文档库 最新最全的文档下载
当前位置:文档库 › 动力电池比能量是什么_动力电池比能量密度怎么计算

动力电池比能量是什么_动力电池比能量密度怎么计算

动力电池比能量是什么_动力电池比能量密度怎么计算

动力电池比能量是什么_动力电池比能量密度怎么计算

电池的能量:指在一定的放电条件下对外做功所输出的电能;

比能量:单位重量或者单位体积的电池所给出的能量,叫重量比能量或者体积比能量

磷酸铁锂的重量比能量和体积比能量分别为:

纯电动车用电池:约110Wh/kg;210Wh/L

混合电动车用电池:约65Wh/kg;120Wh/L

电池包通常是指电池芯加保护板部分,电池组通常是指电池包加外壳部分。

电池包的比能量:与电池芯的比能量差不多

电池组的比能量:与外壳和其它辅件重量和体积相关。

比能量指的是单位重量或单位体积的能量,电池的比能量就是参与电极反应的单位质量的电极材料放出电能的大小。

蓄电池的比能量是指电池单位质量或单位体积所能输出的电能,单位分别是Wh/kg或Wh /L。

比能量有理论比能量和实际比能量之分。理论比能量指1kg蓄电池反应物质完全放电时理论上所能输出的能量。实际比能量为1kg蓄电池反应物质所能输出的实际能量。

常用比能量来比较不同的电池系列。主要蓄电池的比能量见表7-12。

表7-12 主要蓄电池系列的比能量

由于各种因素的影响,蓄电池的实际比能量远小于理论比能量。实际比能量和理论比能量的关系式如下:

W实=W理KvKRKm

式中Kv-电压效率(蓄电池的工作电压与电动势的比值);

KR-反应效率(表示活性物质的利用率);

Km-质量效率蓄电池中存在一些不参加成流反应但又是必要的

物质,应减小这些物质所占比例,以提高活性物质所占比

例。两者之比是质量效率。

动力电池能量管理系统

动力电池能量管理系统 检测时间:2016-05-23 09:39:53 摘要 近年来,由于日益严重的环境污染问题和日益增长的石油和能源消耗,新能源汽车的发展,越来越多的政府和世界主要汽车制造商的关注。三个电动汽车的发展。 本文介绍了电动汽车电池管理系统的主要功能和开发国内外介绍问题的根源,介绍了铅酸蓄电池工作原理和关键的操作特性,描述铅酸电池剩余量预测几个模型的设计和项目的特点,基于大量的电池充电和放电的实验数据,提出了这种设计方法来估计剩下的电池供电。 上述功能需求,设计提出使用主芯片单片机,分散的集合和集中控制的解决方案结合硬件、单片机的选择,电池参数收集,平衡和保护电路、功率转换电路和外部通信和其他主要模块硬件设计详细描述和基于C51单片机凯尔软件开发和设计环境软件解决方案设计的电池管理系统3主要流程:充电、放电和静态软件设计。最后,整个硬件和软件系统充电和放电的疲劳试验通过收集大量的实验数据,验证了硬件和软件设计的可行性和稳定性 关键词电动汽车; 电池管理系统;电池SOC估算;单片机;充电均衡控制

ABSTRACT In recent years, due to the increasingly serious problem of environmental pollution and the increasing consumption of oil and energy, new energy vehicles

Development, more and more governments and the world's major carmakers attention. Develop three electric vehicles The key technology is the motor drive system consists of three parts, the vehicle control system and power management systems, steam current Automotive battery life is short-range, low battery life, high maintenance costs and popular, therefore, Power management technology for energy management and vehicle power battery protection control is becoming increasingly important. This article describes the electric vehicle battery management system The main function of the system and the development of domestic and foreign presentation Root of the problem, and introduces the principle of lead-acid batteries and key operating characteristics described Lead-acid battery remaining amount prediction model design and features of several projects, based on a lot of battery Charging and discharging of the experimental data, this design method is proposed to estimate the remaining battery power. The above functional requirements, the design proposed to use the main chip microcontroller, decentralized collection And centralized control solutions combine hardware, MCU selection,

锂离子电池和金属锂离子电池的能量密度计算

锂离子电池和金属锂离子电池的能量密度计算 吴娇杨,刘品,胡勇胜,李泓 (中国科学院物理研究所,北京,100190) 摘要:锂电池是理论能量密度最高的化学储能体系,估算各类锂电池电芯和单体能达到的能量密 度,对于确定锂电池的发展方向和研发目标,具有积极的意义。本文根据主要正负极材料的比容 量、电压,同时考虑非活性物质集流体、导电添加剂、粘结剂、隔膜、电解液、封装材料占比,计算了不同材料体系组成的锂离子电池和采用金属锂负极、嵌入类化合物正极的金属锂离子电池 电芯的预期能量密度,并计算了18650型小型圆柱电池单体的能量密度,为电池发展路线的选择 和能量密度所能达到的数值提供参考依据。同时指出,电池能量密度只是电池应用考虑的一个重 要指标,面向实际应用,需要兼顾其它技术指标的实现。 关键词:锂离子电池;金属锂离子电池;能量密度;18650电池;电芯 中图分类号:O O646.21文献标志码:A 文章编号: Calculation on energy densities of lithium ion batteries and metallic lithium ion batteries WU Jiaoyang,Liu pin, HU Yongsheng, LI Hong (Institute of Physics, Chinese Academy of Science, Beijing 100190, China) Abstract:Lithiumbatteries have the highest theoretical energy densities among all electrochemical energy storage devices. Prediction of the energy density of the different lithium ion batteries (LIB) and metallic lithium ion batteries (MLIB) is valuable for understanding the limitation of the batteries and determine the directions of R&D. In this research paper, the energy densities of LIB and MLIB have been calculated. Ourcalculation includes the active electrode materials and inactive materials inside the cell.For practical applications, energy density is essential but not the only factor to be considered, other requirements on the performances have to be satisfied ina balanced way. Key words:lithiumion batteries; metal lithium ion batteries; energy densitycalculation;18650 cell; batteries core 收稿日期:;修改稿日期:。 基金项目:国家自然科学基金杰出青年基金项目(51325206),国家重点基础研究发展计划(973)项目(2012CB932900)。第一作者:吴娇杨(1988-),女, 博士研究生,研究方向锂离子电池电解质E-mail:wujiaoyang8@https://www.wendangku.net/doc/db10424535.html,;通讯联系人:李泓, 研究员,研究方向为固体离子学与锂电池材料,E-mail:hli@https://www.wendangku.net/doc/db10424535.html,。

微电网能量管理系统概述

微电网能量管理系统概述 一、微电网能量组成 微电网是近年来出现的一种新型能源网络化供应与管理技术的简称,它能够利地将可再生能源和清洁能源系统的接入,实现需求侧管理以及现有能源的最大化利用。微电网将发电子系统、储能系统及负荷相结合,通过相关控制装置间的配合,可以同时向用户提供电能和热能,并能够适时有效地支撑大电网,起到消峰填谷的作用。所以微电网概念一经提出,就引起世界能源专家和电力工业界的广泛重视,世界很多国家都加强了相关基础科学研究的力度,对微电网的认识随着研究的进行在不断地具体化、深入化和系统化。而微电网对于解决我国现有大电网运行中凸显的问题,以及能源危机等相关问题,无疑是提供了一个好的解决途径。 1.1风能 风能是因空气流做功而提供给人类的一种可利用的能量。空气流具有的动能称风能。空气流速越高,动能越大。人们可以用风车把风的动能转化为旋转的动作去推动发电机,以产生电力,方法是透过传动轴,将转子(由以空气动力推动的扇叶组成)的旋转动力传送至发电机。到2008年为止,全世界以风力产生的电力约有94.1 百万千瓦,供应的电力已超过全世界用量的1%。风能虽然对大多数国家而言还不是主要的能源,但在1999年到2005年之间已经成长了四倍以上。 风能优点: 1.风能为洁净的能量来源。 2.风力发电是可再生能源,很环保。 3.风能设施多为不立体化设施,可保护陆地和生态。 4.风能设施日趋进步,大量生产降低成本,在适当地点,风力发电成本已 低于发电机。

1.风力发电需要大量土地兴建风力发电场,才可以生产比较多的能源。 2.进行风力发电时,风力发电机会发出庞大的噪音,所以要找一些空旷的 地方来兴建。 3.在一些地区、风力发电的经济性不足:许多地区的风力有间歇性,更糟 糕的情况是如台湾等地在电力需求较高的夏季及白日、是风力较少的时 间;必须等待压缩空气等储能技术发展。 1.2光伏 光伏是太阳能光伏发电系统的简称。是一种利用太阳电池半导体材料的光伏效应,将太阳光辐射能直接转换为电能的一种新型发电系统,有独立运行和并网运行两种方式。 光伏能量的来源由光伏板组件,它是一种暴露在阳光下便会产生直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋提供照明,并为电网供电。光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。 光伏优点: 1.普遍:太阳光普照大地,没有地域的限制无论陆地或海洋,无论高山或 岛屿,都处处皆有,可直接开发和利用,且无须开采和运输。 2.无害:开发利用太阳能不会污染环境,它是最清洁能源之一,在环境污 染越来越严重的今天,这一点是极其宝贵的。 3.巨大:每年到达地球表面上的太阳辐射能约相当于130万亿吨煤,其总 量属现今世界上可以开发的最大能源。 4.长久:根据目前太阳产生的核能速率估算,氢的贮量足够维持上百亿年, 而地球的寿命也约为几十亿年,从这个意义上讲,可以说太阳的能量是 用之不竭的。

蓄电池能量密度

电池常用术语:能量密度和功率密度 (2010-06-21 10:52:38) 分类:储能 标签: 电池 在谈及电池的时候,能量密度和功率密度是两个经常提到的量 能量密度(Wh/kg)指的是的单位重量的电池所储存的能量是多少,1Wh等于3600焦耳(J)的能量。 功率密度(W/kg)指的是单位重量的电池在放电时可以以何种速率进行能量输出。 能量密度是由电池的材料特性决定的,普通铅酸电池的能量密度约为40Wh/kg,常用的电动两轮车用铅酸电池包为48V,10Ah, 储能480Wh,所以可以简单估计这种电池包的重量至少在12kg以上。 铅酸电池的能量密度是比较低的,所以无法用作电动汽车的动力源,因为如果使用铅酸电池驱动家用汽车行驶200km以上,需要将近1吨的电池,这个重量太大了,无法达到实用,当然铅有毒也是一个方面原因,铅酸电池的循环性能也比较差,但是我们可以看到,仅丛能量密度上就可以判断出铅酸电池不能作为纯电动汽车的动力源 目前比较热的锂离子电池的能量密度约在100~150Wh/kg左右,这个值比铅酸电池高出2~3倍,且锂离子电池的循环性要远远高于铅酸电池,所以目前锂离子电池是开发电动汽车的首选电池。 功率密度也是由材料的特性决定的,并且功率密度和能量密度没有直接关系,并不是说能量密度越高功率密度就越高,用专业的术语来说,功率密度其实描述的是电池的倍率性能,即电池可以以多大的电流放电,功率密度对于电池开发以及电动车开发而言非常重要,如果功率密度高,则电动车在加速的时候就会非常快,普通的铅酸电池的功率密度一般只有几十~数百瓦特/千克,这是一个非常低的

值,表明铅酸电池的高倍率放电性能较差,而锂离子电池目前的功率密度可以达到数千瓦特/千克。 值得指出的是,能量密度和功率密度都是一个会变化的量,电池在使用多次以后能量密度会降低(电池容量衰减),功率密度也会下降,并且这两个量也是随着环境的变化而变化的,比如在极为寒冷或炎热的季节中它们都会发生一定程度的变化(一般是减少)。 目前还没有任何一种电池的能量密度可以达到实用化的驱动电动汽车具有几百公里的续航里程。提高电池的能量密度也是目前电池研发中的重中之重,在安全性得到解决的前提下,如果电池的能量密度可以达到300~400Wh/kg的话,就具备了和传统燃油机车较量续航里程的资本,但是电池还有一个知名的问题就是寿命,电池的能量密度会随着电池的使用而衰减,并且这种衰减并非是线型的,而可能是突然的降低,所以,在开发车用电池的时候,循环性同样是决定性的因素。

电动汽车中的电池能量管理系统

电动汽车中的电池能量管理系统 一、前言 电动汽车的应用有效地解决了能源和环境可持续发展的问题。电动汽车的应用前景广阔。但电动汽车尤其纯电动汽车的应用遇到了动力电池的难题,电池的问题体现在两个方面。其一是动力电池比能量不高,影响电动汽车续驶里程的要求,价格太高直接影响电动汽车的初始成本;其二是电池的性能差,使用寿命低影响电动汽车的使用成本。 电动汽车用的电池使用中其性能发挥得如何,除与电池模块自身性能有关外,与其应用的电池能量管理系统的功能有着密切的关系,尤其是电池模块质量不太理想的条件下,应用功能完备的电池能量管理系统其作用就更加突出。借助电池能量管理系统的正常工作会使电池模块的性能得以充分发挥,减少电池模块故障,延长电池模块的使用寿命,增加电动汽车的使用安全感。因此,电动汽车电池能量管理系统的应用备受电动汽车设计者和使用者的重视。 二、电动汽车电池能量管理系统的功能 电动汽车,尤其是纯电动汽车中的电池能量管理系统是该车的一种相当重要的技术措施,可以称为电动汽车电池的“保护神”,它起到了对电池性能的保护、防止个别电池的早期损坏、有利于电动汽车的运行,并具有各种警告功能等[1]。由于它参加电池箱内电池模块的监控工作使电动汽车的运行、充电等功能与电池的有关参数(电流、电压、内阻、容量)紧密相连和协调工作。它有计算,发出指令、执行指令和提出警告的功能。各种电池模块虽然有结构和性能上的差异,但它们都具备一些相同或相似的功能。典型的电池能量管理系统应具备如下功能: 2.1 对能量的检测功能 电动汽车在行车过程中,该系统能随时对车辆的能耗进行计算,最终给出该电池箱内电池模块剩余的电池能量值,并通过剩余能量计将数据显示出来,使驾驶人员知道车辆的续驶里程,以便决定如何行驶.在能量允许的条件下使车辆行驶到具有充电功能的地方,补充电量防止半路抛锚。 2.2 对电池工作状态的监测与控制功能 电池能量管理系统按电池箱内安装的传感器提供的信号对电池进行管理。一般情况下,电池箱内有温度传感器及电压、电流和内阻的测量值。由于温度的变化对其他参数都有影响,所以一般都以电池模块的温度来做为控制的指令信号,将测得的温度值与事先设定的温度值进行比较,决定对电池冷却与否。 电动汽车能源是很宝贵的,应尽量采用节能元件,所以电池箱内的冷却风扇一般都是采用分级参与工作。这样能做到在保证电池性能的条件下尽量使用小排量的风扇。当第一级风扇工

能量密度和功率密度

能量密度和功率密度 Prepared on 22 November 2020

电池常用术语:能量密度和功率密度 (2010-06-2110:52:38) 标签:分类: 在谈及电池的时候,能量密度和功率密度是两个经常提到的量 能量密度(Wh/kg)指的是的单位重量的电池所储存的能量是多少,1Wh等于3600焦耳(J)的能量。 功率密度(W/kg)指的是单位重量的电池在放电时可以以何种速率进行能量输出。 能量密度是由电池的材料特性决定的,普通铅酸电池的能量密度约为40Wh/kg,常用的电动两轮车用铅酸电池包为48V,10Ah,储能480Wh,所以可以简单估计这种电池包的重量至少在12kg以上。 铅酸电池的能量密度是比较低的,所以无法用作电动汽车的动力源,因为如果使用铅酸电池驱动家用汽车行驶200km以上,需要将近1吨的电池,这个重量太大了,无法达到实用,当然铅有毒也是一个方面原因,铅酸电池的循环性能也比较差,但是我们可以看到,仅丛能量密度上就可以判断出铅酸电池不能作为纯电动汽车的动力源 目前比较热的锂离子电池的能量密度约在100~150Wh/kg左右,这个值比铅酸电池高出2~3倍,且锂离子电池的循环性要远远高于铅酸电池,所以目前锂离子电池是开发电动汽车的首选电池。 功率密度也是由材料的特性决定的,并且功率密度和能量密度没有直接关系,并不是说能量密度越高功率密度就越高,用专业的术语来说,功率密度其实描述的是电池的倍率性能,即电池可以以多大的电流放电,功率密度对于电池开发以及电动车开发而言非常重要,如果功率密度高,则电动车在加速的时候就会非常快,普通的铅酸电池的功率密度一般只有几十~数百瓦特/千克,这是一个非常低的值,表明铅酸电池的高倍率放电性能较差,而锂离子电池目前的功率密度可以达到数千瓦特/千克。 值得指出的是,能量密度和功率密度都是一个会变化的量,电池在使用多次以后能量密度会降低(电池容量衰减),功率密度也会下降,并且这两个量也是随着环境的变化而变化的,比如在极为寒冷或炎热的季节中它们都会发生一定程度的变化(一般是减少)。 目前还没有任何一种电池的能量密度可以达到实用化的驱动电动汽车具有几百公里的续航里程。提高电池的能量密度也是目前电池研发中的重中之重,在安全性得到解决的前提下,如果电池的能量密度可以达到300~400Wh/kg的话,就具备了和传统燃油机车较量续航里程的资本,但是电池还有一个知名的问题就是寿命,电池的能量密度会随着电池的使用而衰减,并且这种衰减并非是线型的,而可能是突然的降低,所以,在开发车用电池的时候,循环性同样是决定性的因素

浅析提高锂电池能量密度的三方法

浅析提高锂电池能量密度的三方法 锂离子电池的诞生可以说是储能领域的一场革命,锂离子电池的广泛应用彻底的改变了我们的生活,轻便的手机、笔记本电脑,长续航的电动汽车等等,我们的生活已经与锂离子电池紧紧的捆绑在了一起,很难相信如果我们失去了像锂离子电池这样便捷、高效的储能电池后我们的生活会变成什么样。 随着锂离子电池技术的不断发展,我们也对锂离子电池的性能提出了更高的要求,我们希望锂离子电池更小、更轻便、储能更多,这些诉求也在推动着锂离子电池研究工作不断前进。从电池结构和新材料、新体系的采用,可爱的锂离子电池研究者们不断尝试各种方法提高锂离子电池能量密度的方法。 1.结构设计 提高锂离子电池的比能量从结构上讲,要提高正负极活性物质在锂离子电池中所占的比例。锂离子电池主要由正负极活性物质、隔膜、铜箔、铝箔和壳体及结构件等部分组成,其中真正能够为锂离子电池提供容量的只有活性物质,因此提高活性物质在锂离子电池中所占的比重才是最有效的提高锂离子电池手段。例如最近特斯拉在大力推动的21700电池,就是通过使用直径更大的电芯(21mm),增加电芯的高度(70mm)提高活性物质占比,减少结构件等非活性材料的比重,提高锂离子电池的比能量,降低单位瓦时成本。此外软包电池也是减少结构件重量的有效方法,通过使用铝塑膜代替传统的钢制外壳,可以极大的减少结构件在锂离子电池中所占的比重。 除了增大锂离子电池的直径,另外一个有效提高锂离子电池比能量的方法是减少隔膜的厚度,目前常见的PP-PE-PP三层复合隔膜的厚度一般达到30um以上,达到正负极极片的

厚度的20%左右,这也造成了严重的空间浪费,为了减少隔膜所占的空间,目前广大锂离子电池厂家普遍采用带有涂层的薄隔膜,这些隔膜的厚度可达到20um以下,可以在保证锂离子电池安全的前提下,显著的减少隔膜所占的体积比例,提高活性物质占比,提高锂离子电池比能量。 另外的一种增加活性物质比例的方法是从电池的生产工艺的角度入手,首先是增加活性物质在电极中占比。一般锂离子电池的电极主要由四大部分组成,活性物质、导电剂、粘结剂和集流体组成,为了提高活性物质比例,就需要降低其他部分的比例,通过采用新型导电剂、粘结剂从而减少导电剂和粘结剂的比例,采用更薄的集流体来减少非活性物质的所占的比例。其次,需要提高正负极的涂布量,但是提高电极的涂布量还面临的一个问题:当电极过厚时会造成电极的Li+扩散动力学条件变差,影响锂离子电池的倍率和循环性能,为了解决这一问题德国卡尔斯鲁厄理工学院的Boris Bitsch等[1]利用毛细悬浊液和多层电极工艺制备了具有梯度孔隙率的高性能厚电极。在靠近铜箔的低层,Boris Bitsch等采用了普通浆料,使得其具有较低的孔隙率和良好的导电性,而在远离铜箔的表层,Boris Bitsch 则采用了毛细悬浊液浆料,并向其中添加了1-辛醇,使其孔隙率明显增加,改善了电极的动力学条件,从而使得该电极的孔隙率自下而上呈现出逐渐增加的特性,显著改善了厚电极的动力学条件,提高了厚电极的电化学性能,从而实现了在提高电池重量和体积比能量的同时不降低电池的循环性能。 提高锂离子电池比能量的另外一个重要的方法就是控制电解液的数量,减少电解液的数量可以有效的提高锂离子电池的能量密度。电解液在锂离子电池内部起到一个媒介的作用,正负极的Li+通过电解液进行扩散,因此电解液理论上来讲是一种“非消耗品”,只要有少量的电解液保证Li+在正负极之间自由扩散就行了,但是实际上由于在化成过程中SEI 膜的形成导致电解液分解,以及在循环过程中SEI膜破坏和正极氧化等原因造成的电解液分解,导致电解液在实际上是持续消耗的,因此电池内的电解液一般而言都是过量的,这也是

浅谈“电动汽车中的电池能量管理系统”

浅谈“电动汽车中的电池能量管理系统” 一、前言 电动汽车的应用有效地解决了能源和环境可持续发展的问题。电动汽车的应用前景广阔。但电动汽车尤其纯电动汽车的应用遇到了动力电池的难题,电池的问题体现在两个方面。其一是动力电池比能量不高,影响电动汽车续驶里程的要求,价格太高直接影响电动汽车的初始成本;其二是电池的性能差,使用寿命低影响电动汽车的使用成本。 电动汽车用的电池使用中其性能发挥得如何,除与电池模块自身性能有关外,与其应用的电池能量管理系统的功能有着密切的关系,尤其是电池模块质量不太理想的条件下,应用功能完备的电池能量管理系统其作用就更加突出。借助电池能量管理系统的正常工作会使电池模块的性能得以充分发挥,减少电池模块故障,延长电池模块的使用寿命,增加电动汽车的使用安全感。因此,电动汽车电池能量管理系统的应用备受电动汽车设计者和使用者的重视。 二、电动汽车电池能量管理系统的功能 电动汽车,尤其是纯电动汽车中的电池能量管理系统是该车的一种相当重要的技术措施,可以称为电动汽车电池的“保护神”,它起到了对电池性能的保护、防止个别电池的早期损坏、有利于电动汽车的运行,并具有各种警告功能等[1]。由于它参加电池箱内电池模块的监控工作使电动汽车的运行、充电等功能与电池的有关参数(电流、电压、内阻、容量)紧密相连和协调工作。它有计算,发出指令、执行指令和提出警告的功能。各种电池模块虽然有结构和性能上的差异,但它们都具备一些相同或相似的功能。典型的电池能量管理系统应具备如下功能: 2.1 对能量的检测功能 电动汽车在行车过程中,该系统能随时对车辆的能耗进行计算,最终给出该电池箱内电池模块剩余的电池能量值,并通过剩余能量计将数据显示出来,使驾驶人员知道车辆的续驶里程,以便决定如何行驶.在能量允许的条件下使车辆行驶到具有充电功能的地方,补充电量防止半路抛锚。 2.2 对电池工作状态的监测与控制功能 电池能量管理系统按电池箱内安装的传感器提供的信号对电池进行管理。一般情况下,电池箱内有温度传感器及电压、电流和内阻的测量值。由于温度的变化对其他参数都有影响,所以一般都以电池模块的温度来做为控制的指令信号,将测得的温度值与事先设定的温度值进行比较,决定对电池冷却与否。 电动汽车能源是很宝贵的,应尽量采用节能元件,所以电池箱内的冷却风扇一般都是采用分级参与工作。这样能做到在保证电池性能的条件下尽量使用小排量的风扇。当第一级风扇工

锂电池常见理论

一、锂电池与锂离子电池 锂电池的特点 1、具有更高的能量重量比、能量体积比; 2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压; 3、自放电小可长时间存放,这是该电池最突出的优越性; 4、无记忆效应。锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无 需放电; 5、寿命长。正常工作条件下,锂电池充/放电循环次数远大于500次; &可以快速充电。锂电池通常可以采用 0.5?1倍容量的电流充电,使充电时间缩短至1?2小时; 7、可以随意并联使用; 8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池; 锂离子电池具有以下优点: 1、电压高,单体电池的工作电压高达 3.6-3.9V,是Ni-Cd、Ni-H电池的3倍 2、比能量大,目前能达到的实际比能量为 100-125Wh/kg和240-300Wh/L (2倍于Ni-Cd,1.5倍于Ni-MH ),未来随着技术发展,比能量可高达150Wh/kg和 400 Wh/L 3、循环寿命长,一般均可达到500次以上,甚至1000次以上.对于小电流放电的电器,电池的使用期限将倍增电器的竞争力. 4、安全性能好,无公害,无记忆效应.作为Li-ion前身的锂电池,因金属锂易形成枝晶发生短路,缩减了其应用领域:Li-ion中不含镉、铅、汞等对环境有污染的元素:部分工艺(如烧结式)的Ni-Cd电池存在的一大弊病为记忆效应”严重束缚电池的使用,但Li-ion根本不存在这方面的问题。 5、自放电小,室温下充满电的Li-ion储存1个月后的自放电率为10%左右,大大低于 Ni-Cd 的 25-30%, Ni、MH 的 30-35%。

电动汽车锂离子电池能量管理系统研究

第28卷 第8期2007年8月 仪器仪表学报 Chinese Journal of Scientific I nstru ment Vol 128No 18Aug .2007  收稿日期:2007201 Received Data:2007201  3基金项目:国家863计划(2005AA501710)资助项目 电动汽车锂离子电池能量管理系统研究 3 李顶根 1,2 ,李竟成2,李建林 2 (1华中科技大学能源与动力工程学院 武汉 430074; 2万向电动汽车有限公司 杭州 311215) 摘 要:为了给电动汽车提供良好的动力来源并保证安全可靠,根据万向纯电动汽车所用的锂离子动力电池的特性,提出了电池能量管理系统的总体设计方案。根据电池组使用要求,对管理系统进行了上位机与监控模块的硬件、软件设计;针对电池均衡的需要,提出了充电均衡控制策略;对电池配组进行了介绍,并提出了一种在工程上可行的电池配组方案。经实际调试和使用,该管理系统在纯电动汽车锂离子动力电池能量管理方面取得了良好效果。关键词:电动汽车;锂电池;能量管理;均衡;配组 中图分类号:T M 911 文献标识码:A 国家标准学科分类代码:530.4130 Research of electric vehicle L i 2i on battery energy manage ment system L i D inggen 1,2 ,L i J ingcheng 2,L i J ianlin 2 (1I nstitute of Energy and Power Engineering,Huazhong University of Science and Technol ogy,W uhan 430074,China; 2W anxiang Electric Vehicle Co .,LT D,Hangzhou 311215,China )Abstract:T o p r ovide good power s ource f or electric vehicles and ensure their safety and reliability,a battery energy manage ment syste m was designed based on the characteristic of the L i 2i on battery equi pped on W anxiang electric ve 2hicle .The hard ware and s oft w are of host computer and monit or module were designed based on the usage require 2ment of the battery packs .A i m ing at the equalizati on require ment of the battery,the charge equalizati on contr ol strategy was p r oposed .The battery matched gr oup is intr oduced and a reas onable battery matched gr oup sche me was br ought f or ward .Thr ough p ractical test and app licati on,the L i 2i on battery energy manage ment syste m achieves good effects on pure electric vehicles . Key words:electric vehicle;L i 2i on battery;energy manage ment;equalizati on;matched gr oup 1 引 言 为解决汽车发展所带来的对石油资源需求的激增和对环保的负面影响,国内已经掀起研制各种电动汽车的热潮。万向电动汽车有限公司所开发的纯电动汽车全部采用锂离子动力电池,锂离子动力电池具有较高的比能量密度与比功率,大大降低了车载电池组的重量。电池作为电动汽车的主要能量存储系统,从性价比角度看,电池目前仍然是电动汽车商业化发展的瓶颈。为安全高效地使用电池,研制与电池 配套使用的电池能量管理系统意义十分重要 [122] 。万向电动 汽车采用的是120Ah 聚合物锂离子动力电池,该电池的外形如图1所示,性能参数如表1 所示。 图1 WXE V 120Ah 型聚合物锂离子动力电池 Fig .1WXE V 120Ah poly mer L i 2i on power battery

我国各企业锂电池能量密度现状一览

我国各企业锂电池能量密度现状一览 根据《中国制造2025》明确了动力电池的发展规划:2020年,电池能量密度达到300Wh/kg;2025年,电池能量密度达到400 Wh/kg;2030年,电池能量密度达到500Wh/kg。目前,我国各企业生产锂电池能量密度达到什么水平了呢? 根据《中国制造2025》明确了动力电池的发展规划:2020年,电池能量密度达到300Wh/kg;2025年,电池能量密度达到400Wh/kg;2030年,电池能量密度达到500Wh/kg。目前,我国各电池动力锂电池能量密度达到什么水平了呢? 比亚迪:目前,比亚迪磷酸铁锂电池的单体能量密度为150Wh,而接下来比亚迪计划将能量密度继续提升到160Wh。除了磷酸铁锂电池,比亚迪也在同步开发三元锂电池,而如果将三元锂电池的技术结合到磷酸铁锂电池上,对原有用石墨作为负极材料的做法进行一些调整,那么在2020年左右,比亚迪计划将磷酸铁锂电池的单体能量密度提升到200Wh。

另外,在跟进的三元电池方面,比亚迪的三元电池已经具备量产条件,目前能量密度也达到了200Wh/kg。比亚迪三元电池的目标是2018年电池比能量达到240Wh/kg,2020年达到300Wh/kg。 沃特玛:生产的32650圆柱型动力磷酸铁锂电池,单体能量密度已经达到145Wh/kg,下一步目标是实现160Wh/kg;三元电池目前能量密度为200Wh/kg,预计到2020年达到300Wh/kg的水平。国能电池:早在2013年,国能磷酸铁锂和三元电池单体能量密度就达到了160Wh/kg和200Wh/kg。预计2017年年底,磷酸铁锂电池单体能量密度将达到180Wh/kg、PACK达到134Wh/kg,三元电池能量密度将突破240Wh/kg。 捷威动力:在能量密度方面,公司目前已经量产的三元软包电池单体比能量达210WH/Kg。在提高电池安全性的基础上,预计2020年公司软包电池单体能量密度可达300WH/Kg,Pack成组后可达220WH/Kg;钛酸锂电池单体能量密度达到110WH/Kg以上。 智慧能源:公司量产的动力电池单体能量密度可达220Wh/Kg,PACK成组后能量密度达到140Wh/Kg。同时,公司BMS系统可做到5级防护,电池包采用轻量化材料,并进行了结构优化。 比克电池:2016年,比克三元材料动力电池行业占比30%以上,位列第一。目前比克单体电芯能量密度近220Wh/kg,后续还将进一步提升至300Wh/kg。 卡耐新能源:卡耐新能源已经可以批量供应能量密度220Wh/kg电芯,系统比能量大于130Wh/kg电芯,同时工艺和技术层面已经分

能量管理系统说明书[1].

能量管理系统说明书 ----LGEMS02-A2

目录 一、数据采集模块 (2) 1.接口说明 (3) 2.电压检测排线与电池的连接 (4) 3.串行通信总线的连接 (4) 二、主控模块 (6) 1.接口说明 (7) 2.电流传感器安装说明 (7) 三、显示屏 (8) 1.触摸屏结构 (8) 2.触摸屏接线说明 (8) 3.运行指示灯 (10) 4.显示说明 (10) 1)显示界面说明 (10) 2)EMS设置 (13) 3)配置步骤 (14) 4)各配置参数含义 (15) 四、充电控制说明 (16) 五、装箱清单 (18) 1.EMS系统清单 (18) 2.图示说明 (19) 六、技术规格参数 (20) 七、故障排除 (20)

为了您能够正确使用为了您能够正确使用、、贮存和维护本公司的系列电池组产品贮存和维护本公司的系列电池组产品,,请在使用前仔 细阅读该使用说明书。 我公司研发的电动汽车等动力设备用能量管理系统AUTO_EMS_V2.0为各类电动车锂电池组提供完善的保护,实现对电池组电压、电流、温度等多种电池参数的在线检测,对各种故障实时报警并采取应急处理,动态估计电池组的剩余容量,并可选配充放电控制功能。系统提供多种供选的显示单元解决方案,并充分考虑整车系统的需求。AUTO_EMS_V2.0同时提供与充电机,电机控制器的CAN 总线接口,并已实现协议的共享。 整个电动车能量管理系统由数据采集模块、主控模块(含电流传感器)及显示屏构成,以下为各模块的说明。 一、数据采集模块 数据采集模块与电池模组连接,外带温度传感器,用于采集电池箱体的电压、温度等信息,一套能量管理系统一般由多块数据采集模块组成,根据连接的电池箱体内的电池串联节数的不同,数据采集模块采集的单体电压数从5~16节不等。另外每个数据采集模块上均带有两个或多个温度传感器。数据采集模块需通过外部的12V 电源(9V~18V)为其提供工作电源,它将采集到的电池电压、箱体温度等信息通过串行通信总线传输到主控单元。

锂离子电池能量密度大揭秘

锂离子电池能量密度大揭秘 根据木桶理论,水位的高低决定于木桶最短处,锂离子电池的能量密度下限取决于正极材料。 是什么决定了新能源汽车的续航里程?新能源汽车的续航主要取决于可用电量和整车能耗。 续航能力↑=可用电量↑÷能耗↓ 在相同能耗不变,电池包体积和重量不变都受到严格限制的情况下,新能源汽车的单次最大行驶里程主要取决于电池的能量密度。 能量密度有哪些小秘密呢? 什么是能量密度? 能量密度(Energy density)是指在单位一定的空间或质量物质中储存能量的大小。电池的能量密度也就是电池平均单位体积或质量所释放出的电能。电池的能量密度一般分重量能量密度和体积能量密度两个维度。 电池重量能量密度=电池容量×放电平台/重量,基本单位为Wh/kg(瓦时/千克)。 电池体积能量密度=电池容量×放电平台/体积,基本单位为Wh/L(瓦时/升)。 电池的能量密度越大,单位体积、或重量内存储的电量越多。 什么是单体能量密度? 电池的能量密度常常指向两个不同的概念,一个是单体电芯的能量密度,一个是电池系统的能量密度。 电芯是一个电池系统的最小单元。M 个电芯组成一个模组,N 个模组组成一个电池包,这是车用动力电池的基本结构。 单体电芯能量密度,顾名思义是单个电芯级别的能量密度。 根据《中国制造2025》明确了动力电池的发展规划:2020年,电池能量密度达到300Wh/kg;2025年,电池能量密度达到400Wh/kg;2030年,电池能量密度达到500Wh/kg。这里指的就是单个电芯级别的能量密度。 什么是系统能量密度?

系统能量密度是指单体组合完成后的整个电池系统的电量比整个电池系统的重量或体积。因为电池系统内部包含电池管理系统,热管理系统,高低压回路等占据了电池系统的部分重量和内部空间,因此电池系统的能量密度都比单体能量密度低。 系统能量密度=电池系统电量/电池系统重量OR电池系统体积 什么限制了电池的能量密度? 究竟是什么限制了锂电池的能量密度?电池背后的化学体系是主要原因难逃其咎。 一般而言,锂电池的四个部分非常关键:正极,负极,电解质,膈膜。正负极是发生化学反应的地方,相当于任督二脉,重要地位可见一斑。 我们都知道以三元锂为正极的电池包系统能量密度要高于以磷酸铁锂为正极的电池包系统。这是为什么呢? 现有的锂离子电池负极材料多以石墨为主,石墨的理论克容量372mAh/g。正极材料磷酸铁锂理论克容量只有160mAh/g,而三元材料镍钴锰(NCM)约为200mAh/g。 根据木桶理论,水位的高低决定于木桶最短处,锂离子电池的能量密度下限取决于正极材料。 磷酸铁锂的电压平台是3.2V,三元的这一指标则是3.7V,两相比较,能量密度高下立分:16%的差额。 当然,除了化学体系,生产工艺水平如压实密度、箔材厚度等,也会影响能量密度。一般来说,压实密度越大,在有限空间内,电池的容量就越高,所以主材的压实密度也被看做电池能量密度的参考指标之一。 如果你能坚持每行读下来一直读到这里。恭喜,你对电池的理解已经上了一个层次。 如何提高能量密度呢? 新材料体系的采用、锂电池结构的精调、制造能力的提升是研发工程师“长袖善舞”的三块舞台。下面,我们会从单体和系统两个维度进行讲解。——单体能量密度,主要依靠化学体系的突破 01、增大电池尺寸 电池厂家可以通过增大原来电池尺寸来达到电量扩容的效果。我们最熟悉的例子莫过于:率先使用松下18650电池的知名电动车企特斯拉将换装新款21700电池。

锂离子电池技术发展现状与趋势

锂离子电池技术发展现状与 趋势

一、文献综述 1、前言 现阶段,日本、韩国、美国等国家引领锂离子动力电池技术的发展。日本的行业技术水平具有领先优势,韩国的动力电池制造能力处于领先地位,美国则具有引领前沿的科研能力。 2、国外发展现状 2·1日本 2·11 2009年,日本政府推出了RISING计划(创新型蓄电池尖端科学基础研究事业)和U~EAD项目(汽车用下一代高性能电池系统),并于2013年更新了动力电池技术发展路线图(RM2013),具体指标有2020年电池的续航里程实现250~350km·电池系统总电量达到25~35kW·h,电池能量密度实现250Wh· kg-1,功率密变达到1500W·kg-1,循环寿命达到1000-1500次,价格成本降低到2万日元/W·h。RM2013指明了电极材料的发展方向,正极材料要发展xLiMn03·(1~x)LiMO2(M=Ni,Co,Mn,0≤x≤1)、LizMSi0s、LiNiosMn1s04、LiCnP04、Li2MSO·F、LiMO2(M=Ni,Co,Mn);负极材料要发展Sn~CoC合金,Si基负极包括Si/C和Si0,以及Si基合金。 2·12日本具有代表性的锂离子动力电池企业为松下电池公司。松下是动力电池行业的领导者,作为Tesla最主要的动力电池供应商,凭借Tesla的发展稳居市场领导者地位,全球市场份额在20%左右。目前松下电池主要给ModelS和MndelX提供18650圆柱电池,正极采用镍钴铝三元材料(NCA),负极使用硅碳复合材料,单体能量密度可达252Wh·kg-1,而即将使用在Mode13上的21700圆柱形电池单体能量密度更是提高到300Wh·kg-1·是目前行业内能量密度最高的电池。 2·2韩国 2·21 2011年,韩国启动了包含锂离子电池关键材料、应用技术研究、评价及测试基础设施以及下一代电池研究的二次电池技术研发项目。LG化学和三星SDI是具有代表性的韩国锂离子动力电池企业,也是动力电池领域的后起之秀,两者凭借先

提升锂电池能量密度新方法

研究人员发现在锂电池中的Li2CO3根据锂空气电池中电解质的介电性能(dielectric properties),能够选择性地作为放电反应的最终产物。此外Li2CO3在锂-氧气/二氧化碳电池循环中能够发生可逆反应。 锂空气电池的最高理论能量密度约为3500瓦时/千克,是下一代电动车能量储存系统的良好动力源(600405,股吧),可使电动车实现更长的形式里程。锂空气电池的结构基于一对夹层电极(intercalation electrode)。在充电时,锂离子从阴极移动至电解液然后插进阳极;放电时,该过程逆转。 研究者表示,这项发现非常重要,因为在含有二氧化碳的环境中,锂空气电池中Li2CO3的形成是不可避免的,然而目前发现了可以促使其发生可逆反应的物质,可使电池的循环性能更稳定。 发现在锂电池中的Li2CO3根据锂空气电池中电解质的介电性能(dielectric properties),能够选择性地作为放电反应的最终产物。此外Li2CO3在锂-氧气/二氧化碳电池循环中能够发生可逆反应。 锂空气电池的最高理论能量密度约为3500瓦时/千克,是下一代电动车能量储存系统的良好动力源(600405,股吧),可使电动车实现更长的形式里程。锂空气电池的结构基于一对夹层电极(intercalation electrode)。在充电时,锂离子从阴极移动至电解液然后插进阳极;放电时,该过程逆转。

研究者表示,这项发现非常重要,因为在含有二氧化碳的环境中,锂空气电池中Li2CO3的形成是不可避免的,然而目前发现了可以促使其发生可逆反应的物质,可使电池的循环性能更稳定。 发现在锂电池中的Li2CO3根据锂空气电池中电解质的介电性能(dielectric properties),能够选择性地作为放电反应的最终产物。此外Li2CO3在锂-氧气/二氧化碳电池循环中能够发生可逆反应。 锂空气电池的最高理论能量密度约为3500瓦时/千克,是下一代电动车能量储存系统的良好动力源(600405,股吧),可使电动车实现更长的形式里程。锂空气电池的结构基于一对夹层电极(intercalation electrode)。在充电时,锂离子从阴极移动至电解液然后插进阳极;放电时,该过程逆转。 研究者表示,这项发现非常重要,因为在含有二氧化碳的环境中,锂空气电池中Li2CO3的形成是不可避免的,然而目前发现了可以促使其发生可逆反应的物质,可使电池的循环性能更稳定。 发现在锂电池中的Li2CO3根据锂空气电池中电解质的介电性能(dielectric properties),能够选择性地作为放电反应的最终产物。此外Li2CO3在锂-氧气/二氧化碳电池循环中能够发生可逆反应。 锂空气电池的最高理论能量密度约为3500瓦时/千克,

相关文档
相关文档 最新文档