文档库 最新最全的文档下载
当前位置:文档库 › 基于flash技术的虚拟土工仿真实验的设计与开发

基于flash技术的虚拟土工仿真实验的设计与开发

基于flash技术的虚拟土工仿真实验的设计与开发

李晓红 齐丽云 范庆华

(吉林交通职业技术学院,吉林 长春 130012)

摘要:虚拟仿真实验的应用改变了传统的教育模式,不仅可以弥补实验教学条件的不足,而且可以让学生不受时空的限制来做课程实验,大大提高学生对知识的理解和实训技能。文章以土工实验为例,详细介绍利用交互动画软件flash设计和开发虚拟土工仿真实验的流程及应用效果。

关键词:虚拟土工实验;flash技术;设计与开发;计算机辅助教学

中图分类号:TP391 文献标识码:A 文章编号:1009-2374(2012)17-0024-03

1 概述

随着虚拟仿真技术的新发展和计算机网络技术的快速普及,虚拟实验作为一种新的实验类型越来越受到关注,成为计算机辅助教学的一个重要组成部分。近几年来,各方面的关注和需求使虚拟实验有了较快的发展,并将拥有很好的前景。

实验教学在高等职业教育教学活动中具有特殊重要的位置,是培养学生搜集信息能力、独立思考能力、动手操作能力和创新思维能力的重要教学手段,是学生对所学知识进行实践的最直接最有效的途径之一,对培养学生的专业能力、社会能力和方法能力有不可取代的作用。

但是,多数学校由于空间和实验仪器设备数量的限制,多数情况下不能提供给每个学生都能亲手操作实验的机会,也不可能允许每个学生都全面完整的亲自操作完成每个实验环节。虚拟实验的逐渐成型,很好的解决了这一问题,不仅有效缓解很多高校在经费、场地、器材等方面普遍面临的困难和压力,而且开展网上虚拟实验教学能够突破传统实验对“时、空”的限制,无论是学生还是教师,都可以自由、无顾虑地随时随地上网进入虚拟实验室,操作仪器,进行各种实验,有助于提高实验教学质量。

结合目前学校土工实验课的实际教学情况和学校综合设计性实验项目的要求,以成本低效率高为前提,利用flash技术建立一个虚拟的实验环境。使用者可以利用鼠标、键盘等输入设备,进入虚拟土工实验环节,感知和操作网络虚拟实验,加深对教学内容的理解。

2 开发虚拟土工试验的意义

虚拟仿真实验的应用改变了传统的教育模式,使教与学的方式发生了颠覆性的变化:(1)虚拟土工实验不仅从形式到内容更加多样化,更加生动活泼,学生更容易接受、理解和掌握所学的理论知识,而且还弥补实验教学仪器不足,减轻了学校的资金投入压力;(2)虚拟土工实验让学生可以不受时空的限制来做课程实验。传统的实验教学使得学生只能在固定的时间、固定的实验室来完成实验,可是网络虚拟实验的开辟,使得学生在课余时间、在宿舍、在机房等都可以随心所欲的操作实验以提高自己对实验的理解;(3)虚拟实验用先进技术可实现虚拟现实对于沉浸性、交互性的要求。

将虚拟现实技术与实验教学相结合,其设备或对象多是虚拟的,可根据发展需要重新生成新设备,也可使设备和教学内容在虚拟环境中不断更新,使学校教育可及时跟得上最新科技的发展,以培养高素质高级技能型的毕业生,满足经济发展的要求。课堂教学不再局限于有形的教室中,教学活动的空间和时间得到了无形延伸。

构建网络虚拟实验有多种方法,目前常用的

前沿研究F rontier research

2012.06 24

实验构建技术包括JAVA、Active、VRML、QTVR、Flash等,这几种技术各有优缺点,见表1。这些技术基本采用软件方法来模拟硬件设备的功能和实验的基本特性,以实现和现实中的实际仪器的特性相一致,并具有很强的交互和实时反馈的性能,有的甚至能够实现多人合作实验的功能。

从表1的对比可以清楚地看到,三维的虚拟实验采用VRML技术开发综合性能较好,二维的虚拟实验采用Flash技术开发综合性能较好。为此在开发制作虚拟土工实验的过程中,考虑到学生的操作性和实用性,首先采用flash技术制作了相关实验的二维动画效果。

表 1 常用的网络实验构建技术对比

虚拟实验构建技术2D

3D

动画

技术

支持

其他

音频

视频

媒体

支持

网络

通信

(实

现信

馈)

实现

多人

合作

实验

文件

大小

(影

响下

载速

率)

JAVA 较

难以

实现

一般

支持困难中高低中

Active 一

难以

实现

一般

支持容易大中高中

VRML 较

较好一般

支持支持中中中高

QTVR实景建模较好一

不支

不支

大中中低

Flash 较

难以

实现

较好

支持支持小高高低

3 基于flash技术的虚拟土工仿真实验的开发过程

F l a s h是目前很流行的一种交互动画制作软件。通过flash的ActionScript脚本语言,可以方便地实现动画的控制,因其制作方法较简便,动画效果和交互性好而受到广大使用者的青睐。

虚拟土工实验是建立在真实实验的基础之上,对实验所使用仪器设备进行计算机虚拟,实验者通过鼠标和键盘,可以像对真实仪器一样对虚拟实验设备进行操作,进而逐步完成整个虚拟实验过程。

3.1 虚拟土工实验仪器的开发

虚拟实验仪器的开发是实现虚拟实验过程的第一步,通过flash自带ActionScript编写程序进行开发,呈现出二维立体效果。

根据真实的实验仪器(天平、酒精、土样等)用flash软件进行模型构建,可以实现仪器的基本功能(比如天平开关、数据的显示等)。

3.2 虚拟土工实验演示过程的开发

根据实际操作中的具体步骤,通过技术手段使其具体的实验过程得以实现。

3.3 虚拟土工实验交互过程的开发

当实验演示实现后,可以在其中通过技术手段

添加命令,使其使用者通过鼠标、键盘等控制实验

的过程,实现虚拟实验的二维交互过程。下面简述

标准烘干法测定土的含水率实验交互的制作思路。

交互界面分为上中下三个区间,上部显示实验

步骤,下部显示实验仪器,中部为实验区域。当学

生用鼠标点击界面上的开始实验后就进入实验交互

过程,学生根据实验步骤的提示用鼠标拖拽正确的

实验仪器到实验区域,若操作错误,则页面会出现

提示界面“实验无法进行,请仔细思考”界面,直

至学生选择正确的仪器和正确的操作过程实验才能

继续,这时,页面上会显示下一步的操作提示,交

互过程得以继续。学生通过用鼠标参与交互过程,

不仅能加深对实验的理解,而且能大大提高学生的

实训技能。

3.4 对虚拟成果的评价

当虚拟实验的演示和交互实现后,通过网络平台

使学生进行虚拟试验操作,反馈意见后对其进行改

进和修正,虚拟实验的网址为http://125.223.164. 95:85/content/4/sy1page.aspx?c=4&s=sy11mdyl。

4 应用前景

虚拟实验是对传统实验教学模式的革新,也是

科技发展和信息化社会的必然产物。其鲜明的技术

特点和在应用领域的优势,极大地满足了人们日益

增长的学习需求,十分适合新世纪人才培养模式,

在高校实验教学和培训领域具有广阔的应用前景。

计算机网络的迅速普及为虚拟实验室的应用提供了

有利的条件。目前国内高校互联网技术的应用十分

普遍,网络已经遍及到校园的每一个角落。学生既

可以通过学校的公用计算机,也可以用自己的计算

机在宿舍里很方便地登陆互联网。便利的上网条件

无疑为高校虚拟实验室的应用和发展提供了极为有

利的条件。

将土工试验与虚拟技术结合,开展虚拟实验

的开发研究,可以在以下方面得到很好应用:(1)有利于挖掘实验教学的潜能,提高教育技术

水平;(2)可以改善土工实验教学的实验环境,

有利于解决土工实验设备缺乏以及实验场地等问题,未来可以解决实验设备型号落后、陈旧等问

2012.0625

2012.06

26

乘用车制动点头影响因素及性能优化分析

王黎明

(广州汽车集团股份有限公司汽车工程研究院,广东 广州 510640)

摘要:

文章主要分析影响乘用车制动点头的主要因素并介绍提高制动点头性能的理论基础。利用多体动力学仿真软件Adams,分析某乘用车模型制动点头角和制动点头量的现状,通过调整悬架系统硬点的方法来使车辆的制动点头性能得到提升,达到优化制动点头性能的目标要求。关键词:

乘用车;制动点头;Adams ;抗点头率优化中图分类号:

U463 文献标识码:A 文章编号:1009-2374(2012)17-0026-03制动点头性能对车辆的操纵稳定性、通过性和舒适性都有比较大的影响。因为在制动的过程中会出现前后轴载荷的转移,导致车辆前后轴在纵向和侧向的附着力发生明显的变化,会影响车辆的操纵稳定性;制动点头也会导致车辆头部下沉,尾部抬起,如果制动点头量过大会造成车辆的动态离地间隙明显变小,从而影响车辆的通过性;同时也会造成驾驶员和乘员的乘坐舒适性明显下降。因此对控制车辆制动点头量大小的研究就变得非常重要。通过对影响制动点头的因素进行协调,在保证车辆其他方面动力学性能不变的情况下,提升车辆的制动

点头性能。

1 制动点头影响因素

为了获得较好的制动点头性能,应尽可能的考虑影响点头的各种因素,并对这些因素进行优化,提升制动点头性能,主要影响因素如图1:

图1

悬架抗点头率是影响制动点头性能最重要的因素,抗点头率的好坏直接影响制动点头的效果;如

题;(3)可以解决学生时间和空间限制,提高学生实践能力;(4)可较容易地增加具有高新技术的实验,引导学生接触新知识、新技术,开发学生的智能,增强学生研究的意识;(5)将虚拟技术引入其他专业的教学过程中,可以优化教学过程,也可以引领其他课程建设,带动相关科研工作。

5 结语

基于虚拟实验的实践教学体系的构建具有投入少、见效快的优点,是高等职业教育实训建设的新思路、新途径、新方向。将土工虚拟实验与非虚拟实验两者有机结合,实现资金、资源、规模、结构、功能的最优化配置,未来有着广阔前景。参考文献

[1] 宁超,张世英,高巍然,韦素媛.网络虚拟实验的研究与开

发[J].实验技术与管理,2005,(4).

[2] 吕玉珠.基于flash 技术的电阻测量虚拟仿真实验的开发

[J].煤炭技术,2012,(1).

[3] 王荣芝,杨雪,于洪涛.网络虚拟实验的交互设计[J].现

代远距离教育,2008,(2).

[4] 李凌云,王海军.网络虚拟实验系统研究现状与发展趋

势[J].现代教育技术,2008,(4).

作者简介:李晓红(1978-),女,河南孟州人,吉林交通职业技术学院讲师,研究方向:地质环境、环境科学。

(责任编辑:王书柏)

仿真实验报告

上海电力学院 本科课程设计 电路计算机辅助设计 院系:电力工程学院 专业年级(班级):电力工程与管理2011192 班 学生姓名:学号: 201129 指导教师:杨尔滨、杨欢红 成绩: 2013年07 月 06 日教师评语:

目录仿真实验一 仿真实验二仿真实验三仿真实验四仿真实验五仿真实验六仿真实验七仿真实验八仿真实验九节点电压法分析直流稳态电路..........................1 戴维宁定理的仿真设计................................5 叠加定理的验证.. (8) 正弦交流电路——谐振电路的仿真......................11 两表法测量三相电路的功率............................14 含受控源的RL 电路响应的研究........................18含有耦合互感的电路的仿真实验........................21 二阶电路零输入响应的三种状态轨迹....................27 二端口电路的设计与分析 (32)

实验一节点电压法分析电路 一、电路课程设计目的 ( 1)通过较简易的电路设计初步接触熟悉Multisim11.0 。 (2)学会用 Multisim11.0 获取某电路元件的某个参数。 (3)通过仿真实验加深对节点分析法的理解及应用。 二、实验原理及实例 节点分析法是在电路中任意选择一个节点为非独立节点,称此节点为参考点。其它独立节点与参考点之间的电压,称为该节点的节点电压。 节点分析法是以节点电压为求解电路的未知量,利用基尔霍夫电流定律和欧姆定律导出(n – 1)个独立节点电压为未知量的方程,联立求解,得出各节点电压。然后进一步求出 各待求量。 下图所示是具有三个节点的电路,下面以该图为例说明用节点分析法进行的电路分析方 法和求解步骤,导出节点电压方程式的一般形式。 图1— 1 首先选择节点③为参考节点,则u3 = 0 。设节点①的电压为u1、节点②的电压为u2,各支 路电流及参考方向见图中的标示。应用基尔霍夫电流定律,对节点①、节点②分别列出节点电 流方程: 节点①i S1i S2i1i 20 节点②i S2i S 3i 2i30 用节点电压表示支路电流: u1 i1G1u1 R 1 u1u2 i 2R G 2(u1u2 ) 2 u2 i3G 3u2 R 3

《模拟电子技术实验》实验指导书

北方民族大学 Beifang University of Nationalities 《模拟电子技术实验》课程指导书 北方民族大学教务处

北方民族大学 《模拟电子技术实验》课程指导书 编著杨艺丁黎明 校审杨艺 北方民族大学教务处 二〇一二年三月

《模拟电子技术实验》课程是工科类大学二年级学生必修的一门实践类课程。实验主要设备包括模拟电子技术实验箱、信号发生器、示波器、数字万用表、交流毫伏表和直流电源等。 课程教学要求是:通过该课程,学生学会正确使用常用的电子仪器,掌握三极管放大电路分析和设计方法,掌握集成运放的使用及运算放大电路各项性能的测量,学会查找并排除实验故障,初步培养学生实际工程设计能力,学会仿真软件的使用,掌握工程设计的概念和步骤,为以后学习和工作打下坚实的实践基础。 《模拟电子技术实验》课程内容包括基础验证性实验,设计性实验和综合设计实践三大部分。 基础验证性实验主要包括仪器设备的使用、双极性三极管电路的分析、负反馈放大电路的测量等内容。主要培养学生分析电路的能力,掌握电路基本参数的测量方法。 设计性实验主要包括运算电路的实现等内容。主要要求学生掌握基本电路的设计能力。 综合设计实践主要包括项目的选题、开题、实施和验收等过程,要求学生能够掌握电子产品开发的整个过程,提高学生的设计、制作、调试电路的能力。 实验要求大家认真做好课前预习,积极查找相关技术资料,如实记录实验数据,独立写出严谨、有理论分析、实事求是、文理通顺、字迹端正的实验报告。 本书前八个实验项目由杨艺老师编写,实验九由丁黎明老师编写。全书由丁黎明老师提出课程计划,由杨艺老师进行校对和排版。参与本书课程计划制订的还有电工电子课程组的全体老师。 2012年3月1日

虚拟仿真实验方案设计

实用文档 虚拟仿真实验解决方案 华一风景观艺术工程 2017年8月

目录 第一章需求分析 (2) 一、项目背景 (2) 二、实验教学现状 (3) 三、用户需求 (3) 第二章建设原则 (5) 一、建设目标 (5) 二、建设原则 (6) 第三章系统总体解决方案 (7) 一、总体架构 (7) 二、学科简介 (8) 第四章产品优势 (14) 第五章产品服务 (16) 一、服务方式 (16) 二、服务容 (16) 三、故障响应服务流程 (17) 四、故障定义 (18) 五、故障响应时间 (18) 六、故障处理流程 (19) 七、应急预案 (19)

第一章需求分析 一、项目背景 《国家中长期教育改革和发展规划纲要(2010-2020年)》明确指出:把教育信息化纳入国家信息化发展整体战略,超前部署教育信息网络。到2020年,基本建成覆盖城乡各级各类学校的教育信息化体系,促进教育容、教学手段和方法现代化。加强优质教育资源开发与应用,建立数字图书馆和虚拟实验室。鼓励企业和社会机构根据教育教学改革方向和师生教学需求,开发一批专业化教学应用工具软件,并通过教育资源平台提供资源服务,推广普及应用。 在“十三五规划”方针政策指引下,各地陆续出台政策,强调数理化实验教学的重要性。 2016年,公布了中高考的新方案,强调义务教育阶段所有科目都设为100分,表示它们在义务教育与学生成长中同等重要,不再人为去区分主次,使学校、老师、家长、社会对每一门学科都很重重视,其中物生化实验部分占分比例为30%,高考不再文理分科。 继重磅发布此消息后,教育厅发布《关于2016年普通高中招生工作的意见》,其中明确要求理化生实验操作考试满分为30分;省初中毕业升学理化实验操作考试分数为15分,考试成绩计入考生中考录取总分;省理化实验操作10分。

模拟电子技术实验

实验2 单管放大电路 1.1 实验目的 (1) 熟悉电子元件和模拟电路实验箱。 (2) 掌握放大器静态工作点的调试方法及其对放大器性能的影响。 (3) 学习测量放大器Q点,A v,r i,r o的方法,了解共射极电路的特性。 (4) 学习放大器的动态性能。 1.2 实验仪器与设备 示波器,信号发生器,交流毫伏表,数字万用表,模拟/数字电路实验箱。 1.3 预习要求 (1) 熟悉分压式偏置放大器的工作原理,了解元器件参数对放大器性能的影响。 (2) 熟悉放大器的动态及静态测量方法。 1.4 实验内容与步骤 (一)、连接直流电路,测量静态工作点 1.连接直流电路 (1)用万用表判断实验元件(三极管、电解电容、电阻、电位器)及实验所用导线的好坏。 (2) 连接分压式偏置放大器的直流通路,电路如图1-1所示,将R W的阻值调到最大100K。 图1-1 分压式偏置单管放大器的直流通路

(3)调节直流稳压电源电压输出调节旋钮,使其输出+12V(方法:用万用表直流电压档监测直流稳压电源输出端口,调节旋钮使万用表显示+12 V) 2.调节静态工作点 接通稳压电源(方法:用红色导线连接直流稳压电源的正极与R W R C的公共点,用黑色导线连接直流稳压电源的负极与R B2 R E的公共点),调节R W使U CE=1/2 U CC,V BE=0.7V 测量晶体管各极对地电压U B、U C和U E,将测量结果和计算所得结果填入表1-1中。 U CE =U C-U E U BE =U B-U E I C = I E= U E /R E 表1-1 静态工作点实验数据 (二)、连接完整电路,测量动态参数 1.连接完整电路 图1-2 分压式偏置单管放大器原理图 注意:电解电容的极性。 3.电压放大倍数的测量 (1)接通函数信号发生器电源,调节函数信号发生器的频率调节旋钮和幅度调节旋钮,使函数信号发生器输出频率 f =1 kHz ,输出电压U S=10 mV (有效值)的交流信号(若输出不能达到10 mV,可调节输出衰减旋钮20~60 dB和幅度调节旋钮即可)。 注意:信号发生器输出交流信号的频率通过数码管显示即可读出来,输出交流信号的幅度必须使用晶体管毫伏表检测方可读出电压有效值。 (2)将信号发生器、示波器、晶体管毫伏表按图1-3接入。信号发生器的正极、示波

微波仿真实验报告(北邮)

北京邮电大学 微波仿真实验报告实验名称:微波仿真实验

姓名:刘梦颉 班级:2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 一、实验目的 1、熟悉支节匹配的匹配原理。 2、了解微带线的工作原理和实际应用。 3、掌握Smith图解法设计微带线匹配网络。 4、掌握ADS,通过SmithChart和Momentum设计电路并仿真出结果。 二、实验要求 1、使用软件:ADS 2、实验通用参数: FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02 特性阻抗:50欧姆 3、根据题目要求完成仿真,每题截取1~3张截图。

三、实验过程及结果 第一、二次实验 实验一: 1、实验内容 Linecal的使用(工作频率1GHz) a)计算FR4基片的50欧姆微带线的宽度 b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线 宽度与接地板之间的距离) 2、相关截图 (a)根据实验要求设置相应参数

(b)根据实验要求设置相应参数 实验二 1、实验内容 了解ADS Schematic的使用和设置2、相关截图:

打开ADS软件,新建工程,新建Schematic窗口。 在Schematic中的tools中打开lineCalc,可以计算微带线的参数。 3、实验分析 通过在不同的库中可以找到想要的器件,比如理想传输线和微带线器件。在完成电路图后需要先保存电路图,然后仿真。在仿真弹出的图形窗口中,可以绘制Smith图和S参数曲线图。

实验三 1、实验内容 分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。观察Smith圆图变化。 2、相关截图 (1)理想传输线

模拟电子技术实验报告

姓名:赵晓磊学号:1120130376 班级:02311301 科目:模拟电子技术实验B 实验二:EDA实验 一、实验目的 1.了解EDA技术的发展、应用概述。 2. 掌握Multisim 1 3.0 软件的使用,完成对电路图的仿真测试。 二、实验电路

三、试验软件与环境 Multisim 13.0 Windows 7 (x64) 四、实验内容与步骤 1.实验内容 了解元件工具箱中常用的器件的调用、参数选择。 调用各类仿真仪表,掌握各类仿真仪表控制面板的功能。 完成实验指导书中实验四两级放大电路实验(不带负反馈)。 2.实验步骤 测量两级放大电路静态工作点,要求调整后Uc1 = 10V。 测定空载和带载两种情况下的电压放大倍数,用示波器观察输入电压和输出电压的相位关系。 测输入电阻Ri,其中Rs = 2kΩ。 测输出电阻Ro。 测量两级放大电路的通频带。 五、实验结果 1. 两级放大电路静态工作点 断开us,Ui+端对地短路

2. 空载和带载两种情况下的电压放大倍数接入us,Rs = 0 带载: 负载: 经过比较,输入电压和输出电压同相。 3. 测输入电阻Ri Rs = 2kΩ,RL = ∞ Ui = 1.701mV

Ri = Ui/(Us-Ui)*Rs = 11.38kΩ 4. 测输出电阻Ro Rs = 0 RL = ∞,Uo’=979.3mV RL = 4.7kΩ,Uo = 716.7mV Ro = (Uo’/Uo - 1)*R = 1.72kΩ 5. 测量两级放大电路的通频带电路最大增益49.77dB 下限截止频率fL = 75.704Hz 上限截止频率fH = 54.483kHz 六、实验收获、体会与建议

Multisim仿真实验报告

Multisim仿真实验报告 实验课程:数字电子技术 实验名称:Multisim仿真实验 姓名:戴梦婷 学号: 13291027 班级:电气1302班 2015年6月11日

实验一五人表决电路的设计 一、实验目的 1、掌握组合逻辑电路——五人表决电路的设计方法; 2、复习典型组合逻辑电路的工作原理和使用方法; 3、提高集成门电路的综合应用能力; 4、学会调试Multisim仿真软件,并实现五人表决电路功能。 二、实验器件 74LS151两片、74LS32一片、74LS04一片、单刀双掷开关5个、+5V直流电源1个、地线1根、信号灯1个、导线若干。 三、实验项目 设计一个五人表决电路。在三人及以上同意时输出信号灯亮,否则灯灭,用8选1数据选择器74LS151实现,通过Multisim仿真软件实现。 四、实验原理 1、输入变量:A B C D E,输出:F;

3、逻辑表达式 F= ABCDE+ABCDE+ABCDE+ABCDE+ ABCDE+ ABCDE+ABC DE+ABCDE+ ABCDE+ ABCDE+ABCDE+ABCDE+ ABCDE+ABCDE+ABCDE+ABCDE =ABCDE+ ABCDE+ABCDE+ ABCD+ABCDE+ABCDE+ABCD+ABCDE+ ABCD+ABCD+ABCD 4、对比16选1逻辑表达式,令A3=A,A2=B,A1=C,A0=D,D3=D5=D6=D9=D10=D12=E, D 7=D 11 =D 13 =D 14 =D 15 =1,D =D 1 =D 2 =D 4 =D 8 =0; 5、用74LS151拓展构成16选1数据选择器。 五、实验成果 用单刀双掷开关制成表决器,同意开关打到上线,否则打到下线。当无人同意时,信号指示灯不亮,如下图:

模拟电子技术实验

实验一共射极单管放大电路的研究 1. 实验目的 (1)学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响; (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法; (3)熟悉常用电子仪器及模拟电路实验设备的使用。 2. 实验设备与器材 实验所用设备与器材见表1.1。 表1.1 实验4.1的设备与器材 序号名称型号与规格数量备注 1 实验台1台 2 双踪示波器0~20M 1台 3 电子毫伏表1只 4 万用表1只 5 三极管1只 6 电阻1kΩ/0.25W 1只R e 7 电阻 2.4kΩ/0.25W 2只R S、R c、R L 8 电阻20kΩ/0.25W 1只R b1、R b2 9 电阻500kΩ/0.25W 1只R b2 10 铝电解电容10μF/25V 2只C1、C2 11 铝电解电容50μF/25V 1只C e 3. 实验电路与说明 实验电路如图1.1所示,为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电阻R E,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。安装电路时,要注意电解电容极性、直流电源正负极和信号源的极性。 图1.1 共射极单管放大器实验电路

I c/mA U ce/V u0波形失真情况管子工作状态 2.0 (5) 测量最大不失真输出电压的幅度 置R C=2.4kΩ,R L=2.4kΩ,调节信号发生器输出,使U s逐渐增大,用示波器观察输出信号的波形。直到输出波形刚要出现失真而没有出现失真时,停止增大U s,这时示波器所显示的正弦波电压幅度,就是放大电路的最大不失真输出电压幅度,将该值记录下来。然后继续增大U s,观察输出信号波形的失真情况。 5. 实验总结与分析 (1)用理论分析方法计算出电路的静态工作点,填入表1.2中,再与测量值进行比较,并分析误差的原因。 (2)通过电路的动态分析,计算出电路的电压放大倍数,包括不接负载时的A u、A us以及接上负载时的A u、A us。将计算结果填入表1.3中,再与测量值进行比较,并分析产生误差的原因。 (3)回答以下问题: ①放大电路所接负载电阻发生变化时,对电路的电压放大倍数有何影响? ②怎样用测量信号电压的方法来测量放大电路的输入电阻和输出电阻? (4)心得体会与其他。

automod仿真实验设计

1. 实验设计 对于库存系统,管理者往往比较关心供应链的成本和产品满足率的问题。因此将年总成本和产品满足率作为该系统的响应。其中: 产品满足率= 出库总量/订单总量 供应链总成本= 总库存成本+总订货成本 = 年平均库存*单位库存持有成本+单次订货成本*年订货次数 上式中,产品满足率是指以库存来满足的那部分市场需求所占的比率。供应链总成本的计算中,认为供应链不存在缺货损失,因而不考虑缺货成本。 根据上述目标绩效,对模型的输入进行分析可知,参数K,H可能会对绩效指标产生影响。 Q 从上式可以看出,K,H会对最优订货量Q产生影响,则选取K/H来分析。 类型 因子K/H 响应供应链总成本,产品满足率 (正交实验设计) 2. 输出数据分析 该库存系统仿真为非终止型仿真,则选取批均值法进行分析。仿真运行2500天,删除前730天的数据,将剩下的数据分成4批,每批长度为365天。 统计数据 统计项批次粮食销售点企业储备库销区储备库产区储备库 库存均值1 137.5 321.1350.8393.4 2 131.8 312.0 345.7 389.1 3 136.7 320.6 355.8 398.0 4 133.9 308.6 345.4 394.1 订货次数1 58 51 43 35 2 61 5 3 46 39 3 60 52 4 4 36 4 62 5 5 48 40 区间估计

估计项 95%置信区间 均值下限上限 库存均值 销售点135.0 130.8 139.1 企业储备库315.6 305.6 325.5 销区储备库349.4 341.6 357.3 产区储备库393.7 387.8 399.5 订货次数 销售点60 58 63 企业储备库53 50 55 销区储备库45 42 49 产区储备库38 34 41 供应链总成本= 总库存成本+总订货成本=159265 估计项 95%置信区间 均值下限上限 出库量16295 15856 16734 需求16420 15914 16926 产品满足率=99.2%

模拟电子技术课程设计(Multisim仿真)

《电子技术Ⅱ课程设计》 报告 姓名 xxx 学号 院系自动控制与机械工程学院 班级 指导教师 2014 年 6 月18日

目录 1、目的和意义 (3) 2、任务和要求 (3) 3、基础性电路的Multisim仿真 (4) 3.1 半导体器件的Multisim仿真 (4) 3.11仿真 (4) 3.12结果分析 (4) 3.2单管共射放大电路的Multisim仿真 (5) 3.21理论计算 (7) 3.21仿真 (7) 3.23结果分析 (8) 3.3差分放大电路的Multisim仿真 (8) 3.31理论计算 (9) 3.32仿真 (9) 3.33结果分析 (9) 3.4两级反馈放大电路的Multisim仿真 (9) 3.41理论分析 (11) 3.42仿真 (12) 3.5集成运算放大电路的Multisim仿真(积分电路) (12) 3.51理论分析 (13) 3.52仿真 (14) 3.6波形发生电路的Multisim仿真(三角波与方波发生器) (14) 3.61理论分析 (14) 3.62仿真 (14) 4.无源滤波器的设计 (14) 5.总结 (18) 6.参考文献 (19)

一、目的和意义 该课程设计是在完成《电子技术2》的理论教学之后安排的一个实践教学环节.课程设计的目的是让学生掌握电子电路计算机辅助分析与设计的基本知识和基本方法,培养学生的综合知识应用能力和实践能力,为今后从事本专业相关工程技术工作打下基础。这一环节有利于培养学生分析问题,解决问题的能力,提高学生全局考虑问题、应用课程知识的能力,对培养和造就应用型工程技术人才将能起到较大的促进作用。 二、任务和要求 本次课程设计的任务是在教师的指导下,学习Multisim仿真软件的使用方法,分析和设计完成电路的设计和仿真。完成该次课程设计后,学生应该达到以下要求: 1、巩固和加深对《电子技术2》课程知识的理解; 2、会根据课题需要选学参考书籍、查阅手册和文献资料; 3、掌握仿真软件Multisim的使用方法; 4、掌握简单模拟电路的设计、仿真方法; 5、按课程设计任务书的要求撰写课程设计报告,课程设计报告能正确反映设计和仿真结果。

哈工大 计算机仿真技术实验报告 仿真实验四基于Simulink控制系统仿真与综合设计

基于Simulink 控制系统仿真与综合设计 一、实验目的 (1) 熟悉Simulink 的工作环境及其功能模块库; (2) 掌握Simulink 的系统建模和仿真方法; (3) 掌握Simulink 仿真数据的输出方法与数据处理; (4) 掌握利用Simulink 进行控制系统的时域仿真分析与综合设计方法; (5) 掌握利用 Simulink 对控制系统的时域与频域性能指标分析方法。 二、实验内容 图2.1为单位负反馈系统。分别求出当输入信号为阶跃函数信号)(1)(t t r =、斜坡函数信号t t r =)(和抛物线函数信号2/)(2t t r =时,系统输出响应)(t y 及误差信号)(t e 曲线。若要求系统动态性能指标满足如下条件:a) 动态过程响应时间s t s 5.2≤;b) 动态过程响应上升时间s t p 1≤;c) 系统最大超调量%10≤p σ。按图1.2所示系统设计PID 调节器参数。 图2.1 单位反馈控制系统框图

图2.2 综合设计控制系统框图 三、实验要求 (1) 采用Simulink系统建模与系统仿真方法,完成仿真实验; (2) 利用Simulink中的Scope模块观察仿真结果,并从中分析系统时域性能指标(系统阶跃响应过渡过程时间,系统响应上升时间,系统响应振荡次数,系统最大超调量和系统稳态误差); (3) 利用Simulink中Signal Constraint模块对图2.2系统的PID参数进行综合设计,以确定其参数; (4) 对系统综合设计前后的主要性能指标进行对比分析,并给出PID参数的改变对闭环系统性能指标的影响。 四、实验步骤与方法 4.1时域仿真分析实验步骤与方法 在Simulink仿真环境中,打开simulink库,找出相应的单元部件模型,并拖至打开的模型窗口中,构造自己需要的仿真模型。根据图2.1 所示的单位反馈控制系统框图建立其仿真模型,并对各个单元部件模型的参数进行设定。所做出的仿真电路图如图4.1.1所示。

参考答案--模拟电子技术实验指导书(2012)

参考答案--模拟电子技术实验指导书(2012)

实验一常用电子仪器的使用 一、实验目的 1.熟悉示波器,低频信号发生器和晶体管毫伏表等常用电子仪器面板,控制旋钮的名称,功能及使用方法。 2.学习使用低频信号发生器和频率计。 3.初步掌握用示波器观察波形和测量波形参数的方法。 二、实验原理 在电子电路实验中,经常使用的电子仪器有示波器、低频信号发生器、直流稳压电源、交流毫伏表及频率计等。它们和万用电表一起,可以完成对电子电路的静态和动态工作情况的测试。 实验中要对各种电子仪器进行综合使用,可按照信号流向,以连线简捷,调节顺手,观察与读数方便等原则进行合理布局,各仪器与被测实验装置之间的布局与连接如图1—1所示。接线时应注意,为防止外界干扰,各仪器的共公接地端应连接在一起,称共地。信号源和交流毫伏表的引线通常用屏蔽线或专用电缆线,示波器接线使用专用电缆线,直流电源的接线用普通导线。

图1—1 模拟电子电路中常用电子仪器布局图 1.低频信号发生器 低频信号发生器按需要输出正弦波、方波、三角波三种信号波形。输出电压最大可达20V(峰-峰值)。通过输出衰减开关和输出幅度调节旋钮,可使输出电压在毫伏级到伏级范围内连续调节。低频信号发生器的输出信号频率可以通过频率分档开关进行调节。 低频信号发生器作为信号源,它的输出端不允许短路。 2.交流毫伏表 交流毫伏表只能在其工作频率范围之内,用来测量正弦交流电压的有效值。为了防止过载而损坏,测量前一般先把量程开关置于量程较大位置上,然后在测量中逐档减小量程。 3.示波器 示波器是一种用途极为广泛的电子测量仪器,它能把电信号转换成可在荧光屏幕上直接观察的图象。示波器

大学物理仿真实验报告概要

大学物理仿真实验报告 姓名: 学号: 班级:

实验-----利用单摆测量重力加速度 实验目的 利用单摆来测量重力加速度 实验原理 单摆的结构参考图1单摆仪,一级近似的周期公式为 由此通过测量周期摆长求重力加速度 实验仪器 单摆仪、摆幅测量标尺、钢球、游标卡尺 实验内容 一.用误差均分原理设计一单摆装置,测量重力加速度g. 设计要求: (1)根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法. (2)写出详细的推导过程,试验步骤.

(3)用自制的单摆装置测量重力加速度g,测量精度要求△g/g < 1%. 可提供的器材及参数: 游标卡尺、米尺、千分尺、电子秒表、支架、细线(尼龙线)、钢球、摆幅测量标尺(提供硬白纸板自制)、天平(公用). 假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s. 二.对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计 要求. 三.自拟实验步骤研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素 的关系,试分析各项误差的大小. 四.自拟试验步骤用单摆实验验证机械能守恒定律. 实验数据 摆线长+小球直径L=91.50cm

D(平均)=(1.750+1.752+1.744+1.740+1.749+1.748)÷6=1.7 47m R=D/2=0.850cm l=L-R=91.05cm t=95.91s,周期数n=50,周期T=1.92s 所以g=9.751 2ΔT/t=0.0022,ΔL/l=0.0005,所以Δg/g=0.27%,Δg=0.026 所以: g=(9.751±0.026) 实验结论与误差分析: 结论:g=(9.751±0.026),Δg/g=0.27%<1%,所以达到设计要求。 误差分析: 1.若θ>5°(即角度过大)因为T 与θ相关,当θ越大时T也越大,所以θ偏大,测量 值比值偏小。

模拟电子技术实验指导书

《模拟电子技术》实验教学指导书课程编号:1038181007 湘潭大学 信息工程学院电工与电子技术实验中心 2007年11月30日

前言 一、实验总体目标 通过实验教学,使学生巩固和加深所学的理论知识,培养学生运用理论解决实际问题的能力。学生应掌握常用电子仪器的原理和使用方法,熟悉各种测量技术和测量方法,掌握典型的电子线路的装配、调试和基本参数的测试,逐渐学习排除实验故障,学会正确处理测量数据,分析测量结果,并在实验中培养严肃认真、一丝不苟、实事求是的工作之风。 二、适用专业年级 电子信息工程、通信工程、自动化、建筑设施智能技术等专业二年级本科学生。 三、先修课程 《高等数学》、《大学物理》、《电路分析基础》或《电路》。 网络化模拟电路实验台:36套(72组) 主要配置:数字存储示波器、DDS信号发生器、数字交流毫伏、模块化单元电路板等。 六、实验总体要求 本课程要求学生自己设计、组装各种典型的应用电路,并用常用电子仪器测试其性能指标,掌握电路调试方法,研究电路参数的作用与影响,解决实验中可能出现各种问题。 1、掌握基本实验仪器的使用,对一些主要的基本仪器如示波器、、信号发生器等应能较熟练地使用。 2、基本实验方法、实验技能的训练和培养,牢固掌握基本电路的调整和主要技术指标的测试方法,其中还要掌握电路的设计、组装等技术。 3、综合实验能力的训练和培养。 4、实验结果的处理方法和实验工作作风的培养。

七、本课程实验的重点、难点及教学方法建议 本课程实验的重点是电路的正确连接、仪表的正确使用、数据测试和分析; 本课程实验的难点是电路的设计方法和综合测试与分析。 在教学方法上,本课程实验应提前预习,使学生能够利用原理指导实验,利用实验加深对电路原理的理解,掌握分析电路、测试电路的基本方法。

《本科模拟电子技术实验》教案

《本科模拟电子技术实验》教案

4.1 共射极单管放大电路的研究 1. 实验目的 (1)学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响; (2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法; (3)熟悉常用电子仪器及模拟电路实验设备的使用。 2. 实验设备与器材 实验所用设备与器材见表4.1。 表4.1 实验4.1的设备与器材 序号名称型号与 规格 数量备注 1 直流稳压电源双路 0~30V 1台 2 双踪示波器0~10M 1台 3 函数信号发生 器 低频1台 4 模拟电路实验 箱 1台 5 电子毫伏表1只 6 万用表1只 7 数字电压表0~1只

200V 8 数字毫安表0~ 200mA 1只 9 晶体管特性图 示仪1台全班共 用 10 三极管9013 1只 11 电阻1kΩ/0.2 5W 1只R e 12 电阻 2.4kΩ/0 .25W 2只R S、R c、R L 13 电阻20kΩ/0. 25W 1只R b1、R b2 14 电阻500kΩ/ 0.25W 1只R b2 15 铝电解电容10μF/25 V 2只C1、C2 16 铝电解电容50μF/25 V 1只C e 3. 实验电路与说明 实验电路如图4.1所示,为电阻分压式工作点稳定单管放大器实验电路图。它的偏置电路采用R B1和R B2组成的分压电路,并在发射极中接有电

阻R E,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号u i后,在放大器的输出端便可得到一个与u i相位相反,幅值被放大了的输出信号u0,从而实现了电压放大。安装电路时,要注意电解电容极性、直流电源正负极和信号源的极性。 图4.1 共射极单管放大器实验电路 4. 实验内容与步骤 (1)电路安装 ①安装之前先检查各元器件的参数是否正确,区分三极管的三个电极,并测量其β值。 ②按图4.1所示电路,在面包板或实验台上搭接电路。安装完毕后,应认真检查连线是否正确、牢固。 (2)测试静态工作点 ①电路安装完毕经检查无误后,首先将直流稳压电源调到12V,接通直流电源前,先将R W

设计性实验(MATLAB仿真实验)

设计性实验(MATLA仿真实验) 3.1 MATALAB语言概述 3.1.1 MATALAB 语言的发展 MATALAB 是一种科学计算软件,主要适用于矩阵运算及控制和信息处理领域的分析设计。它使用方便,输入简洁,运算高效,内容丰富,并且很容易由用户自行扩展,因此,当前已成为美国和其他发达国家大学教学和科学研究中最常用而必不可少的工具。 MATLAB 是由美国Mathworks 公司与 1 984年正式推出的,从那时到现在已升级到7.x 版本。随着版本的升级,内容不断扩充,功能更强大。特别是在系统仿真和实时运行等方面,有很多新进展,更扩大了它的应用前景。 MATLAB 是“矩阵实验室”( MATrix Laboratoy )的缩写,它是一种以矩阵运算为基础的交互式程序语言,专门针对科学、工程计算及绘图的需求。它用解释方式工作,键入程序立即得出结果,人机交互性能好,适应于多种平台。MATLAB 语言在国外的大学工学院中,特别是数值计算用的最频繁的电子信息类学科中,已成为每个学生都掌握的工具了。它大大提高了课程教学、解题作业、分析研究的效率。 MATLAB 语言比较好学,因为它只有一种数据类型,一种标准的输入输出语句,不用“指针”,不需编译,比其他语言少了很多内容听三、四个小时课,上机练几个小时,就可入门了。以后自学也十分方便,通过它的演示(dem0)和求助(help)命令,人们可以方便地在线学习各种函数的用法及其内涵MATLAB 语言的难点是函数较多,仅基本部分就有700多个,其中常用的有二三百个,要尽量多记少查,可以提高编程效率。 3.1.2MATLAB 语言的特点 1.矩阵运算:每个变量代表一个矩阵,它以矩阵运算见长;每个元素都看作复数,所有的运算都对矩阵和复数有效。(虚部符号可用i 或j) clear %清除内存变量format short % c1=1-2i,c2=3*(2-sqrt(-1)*3),c3=6+sin(.5)*1j c4=complex(1,2) %建立复数 c1 = 1.0000 - 2.0000i

模拟电子技术实验综合

实验1 单级晶体管放大电路 一、实验目的 1.掌握放大电路静态工作点的调整和测试方法。 2.了解静态工作点对电压放大倍数的影响。 3.了解静态工作点对输出波形的影响。 4.学习测量放大电路的交流电压放大倍数、输入电阻、输出电阻以及最大不失真输出电压的测试方法。 5.熟悉常用电子仪器、仪表及模拟电子技术实验设备的使用。 二、实验原理 电压放大电路的基本任务是在输入端接入交流信号u i 后,在其输出端便可以得到一个与之相位相反、不失真的交流放大输出信号u 0 ,且有足够的电压放大倍数。图1-1为电阻分压式稳定静态工作点的共射极单管放大电路,其基极偏置电路由R B1和R B2分压电路构成。如果静态工作点选择得过高或过低,或者输入信号过大,都会使输出波形失真。为获得合适的静态工作点,一般采用调节上偏置电阻R P 的方法,在发射极接有电阻R e ,以稳定静态工作点Q 。 图1-1 分压式偏置共发射极放大电路 图1-1的电路是交流放大电路中最常用的一种基本单元电路。根据此电路学习放大电路的主要性能指标的测量方法。 1. 输入电阻r i 放大器的输入电阻是从放大器的输入端看进去的等效电阻,加上信号源之后,它就是信号源的负载电阻,用r i 表示。由此可知 r i =U i / i i =R S U i / (U S -U i ) U CC 12V

其中:U S—信号源电压的有效值,R S—信号源内阻; U i—放大电路输入电压的有效值。 r i的大小直接关系到信号源的工作情况。 2.输出电阻r o 、放大器的输出电阻是从放大器的输出端回向放大器看进去的等效电阻,用r o表示,测出U o C U o L后r o由下式计算: r o=R L(U o1-U o2) /U o2 ——放大电路开路时输出电压的有效值; 其中:U o C U o L——放大电路接负载R L时输出电压的有效值。 3.电压放大倍数A u 放大器的电压放大倍数是在输出波形不失真的情况下输出电压与输入电压有效值(或最大值)的比值A u,即 A u=U o /U i 三、实验仪器设备及元器件 1.直流稳压电源 2.函数信号发生器 3.数字式双踪示波器 4.数字万用表 5.交流毫伏表 6.模拟电子实验箱、单级晶体管放大电路专用实验板 7.晶体三极管、电位器、电阻器、电容器等电子元件 四、预习要求 1.理解分压式偏置放大电路的工作原理及电路中各元件的作用。 2.估算实验电路的性能指标:假设晶体管S9018的β=100,R B1=15kΩ,R B2=20kΩ,R C=3.3kΩ,R L=5.1kΩ,U CC=+12V,估算放大电路的静态工作点Q ,电压放大倍数A u,输入电阻r i 和输出电阻r o。 3.了解饱和失真、截止失真或因信号过大引起的失真波形。 4.掌握有关输入电阻及输出电阻的测试方法。 5.极性电容接反极性会有什么后果?怎样避免极性接反?

仿真实验报告格式

模拟电子技术课程 电流负反馈偏置的共发射极放大电路仿真实验报告 学号:姓名: 一、本仿真实验的目的 1. 研究在电流负反馈偏置的共发射极放大电路中各个电路元件参数与电路中电 压增益aus=vo/vs、输入电阻ri、输出电阻ro以及低频截止频率fl的关系; 2. 进一 步理解三极管的特性以及电流负反馈偏置的共发射极放大电路的工作原 理; 3. 进一步熟悉multisim软件的使用方法。 二、仿真电路 注:在此电路中,三极管为bjt-npn-vrtual*,设置参数为bf=100,rb=100 ω(即设置晶体管参数为β=100,rbb’=100ω)。 三、仿真内容 1. 计算电路的电压增益aus=vo/vs,输入电阻ri及输出电阻ro; 2. 研究耦合电容、旁 路电容对低频截止频率fl的影响: 1) 令c2,ce足够大,计算由c1引起的低频截止频率fl1; 2) 令c1,ce足够大,计 算由c2引起的低频截止频率fl2; 3) 令c1,c2足够大,计算由ce引起的低频截止频率fl3; 4) 同时考虑c1,c2,ce时的低频截止频率fl; 3. 采用图1所示的电路结构,使用上述给定的晶体管参数,设rl=3kω,rs=100 ω,设计其它电路元件参数,满足下列要求:aus≥40,fl≤80hz。 四、仿真结果 1. 计算电路的电压增益aus=vo/vs,输入电阻ri及输出电阻ro; 仿真电路如图2所示: 图2 测量结果如下所示: 1) vs有效值为5mv,频率为60hz: 测得aus=-29.2,ri=5.60kω,ro=3.35 kω。 2) vs有效值为5mv,频率为100hz: 测得aus=-43.5,ri=3.89kω,ro=3.33kω。 3) vs有效值为5mv,频率为1khz: 测得aus=-76.1,ri=2.27kω,ro=3.31kω。 4) vs有效值为5mv,频率为1khz: 测得aus=-77.1,ri=2.25kω,ro=3.30kω。 测量数据归纳如表1所示: 2. 研究耦合电容、旁路电容对低频截止频率fl的影响: 1) 令c2,ce足够大,计算由c1引起的低频截止频率fl1; 仿真电路如图3所示: 图3 令c2=ce=5f,输入电压为1mv。 当f=1mhz时vo=0.071v,因此当f= fl时vo=0.0502v。经电路仿真,当f=19.5hz时, vo=0.0502v。因此fl =19.5hz。 2) 令c1,ce足够大,计算由c2引起的低频截止频率fl2; 仿真电路如图4所示: 图4 令c1=ce=5f ,输入电压为5mv。当f=1mhz时vo=0.358v,因此当f=fl时vo=0.253v。 经电路仿真,当f=5.7hz时,vo=0.253v。因此fl=5.7hz。 3) 令c1,c2足够大,计算由ce引起的低频截止频率fl3; 仿真电路如图5所示:

模拟电子技术电路设计

一、课程设计目的 1通过课程设计了解模拟电路基本设计方法以及对电路图进行仿真,加深对所学理论知识的理解。 2通过解决比较简单的电路图,巩固在课堂上所学的知识和实验技能。 3综合运用学过的知识,并查找资料,选择、论证方案,完成电路设计并进行仿真,分析结果,撰写报告等工作。 4 使学生初步掌握模拟电子技术电路设计的一般方法步骤,通过理论联系实际提高和培养学生分析、解决实际问题的能力和创新能力。 二、方案论证 2.1设计思路 一般来说,正弦波振荡电路应该具有以下四个组成部分: 1.放大电路 2.反馈网络 3.选频网络 4.稳幅环节 其中放大电路和反网络构成正反馈系统,共同满足条件1=? ? F A 选频网络的作用是实现单一频率的正弦波振荡。稳幅环节的作用是使振荡幅度达到稳定,通常可以利用放大元件的非线形特性来实现。 如果正弦波振荡电路的选频网络由电阻和电容元件组成,通常成为RC振荡电路。 2.2工作原理

1.电路组成 振荡电路的电路图如2.3原理图所示。其中集成运放A 工作在放大电路,RC 串并联网络是选频网络,而且,当 f f o = 时,它是一个接成正反馈的反馈 网络。另外,R f 和R ' 支路引入一个负反馈。由原理图可见 RC 串并联网络中的串联支路和并联支路,以及负反馈支路中的R F 和R ' ,正好组成一个电桥的四个臂,所以又称文氏电桥振荡电路。 2.振荡频率和起振条件 (1)振荡频率 为了判断电路是否满足产生振荡的相位平衡条件,可假设在集成运放的同相输入端将电路断开,并加上输入电压? Ui 。由于输入电压加在同相输入端,故集成运放的输出电压与输入电压同相,即0=A ?已经知道,当 f f o = 时,RC

设计性实验(MATLAB仿真实验)

设计性实验(MATLAB仿真实验) 3.1M ATALAB语言概述 3.1.1 MATALAB语言的发展 MATALAB是一种科学计算软件,主要适用于矩阵运算及控制和信息处理领域的分析设计。它使用方便,输入简洁,运算高效,内容丰富,并且很容易由用户自行扩展,因此,当前已成为美国和其他发达国家大学教学和科学研究中最常用而必不可少的工具。 MATLAB是由美国Mathworks公司与1984年正式推出的,从那时到现在已升级到7.x版本。随着版本的升级,内容不断扩充,功能更强大。特别是在系统仿真和实时运行等方面,有很多新进展,更扩大了它的应用前景。 MATLAB是“矩阵实验室”(MATrix Laboratoy)的缩写,它是一种以矩阵运算为基础的交互式程序语言,专门针对科学、工程计算及绘图的需求。它用解释方式工作,键入程序立即得出结果,人机交互性能好,适应于多种平台。MATLAB语言在国外的大学工学院中,特别是数值计算用的最频繁的电子信息类学科中,已成为每个学生都掌握的工具了。它大大提高了课程教学、解题作业、分析研究的效率。 MATLAB语言比较好学,因为它只有一种数据类型,一种标准的输入输出语句,不用“指针”,不需编译,比其他语言少了很多内容;听三、四个小时课,上机练几个小时,就可入门了。以后自学也十分方便,通过它的演示(demo)和求助(help)命令,人们可以方便地在线学习各种函数的用法及其内涵 MATLAB语言的难点是函数较多,仅基本部分就有700多个,其中常用的有二三百个,要尽量多记少查,可以提高编程效率。 3.1.2MATLAB语言的特点 1.矩阵运算:每个变量代表一个矩阵,它以矩阵运算见长;每个元素都看作复数,所有的运算都对矩阵和复数有效。(虚部符号可用i或j) clear %清除内存变量 format short % c1=1-2i,c2=3*(2-sqrt(-1)*3),c3=6+sin(.5)*1j c4=complex(1,2) %建立复数 c1 = 1.0000 - 2.0000i

大学物理实验仿真实验实验报告

仿真实验 (单摆测重力加速度和单透镜焦距的测定) 引言 随着计算机应用的普及,在各个应用领域都采用计算机设计和仿真,在大学物理实验课教学中,除了实际操作外还可以进行计算机仿真实验,对有些内容采用仿真实验也可以起到很好的效果。 一、实验目的: 1、了解仿真实验特点 2、学会用仿真实验完成单摆测重力加速度 3、学会用仿真实验完成单透镜焦距的测定 二、实验仪器: 计算机、仿真软件 三、实验原理 1、单摆的工作原理 单摆在摆动过程中,当摆角小于5度时,其运动为简谐运动,周期 2224L T g T π=?=,通过测定摆长L 与T 可测定加速度g 。 详细请见:课本240-243页 2、单透镜焦距测定的原理 凸透镜的成像规律为:像的大小和位置是依照物体离透镜的距离而决定的 当u f >>时,极远处的物体经过透镜在后焦点附近成缩小的倒立实像。 当u f >时,物体越靠近前焦点,像逐渐远离后焦点且逐渐变大。 当u f =时,物体位于前焦点,像存在于无穷远处。 当u f <时,物体位于前焦点以内,像为正立放大的虚像,与物体位于同侧,由于虚像点是光线反方向延长的交点,因此不能用像屏接收,只能通过透镜观察。 (1)、自准直法测凸透镜的焦距 光路图如下图1所示。当物体A 处在凸透镜的焦距平面时,物A 上各点发出

的光束,经透镜后成为不同方向的平行光束。若用一与主光轴垂直的平面镜M 将平行光反射回去,则反射光再经透镜后仍会聚焦于透镜的焦平面上,此关系就称为自准直原理。所成像是一个与原物等大的倒立实像A ′。所以自准直法的特点是,物、像在同一焦平面上。自准直法除了用于测量透镜焦距外,还是光学仪器调节中常用的重要方法。 凸透镜焦距: 12f x x =- (1) x 1为物屏在光具座上位置读数,x 2为凸透镜在光具座上位置读数。 (2)、贝塞尔法(共轭法,二次成像法)测凸透镜的焦距 利用凸透镜物像共轭对称成像的性质测量凸透镜焦距的方法,叫共轭法。所谓“物像共轭”是指物与像的位置可以互换,透镜位置与像的大小一一对应。 固定物与像屏间的距离不变,并使间距D 大于4f ,则当凸透镜置于物体与像屏之间时,移动凸透镜可以找到两个位置,使白屏上都能得到清晰的实像。一个大像,一个小像。如图2。 透镜移动的距离为23d x x =-,物屏、像屏之间的距离为14D x x =-,运用 透镜第一次位置 透镜第二次位置 图1自准直法光路图

相关文档
相关文档 最新文档