文档库 最新最全的文档下载
当前位置:文档库 › 电阻应变计灵敏系数测定

电阻应变计灵敏系数测定

电阻应变计灵敏系数测定
电阻应变计灵敏系数测定

电阻应变计灵敏系数测定指导书

?

? 一、实验目的

? 掌握电阻应变片灵敏系数的测定方法。

? 进一步了解电阻应变片相对电阻变化与所受应变之间的关系。

? 二、实验原理

? 电阻应变片粘贴在试件上受应变ε时, 其电阻产生的相对变化之间有下列关系 :

? 由此可分别测量其值,求出应变片的灵敏系数。

? 三、实验仪器、设备

? 1. 等强度梁和加载装置, 温度补偿块。

? 2. 挠度计、带有千分表。

? 3. 静态电阻应变仪。

? 四、实验步骤

? 1. 测量和记录等强度梁厚度 h (用千分尺)和挠度计跨度度 l (用卡尺)。

? 2. 安装等强度梁和挠度计, 将等强度梁上纵向 4~6 枚应变片按半桥 (以等强度梁上纵向的应变片为工作桥臂, 温度补偿块上的应变片为补偿桥臂) 接法接入应变仪和预调平衡箱, 将应变仪所接各点读数预调到零位。

? 3. 记录挠度计上千分表的初读数 fo 分别加1公斤、2公斤、3公斤、4公斤砝码, 测量千分表读数 fe 和各应变片指示应变读数, 列表记录和整理数据。

? 4. 第一次加卸载分级 (1公斤)进行, 记录加卸载各级千分表和应变仪读数。以后继续加卸载两次 , 每次直接加到 最大荷载(4 公斤)不再分级。记录千分表和应变仪读数 , 取三次的平均值, 计算每个应变片的灵敏系数。i=1,2,

3.....。

? 5. 取各应变片的总平均值为灵敏系数并计算相对标准偏差。

? 五、实验报告要求 ? 1. 简述实验步骤。

? 2. 记录和计算各应变片灵敏系数, 平均值及相对标准误差。

? 3. 用分级载荷下测量各应变片的和梁应变数据,作图并讨论与ε之间的关系。

? 4. 讨论这种测定灵敏系数方法的误差

电阻应变计灵敏系数测定指导书

一、实验目的

1、了解电阻应变计相对电阻变化与所受应变之间的关系;

2、掌握应变计灵敏系数的测定方法。

二、试样及设备

1、等强度梁及加载装置; 2.钢板尺和游标卡尺; 3.百分表及磁性表座。

图 4-2 等强度梁

补偿等强度梁 0021100

1)(1?--==∑=n K K K K S n

i i δ

图4-3 等强度梁贴片示意图

三、实验原理

根据应变计电阻相对变化与构件应变之间的关系,电阻应变计的灵敏系数可用

下式表达:

εR R K /?= (4-5)

据此,只要测得电阻应变计的相对电阻变化R R /?和相应的应变ε,则灵敏系数K 可求。

一般采用轴向应变已知或有简单解析解的力学模型为试样,例如:等弯矩梁,等强度梁均可。我们选用后者,如图4-2和4-3所示。对于等强度梁,我们可以写出梁轴向应变:

21L fh

x =ε (4-6)

式中,f 为梁端挠度,h 为梁的厚度,1L 为梁的跨长。

应变计的相对电阻变化R R /?,可用精密电桥测得电阻变化R ?,与原始电阻比较而得到。也可采用电阻应变仪测出指示应变仪ε,并根据应变仪所设的灵敏系数仪K 求得,即

仪仪εK R R =? (4-7)

采用后者,则应变计的灵敏系数为 εε仪仪K K = (4-8)

四、实验步骤

1、用钢板尺和游标卡尺测量等强度梁的跨长1L 和厚度h ;

2、将§4-2中所贴的应变计按工作片和补偿片接成半桥与应变仪连接。

3、将百分表正确地安装在磁性表座中,然后将表座移放到等强度梁下方,使表头接触到等强度梁的端部,并调节好表中指针位置;

4、逐点预调平衡。

5、根据试样的承载能力,确定合适的加载方案,通常按4-5级加载测量,达到预定的最大载荷后,再按同样的梯度逐级卸载测量。可重复几次上述测试过程,取较理想的结果进行计算。

五、实验结果计算

自己设计记录表格,记录下每次加载时等强度梁端部的挠度f 和电阻应变仪的

指示应变仪ε,依据式(4.5)和式(4.7)计算应变计的灵敏系数K 。 1 2 3 4 5 6 1(3) 2(4)

电阻应变测量原理及方法

目录 电阻应变测量原理及方法 (2) 1. 概述 (2) 2. 电阻应变片的工作原理、构造和分类 (3) 电阻应变片的工作原理 (3) 电阻应变片的构造 (4) 电阻应变片的分类 (5) 3. 电阻应变片的工作特性及标定 (8) 电阻应变片的工作特性 (8) 电阻应变片工作特性的标定 (13) 4. 电阻应变片的选择、安装和防护 (16) 电阻应变片的选择 (16) 电阻应变片的安装 (17) 电阻应变片的防护 (19) 5. 电阻应变片的测量电路 (19) 直流电桥 (19) 电桥的平衡 (23) 测量电桥的基本特性 (23) 测量电桥的连接与测量灵敏度 (24) 6. 电阻应变仪 (31) 静态电阻应变仪 (31) 测量通道的切换 (33) 公共补偿接线方法 (36) 7. 应变-应力换算关系 (37) 单向应力状态 (37) 已知主应力方向的二向应力状态 (37) 未知主应力方向的二向应力状态 (38) 8. 测量电桥的应用 (40) 拉压应变的测定 (40) 弯曲应变的测定 (44) 弯曲切应力的测定 (46) 扭转切应力的测定 (47) 内力分量的测定 (48)

电阻应变测量原理及方法 1. 概述 电阻应变测量方法是实验应力分析方法中应用最为广泛的一种方法。该方法是用应变敏感元件——电阻应变片测量构件的表面应变,再根据应变—应力关系得到构件表面的应力状态,从而对构件进行应力分析。 电阻应变片(简称应变片)测量应变的大致过程如下:将应变片粘贴或安装在被测构件表面,然后接入测量电路(电桥或电位计式线路),随着构件受力变形,应变片的敏感栅也随之变形,致使其电阻值发生变化,此电阻值的变化与构件表面应变成比例,测量电 路输出应变片电阻变化产生的信号,经放大电路放大后,由指示仪表或记录仪器指示或记录。这是一种将机械应变量转换成电量的方法,其转换过程如图1所示。测量电路的输出信号经放大、模数转换后可直接传输给计算机进行数据处理。 电阻应变测量方法又称应变电测法,之所以得到广泛应用,是因为它具有下列优点 1.测量灵敏度和精度高。其分辨率达1微应变(με),1微应变=10-6应变(ε)。 2.测量范围广。可从1微应变测量到2万微应变。 3.电阻应变片尺寸小,最小的应变片栅长为毫米;重量轻、安装方便,对构件无附加力,不会影响构件的应力状态,并可用于应力梯度变化较大的应变的测量。 4.频率响应好。可从静态应变测量到数十万赫的动态应变。 5.由于在测量过程中输出的是电信号,易于实现数字化、自动化及无线电遥测。 6.可在高温、低温、高速旋转及强磁场等环境下进行测量。 7.可制成各种高精度传感器,测量力、位移、加速度等物理量。 图1 用电阻应变片测量应变的过程

金属电阻率及其温度系数

金属电阻率及其温度系数金属电阻率及其温度系数 物质物质 温度温度 t/℃ t/℃ t/℃ 电阻率电阻率 Ω·m 电阻温度系数电阻温度系数 a a R /℃-1 银 20 1.586×10-8 0.0038(20℃) 铜 20 1.678×10-8 0.00393(20℃) 金 20 2.40×10-8 0.00324(20℃) 铝 20 2.6548×10-8 0.00429(20℃) 钙 0 3.91×10-8 0.00416(0℃) 铍 20 4.0×10-8 0.025(20℃) 镁 20 4.45×10-8 0.0165(20℃) 钼 0 5.2×10-8 铱 20 5.3×10-8 0.003925(0℃~100℃) 钨 27 5.65×10-8 锌 20 5.196×10-8 0.00419(0℃~100℃) 钴 20 6.64×10-8 0.00604(0℃~100℃) 镍 20 6.84×10-8 0.0069(0℃~100℃) 镉 0 6.83×10-8 0.0042(0℃~100℃) 铟 20 8.37×10-8 铁 20 9.71×10-8 0.00651(20℃) 铂 20 10.6×10-8 0.00374(0℃~60℃) 锡 0 11.0×10-8 0.0047(0℃~100℃) 铷 20 12.5×10-8 铬 0 12.9×10-8 0.003(0℃~100℃) 镓 20 17.4×10-8 铊 0 18.0×10-8 铯 20 20×10-8 铅 20 20.684×10-8 0.00376(20℃~40℃) 锑 0 39.0×10-8 钛 20 42.0×10-8 汞 50 98.4×10-8 锰 23~100 185.0×10-8 锰铜 20 44.0×10-8 康铜 20 50.0×10-8 镍铬合金 20 100.0×10-8 铁铬铝合金 20 140.0×10-8 铝镍铁合金 20 160.0×10-8 不锈钢 0~900 70~130×10-8 不锈钢304 20 72×10-8 不锈钢316 20 74×10-8

最新土木工程测试技术-应变片测量技术

土木工程测试技术-应变片测量技术

土木工程测试技术—电阻应变片测量技术摘要:当今,在工程结构试验中,电阻应变片测量技术仍是应用最广泛和最有效的应力测量技术,并且在现今的工程结构健康监测方面也发挥着积极的作用。由电阻应变片制成的各种电阻应变式传感器,在各个工程行业中也发挥着极其重要的作用。本文简单的介绍下电阻应变片测量技术的发展史及其在目前建筑等行业中的应用。关键词:电阻应变片传感器横向效应应变片的灵敏度系数电阻应变片是电阻应变测量的传感元件。用电阻应变片进行测量时,一般将应变片粘贴于构件表面,当构件受力变形时,应变片亦随之变形,变化的结果将导致应变片的电阻变化。测量出这种变化,并转换成相应的应变,即实现非电量的电测。电阻应变片具有结构简单、性能稳定可靠、灵敏度高、频率范围广的特点。此外,将电阻应变片粘贴到各种弹性元件上还可以制成能测量位移、力、力矩、扭矩和加速度的传感器,因而,电阻应变片是使用最为广泛的应变测量器件。电阻式传感器的电阻变化量 R通常很小,所以转换的信号是微弱的,需要经过调理放大后驱动显示。 电阻应变片国内习惯称为电阻应变计,简称应变计或应变片,它是在第二次世界大战结束的前后出现的,已经有六七十年的历史了。作为一个敏感元件,其测量方法的技术已经十分成熟了。现今,随着应用光纤传感器等其他测量技术的发展,有些人认为应用电阻应变计的电测技术已趋于老化。这是一种误解,电阻应变计使用于空间(高真空、深低温)、海水中(高压、流水中)、土中等广泛的计测范围。适用结构对象有航空、航天器、原子能反应堆、发动机、汽车、机车车辆和轨道、架线;船舶。桥梁、道路、大坝以及各种建筑物、机场、港湾设施等;适用的材料,由开始时的钢铁和铝等各种金属材料,到木材、塑料、玻璃、土石类、复合材料,并且,它不仅适用于室内实验、模型实验,还可以在现场对实

电阻温度系数

电阻温度系数(TCR表示电阻当温度改变 1 度时,电阻值的相对变化,当温度每升高1C 时,导体电阻的增加值与原来电阻的比值。单位为ppm/C(即10E (-6 )「C)。定义式如下:T CR=dR/R.dT 实际应用时,通常采用平均电阻温度系数,定义式如下:TCR(平均)=(R2-R1) /( R1*( T 2-T1 )) = (R2-R1) /(R1* △ T) R1--温度为t1时的电阻值,Q; R2--温度为t2时的电阻值,Q。 很多人对镀金,镀银有误解,或者是不清楚镀金的作用,现在来澄清下。。。 1。镀金并不是为了减小电阻,而是因为金的化学性质非常稳定,不容易氧化,接头上镀金是为了防止接触不良(不是因为金的导电能力比铜好) 。 2。众所周知,银的电阻率最小,在所有金属中,它的导电能力是最好的。 3 。不要以为镀金或镀银的板子就好,良好的电路设计和PCB 的设计,比镀金或镀银对电路性能的 影响更大。 4。导电能力银好于铜,铜好于金!现在贴上常见金属的电阻率及其温度系数:物质温度t/C 电阻率电阻温度系数aR/ C-1 银20 1.586 0.0038(20 C ) 铜20 1.678 0.00393(20 C ) 金20 2.40 0.00324(20 C ) 铝20 2.6548 0.00429(20 C ) 钙0 3.91 0.00416(0 C ) 铍20 4.0 0.025(20 C ) 镁20 4.45 0.0165(20 C ) 钼0 5.2 铱20 5.3 0.003925(0 C~100 C) 钨27 5.65 锌20 5.196 0.00419(0 C~100 C) 钴20 6.64 0.00604(0 C~100 C) 镍20 6.84 0.0069(0 C~100 C) 镉0 6.83 0.0042(0 C~100 C) 铟20 8.37 铁20 9.71 0.00651(20 C ) 铂20 10.6 0.00374(0 C~60C ) 锡0 11.0 0.0047(0 C~100 C) 铷20 12.5 铬0 12.9 0.003(0 C~100 C ) 镓20 17.4 铊0 18.0 铯20 20 铅20 20.684 (0.0037620 C~40C ) 锑0 39.0 钛20 42.0 汞50 98.4 锰23?100 185.0 电阻的温度系数,是指当温度每升高一度时,电阻增大的百分数。 例如,铂的温度系数是0.00374/ C。它是一个百分数。 在20 C时,一个1000欧的铂电阻,当温度升高到21 C时,它的电阻将变为1003.74欧。 实际上,在电工书上给出的是电阻率温度系数”,因为我们知道,一段电阻线的电阻由四个 因素决定:1、电阻线的长度;2、电阻线的横截面积;3、材料;4、温度。前三个因素是自身因素,第四个因素是外界因素。电阻率温度系数就是这第四个因素的作用大小。 实验证明,绝大多数金属材料的电阻率温度系数都约等于千分之4左右,少数金属材料的电 阻率温度系数极小,就成为制造精密电阻的选材,例如:康铜、锰铜等。

金属电阻率及其温度系数

全系列金属电阻率及其温度系数

常用金属导体在20℃时的电阻率 材料电阻率(Ω m) (1)银 1.65 ×10-8 (2)铜 1.75 ×10-8 (3)铝 2.83 ×10-8 (4)钨 5.48 ×10-8 (5)铁9.78 ×10-8 (6)铂 2.22 ×10-7 (7)锰铜 4.4 ×10-7 (8)汞9.6 × 10-7 (9)康铜 5.0 ×10-7 (10)镍铬合金 1.0 × 10-6 (11)铁铬铝合金1.4 ×10-6 (12) 铝镍铁合金1.6 × 10-6 (13)石墨(8~13)×10-6 金属温度(0℃)ρ αo , 100 锌20 ×10-3 ×10-3 5.9 4.2 铝(软)20 2.75 4.2 铝(软)–78 1.64 阿露美尔合金20 33 1.2 锑0 38.7 5.4 铱20 6.5 3.9 铟0 8.2 5.1 殷钢0 75 2 锇20 9.5 4.2 镉20 7.4 4.2 钾20 6.9 5.1① 钙20 4.6 3.3

金20 2.4 4.0 银20 1.62 4.1 铬(软)20 17 镍铬合金(克露美尔)—70—110 .11—.54 钴a 0 6.37 6.58 康铜—50 –.04–1.01 锆30 49 4.0 黄铜–5—7 1.4–2 水银0 94.08 0.99 水银20 95.8 锡20 11.4 4.5 锶0 30.3 3.5 青铜–13—18 0.5 铯20 21 4.8 铋20 120 4.5 铊20 19 5 钨20 5.5 5.3 钨1000 35 钨3000 123 钨–78 3.2 钽20 15 3.5 金属温度(0℃)ρ αo , 100 杜拉铝(软)— 3.4 铁(纯)20 9.8 6.6 铁(纯)–78 4.9 铁(钢)—10—20 1.5—5 铁(铸)—57—114 铜(软)20 1.72 4.3 铜(软)100 2.28 铜(软)–78 1.03 铜(软)–183 0.30 钍20 18 2.4 钠20 4.6 5.5① 铅20 21 4.2 镍铬合金(不含铁)20 109 .10 镍铬合金(含铁)20 95—104 .3—.5 镍铬林合金—27—45 .2—.34 镍(软)20 7.24 6.7 镍(软)–78 3.9 铂20 10.6 3.9 铂1000 43 铂–78 6.7 铂铑合金②20 22 1.4 钯20 10.8 3.7 砷20 35 3.9 镍铜锌电阻线—34—41 .25—.32 铍(软)20 6.4 镁20 4.5 4.0

电阻温度系数的测定

电阻温度系数的测定 一、实验目的 1.了解电阻温度系数的测定原理; 2. 了解测量电阻温度系数的方法。 二、实验仪器 DZW 型电阻温度特性测定仪 三、实验原理 大多数物质的电阻率会随温度的变化而变化,在设计电子元件及电路时需考虑温度对电阻和元件的影响。为反应电阻率随温度的变化特征,常用电阻温度系数来表示: d dT ραρ= (1) 部分情况下在温度变化不大的范围内常用平均电阻温度系数表示: 21121() R R R T T α-=- (2) 即:温度每升改变一度电阻的相对变化率。 四、实验内容及步骤 1.试样安装:将试样两引线端与两测试探头连接好,紧固连接螺丝,然后将盖板盖上。 2.温度设置:打开电源开关,确定AL810表自动状态已关闭,PV 口显示温度情况下。先按下温控表AL810面板上的“PAR ”键不松,立即再按住“▼”键(3秒不动),PV 栏显示“LC ”时松开两键,然后按“▲”或“▼”键将其设置为“1”;

再次按“PAR”键PV口显示r1,按“▲”或“▼”键将第一段升温速度设置为2.00(℃/分钟);再次按“PAR”键PV口显示L1,按“▲”或“▼”键将第一段目标温度设置为100(℃);再次按“PAR”键PV 口显示d1,按“▲”或“▼”将第一段保温时间设置为2(分钟)。再次按“PAR”键PV口显示r2,此时可设置第二温度控制阶段,设置方法同第一阶段相同,本实验只需第一段升温过程,第二段升温速度r2设置为“END”即可。 3.升温操作:在PV显示温度时,按住“PAR”键3秒,PV口显示“PROG”时松开,按“▲”或“▼”键选择“run”,再次按“PAR”键确认,即进入自动升温状态。开始升温后PV口显示炉膛内部实际测量温度。 4.电阻值测试:测量电阻仪器为内嵌于设备的万用表。打开试验开关,根据试样电阻值选择合适的电阻量程档位,温度到达30℃时开始记录样品的电阻值,从30℃至100℃每隔10℃记录一次,共8组数据。 5.实验完成后关闭试验开关和电源开关。 五、数据处理

电阻应变片直流电桥测量电路攻略

在复杂的机械系统中,研究其功耗和性能,设计它们的结构以及研究各模块组间的润滑状态,测量各器件间的摩擦力等重要参数,多年来,一直被人们所重视。由于机械内部运动复杂,环境恶劣,摩擦力相对很小,给测量带来了很大困难,如何精确地测量出这些数据就显得格外重要。 采用立创无线收发方式,利用传感器信号通过无线收发电路进行信号传输,可以先存储数据再把存储卡里面的数据读入到计算机进行分析,为复杂及数据要求精确的系统的数据采集提供了新的方法。另外,在采集频率较高时,数据量比较大,这对采集系统中处理器处理速度、射频无线传输速度、接口传输速度、A/D 转换速度以及功耗等都有很高的要求,加上机械系统内部尺寸的限制,困难较大。这样一来,数据采集电路板的设计成为该数据采集系统的关键,我们需要设计专门的数据采集和无线收发装置。 测量系统原理 系统由传感器、电源、信号调理电路、信号处理电路和PC 机组成在实际测量时,传感器安装在运动件上,由于采用引线装置传递信号会限制机械部件的运动,因此可采用无线收发电路传输数据,也可采用存储方式进行数据采集,即先把数据保存到存储卡,数据采集完之后再拿出存储卡读入到计算机,测量系统原理如图1 所示。 气压传感器和应变片经过信号调理电路输出0~2.5V 的电压,可通过信号处理电路把模拟信号转化为数字信号再存入存储卡,热电偶经过信号调理电路输出12 位SPI 格式的数字信号,可由单片机直接把信号存入存储卡。存储卡的容量应能保证采集信号的时间要求(在采集频率为3000Hz 时,选择512M以上的存储卡可保证采集时间不少于25 分钟)。而该测量系统中电阻应变片直流电桥测量电路的设计是一个关键,下面我们将对这一部分进行详细的分析和设计。 电阻应变片直流电桥测量电路

电阻应变片的粘贴技术

电阻应变片的粘贴技术 一、实验目的 1.初步掌握常温用电阻应变片的粘贴技术。 2.初步掌握接线、检查等准备工作。 二、实验设备和器材 1.常温用电阻应变片 2.数字式万用表。 3.502粘结剂。 4.电烙铁、镊子、沙纸。 5.等强度梁试件,温度补偿块。 6.丙酮、药棉等。 7.测量导线若干。 三、实验方法和步骤 1.检查应变片的外观和电阻(电阻为200Ω±0.5Ω)。 2.测点表面的清洁处理:为使应变计与被测试件贴得牢,对测点表面要进行清洁处理。首先把测点表面用砂纸打磨;使测点表面平整、光洁。用棉花球蘸丙酮擦洗表面的油污,到棉花球不黑为止。再用划针在测片位置处划出应变计的座标线。 3.贴片:在测点位置和应变片的底基面上,涂上薄薄一层胶水,用镊子夹住应变片,把应变片轴线对准座标线,上面盖一层聚乙烯塑料膜作为隔层,用手指在应变计的长度方向滚压,挤出片下汽泡和多余的胶水,手指保持不动约1分钟后再放开,注意按住时不要使应变片移动,轻轻掀开薄膜检查有无气泡、翘曲、脱胶等现象。 4.贴接线端子片、焊接:将端子片基地和待贴位置处涂抹上一层胶水,等贴牢后将应变片的两个引出线分别焊接到端子片上,再将两根导线分别焊接到另外的两个端子上,注意不能出现短路的情况。 5.检查应变片是否通路,并测量阻值。 四.实验结果 1.电阻理论值为120Ω,测量电阻值均符合要求。

一、应变计的选择 1、 1/4桥 ,仪器调零困难。同时也受温度的影响,用手握住导线的变化就能有1002根线的1/4桥:长的引线会引入电阻导致电桥不平衡,6m长的导线导致电桥不平衡量为29000 以上。 ,仪器调零容易。也不受导线温度的影响。3根线的1/4桥:6m长的导线导致电桥不平衡量为400 2、应变计的长度选择:要基于应力的分布。 应变测量的是局部区域的平均,而非某点的微应变。当应力是线性分布,应变计的长度无影响。 应力集中时,最好用非常小的应变计贴在应力集中处,应变计应比应力集中点稍大一点。 各向异性材料(如混凝土、碳纤维复合材料等),用长应变计在较大区域得到平均值。 3、应变片样式 单向应变计:需要知道主应力方向; T型应变计:也需要知道主应力方向; 三片应变花:不知道主应力方向时,可随意贴,通过计算可得出最大最小主应力和方向。 剪切式应变计:用于剪切和扭转。 4、应变计电阻选择 常用的有120Ω、350Ω和1000Ω。 电阻120Ω350Ω 优 点应变计尺寸小电流低,发热功率低

电阻式应变片的使用粘贴方法

电阻应变片的粘贴及防潮技术 一、仪表和器材: 1.模拟试件(小钢板); 2.常温用电阻应变片; 3.数字万用表; 4.兆欧表; 5.粘合剂:T-1型502胶,CH31双管胶(环氧树脂)或硅橡胶; 6.丙酮浸泡的棉球; 7.镊子、划针、砂纸、锉刀、刮刀、塑料薄膜、胶带纸、电烙铁、焊锡、焊锡膏等小工具; 8.接线柱、短引线。 二、用电阻应变片测量应变的基本原理: 用电阻应变片测量应变时,要将应变片粘贴到试件上,当试件发生变形,应变片就会跟随一起变形,这时应变片中的电阻丝就会因其机械变形而导致电阻丝的电阻发生变化,电阻的变化也就反应了结构的变形情况,这就是用电阻应变片测量应变的基本原理。 三、用电阻应变片测量应变的基本原则: 从电阻应变片测量应变的基本原理中可以看出,首先要保证应变片与被测物体共同产生变形,其次,要保证电阻应变片本身的电阻值的稳定,才能得到准确的应变测量结果,这是应变片粘贴的基本原则。因此应变片本身的质量和粘贴质量的好坏对测量结果影响很大,应变片必须牢固地粘贴在试件的被测测点上,因此对粘贴的技术要求十分严格。为保证粘贴质量和测量正确,要求如下: 1.认真检查、分选电阻应变片,保证应变片的质量; 2.测点基底平整、清洁、干燥,使应变片能够牢固地粘贴到试件上,不脱落,不翘曲,不含气泡; 3.粘结剂的电绝缘性好、化学性质稳定,工艺性能良好,并且蠕变小,粘贴强度高,温、湿度影响小,确保粘贴质量,并使应变片与试件绝缘,且不发生蠕变,保证电阻应变片电阻值的稳定; 4.粘贴的方向和位置必须准确无误,因为试件上不同位置、不同方向的

应变是不同的,应变片必须粘贴到要测试的应变测点上,也必须是要测试的应变方向。 5. 做好防潮工作,使应变片在使用过程中不受潮,以保证应变片电阻值的稳定; 四、 方法及步骤: 1. 电阻应变片的选择: 在应变片灵敏数K 相同的一批应变片中,剔除电阻丝栅有形状缺陷,片内有气泡、霉斑、锈点等缺陷的应变片。用数字万用表的电阻档测量应变片的电阻值R ,将电阻值在120±2Ω范围内的应变片选出待用,记录该片的阻值和灵敏系数(应变片灵敏系数由厂家标定,本实验默认为2.00)。 2. 试件表面的处理: 用锉刀和粗砂纸等工具将试件在钢板上的贴片位置的油污、漆层、锈迹、电镀层除去,再用细砂纸打磨成45°交叉纹,之后用镊子镊起丙酮棉球将贴片处擦洗干净,至棉球洁白为止。见图1-1。 3. 测点定位: 应变片粘贴的位置及方向对应变测量的影响非常大,应变片必须准确地粘贴在结构或试件的应变测点上,而且粘贴方向必须是要测量的应变方向。本实验中假设要测定试件的中心点的轴向应变,为达到上述要求,对于钢构件,要在试件上用钢板尺和划针画一个十字线(一根长,一根短),十字线的交叉点对准测点位置,较长的一根线要与应变测量方向一致。见图1-2。 图1-1 钢试件应变片粘贴处表面处理示意图 打磨区 (小钢板) 图1-2 钢试件应变片定位示意图 ) 方向

测试技术

《测试技术》试题 考试说明: 1.首先下载试题及《标准答卷模版》,完成答题后,答卷从网上提交。 2.答卷电子稿命名原则:学号.doc。如:11031020512002.doc。 3.网上提交起止时间:2018年5月15日8:00—6月15日18:00。 试题: 一、论述题:(每小题15分,共45分) 1.什么是信号的时域描述?有什么特点? 2.什么是信号的频域描述?有什么特点? 3.信号时域与频域描述的关系是什么? 二、分析题:(55分) 电阻应变式传感器如图所示,请分析其工作原理,证明电阻变化率与应变的线性关系。 图.金属丝式电阻应变片

《测试技术》答卷 本人承诺:本试卷确为本人独立完成,若有违反愿意接受处理。签名:______________学号:____________专业:_机械设计制造及其自动化(机械电子工程方向)_学习中心:__内蒙古__ 一、论述题:(每题15分,共45分) 1.什么是信号的时域描述?有什么特点? 答:信号的时域描述是以时间为自变量,描述信号随时间的变化特征,反映信号幅值随时间变化的关系,优点是形象、直观,缺点是不能明显揭示复杂信号的内在结构(频率组成关系),特点是可获得描述对象的幅值、周期、相位 2.什么是信号的频域描述?有什么特点? 答:信号的频域描述是应用傅里叶级数或傅里叶变换,对时域信号进行变换(分解),得到以频率为自变量,信号幅值、相位与频率的函数关系。特点是能够抽取信号内在的频率组成及其幅值和相角的大小,描述更简练、深刻、方便。 3.信号时域与频域描述的关系是什么? 答:时域描述与频域描述是等价的,可以相互转换,两者蕴涵的信息相同,只是从两个不同的侧面来分析、观察这个信号。 时域描述与频域描述各有用武之地,当信号用于超限报警时宜采用时域描述;而为了了解信号内部的能量分配,或者为了了解信号内部各分量的相角的大小则采用频域描述更方便。 二、分析题:(55分) 电阻应变式传感器如图所示,请分析其工作原理,证明电阻变化率与应变的线性关系。 图.金属丝式电阻应变片 证:电阻变化率与应变的关系推导(以金属电阻应变片为例): 设电阻应变片的初始阻值为: 变形时,ρ、l、A将同时发生变化,从而导致R改变。若ρ、l、A的变化量为dρ、dl、dA,则:

应变片式电阻传感器的测量电路

应变片式传感器的测量电路 电阻应变计可把机械量变化转换成电阻变化,但电阻变化是很小的,用一般的电子仪表很难直接检测。例如,常规的金属应变计的灵敏系数k 值在1.8~4.8之间,机械应变在10~6000με之间,相对变化电阻/R R k ε?=就比较小。 例1设某被测件在额定载荷下产生的应变为1000με,粘贴的应变计阻值120R =Ω,灵敏系数2k =,则其电阻的相对变化为 6/21000100.002R R k ε-?==??= 电阻变化率仅为0.2%。这样小的电阻变化,必须用专门的电路才能测量。测量电路把微弱的电阻变化转换为电压的变化,电桥电路就是这种转换的一种最常用的方法。 2.3.1 应变电桥 电桥电路即是惠斯通电桥,其结构如图所示。四个阻抗臂1234 ,,,Z Z Z Z 以顺时针排列,AC 是电源端,工作电压为U ;BD 为输出端,输出电压 为0U 。在这个阻抗电桥的桥臂上接入应变计,就叫应变电桥。 应变电桥按不同的方式可分为不同的类型,主要有以下分类方式。 1 按工作臂分 单臂电桥:电桥的一个臂接入应变计。 双臂电桥:电桥的两个臂接入应变计。 全臂电桥:电桥的四个臂都接入应变计。 2 按电源分 按电源不同,可分为直流电桥和交流电桥。 直流电桥的电源是直流电压,其桥臂只能接入阻性元件,主要用于应变电桥的输出,不需中间放大就可直接显示的情况。例如半导体应变计的输出灵敏度高,可采用直流应变电桥作为测量电路,直接输出并显示结果。 交流电桥的电源是交流电压,其桥臂可以是阻性(R )、感性(L )或容性(C )元件。主要用于输出需放大的场合。例如金属应变计的输出灵敏度较低,应采用这种交流应变电桥作为测量电路,以进一步放大输出。 3 按工作方式分 按工作方式不同,可分为平衡桥式电路和不平衡桥式电路。 平衡桥式电路又叫零位测量法,它带有调整桥臂平衡的伺服反馈机构,当仪表指示测量值时,电桥处于平衡状态。零位测量法常用于高精度、长时间的静态应变测量。 不平衡桥式电路又称为偏差测量法,其输出的是与桥臂应变量成一定函数关系的不平衡电量,再作进一步放大和显示。当仪表指示测量值时,电桥处于不平衡状态。偏差测量法响应快,常用于动态应变测量。 4按桥臂关系分 按桥臂关系不同,可分为半等臂电桥和全等臂电桥。 半等臂电桥又可分为对电源端对称电桥(即1423,Z Z Z Z ==)和对输出端对称电桥(即 1234,Z Z Z Z ==)。 全等臂电桥满足1234Z Z Z Z ===,在实际测量中经常用到的是全等臂电桥和半等臂对输出端对称电 图2.3.1 电桥电路的结构

应变片式电阻传感器的测量电路

2.3 应变片式传感器的测量电路 电阻应变计可把机械量变化转换成电阻变化,但电阻变化是很小的,用一般的电子仪表很难直接检测。例如,常规的金属应变计的灵敏系数k 值在1.8~4.8之间,机械应变在10~6000με之间,相对变化电阻 /R R k ε?=就比较小。 例1设某被测件在额定载荷下产生的应变为1000με,粘贴的应变计阻值120R =Ω,灵敏系数2k =,则其电阻的相对变化为 6/21000100.002R R k ε-?==??= 电阻变化率仅为0.2%。这样小的电阻变化,必须用专门的电路才能测量。测量电路把微弱的电阻变化转换为电压的变化,电桥电路就是这种转换的一种最常用的方法。 2.3.1 应变电桥 电桥电路即是惠斯通电桥,其结构如图所示。四个阻抗臂1234 ,,,Z Z Z Z 以顺时针排列,AC 是电源端,工作电压为U ;BD 为输出端,输出电压为0U 。在这个阻抗电桥的桥臂上接入应变计,就叫应变电桥。 应变电桥按不同的方式可分为不同的类型,主要有以下分类方式。 1 按工作臂分 单臂电桥:电桥的一个臂接入应变计。 双臂电桥:电桥的两个臂接入应变计。 全臂电桥:电桥的四个臂都接入应变计。 2 按电源分 按电源不同,可分为直流电桥和交流电桥。 直流电桥的电源是直流电压,其桥臂只能接入阻性元件,主要用于应变电桥的输出,不需中间放大就可直接显示的情况。例如半导体应变计的输出灵敏度高,可采用直流应变电桥作为测量电路,直接输出并显示结果。 交流电桥的电源是交流电压,其桥臂可以是阻性(R )、感性(L )或容性(C )元件。主要用于输出需放大的场合。例如金属应变计的输出灵敏度较低,应采用这种交流应变电桥作为测量电路,以进一步放大输出。 3 按工作方式分 按工作方式不同,可分为平衡桥式电路和不平衡桥式电路。 平衡桥式电路又叫零位测量法,它带有调整桥臂平衡的伺服反馈机构,当仪表指示测量值时,电桥处于平衡状态。零位测量法常用于高精度、长时间的静态应变测量。 不平衡桥式电路又称为偏差测量法,其输出的是与桥臂应变量成一定函数关系的不平衡电量,再作进一步放大和显示。当仪表指示测量值时,电桥处于不平衡状态。偏差测量法响应快,常用于动态应变测量。 4按桥臂关系分 按桥臂关系不同,可分为半等臂电桥和全等臂电桥。 半等臂电桥又可分为对电源端对称电桥(即1423,Z Z Z Z ==)和对输出端对称电桥(即 1234,Z Z Z Z ==)。 图2.3.1 电桥电路的结构

电阻应变计灵敏系数测定

电阻应变计灵敏系数测定指导书 ? ? 一、实验目的 ? 掌握电阻应变片灵敏系数的测定方法。 ? 进一步了解电阻应变片相对电阻变化与所受应变之间的关系。 ? 二、实验原理 ? 电阻应变片粘贴在试件上受应变ε时, 其电阻产生的相对变化之间有下列关系 : ? 由此可分别测量其值,求出应变片的灵敏系数。 ? 三、实验仪器、设备 ? 1. 等强度梁和加载装置, 温度补偿块。 ? 2. 挠度计、带有千分表。 ? 3. 静态电阻应变仪。 ? 四、实验步骤 ? 1. 测量和记录等强度梁厚度 h (用千分尺)和挠度计跨度度 l (用卡尺)。 ? 2. 安装等强度梁和挠度计, 将等强度梁上纵向 4~6 枚应变片按半桥 (以等强度梁上纵向的应变片为工作桥臂, 温度补偿块上的应变片为补偿桥臂) 接法接入应变仪和预调平衡箱, 将应变仪所接各点读数预调到零位。 ? 3. 记录挠度计上千分表的初读数 fo 分别加1公斤、2公斤、3公斤、4公斤砝码, 测量千分表读数 fe 和各应变片指示应变读数, 列表记录和整理数据。 ? 4. 第一次加卸载分级 (1公斤)进行, 记录加卸载各级千分表和应变仪读数。以后继续加卸载两次 , 每次直接加到 最大荷载(4 公斤)不再分级。记录千分表和应变仪读数 , 取三次的平均值, 计算每个应变片的灵敏系数。i=1,2, 3.....。 ? 5. 取各应变片的总平均值为灵敏系数并计算相对标准偏差。 ? 五、实验报告要求 ? 1. 简述实验步骤。 ? 2. 记录和计算各应变片灵敏系数, 平均值及相对标准误差。 ? 3. 用分级载荷下测量各应变片的和梁应变数据,作图并讨论与ε之间的关系。 ? 4. 讨论这种测定灵敏系数方法的误差 电阻应变计灵敏系数测定指导书 一、实验目的 1、了解电阻应变计相对电阻变化与所受应变之间的关系; 2、掌握应变计灵敏系数的测定方法。 二、试样及设备 1、等强度梁及加载装置; 2.钢板尺和游标卡尺; 3.百分表及磁性表座。 图 4-2 等强度梁 补偿等强度梁 00211001)(1?--==∑=n K K K K S n i i δ

应变电测法和电测应变仪的使用方法

应变电测法和电阻应变仪的使用方法 电阻应变仪是电测实验应力分析中,通过粘贴于结构构件上的应变计测量构件应变的专用仪器。实验室当前使用的两种型号的电阻应变仪均是自动平衡的数字应变仪,单台应变仪一批次最多可以接入12枚粘贴于构件上的应变计,俗称有12个测量通道。 在材料力学实验中有9项实验分别用到电阻应变仪,它们是弯曲正应力实验;电测法测扭转切变模量G实验;扭弯组合变形主应力测定和内力素分离实验;压杆临界压力测定实验;动应力和冲击应力实验;4项创新实验:两种不同材料组成的胶接叠梁实验,预应力提高结构承载能力实验;构件在内压、弯曲、轴力联合作用下E,μ测定和内力分离实验;双肢压杆实验。因此要求同学能正确掌握电阻应变仪的接线(组桥)和使用方法,它对高质量完成实验是非常重要的。 使用电阻应变仪进行电测应力分析实验的几点共性的规定 1、实验室所有电测构件上应变计的引线均用不同颜色的导线以区分应变计的贴 片位置和方向,在把它们接到电阻应变仪不同通道(有1,2,3…12共12 个通道)接线排上时,一定要记录该通道所测应变是代表哪一点哪一方向的应变。 2、在进行静态多点应变测量(加一级载荷同时测量2个测点以上的应变)时, 所有测点测量片的两根引线均接到应变仪不同通道接线排上的A,B接线柱上,温度补偿片单独接到应变仪最左边无测点通道号的公共补偿接线柱上。 3、多点应变测量接线时应遵循由上而下,同一高度的两枚应变计则先前而后, 有环轴向应变计的先环向后轴向的原则,分别按顺序接到应变仪的1,2 (12) 通道上。这样便于在测量过程中及时进行比较及时纠正错误。 4、单点应变测量时,随便接到哪一个通道均可,测量片接A,B桥臂,补偿片接 B,C桥臂。 5、粘贴于不同教学构件上的应变计灵敏系数可能不同,测量前均要对使用的应 变仪进行灵敏系数设定(设定方法见应变仪具体介绍)。 6、所有接上应变计导线的接线柱必须拧紧,测量过程中不允许拉动导线,因是 电阻变化转变成应变的测量,任何松懈的接线和测量中拉动导线都会引起接触电阻的变化,造成应变读数的变动。 应变电测实验过程中的注意事项 (1)所有应变电测的教学试件上均有编号,并用标签标出试样尺寸,材料常数E,μ,应变计的灵敏系数k,以及载荷等有关参数,必需作记 录。 (2)实验数据必需经指导老师审查、签字并连同实验报告一起交回实验室。 (3)实验时不得用手及工具剥开应变计的密封胶。 (4)实验完毕应卸下导线,卸去载荷关闭加载台和应变仪的电源,并使实验现场恢复原状。

电阻温度系数

电阻温度系数(TCR)表示电阻当温度改变1度时,电阻值的相对变化,当温度每升高1℃时,导体电阻的增加值与原来电阻的比值。单位为ppm/℃(即10E(-6)·℃)。定义式如下:T CR=dR/R.dT 实际应用时,通常采用平均电阻温度系数,定义式如下:TCR(平均)=(R2-R1)/(R1*(T2-T1))=(R2-R1)/(R1*ΔT) R1--温度为t1时的电阻值,Ω; R2--温度为t2时的电阻值,Ω。 很多人对镀金,镀银有误解,或者是不清楚镀金的作用,现在来澄清下。。。 1。镀金并不是为了减小电阻,而是因为金的化学性质非常稳定,不容易氧化,接头上镀金是为了防止接触不良(不是因为金的导电能力比铜好)。 2。众所周知,银的电阻率最小,在所有金属中,它的导电能力是最好的。 3。不要以为镀金或镀银的板子就好,良好的电路设计和PCB的设计,比镀金或镀银对电路性能的影响更大。 4。导电能力银好于铜,铜好于金! 现在贴上常见金属的电阻率及其温度系数: 物质温度t/℃电阻率电阻温度系数aR/℃-1 银20 1.586 0.0038(20℃) 铜20 1.678 0.00393(20℃) 金20 2.40 0.00324(20℃) 铝20 2.6548 0.00429(20℃) 钙0 3.91 0.00416(0℃) 铍20 4.0 0.025(20℃) 镁20 4.45 0.0165(20℃) 钼0 5.2 铱20 5.3 0.003925(0℃~100℃) 钨27 5.65 锌20 5.196 0.00419(0℃~100℃) 钴20 6.64 0.00604(0℃~100℃) 镍20 6.84 0.0069(0℃~100℃) 镉0 6.83 0.0042(0℃~100℃) 铟20 8.37 铁20 9.71 0.00651(20℃) 铂20 10.6 0.00374(0℃~60℃) 锡0 11.0 0.0047(0℃~100℃) 铷20 12.5 铬0 12.9 0.003(0℃~100℃) 镓20 17.4 铊0 18.0 铯20 20 铅20 20.684 (0.0037620℃~40℃) 锑0 39.0 钛20 42.0 汞50 98.4 锰23~100 185.0

电阻温度系数

电阻温度系数 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

电阻温度系数(TCR)表示电阻当温度改变1度时,电阻值的相对变化,当温度每升高1℃时,导体电阻的增加值与原来电阻的比值。单位为ppm/℃(即10E(-6)·℃)。定义式如下:TCR=dR/ 实际应用时,通常采用平均电阻温度系数,定义式如下:TCR(平均)=(R2-R1)/(R1*(T2-T 1))=(R2-R1)/(R1*ΔT) R1--温度为t1时的电阻值,Ω; R2--温度为t2时的电阻值,Ω。 很多人对镀金,镀银有误解,或者是不清楚镀金的作用,现在来澄清下。。。 1。镀金并不是为了减小电阻,而是因为金的化学性质非常稳定,不容易氧化,接头上镀金是为了防止接触不良(不是因为金的导电能力比铜好)。 2。众所周知,银的电阻率最小,在所有金属中,它的导电能力是最好的。 3。不要以为镀金或镀银的板子就好,良好的电路设计和PCB的设计,比镀金或镀银对电路性能的影响更大。 4。导电能力银好于铜,铜好于金! 现在贴上常见金属的电阻率及其温度系数: 物质温度t/℃电阻率电阻温度系数aR/℃-1 银 20 (20℃) 铜 20 (20℃) 金 20 (20℃) 铝 20 (20℃) 钙 0 (0℃) 铍 20 (20℃) 镁 20 (20℃) 钼 0 铱 20 (0℃~100℃) 钨 27 锌 20 (0℃~100℃) 钴 20 (0℃~100℃) 镍 20 (0℃~100℃) 镉 0 (0℃~100℃) 铟 20 铁 20 (20℃) 铂 20 (0℃~60℃) 锡 0 (0℃~100℃) 铷 20 铬 0 (0℃~100℃) 镓 20 铊 0 铯 20 20 铅 20 (0.0037620℃~40℃) 锑 0 钛 20

新MYJ-1静态数字电阻应变测试仪说明书B5 120307

MYJ-1型 静态数字电阻应变测试仪 使用说明书 江苏溧阳市金诚测试仪器厂 目录

2工作原理—————————————————————————————2 3主要技术指标———————————————————————————5 4测试仪组成————————————————————————————6 4.1前面板—————————————————————————6 4.1.1液晶屏显示窗———————————————————— 6 4.1.2按键部分——————————————————————7 4.2后面板—————————————————————————8 4.3测试仪接线箱上面板———————————————————8 5参数设置——————————————————————————9 5.1参数内容————————————————————————9 5.2参数设置————————————————————————10 5.2.1数据采集———————————————————————10 5.2.1.1 通道采集—————————————————————10 5.2.1.2 分组采集—————————————————————10 5.2.2 参数设置———————————————————————11 5.2.2.1运行设置—————————————————————11 5.2.2.1.1 灵敏度系数——————————————————11 5.2.2.1.2 显示单位———————————————————11 5.2.2.1.3 综合修正系数—————————————————12 5.2.2.2 标定设置—————————————————————12 5.2.2.3 系统设置—————————————————————12 5.2.2.3.1恢复出厂参数—————————————————12 5.2.2.3.2保存出厂设置—————————————————13 5.2.2.3.3复位系统参数—————————————————13 5.2.3传输设置———————————————————————13 5.2.3.1 Ethernet —————————————————————13 5.2.3.2 设备号——————————————————————13 6使用方法——————————————————————————14 7注意事项——————————————————————————19 8维护及故障排除————————————————————————19 9配套及随机文件———————————————————————20 附录A 串口通信格式和相关通信命令列表———————————————21 附录B 综合修正系数的计算方法和解释————————————————24 1概述

金属电阻率及其温度系数

金属电阻率及其温度系 数 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

全系列金属电阻率及其温度系数

常用金属导体在20℃时的电阻率 材料电阻率(Ω m) (1)银 × 10-8 (2)铜 × 10-8 (3)铝 × 10-8 (4)钨 × 10-8 (5)铁 × 10-8 (6)铂 × 10-7 (7) × 10-7 (8)汞 × 10-7 (9) × 10-7 (10)镍铬合金 × 10-6 (11)铁铬铝合金 × 10-6 (12) 铝镍铁合金 × 10-6 (13)石墨(8~13)×10-6 金属温度(0℃)ρ αo , 100 锌 20 ×10-3 ×10-3 铝(软) 20 铝(软)–78 阿露美尔合金 20 33 锑 0 铱 20 铟 0 殷钢 0 75 2 锇 20 镉 20 钾 20 ① 钙 20 金 20 银 20 铬(软) 20 17 镍铬合金(克露美尔)— 70—110 .11—.54 钴a 0 康铜— 50 –.04–

黄铜– 5—7 –2 水银 0 水银 20 锡 20 锶 0 青铜– 13—18 铯 20 21 铋 20 120 铊 20 19 5 钨 20 钨 1000 35 钨 3000 123 钨–78 钽 20 15 金属温度(0℃)ρ αo , 100 杜拉铝(软)— 铁(纯) 20 铁(纯)–78 铁(钢)— 10—20 —5 铁(铸)— 57—114 铜(软) 20 铜(软) 100 铜(软)–78 铜(软)–183 钍 20 18 钠 20 ① 铅 20 21 镍铬合金(不含铁) 20 109 .10 镍铬合金(含铁) 20 95—104 .3—.5 镍铬林合金— 27—45 .2—.34 镍(软) 20 镍(软)–78 铂 20 铂 1000 43 铂–78 铂铑合金② 20 22 钯 20 砷 20 35 镍铜锌电阻线— 34—41 .25—.32 铍(软) 20 镁 20 锰铜 20 42—48 –03—+.02 钼 20 洋银— 17—41 .4—.38

相关文档
相关文档 最新文档