生该毒素。这种毒素对动物具有与雌激素相同的作用,也可称为子宫毒,因此会导致机体出现雌激素过多的症状。在家畜中,猪对该毒素的敏感性最高,特别是母猪非常敏感,这也是导致母猪出现假发情的一个内在因素。雌性动物的生殖系统是玉米赤霉烯酮作用的主要靶器官,同时会在一定程度上影响雄性动物。机体发生急性中毒时,会在一定程度上毒害神经系统、心脏、肝脏、肾脏以及肺,主要是导致神经系统过于亢奋,在脏器中形成大量的出血点,使其突然发生死亡,这通常是由于含有过高水平的雌激素而导致。 2 临床症状及病理变化 病猪精神不振,食欲减退,发生腹泻,其中仔猪中毒会导致生长发育缓慢。中、小母猪没有达到性成熟时发生中毒,主要会出现类似发情的症状,乳房明显隆起,乳头发生肿大,明显潮红,特别是没有进行阉割的小母猪会更加严重。中、小公猪去势后发生中毒,会导致包皮肿大,乳房出现隆起,乳头发生肿大。少数妊娠母猪中毒后,比较容易发生流产、早产以及产出死胎或者弱小仔猪的现象。种公猪中毒后会导致睾丸发生萎缩,性欲降低,乳腺也会发生程度不同的增大,体表皮肤呈白色的猪只在阳光下照射会导致喘气加速,且在耳处、腹侧、背部以及臂部等明显潮红。 剖检病死猪,发现肩下区、大腿的皮下肌肉发生内出血;肝脏呈黄色,发生肿大,质地较脆,严重时会存在灰黄色的坏死灶,小叶中心发生出血,且间质较硬;胆囊发生萎缩,胆汁较浓且量少;心内外膜发生出血,心包腔和胸腔有清亮带黄白色的渗出液积聚;肾脏发生肿胀,呈淡黄色或者苍白色,且全身淋巴结发生肿胀、出血;胃底存在弥漫性出血,部分还会形成溃疡;胃肠道存在血凝块;膀胱黏膜出现充血或者出血。另外,病猪的生殖器官发生水肿和出血。

食品中玉米赤霉烯酮的快速检测 胶体金免疫层析法(KJ201913)

附件13 食品中玉米赤霉烯酮快速检测 胶体金免疫层析法 (KJ201913) 1.范围 本标准规定了食品中玉米赤霉烯酮快速检测胶体金免疫层析法。 本标准适用玉米、小麦及其碾磨加工品中玉米赤霉烯酮快速筛选测定。 第一法比色法 2.原理 本方法采用竞争抑制免疫层析原理。样品中的玉米赤霉烯酮经提取后与胶体金标记的特异性抗体结合,抑制抗体和试纸条中检测线(T线)上的抗原结合,从而导致检测线颜色深浅的变化。通过检测线(T线)与控制线(C线)颜色深浅的比较,对样品中玉米赤霉烯酮进行结果判定。 3.试剂及材料 除另有规定外,本方法所用试剂均为分析纯,试验用水为GB/T 6682规定的二级水。 3.1.试剂 3.1.1.乙腈。 3.1.2.甲醇+水(7+3,体积比)。 3.1.3.稀释缓冲液(胶体金免疫层析检测试剂盒专用提取液或根据产品使用说明书配置)。 3.2.参考物质 玉米赤霉烯酮的中文名称、英文名称、CAS登录号、分子式、相对分子量见表1,纯 度≥95%。 表1 玉米赤霉烯酮参考物质的中文名称、英文名称、CAS登录号、分子式、相对分子量 注:或等同可溯源物质。 3.3.标准溶液的配制 3.3.1.标准储备液:称取适量标准品,用乙腈(3.1.1)溶解,配制成浓度为100 μg/mL的标 准储备液。﹣18 ℃避光保存,有效期6个月。

3.3.2.标准工作液:准确量取标准储备液(100 μg/mL)(3.3.1)100 μL,置于10 mL容量瓶 中,用乙腈(3.1.1)稀释至刻度,摇匀,制成浓度为1 μ稀/mL的玉米赤霉烯酮标准工作液,2 ℃~8 ℃避光保存,有效期1个月。 3.4.材料 玉米赤霉烯酮胶体金免疫层析试剂盒,适用基质为玉米、小麦及其碾磨加工品。 4.仪器和设备 4.1.移液器:100 μL、200 μL、1 mL和5 mL。 4.2.旋涡混合器。 4.3.离心机。 4.4.电子天平:感量为0.01 g。 5.环境条件 环境温度:20 ℃~30 ℃。 空气相对湿度:最佳测定湿度45 %~65 %。若湿度低于45 %,相应延长待测液-试纸条反应时间,以质控实验为准;若湿度为65 %~80 %,微孔与试纸条拆开后立即使用,避免微孔与试纸条长时间暴露在空气中受潮;避免在湿度80 %以上湿度进行实验。 6.分析步骤 6.1.试样制备 按GB 5491扦取的样品充分碾磨或粉碎混匀,过40目筛。 6.2.提取 准确称取试样5.0 g(精确至0.01 g)于50 mL离心管中,加入20 mL 甲醇+水溶液(3.1.2),用旋涡混合器振荡3 min,离心分层或静置分层,上清液备用。 准确移取0.8 mL稀释缓冲液(3.1.3)于1.5 mL离心管中,加入25 μL上清液,混匀,待检。 6.3.测定步骤 依检验所需,取相应数量的金标微孔和试纸条,做好标记。吸取待检液200 μL于金标微孔中,抽吸至孔底的紫红色颗粒完全溶解,孵育10 min。将试纸条插入金标微孔中,反应3 min~5 min。 从金标微孔中取出试纸条,弃去试纸条下端的样品垫,观察显色情况,进行结果判定。(若试剂盒冷藏保存,使用前需恢复至实验环境温度。) 7.质控试验 每批样品应同时进行空白试验和阳性质控试验,可根据检测样品量制定适宜频次的质控试验。 7.1.空白试验 7.1.1.试剂空白试验:除不称取试样外,均按6.2和6.3所述步骤操作。 7.1.2.基质空白试验:准确称取空白试样,按6.2和6.3所述步骤操作。 7.2.阳性质控试验

玉米赤霉烯酮霉菌毒素对规模化猪场饲料的危害

玉米赤霉烯酮霉菌毒素对 规模化猪场饲料的危害 ■蓝荣庚 (新希望六和股份重庆希望饲料有限公司,重庆401121) 摘要:文章旨在阐述当今规模化猪场对饲料玉米赤霉烯酮的属性(生存环境)、母猪(青年母猪及经产母猪)食入不同剂量的影响表现(致病机理)、可视临诊表象(症状)、对猪的宏观损伤的认识作了综述。 关键词:规模化猪场;饲料霉菌毒素;玉米赤霉烯酮;危害 doi:10.13302/https://www.wendangku.net/doc/da13017142.html,ki.fi.2015.Z2.003 中图分类号:S509文献标识码:A文章编号:1001-991X(2015)Z2-0014-03 Hazard of zearalenone on large-scale pig farm Lan Ronggeng Abstract:This paper reviewed zearalenone situation in feed of large-scale pig farm,the effect and nosogen?esis of zearalenone with different concentrations on sows(gilt and multipara),visible clinical symptoms and the macroscopical damage of zearalenone on pig. Key words:large-scale pig farm;feed mytoxins;zearalenone;hazard 玉米赤霉烯酮具有良好的热稳定性,在水中的溶解度低,但极易溶于有机溶剂。这类霉菌可在多种谷物上滋生,特别是在温度中等、湿度较高的环境下。低温环境下的温度波动可以导致毒素的大量产生。此类霉菌最适的生长温度为25℃左右,当环境温度降低到10℃左右,湿度大于14%时,会激发霉菌发生一种次级代谢反应,这种次级代谢反应会导致玉米赤霉烯酮的产生。毒素进入动物体内会发挥类似雌激素的作用。猪是最敏感的动物,当摄入毒素浓度为 0.1mg/kg饲料时就会表现临床症状。猪玉米赤霉烯酮中毒的主要症状有外阴阴道炎、产弱仔、产死仔和仔猪八字腿等。另外常见受胎率的显著下降,同时伴有重复高热。 玉米赤霉烯酮主要由镰刀菌产生,但是谷物中直接产生的是反式-α-玉米赤霉烯醇,它是一种白色结晶化合物,相对分子质量318,熔点164~165℃,光滑吸收峰值出现在(吸光系数)236nm、274nm和316nm。玉米赤霉烯酮被长波紫外线(360nm)激发时发蓝绿色荧光,被短波紫外线(260nm)激发时发绿光会更强烈。大米煮熟之后毒素含量可以减少37%。尽管发酵过程可能减少50%的玉米赤霉烯酮,但是在不同国家生产的啤酒中都有不同程度的检出。 玉米赤霉烯酮在低温(8~14℃)下最易产生。环境温度从较低温度变化到中等温度的过程中(8~24℃)会造成玉米赤霉烯酮的大量产生。其他的适于玉米赤霉烯酮产生的条件主要就是高湿度,因为众所周知镰刀菌属霉菌的生长需要很高的湿度。当谷物含水量大于22%或者水分活度AW大于0.85时,玉米赤霉烯酮的产生量最大。 大约10%的发酵饲料产品存在玉米赤霉烯酮污染,其中包括啤酒,其污染浓度为8~53μg/l。产生玉米赤霉烯酮的这些霉菌同时也产生呕吐毒素和瓜萎镰菌醇等毒素。 玉米赤霉烯酮被摄入体内后,立即被肠道菌群或黏膜细胞生物转化。之后,这些产物很快与动物身体内源物质结合,并通过血流运输到体内各处。玉米赤霉烯酮存在肝肠循环,因为在动物摄入含有毒素的饲料后,在血液中可以检测到毒素的确切时间点,粪便中也可以检出毒素。玉米赤霉烯酮的生物转化主要发生在肝脏中。在哺乳动物体内,玉米赤霉烯酮的六位碳原子上的酮基被还原后形成不同的立体异构体,主要是α-和β-玉米赤霉烯醇。这些化合物迅速与葡萄醛酸结合。还有一个类似结构的化合物,叫做玉米赤霉醇,它通过玉米赤霉烯酮合成,被用来促进猪的卵巢及外阴的肿胀(增重)。它与玉米赤霉烯酮不同之处 14

玉米赤霉烯酮对养猪业的危害

青岛农业大学 本科生课程论文 论文题目玉米赤霉烯酮对养猪业的危害学生专业班级动物医学2012级03班 学生姓名(学号)王琪(20121662) 指导教师陈甫 完成时间2015年4月14 日 2015 年 4 月14 日

课程论文任务书 学生姓名王琪指导教师陈甫 论文题目玉米赤霉烯酮对养猪业的危害 论文内容(需明确列出研究的问题):玉米赤霉烯酮又称F-2毒素,它首先从有赤霉病的玉米中分离得到。玉米赤霉烯酮具有雌激素样作用,能造成动物急慢性中毒,引起动物繁殖机能异常甚至死亡,可给畜牧场造成巨大经济损失。因此,对玉米赤霉烯酮的毒害作用应给予积极防治,减少畜产品的损失。另一方面,可以利用玉米赤霉烯酮在农作物生产方面的调控作用,开发出高产高质的新产品。 本文主要讲了以下几个内容: 1、玉米赤霉烯酮对动物的作用 2、玉米赤霉烯酮的检测方法 3、玉米赤霉烯酮对养猪业的危害 4、玉米赤霉烯酮的治疗预防 资料、数据、技术水平等方面的要求: 1、参考文献要看至少30篇,包括参考至少5篇外文文献。 2、熟练查阅国内外文献,尤其利用我校清华同方数据库,查阅并收集与本论文相关的各种资料包括各种中外文资料,对外文资料能熟练查阅,查阅的资料要有相关的科学依据来源可靠。 3、严禁抄袭。 发出任务书日期2015年3月20日完成论文日期2015年4月14日 教研室意见(签字) 院(部)院长意见(签字)

玉米赤霉烯酮对养猪业的危害 动物医学2012级03班王琪(20121662)指导老师:陈甫摘要:玉米赤霉烯酮又称F-2毒素,它首先从有赤霉病的玉米中分离得到。玉米赤霉烯酮具有雌激素样作用,能造成动物急慢性中毒,引起动物繁殖机能异常甚至死亡,可给畜牧场造成巨大经济损失。因此,对玉米赤霉烯酮的毒害作用应给予积极防治,减少经济损失。 关键词:玉米赤霉烯酮;机理;危害;预防 霉菌毒素是由霉菌或真菌产生的有毒有害物质。在植物上,包括谷物、饲草和青贮饲料均可发现霉菌毒素。主要指霉菌在其所污染的食品中产生的有毒代谢产物,它们可通过饲料或食品进入人和动物体内,引起人和动物的急性或慢性毒性,损害机体的肝脏、肾脏、神经组织、造血组织及皮肤组织等。因此,它对于畜牧业与农业有重要的影响。下面我们就浅谈玉米赤霉烯酮对养猪业的危害[1~4]。 玉米赤霉烯酮具有雌激素作用,主要作用于生殖系统,可使家畜,家禽和实验小鼠产生雌性激素亢进症。妊娠期的动物(包括人)食用含玉米赤霉烯酮的食物可引起流产、死胎和畸胎。食用含赤霉病麦面粉制作的各种面食也可引起中枢神经系统的中毒症状,如恶心、发冷、头痛、神智抑郁和共济失调等。 1 玉米赤霉烯酮对动物的作用 玉米赤霉烯酮具有雌激素的作用,其强度为雌激素的十分之一,可造成家禽和家畜的雌激素水平提高。目前发现,猪对此毒素较为敏感。玉米赤霉烯酮作用的靶器官主要是雌性动物的生殖系统,同时对雄性动物也有一定的影响。在急性中毒的条件下,对神经系统、心脏、肾脏、肝和肺都会有一定的毒害作用[5~9]。主要的机理是它会造成神经系统的亢奋,在脏器当中造成很多出血点,使动物突然死亡。主要的原因还是由于雌激素水平过高而造成的。 2 玉米赤霉烯酮的检测方法 目前,一般都采取液相和气相色谱的方法进行测定。测定对仪器的要求也很高,但结果很准确。还有的是从分子生物学的角度进行分析,测定的范围在5-100μg/mL。但目前也探索出一套可供实验室简易测定的方法。称取10g样品,先用10mL1mol/L的盐酸酸化,然后用100mL氯仿萃取30min,静置后过滤。取氯仿液20mL,用1mol/L氢氧化钠50mL

相关文档