文档库 最新最全的文档下载
当前位置:文档库 › 巩固练习_幂函数及图象变换_提高

巩固练习_幂函数及图象变换_提高

幂函数及图象变换_提高

一、选择题

1.函数1

2y x

-

=的定义域是( )

A.[0,+∞)

B.(-∞,0)

C.(0,+∞)

D.R

2. 设1112,1,,,,1,2,3232

α??∈---???

?

,则使()f x x α

=为奇函数且在()0,+∞上单调递减的α的值的个

数是( ).

A. 1

B. 2

C. 3

D. 4

3.当(1,)x ∈+∞时,下列函数的图象全在直线y x =下方的偶函数是( ).

A. 12

y x = B. 2y x -= C. 2y x = D. 1

y x -= 4.如果243

()(1)m m f x m x -+=-是幂函数,则()f x 在其定义域上是( ).

A.增函数

B.减函数

C.在(),0-∞上是增函数,在()0,+∞上是减函数

D.在(),0-∞上是减函数,在()0,+∞上也是减函数 5. 如图所示,幂函数α

x y =在第一象限的图象,比较

1,,,,,04321αααα的大小( )

A .102431<<<<<αααα

B .104321<<<<<αααα

C .134210αααα<<<<<

D .142310αααα<<<<<

6. 三个数133()4a -=,143()4b -=,1

4

3()2

c -=的大小顺序是( )

A.c

B.c

C.a

D.b

2()log f x x =,那么(8)f = ( ) A.43 B.8 C.18 D.12

8.若幂函数()f x 存在反函数1

()f

x -,且反函数的图象经过则()f x 的表达式为( )

A.3

()f x x = B.3

()f x x -= C.1

3

()f x x = D.13

()f x x -=

二、填空题

9.函数152

2

(1)(3)

y x x -

=-+-的定义域是 .

10.已知5

3

()8f x x ax bx =++-,且(2)10f -=,则(2)f = . 11.方程2

22x

x +=的解的个数是 . 12.函数1

()2

x f x x +=

+的对称中心是 ,在区间 是 函数.(填“增”或“减”) 三、解答题

13.已知二次函数()y f x =满足(2)(3)0f f -==,且()f x 的最大值为5,求()y f x =的表达式.

14. 已知函数()f x 和()g x 的图象关于原点对称,且2

()2f x x x =+. (1)求函数()g x 的解析式;

(2)解不等式函数()()|1|g x f x x ≥--.

15.已知幂函数21322

()()p p f x x

p Z -++=∈在()0,+∞上是增函数,且在其定义域内是偶函数.

(1)求p 的值,并写出相应的函数();f x

(2)对于(1)中求得的函数()f x ,设函数[]2

()()(21)()1g x q f x q f x =-+-+,问是否存在实数

(0)q q <,使得()g x 在区间(],4-∞-上是减函数,且在()4,0-上是增函数,若存在,请求出q 来,若不

存在,请说明理由。

答案与解析 一、选择题 1.C

2.A 当11,,1,33

α=-时,()f x x α

=为奇函数,当2,1α=--时()f x 在()0,+∞上单调递减,∴同

时满足两个条件的α只有一个,即1α=-.故选A .

3.B 因为是偶函数,排除A 、D ;又要求当()1,x ∈+∞时,图象在直线y x =下方,故2

y x -=适合.

4.D 要使()f x 为幂函数,则11m -=,即2m =.当2m =时,2

431m m -+=-,

1()f x x -∴=.∴()f x 在(),0-∞上是减函数,在()0,+∞上也是减函数.

5.D 在()0,+∞上单调递减的幂函数,幂指数小于0,故230,0αα<<,故选D .

6.B 因为指数函数3()4

x

y =是减函数,所以1134

33()()44-->,故a b >.又幂函数14y x -=在(0,)+∞上

是减函数,所以114

4

3342-

-

??

??

> ?

???

??

,故b c >,所以c b a <<. 7.D 令6,x t =则1

6(0)x t t =>,所以16221()log log 6f t t t ==,所以3

22111(8)log 8log 2662

f ===.

8.B

因为反函数的图象经过

,所以原函数图象经过

,所以3α

?= ??3α=-,故选B .

二、填空题

9.[1,3)

原函数y =,所以10,

30.x x -≥??->?

解得[)1,3x ∈.

10.-26 令5

3

()g x x ax bx =++,则()g x 为奇函数,又(2)(2)8f g -=--=10,(2)18g ∴-=。

(2)(2)8(2)818826f g g ∴=-=---=--=-。

11.2个 利用数形结合,分别作出函数2x y =和2

2y x =-+的图象,可以看出图象又两个交点,即方

程的解.

12.(-2,1);(-∞,-2),(-2,+∞);增 函数11122

x y x x +=

=-

++,将1

y x =-的图象向左平移2个单位,再向上平移一个单位,可以看出图象的对称中心是(-2,1).增区间是(-∞,-2),(-2,+∞).

三、解答题

13.解析:由题意知,-2,3是二次函数的零点,

故设二次函数表达式为()(2)(3)f x a x x =+-,而且对称轴为12

x = 即当1

2x =

时该函数的最大值为5. 111()(2)(3)222

f a =+-=5,解得45a =-

所求的函数表达式为4

()(2)(3)5

f x x x =-+-.

14. 解析:(1)设函数()y f x =的图象上任一点0,0()Q x y 关于原点的对称点为(),P x y ,则

000,20.

2

x x

y y +?=???

+?=??,即00,x x y y =-??=-?,因为点0,0()Q x y 在函数()y f x =的图象上,所以2

()2()y x x -=-+?-,即2

()2g x x x =-+.

(2)由()()|1|g x f x x ≥--,得2

2|1|0x x --≤

当1x ≥时,2210x x -+≤,由函数2

21y x x =-+的图象可知,此不等式无解. 当1x <时,2

210x x +-≤,由函数2

21y x x =+-的图象,解得112

x -≤≤

. ∴原不等式的解集为11,.2??

-????

15.解析:(1)()f x 在()0,+∞上是增函数,

2213

0,230,(3)(1)022

p p p p p p ∴-++>∴--<-+<,

13p ∴-<<,由p Z ∈,得0,1,2p =。

当0p =或2p =时,3

2

()f x x =不合题意。 由此可知当1p =时,相应的函数式为2

().f x x =

(2)函数[]2

4

2

()()(21)1(21)1g x q f x q x qx q x =-+-+=-+-+,假设存在实数(0)q q <使得()

g x 满足条件。设12x x <,则

4242

212211()()(21)1(21)1g x g x qx q x qx q x ????-=-+-+--+-+????

=4422

1221()(21)()q x x q x x -+-- =2

2

2

2

1212()()(21)x x q x x q ??-+--??

=2

2

121212()()()(21)x x x x q x x q ??+-+--??。

①若(]12,,4x x ∈-∞-,易得120x x +<,()()12120x x x x ∴+->,要使()g x 在(],4-∞-上是减函数,则应使2

2

12()(21)0q x x q +--<恒成立,124,4x x <-≤- ,

221232,x x ∴+>又0q <,2212()32q x x q ∴+<,从而欲使22

12()(21)0q x x q +--<恒成立,则应有

2132q q -≥成立,即1

30

q ≤-

, ②同理,()12,4,0x x ∈-时,应有130q ≥-

。由①②可得130

q =-,综上所述,存在这样的实数1

30

q =-

,使得()q x 在(],4-∞-上是减函数,且在()4,0-上是增函数。 点评:在(2)问求p 的时候采用了恒成立的问题的解法,进而转化为求最值由两个区间上求得的p 值

取交集即为所求。

函数的图象变换(习题)

函数的图象变换(习题) 1.函数y=-2x2的图象是由函数y=-2x2+4x+6的图象经过怎样的变换得到的? () A.向左平移1个单位长度,向上平移8个单位长度 B.向右平移1个单位长度,向上平移8个单位长度 C.向左平移1个单位长度,向下平移8个单位长度 D.向右平移1个单位长度,向下平移8个单位长度 4.若函数(1) x y a b =-+(a>0,且a≠1)的图象在第一、三、四象限,则必有()

A .0<a <1,b >0 B .0<a <1,b <0 C .a >1,b <0 D .a >1,b > 5. 若函数()y f x =与()y f x =的图象相同,则()f x 可能是( ) A .1y x -= B .2x y = C .2log y x = D .21y x =- 6. 当0<a <1时,函数()log ()a f x x =-与()1g x ax =-的图象的交点在( ) A . 第四象限 B .第三象限 C .第二象限 D .第一象限 7. 在同一平面直角坐标系内,函数1()3x f x -=与1()3x g x +=的图象关于( ) A .y 轴对称 B .x 轴对称 C .原点对称 D .直线x =1对称

f (x -1)的函数 f (-x )的函数 |f (x )|的函数 f (|x |)的函数 A B C D 10. 将()y f x =的图象向右平移1个单位长度,所得图象与y =ln x 关于y 轴对称, 则()y f x =的解析式为( ) A .()ln(1)f x x =+ B .()ln(1)f x x =- C .()ln(1)f x x =-+ D .()ln(1)f x x =-- 11. 若函数22()(1)()f x x x ax b =-++的图象关于直线x =-2对称,则a ,b 的值分 别为( ) A .15,8 B .8,15 C .3,4 D .-3,-4 12. 已知函数()y f x =的图象关于直线x =1对称,且在[1)+∞,上单调递减, (0)0f =,则(1)0f x +>的解集为( ) A . (1)+∞, B .(1)(1)-∞-+∞,, C .(1)-∞-, D .(11)-, 13. 已知函数() y f x =的图象与ln y x =的图象关于x 轴对称,则 (2)f =_____________.

幂函数题型归纳

幂函数知识点归纳及题型总结 一、 幂函数定义:对于形如:() x f x α=,其中α为常数.叫做幂函数 定义说明: 1、 定义具有严格性,x α系数必须是1,底数必须是x 2、 α取值是R . 3、 《考试标准》要求掌握α=1、2、3、?、-1五种情况 二、 幂函数的图像 幂函数的图像是由α决定的,可分为五类: 1)1α>时图像是竖立的抛物线.例如:()2x f x = 2)=1α时图像是一条直线.即() x f x = 3)01α<< 时图像是横卧的抛物线.例如()1 2x f x = 4)=0α时图像是除去(0,1)的一条直线.即() 0x f x =(0x ≠) 5)0α<时图像是双曲线(可能一支).例如() -1 x f x = 具备规律: ①在第一象限内x=1的右侧:指数越大,图像相对位置越高(指大图高) ②幂指数互为倒数时,图像关于y=x 对称 ③结合以上规律,要求会做出任意一种幂函数图像 三、幂函数的性质 幂函数的性质要结合图像观察,随着α取值范围的变化,性质有所不同。 1、 定义域、值域与α有关,通常化分数指数 幂为根式求解 2、 奇偶性要结合定义域来讨论 3、 单调性:α>0时,在(0,+∞)单调递 增:α=0无单调性;α<0时,在(0,+∞)单调递减 4、 过定点:α>0时,过(0,0)、(1,1)两

点;α≤0时,过(1,1) 5、 由 ()0 x f x α=>可知,图像不过第四象限 一、幂函数解析式的求法 1. 利用定义 (1)下列函数是幂函数的是 ______ ①21()y x -= ②22y x = ③21(1)y x -=+ ④0 y x = ⑤1y = (2(3 2 3 1. (1)、函数3 x y =的图像是( ) (2)右图为幂函数y x α =在第一象限的图像,则,,,a b c d 的大小关系是 ( )

(完整版)函数图象变换及经典例题练习

函数图象变换 1、平移变换(左加右减上加下减): y=f(x)h 左移→y=f(x+h); y=f(x)h 右移→y=f(x -h); y=f(x)h 上移→y=f(x)+h; y=f(x)h 下移→y=f(x)-h. 2、对称变换: y=f(x) 轴x →y= -f(x); y=f(x) 轴y →y=f(-x); y=f(x) 原点 →y= -f(-x). y=f(x) a x =→直线y=f(2a -x); y=f(x) x y =→直线y=f -1(x); 3、翻折变换: (1)函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方, 去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; (2)函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原y 轴左 边部分并保留()y f x =在y 轴右边部分即可得到. 4、伸缩变换: y=f(x)ω?→x y=f(ωx ); y=f(x)ω ?→y y=ωf(x). 经典题型:作已知函数的图像、知式选图或知图选式、图像应用 例1.函数1 11--=x y 的图象是( ) 答案B 例2.如图所示,)(),(),(),(4321x f x f x f x f 是定义在]1,0[上的四个函数,其中满足性质:“对]1,0[中任意的1x 和2x ,)]()([2 1)2(2121x f x f x x f +≤+恒成立”的只有( ) 答案A

例3、利用函数x x f 2)(=的图象,作出下列各函数的图象: (1))1(-x f ;(2)|)(|x f ;(3)1)(-x f ;(4))(x f -;(5).|1)(|-x f 例4已知0>a ,且≠a 1,函数x a y =与)(log x y a -=的图象只能是图中的( ) 答案B 例5函数)(x f y =与函数)(x g y =的图象如右上,则函数)(x f y =·)(x g 的图象是( ) 答案A 例6 已知函数y =f (x )的周期为2,当x ∈[-1,1]时f (x )=x 2,那么函数y =f (x )的图象与函数y =|lg x |的图象的交点共有( ). A .10个 B .9个 C .8个 D .1个 解析:画出两个函数图象可看出交点有10个.答案 A

赏析幂函数的图象特征及应用

一、幂函数图像的分布规律 幂函数图像的分布规律可用“一全有、二一偶、三一奇、四全无”来说明。 1.“一全有”:指所有幂函数的图像在第一象限都出现, 分布情况如图1所示,其特点如下:①抓住三条特征 线:直线x=1,y=x ,y=1把幂函数的图像分为三个区 域,这三个区域对应着幂函数y=x α在α<0,0<α<1, α>1时的图像;②第一象限内幂函数y=x α图像的区 域分布情况为:在直线x=1的右边,α越大,图像越高,越趋向于直线x=1;在直线x=1的右边,α越小,其图像越低,越趋向于x 轴。 2.“二一偶”:指当幂函数为偶函数时,其图像关于y 轴对称,即幂函数的图像出现在第一、第二象限。 3.“三一奇”:指当幂函数为奇函数时,其图像关于原点对称,即幂函数的图像出现在第一、第三象限。 4.“四必无”:指由定义,知幂函数的图像不可能出现在第四象限。 二、幂函数图像的应用 1.识别图像 例1.图2中 的曲线是幂函数y=x α在第一象限的图像,已知α取±2,±12四个值,则其相应于曲线C 1,C 2,C 3,C 4的α依次为( ) A.-2,-12,12,2 B.2,12,-12,-2 C.- 12,-2,2,12 D.2,12,-2,-12 解:根据幂函数的图像特点,立即可以断定相应于曲线C 1,C 2,C 3,C 4的α值排序是由大到小,故选B 。 2.用于判断方程的个数 例2.方程x 2=2x 的根的个数为( ) A.1 B.2 C.3 D.

解:令f(x)=x2,g(x)=2x,在同一坐标平面内作出这两个函数的图象,如图三所示,由图可知,交点有三个,所以方程x2=2x的根的个数为3,故选C。

三角函数图像的平移、变换练习题

三角函数图像的平移、变换练习题 1、为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6 y x π=+的图像( ) (A )向左平移4π个长度单位 (B )向右平移4 π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2 π个长度单位 2、将函数sin y x =的图像上所有的点向右平行移动10 π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是 (A )sin(2)10y x π=- (B )sin(2)5 y x π=- (C )1sin()210y x π=- (D )1sin()220 y x π=- 5y Asin x x R 66ππω???=∈???? 右图是函数(+)()在区间-,上的图象,为了得到这个函数的图象,只要将y sin x x R =∈()的图象上所有的( ) (A)向左平移 3π个单位长度,再把所得各点的横坐标缩短到原来的12 倍,纵坐标不变 (B) 向左平移3 π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 (C) 向左平移 6 π个单位长度,再把所得各点的横坐标缩短到原来的12倍,纵坐标不变 (D) 向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变 4、若将函数()tan 04y x πωω? ?=+> ???的图像向右平移6 π个单位长度后,与函数tan 6y x πω??=+ ?? ?的图像重合,则ω的最小值为( ) A .16 B. 14 C. 13 D. 12 5、已知函数()sin()(,0)4f x x x R π ??=+∈>的最小正周期为π,为了得到函数

函数图象变换的四种方式

函数图象变换的四种方 式 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

函数图象变换的四种方式 一,平移变换。 (1)水平平移: 要由函数y=f(x)的图象得到函数y=f(x+a)的图象,只要将f(x)的图象向左平移a个单位。 要由函数y=f(x)的图象得到函数y=f(x-a)的图象,只要将f(x)的图象向右平移a个单位。 (简记:左加右减,这里的a>0。) (2)上下平移: 要由函数y=f(x)的图象得到函数y=f(x)+a的图象,只要将f(x)的图象向上平移a个单位。 要由函数y=f(x)的图象得到函数y=f(x)-a的图象,只要将f(x)的图象向下平移a个单位。 (简记:上加下减,这里的a>0) 二,对称变换。 (1)y=f(x)与y=f(-x)的图象关于y轴对称。 所以由f(x)的图象得到f(-x)的图象,只需将f(x)的图象以y轴为对称轴左右翻折就可得到f(-x)的图象。(简记:左右翻折) (2)y=f(x)与y=-f(x)的图象关于 x轴对称。 所以由f(x)的图象得到-f(x)的图象,只需将f(x)的图象以x轴为对称轴上下翻折就可得到-f(x)的图象。(简记:上下翻折) (3)y=f(x)与y=-f(-x)的图象关于原点对称。

所以由f(x)的图象得到-f-(x)的图象,只需将f(x)的图象以原点为对称中心旋转180度就可得到-f(-x)的图象。(简记:旋转180度) 三,翻折变换。 (1)如何由y=f(x)的图象得到y=f(|x|)的图象? 先画出函数y=f(x) y轴右侧的图象,再作出关于y轴对称的图形 (简记:右不动,左对称) (2)如何由y=f(x)的图象得到y=|f(x)|的图象? 先画出函数y=f(x)的图象,再将x轴下方的图象以x轴为对称轴翻折到x轴上方去。 (简记:上不动,下上翻) 四,伸缩变换。 (1)如何由函数y=f(x)的图象得到函数y=af(x)的图象?(a>0) 可将函数f(x)的图象上每个点的纵坐标变为原来的a倍,横坐标不改变,就可得到函数af(x)的图象。 (2)如何由函数y=f(x)的图象得到函数y=f(ax)的图象?(a>0) 可将函数f(x)的图象上每个点的横坐标变为原来的1/a倍,纵坐标不改变,就可得到函数f(ax)的图象。

幂函数的图像与性质

【知识结构】 1.有理数指数幂 (1)幂的有关概念 ①正数的正分数指数幂 :0,,1)m n a a m n N n *=>∈>、且; ②正数的负分数指数幂 : 1 0,,1)m n m n a a m n N n a -*==>∈>、且 ③0的正分数指数幂等于0,0的负分数指数幂没有意义. 注:分数指数幂与根式可以互化,通常利用分数指数幂进行根式的运算。 (2)有理数指数幂的性质 ①a r a s =a r+s (a>0,r 、s ∈Q );②(a r )s =a rs (a>0,r 、s ∈Q ); ③(ab)r =a r b s (a>0,b>0,r ∈Q );. 例2 (1)计算:25 .021 21325.0320625.0])32.0()02.0()008.0()945()833[(÷?÷+---; (2)化简:533233232332 3134)2(248a a a a a b a a ab b b a a ???-÷++-- 变式:(2007执信A )化简下列各式(其中各字母均为正数): (1) ;)(653 12121 132b a b a b a ????--(2).)4()3(6521332121231----?÷-??b a b a b a (3) 1 00.256371.5()86-?-+

(三)幂函数 1、幂函数的定义 形如y=x α(a ∈R )的函数称为幂函数,其中x 是自变量,α为常数 注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。 例1.下列函数中不是幂函数的是( ) A .y x = B .3y x = C .2y x = D .1y x -= 例2.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x : (1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数; (3)是正比例函数;(4)是反比例函数;(5)是二次函数; 变式 已知幂函数2 223(1)m m y m m x --=--,当(0)x ∈+,∞时为减函数,则幂函数y =_______. 2.幂函数的图像 幂函数y =x α的图象由于α的值不同而不同. α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升; α<0时,图象不过原点,在第一象限的图象下降,反之也成立;

二次函数图像的变换练习题

二次函数图像的变换 1、 把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为 A .()213y x =--- B .()213y x =-+- C .()213y x =--+ D .()2 13y x =-++ 2、将抛物线22y x =向下平移1个单位,得到的抛物线是( ) A .()221y x =+ B .()221y x =- C .221y x =+ D .221y x =- /3将抛物线23y x =向上平移2个单位,得到抛物线的解析式是( ) A. 232y x =- B. 23y x = C. 23(2)y x =+ D. 232y x =+ 4、函数23(2)1y x =+-的图象可由函数23y x =的图象平移得到,那么平移的步骤 是:( ) A. 右移两个单位,下移一个单位 B. 右移两个单位,上移一个单位 C. 左移两个单位,下移一个单位 D. 左移两个单位,上移一个单位 5、函数22(1)1y x =---的图象可由函数22(2)3y x =-++的图象平移得到,那么平移的步骤是( ) A. 右移三个单位,下移四个单位 B. 右移三个单位,上移四个单位 C. 左移三个单位,下移四个单位 D. 左移四个单位,上移四个单位 6、把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为 A .()213y x =--- B .()213y x =-+- C .()213y x =--+ D .()2 13y x =-++ 7、将抛物线23y x =向上平移2个单位,得到抛物线的解析式是( ) A. 232y x =- B. 23y x = C. 23(2)y x =+ D. 232y x =+ 8、函数2y x =与2y x =-的图象关于______________对称,也可以认为 2y x =是函数2y x =-的图象绕__________旋转得到. 9、已知:点P (2,7)在函数2y ax =+b 的图象上,而且当x=-√3时,y=5;(1)求a,b 的值并确定此函数的解析式。(2)若(1/2,m )和点(n,17)也在函数的图像上,求m 和n 的值。 10、已知一个二次函数图像的形状与抛物线Y=4x 2相同,它的顶点坐标是(2,4),求该二次函数的解析式。

幂函数的图像与性质

幂函数的图像与性质

(三)幂函数 1、幂函数的定义 形如y=x α(a ∈R )的函数称为幂函数,其中x 是自变量,α为常数 注:幂函数与指数函数有本质区别在于自变量的位置不同,幂函数的自变量在底数位置,而指数函数的自变量在指数位置。 例1.下列函数中不是幂函数的是( ) A .y x = B .3y x = C .2y x = D .1 y x -= 例2.已知函数()()2531m f x m m x --=--,当 m 为何值时,()f x : (1)是幂函数;(2)是幂函数,且是()0,+∞上的增函数; (3)是正比例函数;(4)是反比例函数;(5)是二次函数; 变式 已知幂函数2 223(1)m m y m m x --=--,当(0)x ∈+,∞时为减函数,则幂函数 y =_______. 2.幂函数的图像 幂函数y =x α的图象由于α的值不同而不同. α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升; α<0时,图象不过原点,在第一象限的图象下降,反之也成立;

3、幂函数的性质 y=x y=x 2 y=x 3 12 y x = y=x -1 定义域 R R R [0,+∞) {}|0x x R x ∈≠且 值域 R [0,+∞) R [0,+∞) {}|0y y R y ∈≠且 奇偶性 奇 偶 奇 非奇非偶 奇 单调性 增 x ∈[0,+∞)时,增; x ∈(,0]-∞时,减 增 增 x ∈(0,+∞)时,减; x ∈(-∞,0)时,减 定点 (1,1) 例3.比较大小: (1)112 2 1.5,1.7 (2)33( 1.2),( 1.25)--(3)112 5.25,5.26,5.26---(4)30.530.5,3,log 0.5 4.幂函数的性质及其应用 幂函数y =x α有下列性质: (1) 单调性:当α>0时,函数在(0,+∞)上单调递增; 当α<0时,函数在(0,+∞)上单调递减. (2)奇偶性:幂函数中既有奇函数,又有偶函数,也有非奇非偶函数,可以用函数奇偶性的定义进行判断. 例4.已知幂函数2 23 m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于 原点对称,求m 的值.

函数图象的三种变换

. 函数图象的三种变换 函数的图象变换是高考中的考查热点之一,常见变换有以下3种: 一、平移变换 2,在同一坐标系中画出:=x设f(x)例1 (1)y=f(x),y=f(x+1)和y=f(x-1)的图象,并观察三个函数图象的关系; (2)y=f(x),y=f(x)+1和y=f(x)-1的图象,并观察三个函数图象的关系.解(1)如图 (2)如图

点评观察图象得:y=f(x+1)的图象可由y=f(x)的图象向左平移1个单位长度得到;y=f(x-1)的图象可由y=f(x)的图象向右平移1个单位长度得到; y=f(x)+1的图象可由y=f(x)的图象向上平移1个单位长度得到; y=f(x)-1的图象可由y=f(x)的图象向下平移1个单位长度得到. 小结:

二、对称变换的图象,并观察两个函数图)-xy=f(x+1,在同一坐标系中画出y=f()和x例2设f(x)=象的关系.1的图象如图所示.=-x+x与y=f(-)+y解画出=f(x)=x1 由图象可得函数y=x+1与y=-x+1的图象关于y轴对称. 点评函数y=f(x)的图象与y=f(-x)的图象关于y轴对称; 函数y=f(x)的图象与y=-f(x)的图象关于x轴对称; 函数y=f(x)的图象与y=-f(-x)的图象关于原点对称. 三、翻折变换 例3 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=|f(x)|的图象,并观察两个函数1 / 6

. 图象的关系. 解y=f(x)的图象如图1所示,y=|f(x)|的图象如图2所 示. 点评要得到y=|f(x)|的图象,把y=f(x)的图象中x轴下方图象翻折到x轴上方,其余部分不变.例4 设f(x)=x+1,在不同的坐标系中画出y=f(x)和y=f(|x|)的图象,并观察两个函数图象的关系. 解如下图所 示. 点评要得到y=f(|x|)的图象,先把y=f(x)图象在y轴左方的部分去掉,然后把y轴右边的对称图象补到左方即可. 小结: 保留x轴上方图象y?f(x)????????y=|f(x)|. 将x轴下方图象翻折上去保留y轴右侧图象y?f(x)?????????y=f(|x|). 并作其关于y轴对称的图象如图:

(新)高中数学复习专题一---函数图象问题

专题一 函数图象 数形结合是中学数学的重要的数学思想方法,尤其是函数的图象更是历年高考的热点.函数图象是函数的一种表达形式,形象的显示了函数的性质,为研究数量关系提供了“形”的直观性,它是探求解题途径,获得问题的结果的重要工具. 一、知识方法 1.函数图象作图方法 (1)描点法:列表、描点(注意关键点:如图象与x 、y 轴的交点,端点,极值点等))、连线(注 意关键线:如;对称轴,渐近线等) (2)利用基本函数图象变换。 2.图象变换(由一个图象得到另一个图象):平移变换、对称变换和伸缩变换等。 (1)平移变换 ① 水平平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; ② 竖直平移:函数()y f x a =+的图象可以把函数()y f x =的图象沿y 轴方向向上(0)a >或向下(0)a <平移||a 个单位即可得到. (2)对称变换 ① 函数()y f x =-的图象可以将函数()y f x =的图象关于y 轴对称即可得到; ② 函数()y f x =-的图象可以将函数()y f x =的图象关于x 轴对称即可得到; ③ 函数()y f x =--的图象可以将函数()y f x =的图象关于原点对称即可得到; (3)翻折变换 ① 函数|()|y f x =的图象可以将函数()y f x =的图象的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; ② 函数(||)y f x =的图象可以将函数()y f x =的图象右边沿y 轴翻折到y 轴左边替代原y 轴左边部分并保留()y f x =在y 轴右边部分即可得到. (4)伸缩变换 ① 函数()y af x =(0)a >的图象可以将函数()y f x =的图象中的每一点横坐标不变纵坐标伸长(1)a >或压缩(01a <<)为原来的a 倍得到; ② 函数()y f ax =(0)a >的图象可以将函数()y f x =的图象中的每一点纵坐标不变横坐标伸长(01a <<)或压缩(1)a >为原来的 1 a 倍得到. 3.函数图象的对称性:对于函数)(x f y =,若对定义域内的任意x 都有 ①)()(x a f x a f +=-(或))2()(x a f x f -=,则)(x f 的图象关于直线a x =对称; ②b x a f x a f 2)()(=++-(或)2)2()(b x a f x f =-+,,则)(x f 的图象关于点),(b a P 对称. 4、熟练掌握基本初等函数(如正、反比例函数,一次、二次函数,指数、对数函数,幂函数,三角函数)的图象 5、作函数图象的一般步骤: (1)求出函数的定义域;(2)化简函数式;(3)讨论函数的性质(如奇偶性、周期性、单调性)以及图像上的特殊点、线(如极值点、渐近线、对称轴等);(4)利用基本函数的图像(5)利

函数图像的四种变换形式

函数图像的四种变换 1.平移变换 左加右减,上加下减 ) ( ) (a x f y x f y+ = ?→ ? =沿x轴左移a个单位; ) ( ) (a x f y x f y- = ?→ ? =沿x轴右移a个单位; a x f y x f y+ = ?→ ? =) ( ) (沿y轴上移a个单位; a x f y x f y- = ?→ ? =) ( ) (沿y轴下移a个单位。 2.对称变换 同一个函数求对称轴或对称中心,则求中点或中心。 两个函数求对称轴或对称中心,则求交点。 (1)对称变换 ①函数) (x f y=与函数) (x f y- =的图像关于直线x=0(y轴)对称。 ②函数) (x f y=与函数) (x f y- =的图像关于直线y=0(x轴)对称。 ③函数) (a x f y+ =与) (x b f y- =的图像关于直线 2a b x - =对称 (2)中心对称 ①函数) (x f y=与函数) (x f y- - =的图像关于坐标原点对称 ②函数) (x f y=与函数) 2( 2x a f y b- = -的图像关于点(a,b)对称。 3伸缩变换 (1)) (x af y=的图像,可以将) (x f y=的图像纵坐标伸长(a>1)或缩短(a<1)到原来的a倍,横坐标不变。 (2)) (ax f y=(a>0)的图像,可以将) (x f y=的横坐标伸长(01)到原来的1/a倍,纵坐标不变。

4.翻折变换 (1)形如)(x f y =,将函数)(x f 的图像在x 轴下方的部分翻到x 轴上方,去掉原来x 轴下方的部分,保留原来在x 轴上方的部分。 (2)形如)(y x f =,将函数)(x f 在y 轴右边的部分沿y 轴翻到y 轴左边并替代原来y 轴左边部分,并保留)(x f y 轴左边部分,为)(y x f =的图像。 习题:①做出32y 2++=)(x 的图像 ②做出3+=x y 的图像

幂函数图象规律

幂函数图象有规律 幂函数()n y x n Q = 的图象看似复杂,其实很有规律。假如我们能抓住这些规律,那么幂函数图象问题就可迎刃而解。那么幂函数图象有哪些规律呢? 1.第一象限内图象类型之规律(如图1):1.n >1时,过(0,0)、(1,1)抛物线型,下凸递增。2.n =1时,过(0,0)、(1,1)的射线。 3.0<n <1时,过(0,0)、(1,1)抛物线型,上凸递增。4.n =O 时,变形为y =1(x ≠0),平行于x 轴的射线。 5.n <0时过(1,1),双曲线型,递减,与两坐标轴的正半轴无限接近。 2.第一象限内图象走向之规律(如图1): x ≥1部分各种幂函数图象,指数大的在指数小的上方;O <x <1部分图象反之,此二部分图象在(1,1)点穿越直线y =x 连成一体。 3.各个象限内图象分布之规律:设p n q = ,,p q 互质,,p Z q N 挝。 1.任何幂函数在第一象限必有图象,第四象限必无图象。 2.n =奇数/偶数时,函数非奇非偶,图象只在第一象限(如图1)。 3.n =偶数/奇数时,函数是偶函数、图象在第一、二象限并关于y 轴对称(如图2)。 4.n =奇数/奇数时,函数是奇函数,图象在第一、三象限并关于原点对称(如图3)。 5. 当n<0时,图像与x 轴,y 轴没有交点。 知识点:幂函数的图象特征: (1)任何幂函数在第一象限必有图象,第四象限必无图象. 先根据函数特征画出第一象限图象; ① 所有的幂函数在(0,+∞)都有定义, 并且图象都过点(1,1); ②0>α时,幂函数的图象通过原点, 并且在区间),0[+∞上是增函数. ③0<α时,幂函数的图象在区间),0(+∞上是减 函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴, 当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴. (2)如果幂函数是奇函数,在第 象限内有其中心(坐标原点)对称部分;如果幂函数是偶函数,在第 象限内有其轴(y 轴)对称部分;如果幂函数是非奇非偶函数,则其函数图象只在第一象限内.

函数图像的三种变换

函数图像的三种变换 函数在中学数学及大学数学中都是极其重要的内容,函数思想是解决函数问题的理论源泉; 函数的性质是解决函数问题的基础,而函数的图象则是函数性质的具体的直观的反应。在高中阶段函数图象的变化方式主要有以下三种: 一 、平移变换 函数图象的平移变换,表现在函数图象的形状不变,只是函数图象的相对位置在变化,其平移方式可分为以下两种: 1、 沿水平方向左右平行移动 比如函数)(x f y =与函数)0)((>-=a a x f y ,由于两函数的对应法则相同,x a x 与-取值范围一样,函数的值域一样。以上三条决定了函数的形状相同,只是函数的图象在水平方向的相对位置不同,如何将函数)(x f y =的图象水平移动才能得到函数)0)((>-=a a x f y 的图象呢?因为对于函数)(x f y =上的任意一点(11,y x ),在)(a x f y -=上对应的点为),(11y a x +,因此若将)(x f y =沿水平方向向右平移a 个单位即可得到)0)((>-=a a x f y 的图象。同样,将)(x f y =沿水平方向向左平移a 个单位即可得到)0)((>+=a a x f y 的图象。 2、沿竖直方向上下平行移动 比如函数)(x f y =与函数)0()(>+=b b x f y ,由于函数)(x f y =函数)0)((>=-b x f b y 中函数y 与b y -的对应法则相同,定义域和值域一样,因此两函数形状相同,如何将函数)(x f y =的图象上下移动得到函数)(x f b y =-的图象呢?因为对于函数)(x f y =上的任意一点(11,y x ),在)0)((>=-b x f b y 上对应的点为),(11b y x +,因此若将)(x f y =沿竖直方向向上平移a 个单位即可得到)0)((>=-b x f b y 的图象。同样,将)(x f y =沿竖直方向向下平移a 个单位即可得到)0)((>=+b x f b y 的图象。 函数图象的平移变化可以概括地总结为: (1)函数)(x f y =的图象变为)0,0)((>>-=-b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向右平移a 个单位,然后再沿竖直方向向上平移b 个单位即可。 (2)函数)(x f y =的图象变为)0,0)((>>+=+b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向左平移a 个单位,然后再沿竖直方向向下平移b 个单位即可。 (3)函数)(x f y =的图象变为)0,0)((>>+=-b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向左平移a 个单位,然后再沿竖直方向向上平移b 个单位即可。 (4)函数)(x f y =的图象变为)0,0)((>>-=+b a a x f b y 且的图象,只要将)(x f y =的图象沿水平方向向右平移a 个单位,然后再沿竖直方向向下平移b 个单位即可。 函数图象的平移的实质是有变量本身变化情况所决定的。 3、例题讲解 例1. 为了得到函数的图象,只需把函数的图象上所有的点( ) A. 向右平移3个单位长度,再向下平移1个单位长度 B. 向左平移3个单位长度,再向下平移1个单位长度 C. 向右平移3个单位长度,再向上平移1个单位长度 D. 向左平移3个单位长度,再向上平移1个单位长度 分析 把函数 x y 2=的图象向右平移3个单位,然后再向下平移1个单位,就得到函数123-=-x y 的图象。 故,本题选A 例2 把函数的图象向右平移1单位,再向下平移1个单位后,所得图象对应的函数解析式是( ). (A ) (B ) (C ) (D ) 分析 把已知函数图象向右平移1个单位, 即把其中自变量换成,得.

(完整word版)高中数学中的函数图象变换及练习题.doc

高中数学中的函数图象变换及练习题 ①平移变换: Ⅰ、水平平移:函数 y f ( x a) 的图像可以把函数 y f ( x) 的图像沿 x 轴方向向左 (a 0) 或向右 (a 0) 平移 | a | 个单位即可得到; 左移 h 右移 h 1) y =f ( x ) y =f ( x +h) ; 2)y =f ( x ) y =f ( x h) ; x 轴方向向上 Ⅱ、竖直平移:函数 y f ( x) a 的图像可以把函数 y f ( x) 的图像沿 (a 0) 或向下 (a 0) 平移 | a |个单位即可得到; 上移 h 下移 h 1) y =f ( x ) y =f ( x )+h ; 2) y =f ( x ) y =f ( x ) h 。 ②对称变换: Ⅰ、函数 y f ( x) 的图像可以将函数 y f ( x) 的图像关于 y 轴对称即可得到; y 轴 y =f ( x ) y =f ( x ) f ( x) 的图像关于 x 轴对称即可得到; Ⅱ、函数 y f ( x) 的图像可以将函数 y y =f ( x ) x 轴 y = f ( x ) Ⅲ、函数 y f ( x) 的图像可以将函数 y f ( x) 的图像关于原点对称即可得到; 原点 y =f ( x ) y = f ( x ) Ⅳ、函数 x f ( y) 的图像可以将函数 y f ( x) 的图像关于直线 y x 对称得到。 直线 y x y =f ( x ) x =f ( y ) Ⅴ、函数 y f ( 2a x) 的图像可以将函数 y f (x) 的图像关于直线 x a 对称即可得到 ③翻折变换: f ( x) 的图像的 x 轴下方部分沿 x 轴翻折到 x 轴上 Ⅰ、函数 y | f (x) |的图像可以将函数 y 方,去掉原 x 轴下方部分,并保留 y f ( x) 的 x 轴上方部分即可得到; Ⅱ、函数 y f (| x |) 的图像可以将函数 y f ( x) 的图像右边沿 y 轴翻折到 y 轴左边替代原 y 轴左边部分并保留 y f ( x) 在 y 轴右边部分即可得到 ④伸缩变换: Ⅰ、函数 y af ( x) ( a 0) 的图像可以将函数 y f (x) 的图像中的每一点横坐标不变纵坐 (a 1) 0 a 1 )为原来的 a 倍得到; = ( x ) y a 标伸长 或压缩( y =af ( x ) y f Ⅱ、函数 y f (ax) (a 0) 的图像可以将函数 y f (x) 的图像中的每一点纵坐标不变横坐 标伸长 (a 1) 或压缩( 0 a 1)为原来的 1 倍得到。 f ( x ) y =f ( x ) x a y =f ( ax ) a 1. 画出下列函数的图像 (1) y log 1 ( x) ( 2) y( 1 ) x (3) y log 2 x (4) y x 2 1 2 2 (5)要得到 y lg( 3 x) 的图像,只需作 y lg x 关于 _____轴对称的图像,再向 ____平移 3 个单位而得到。 ( 6 ) 当 a 1 时 , 在 同 一 坐 标 系 中 函 数 y a x 与 y log a x 的 图 像 ( )

【新课标】函数.幂函数课堂教案

§2.3幂函数(教案) 教学目标: 知识与技能 通过具体实例了解幂函数的概念,掌握幂函数的图象和性质,并能进行简 单的应用。 过程与方法 能够类比研究一般函数、指数函数、对数函数的过程与方法,研究幂函数 的图象和性质;培养学生数形结合、分类讨论的思想,以及分析归纳的能力。 情感、态度、价值观 体会幂函数的变化规律及蕴含其中的对称性,培养学生合作交流的意识。 教学重点: 重点 从五个具体幂函数图象中认识幂函数的一些性质。 难点 画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律。 教学关键:揭示出幂函数y x α =的图象的规律。 教学准备:多媒体课件,几何画板。 教学方式:引导教学法、探索讨论法、多媒体教学法。 学法指导:操作实验、自主探索、合作交流。 教学程序与环节设计: 教学过程与操作设计:

材料二:幂函数的图象变化规律归纳 ∞)都有定义,并且图象都经

板书设计: 幂函数 1、幂函数的定义例2 例4 2、幂函数的图象与性质 教案说明: (1)本节课的教学内容,课本中虽然只有3页,但内容丰富。课本通过几个特殊幂函数的图象类比

归纳,得到图象都通过点(1,1)。 (2)本节是新课标新增加的内容,教材不仅仅学习有关幂函数图象与性质的问题,还包含着教会学 生通过观察和思考,得到有关幂函数的一些知识的问题。 (3)有意识地将新知识的学习和研究方法渗透到教学过程之中,通过教学过程的设计,将这部分内 容适当展开,重新组合,使知识的传授和能力的培养有机地结合到一起。 (4)利用几何画板方便地研究出幂函数的图象,充分展示由幂指数的变化引起幂函数图象的变化的 内部规律。这样学生就容易从所举函数的个性中归纳出共性来,从而在整体上对幂函数的图象 与性质有较深刻的了解。

高中数学中的函数图象变换及练习题

高中数学中的函数图象变换及练习题 ①平移变换: Ⅰ、水平平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向左 (0)a >或向右(0)a <平移||a 个单位即可得到; 1)y =f (x )h 左移→y =f (x +h);2)y =f (x ) h 右移→y =f (x -h); Ⅱ、竖直平移:函数()y f x a =+的图像可以把函数()y f x =的图像沿x 轴方向向上 (0)a >或向下(0)a <平移||a 个单位即可得到; 1)y =f (x ) h 上移→y =f (x )+h ;2)y =f (x ) h 下移→y =f (x )-h 。 ②对称变换: Ⅰ、函数()y f x =-的图像可以将函数()y f x =的图像关于y 轴对称即可得到; y =f (x ) 轴 y →y =f (-x ) Ⅱ、函数()y f x =-的图像可以将函数()y f x =的图像关于x 轴对称即可得到; y =f (x ) 轴 x →y = -f (x ) Ⅲ、函数()y f x =--的图像可以将函数()y f x =的图像关于原点对称即可得到; y =f (x ) 原点 →y = -f (-x ) Ⅳ、函数)(y f x =的图像可以将函数()y f x =的图像关于直线y x =对称得到。 y =f (x ) x y =→直线x =f (y ) Ⅴ、函数)2(x a f y -=的图像可以将函数()y f x =的图像关于直线a x =对称即可得到 ③翻折变换: Ⅰ、函数|()|y f x =的图像可以将函数()y f x =的图像的x 轴下方部分沿x 轴翻折到x 轴上方,去掉原x 轴下方部分,并保留()y f x =的x 轴上方部分即可得到; Ⅱ、函数(||)y f x =的图像可以将函数()y f x =的图像右边沿y 轴翻折到y 轴左边替代原 y 轴左边部分并保留()y f x =在y 轴右边部分即可得到 ④伸缩变换: Ⅰ、函数()y af x =(0)a >的图像可以将函数()y f x =的图像中的每一点横坐标不变纵坐 标伸长(1)a >或压缩(01a <<)为原来的a 倍得到;y =f (x )a y ?→y =af (x ) Ⅱ、函数()y f ax =(0)a >的图像可以将函数()y f x =的图像中的每一点纵坐标不变横坐 标伸长(1)a >或压缩(01a <<)为原来的1a 倍得到。f (x )y =f (x )a x ?→y =f (ax ) 1.画出下列函数的图像 (1))(log 2 1 x y -= (2)x y )21(-= (3)x y 2 log = (4)12-=x y (5)要得到)3lg(x y -=的图像,只需作x y lg =关于_____轴对称的图像,再向____平移 3个单位而得到。 (6)当1>a 时,在同一坐标系中函数x a y -=与x y a log =的图像( )

幂函数的图像性质和应用

幂函数 分数指数幂 正分数指数幂的意义是:m n a =0a >,m 、n N ∈,且1n >) 负分数指数幂的意义是:m n a -= (0a >,m 、n N ∈,且1n >) 1、幂函数的图像与性质 幂函数n y x =随着n 的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握n y x =,当11 2,1,,,323 n =±±±的图像和性质,列表如下. 从中可以归纳出以下结论: ① 它们都过点()1,1,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限. ② 11 ,,1,2,332a = 时,幂函数图像过原点且在[)0,+∞上是增函数. ③ 1 ,1,22a =---时,幂函数图像不过原点且在()0,+∞上是减函数. ④ 任何两个幂函数最多有三个公共点.

0n < 幂函数基本性质 (1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)α>0时,幂函数的图象都通过原点,并且在[0,+∞]上,是增函数 (3)α<0时,幂函数的图象在区间(0,+∞)上是减函数. 规律总结 1.在研究幂函数的性质时,通常将分式指数幂化为根式形式,负整指数幂化为分式形式再去进行讨论; 2.对于幂函数y =αx ,我们首先应该分析函数的定义域、值域和奇偶性,由此确定图象的位置,即所在象限,其次确定曲线的类型,即α<0,0<α<1和α>1三种情况下曲线的基本形状,还要注意α=0,±1三个曲线的形状;对于幂函数在第一象限的图象的大致情况可以用口诀来记忆:“正抛负双,大竖小横”,即α>0(α≠1)时图象是抛物线型;α<0时图象是双曲线型;α>1时图象是竖直抛物线型;0<α<1时图象是横卧抛物线型. O x y O x y O x y

相关文档
相关文档 最新文档