文档库 最新最全的文档下载
当前位置:文档库 › 利用导数求函数的最值

利用导数求函数的最值

利用导数求函数的最值
利用导数求函数的最值

1.3.3运用导数求函数的最大(小)值

一、学习目标

1、结合函数图像,能够求闭区间上不超过三次的多项式函数的最大值和最小值。

2、掌握导数法求最大值、最小值的方法,并能应用其它函数类型上。

二、学习重难点

重点是求最值的方法和最值的应用。

难点最值与极值的区别及参数问题。

三、知识链接

1、若函数)(x f y =是在闭区间],[b a 上的连续函数,即在闭区间],[b a 上函数)(x f 的图像

是一条 的曲线,则该函数在闭区间],[b a 上一定能够取得到 和 。

2、若函数)(x f y =是开区间),(b a 上的可导函数,则该函数在闭区间],[b a 上的最大值与

最小值必在 或 取得。函数的最大值和最小值统称 。

四、导学过程

【例1】求函数)(x f 536342

3+-+=x x x ,]2,2[-∈x 的最值。

【例2】已知函数)(x f a x x x +++-=9323

(1)求)(x f 的单调递减区间

(2)若)(x f 在区间]2,2[-上的最大值为20,求它在该区间上的最小值。

变式:已知函数)(x f c bx ax x +++=23在3

2-=x 与1=x 时都取得极值。 (1)求b a ,的值及函数)(x f 的单调区间。

(2)若对]2,1[-∈x ,不等式)(x f 2

c <恒成立,求c 的取值范围。

【例3】如图,ABCD 是一块边长为a 2的正方形铁板,剪掉四个小正方形角,沿虚线折叠后焊

接成一个无盖的长方体水箱,若水箱的高度x 与底面边长的比不超过常数)0(>k k 。

(1)写出水箱的容积V 与水箱高度x 的函数表达式。 (2)当水箱高度x 为何值时,水箱的容积V 最大,

并求出其最大值。

变式:用长为18的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问

该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?

五、方法、技巧、规律小结

1、单调函数在闭区间上的最值必在 或 处取得。

2、求函数的最值与 不同的是,在求可导函数的最值时,不需要对各导数为0的左右两

侧的函数值判断是 或 ,只需将导数为0的点和 处的函数值进行比较即可得到。

3、高考热点恒成立求参问题常转化为求函数的 。

六、当堂检测(分A 、B 两个档次)

A :1、函数x e

x y =在]2,0[上的最大值为 ( ) A 、e 1 B 、21e C 、0 D 、e

21 A :2、已知93,0,0=+≥≥y x y x ,则y x 2的最大值为 ( )

A 、36

B 、18

C 、25

D 、42

B :3、若函数a x x x f --=3)(3在区间[0,3]上的最大值、最小值分别为M 、N ,

则M - N 的值为( ) A .2 B .4 C .18

D .20 4、直线a y =与函数x x y 33-=的图像有相异的三个交点,则a 的取值范围

是 .

5、函数2cos y x x =+在区间[0,

]2π上的最大值是

七、针对性练习作业(分A 、B 、C 三个梯度)

一、选择题

A :1、函数y 5123223+--=x x x 在区间]3,0[上的最大值和最小值分别为( )

A 、5,-15

B 、5,-4

C 、-4,-15

D 、5,-16

B :2、已知函数)(x f 322+--=x x 在区间]2,[a 上的最大值为

415,则a 等于( ) A 、23- B 、21 C 、21- D 、23-或2

1 C: 3在区间]2,21[上,函数)(x f q px x ++=2与212)(x

x x g +=在同一点取得相同的最小值,那么)(x f 在]2,2

1[上的最大值为 ( ) A 、413 B 、4

5 C 、8 D 、4 二、填空题

B :4、如果函数)(x f a x x +-

=2323在]1,1[-上的最大值是2,那么)(x f 在]1,1[- 的最小值是 .

B :5、设函数)(x f 522

123+--=x x x ,若对任意]2,1[-∈x ,都有)(x f m >,则实数m 的取值范围是 .

C :6、已知0>a ,且函数ax x y -=3在),1[+∞上是单调增函数,则a 的最大值

是 .

三、解答题

7、设函数R x x x x f ∈+-=,56)(3

.

(1)求)(x f 的单调区间和极值;

(2)若关于x 的方程a x f =)(有3个不同实根,求实数a 的取值范围.

(3)已知当)1()(,),1(-≥+∞∈x k x f x 时恒成立,求实数k 的取值范围.

利用导数研究函数的单调性、极值、最值

利用导数研究函数的单调性、极值、最值 1.函数f(x)=(x-3)e x的单调递增区间是() A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) 答案D 解析函数f(x)=(x-3)e x的导数为f'(x)=[(x-3)e x]'=e x+(x-3)e x=(x-2)e x. 由函数导数与函数单调性的关系,得当f'(x)>0时,函数f(x)单调递增,此时由不等式f'(x)=(x-2)e x>0,解得x>2. 2.(2018广东东莞考前冲刺)若x=1是函数f(x)=ax+ln x的极值点,则() A.f(x)有极大值-1 B.f(x)有极小值-1 C.f(x)有极大值0 D.f(x)有极小值0 答案A 解析∵x=1是函数f(x)=ax+ln x的极值点,∴f'(1)=0, ∴a+=0,∴a=-1. ∴f'(x)=-1+=0?x=1. 当x>1时,f'(x)<0,当00,因此f(x)有极大值-1. 3.定义域为R的可导函数y=f(x)的导函数f'(x),满足f(x)2e x的解集为() A.(-∞,0) B.(-∞,2) C.(0,+∞) D.(2,+∞) 答案C 解析设g(x)=,则g'(x)=. ∵f(x)0,即函数g(x)在定义域内单调递增.

∵f(0)=2,∴g(0)=f(0)=2, ∴不等式f(x)>2e x等价于g(x)>g(0). ∵函数g(x)在定义域内单调递增. ∴x>0,∴不等式的解集为(0,+∞),故选C. 4.函数y=f(x)的导函数y=f'(x)的图象如图所示,则函数y=f(x)的图象可能是() 答案D 解析设导函数y=f'(x)的三个零点分别为x1,x2,x3, 且x1<00,f(x)是增函数,所以函数y=f(x)的图象可能为D,故选D. 一、 1.(2018·全国卷I高考理科·T16)已知函数f=2sin x+sin2x,则f的最小值是. 【解题指南】本题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小

函数的最大值与导数.doc

第1课时 课型:新授课 主备人:武果果 一、学习目标 1?借助函数图像,直观的理解函数的最大值和最小值概念; 2. 弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数于(兀)必有最大 值和最小值的充分条件; 3. 会利用导数求连续函数/(兀)在闭区间["]上的最大值和最小值。 二、 考情分析 1. 考纲要求:会求闭区间上函数的最大值与最小值; 2?考情分析:运用导数研究函数的最值; 3?备考要求:注重导数在研究函数极值与最值中的工具性作用。 三、 课前自主学习 1?导入学习 复习:(1)极大(小)值概念: ____________________________________________________ (2)求函数极值的方法: ________________________________________________ 实例导入:预习课本心完成下面问题: ⑴你能找出函数 尸/(兀)在区间上的极大值、极小值、最大值、最小值吗? (2)函数y = /(x)在开区间仏b)上的极大值、极小值、最大值、最小值存在吗? ⑶若函数)/(x)在区间[d,b ]上不连续还存在极大值、极小值、最大值、最小值吗? 新知:函数y = 在闭区间[⑦切上的最值: 一般地,如果在区间[⑦切上函数y = /(x)的图像是一条 ________ 的曲线,那么它必有最 大值和最小值. 例1?求函数/*(%) = 6 + 12x-x 3在【-亍3]上的最大值与最小值。 选2?2 § 13.3函数的最大(小)值与导数

解-7/(X)=6+12X-A3???广(0 = 由厂(兀) = 0,解得兀= 当X变化时,f(x)与#(尢)的变化情况如下表: ???函数心在[-事3]上的最大值是____ ;最小值是_______ 结论:求函数y = /(x)在[d,b]上的最值的步骤: ⑴.求函数y = /(%)在(d,b)内的_______ ; ⑵.将函数〉,= /&)的 _____ 与____________ 比较,其中最大的一个是最大值,最小的一个 是________ O 2. 自我检测 练习(1)?已知a为实数,/(x) = (x2-4)(x-a),若广(-1) = 0,求/⑴在 [-2, 2]上的最大值和最小值. 7i n (2).求函数/(x) =-2cosx-x在区间[-亍,-]上的最大值与最小值。

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

高中数学利用导数研究函数的性质( 极值与最值)

3.2利用导数研究函数的性质 第2课时导数与函数的极值、最值 一、基础知识 1.函数的单调性(复习) 在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间内单调递减. 2.函数的极值 (1)一般地,求函数y=f(x)的极值的方法 解方程f′(x)=0,当f′(x0)=0时: ①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值; ②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值. (2)求可导函数极值的步骤 ①求f′(x); ②求方程f′(x)=0的根; ③考查f′(x)在方程f′(x)=0的根附近的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值. 3.函数的最值 (1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. 知识拓展 (1)对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件. (2)函数的极大值不一定比极小值大.

(3)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的必要不充分要条件. 二、基本题型 1.根据函数图象判断极值 【例1-1】 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( ) A .函数f (x )有极大值f (2)和极小值f (1) B .函数f (x )有极大值f (-2)和极小值f (1) C .函数f (x )有极大值f (2)和极小值f (-2) D .函数f (x )有极大值f (-2)和极小值f (2) 答案 D 解析 由题图可知,当x <-2时,f ′(x )>0;当-22时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 【变式1-1】函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( ) A .无极大值点、有四个极小值点 B .有三个极大值点、一个极小值点 C .有两个极大值点、两个极小值点 D .有四个极大值点、无极小值点 【答案】 C 【解析】 导函数的图象与x 轴的四个交点都是极值点,第一个与第三个是极大值点,第二个与第四个是极小值点. 2.求函数的极值和极值点 【例2-1】设函数f (x )=2x +ln x ,则( ) A .x =12为f (x )的极大值点 B .x =12 为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点 【答案】 D 【解析】 f ′(x )=-2x 2+1x =x -2x 2(x >0),当02时,f ′(x )>0, ∴x =2为f (x )的极小值点.

利用导数研究函数的单调性

利用导数研究函数的单调性 一、选择题 1.函数f (x )=x ln x ,则( ) A.在(0,+∞)上递增 B.在(0,+∞)上递减 C.在? ? ???0,1e 上递增 D.在? ? ???0,1e 上递减 解析 f (x )的定义域为(0,+∞),f ′(x )=ln x +1,令f ′(x )>0得x >1 e , 令f ′(x )<0得00. 答案 C 3.已知函数f (x )=1 2x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 f ′(x )=3 2x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x ) 在R 上单调递增”的充分不必要条件. 答案 A 4.已知函数y =f (x )的图象是下列四个图象之一,且其导函数y =f ′(x )的图象如图所示,则该函数的图象是( )

解析由y=f′(x)的图象知,y=f(x)在[-1,1]上为增函数,且在区间(-1,0)上增长速度越来越快,而在区间(0,1)上增长速度越来越慢. 答案 B 5.设函数f(x)=1 2 x2-9ln x在区间[a-1,a+1]上单调递减,则实数a的取值 范围是( ) A.(1,2] B.(4,+∞] C.[-∞,2) D.(0,3] 解析∵f(x)=1 2 x2-9ln x,∴f′(x)=x- 9 x (x>0), 当x-9 x ≤0时,有00且a+1≤3,解得10得 x>1. 答案(1,+∞) 7.已知a≥0,函数f(x)=(x2-2ax)e x,若f(x)在[-1,1]上是单调减函数,则实数a的取值范围是________.

3.3.3函数的最大(小)值与导数教学设计

§1.3.3 函数的最大(小)值与导数 宜宾市四中李斌 一、教学内容分析 1.在教材中的位置: 本节内容安排在《普通高中课程标准实验教科书数学选修1-1》人教A版,第三章、第三节“导数在研究函数中的应用” 2.学习的主要工具: 基本初等函数的识图能力与函数的极值与导数知识。 3.学习本节课的主要目的: 本节内容是在学生学习完导数基本概念与基本初等函数求导公式后的应用性知识,强调在应用中进一步理解导数,并为以后“生活中的优化问题”打好基础。 4.本节课在教材中的地位: 函数的最值是基本初等函数的重要性质,是历年高考的热点问题,也是解决实际问题,如成本最低,产量最高,效益最大等的重要工具。学好本节内容对学生的可持续发展具有重要意义,可进一步完善学生知识结构,培养学生应用数学的意识。 二、学情分析 学生已经在高一阶段必修一的学习中,学习了函数基础知识,并初步具备应用函数单调性求最值的基础,但是对于运用刚刚学习的导数工具研究函数性质,还不熟练,应用导数在思维上有很大的局限性。 三、课堂设计思想 培养学生学会学习、学会探究、学会合作是全面发展学生能力的重要前提,是高中新课程改革的主要任务。而问题驱动,问题引导,主动观察,主动发现又是帮助学生学会学习的重要好手段。本节教学,将遵循这个原则而进行设计,让学生领会到知识的产生过程。

四、教学目标 1.知识和技能目标 (1)弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数)(x f 必有最大值和最小值的充分条件。 (2)掌握求在闭区间],[b a 上连续的函数)(x f 的最大值和最小值的方法 和步骤。 2.过程和方法目标 (1)问题驱动,自主探究,合作交流。 (2)培养学生在生活中学习数学的方法。 3.情感和价值目标 (1)通过观察认识到事物的表象与本质的区别与联系. (2)培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. (3)提高学生的数学能力,培养学生的创新精神、实践能力和理性精神. (4)通过学生的参与,激发学生学习数学的兴趣。 五、教学重点与难点 重点:求闭区间上连续可导的函数的最值的求解,理解确定函数最值的方法,并联系函数单调性的应用。 难点:求函数的最值的方法的提炼,同时让有余力的学生了解函数的最值与极值的区别与联系 六、教学方法 发现探究式、启发探究式 本节课教学基本流程: 复习检查→情境导入、展示目标→合作探究、精讲点拨→反思总结、课后升华、当堂检测→布置作业 七、教学过程设计

利用导数研究函数的极值、最值

利用导数研究函数的极值、最值 【例1-1】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( ) A.函数f(x)有极大值f(2)和极小值f(1) B.函数f(x)有极大值f(-2)和极小值f(1) C.函数f(x)有极大值f(2)和极小值f(-2) D.函数f(x)有极大值f(-2)和极小值f(2) 角度2已知函数求极值 【例1-2】已知函数f(x)=ln x-ax(a∈R). (1)当a=1 2 时,求f(x)的极值; (2)讨论函数f(x)在定义域内极值点的个数. 【训练1】 (1)(角度1)已知函数f(x)的定义域为(a,b),导函数f′(x)在(a,b)上的图象如图所示,则函数f(x)在(a,b)上的极大值点的个数为( ) A.1 B.2 C.3 D.4 (2)(角度2) 设函数f(x)=(x-a)(x-b)(x-c),a,b,c∈R,f′(x)为f(x)的导函数. ①若a=b=c,f(4)=8,求a的值; ②若a≠b,b=c,且f(x)和f′(x)的零点均在集合{-3,1,3}中,求f(x)的极小值. 考点二已知函数的极值求参数

【例2】设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . (1)若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 【训练2】 已知函数f (x )=ax 3 +bx 2 +cx -17(a ,b ,c ∈R)的导函数为f ′(x ),f ′(x )≤0的解集为{x |-2≤x ≤3},若f (x )的极小值等于-98,则a 的值是( ) A.-8122 B.1 3 C.2 D.5 考点三 利用导数求函数的最值 【例3】 已知函数f (x )=2x 3 -ax 2+2. (1)讨论f (x )的单调性; (2)(经典母题)当0

利用导数求函数值域

利用导数求函数最值 高二苏庭 导数是对函数的图像与性质的总结与拓展,导数是研究函数单调性极佳、最佳的重要工具,在掌握求函数的极值和最值的基础上学习用导数解决生产生活中的有关最大最小最有效等类似的应用问题广泛运用在讨论函数图像的变化趋势及证明不等式等方面。 导数是初等数学与高等数学的重要衔接点,是高考的热点,高考对导数的考查定位于作为解决初等数学问题的工具出现,高考对这部分内容的考查将仍会以导数的应用题为主,如利用导数处理函数的极值、最值和单调性问题和曲线的问题等,考题不难,侧重知识之意。 导数应用主要有以下三个方面: ①运用导数的有关知识研究函数的单调性和最值问题, ②利用导数的几何意义,研究曲线的切线斜率。函数y=f(x)在x=x0处的导数,表示曲线在点P(x0 , y0)处的切线斜率。 由导数来求最值问题的方法可知,解这类实际问题需先建立函数关系,再求极值点,确定最值点及最值.在设变量时可采用直接法也可采用间接法.

求函数极值时,导数值为0的点是该点为极值点的必要条件,但不是充分条件。 运用导数确定函数单调区间的一般步骤为: (1)求出函数y=f(x)的导函数; (2)在函数定义域内解不等式得函数y=f(x)的单调增区间;解不等式得函数y=f(x)的单调减区间。 例题剖析 例1、求函数的值域. 分析: 求函数的值域以前学过一些方法,也可利用求导的方法,根据函数的单调性求解. 解答: 函数的定义域由求得,即x≥-2.

当x>-2时,y′>0,即函数,在(-2,+∞)上是增函数,又f(-2)=-1,∴所求函数的值域为[-1,+∞). 点评: (1)从本题的解答过程可以看到,当单调区间与函数的值域相同时,才可使用此法,否则会产生错误. (2)求值域时,当x=-2,函数不可导,但函数 在[-2,+∞)上是连续的,函数图象是连续变化的,因此在x=-2时,取得最小值. 例2、把长度为16cm的线段分成两段,各围成一个正方形,它们的面积之和的最小值为多少? 分析:建立面积和与一正方形的周长的函数关系,再求最小值. 解答:设一段长为xcm,则另一段长(16-x)cm. ∴面积和 ∴S′=-2,令S′=0有x=8. 列表:

《函数的最大(小)值与导数》教案

《函数的最大(小)值与导数》教案 【教学目标】 1.使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 【教学重点】利用导数求函数的最大值和最小值的方法. 【教学难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系. 【教学过程】 一、复习回顾: 1.极值的概念: 极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点. 极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点. 2. 判断函数)(x f y =的极值的方法: 解方程0)(='x f .当0)(0='x f 时: (1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,那么)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,那么)(0x f 是极小值. 3. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

用导数法求函数的最值的练习题解析

用导数法求函数的最值的练习题解析 一、选择题 1.函数y =f (x )在区间[a ,b ]上的最大值是M ,最小值是m ,若M =m ,则f ′(x )( ) A .等于0 B .大于0 C .小于0 D .以上都有可能 [答案] A [解析] ∵M =m ,∴y =f (x )是常数函数 ∴f ′(x )=0,故应选A. 2.设f (x )=14x 4+13x 3+1 2x 2在[-1,1]上的最小值为( ) A .0 B .-2 C .-1 D.1312 [答案] A [解析] y ′=x 3+x 2+x =x (x 2+x +1) 令y ′=0,解得x =0. ∴f (-1)=512,f (0)=0,f (1)=13 12 ∴f (x )在[-1,1]上最小值为0.故应选A. 3.函数y =x 3+x 2-x +1在区间[-2,1]上的最小值为( ) A.22 27 B .2 C .-1 D .-4 [答案] C [解析] y ′=3x 2+2x -1=(3x -1)(x +1) 令y ′=0解得x =1 3或x =-1

当x =-2时,y =-1;当x =-1时,y =2; 当x =13时,y =22 27;当x =1时,y =2. 所以函数的最小值为-1,故应选C. 4.函数f (x )=x 2-x +1在区间[-3,0]上的最值为( ) A .最大值为13,最小值为3 4 B .最大值为1,最小值为4 C .最大值为13,最小值为1 D .最大值为-1,最小值为-7 [答案] A [解析] ∵y =x 2-x +1,∴y ′=2x -1, 令y ′=0,∴x =1 2,f (-3)=13,f ? ?? ??12=34,f (0)=1. 5.函数y =x +1-x 在(0,1)上的最大值为( ) A. 2 B .1 C .0 D .不存在 [答案] A [解析] y ′=1 2x -121-x =12·1-x -x x ·1-x 由y ′=0得x =1 2,在? ????0,12上y ′>0,在? ????12,1上 y ′<0.∴x =1 2时y 极大=2, 又x ∈(0,1),∴y max = 2. 6.函数f (x )=x 4-4x (|x |<1)( ) A .有最大值,无最小值 B .有最大值,也有最小值

用导数研究函数的恒成立与存在性问题-答案

用导数研究函数的恒成立与存在问题 1.已知函数23()2ln x f x x x a = -+,其中a 为常数. (1)若1a =,求函数()f x 的单调区间; (2)若函数()f x 在区间[1,2]上为单调函数,求a 的取值范围. 2.已知函数3 2 ()4()f x x ax a R =-+-∈,'()f x 是()f x 的导函数。 (1)当2a =时,对于任意的[1,1]m ∈-,[1,1]n ∈-,求()()f m f n '+的最小值; (2)若存在0(0,)x ∈+∞,使0()f x >0,求a 的取值范围。

3.已知函数x ax x f ln )(+= )(R a ∈. (1)若2=a ,求曲线)(x f y =在点1x =处的切线方程; (2)求)(x f 的单调区间; (3)设22)(2 +-=x x x g ,若对任意1(0,)x ∈+∞,均存在[]1,02∈x ,使得)()(21x g x f <, 求实数a 的取值范围.

4.(2016届惠州二模)已知函数()22ln f x x x =-+. (Ⅰ)求函数()f x 的最大值; (Ⅱ)若函数()f x 与()a g x x x =+ 有相同极值点. ①求实数a 的值; ②对121,,3x x e ???∈???? (e 为自然对数的底数),不等式 ()() 1211 f x g x k -≤-恒成立,求实数k 的取值范围.

5.已知函数2 12 ()()ln ()f x a x x a R =-+∈. (1)当1a =时,01[,]x e ?∈使不等式0()f x m ≤,求实数m 的取值范围; (2)若在区间1(,)+∞,函数()f x 的图象恒在直线2y ax =的下方,求实数a 的取值范围.

利用导数研究函数的极值、最值

利用导数研究函数的极值、最值 一、选择题 1.(2016·四川卷)已知a为函数f(x)=x3-12x的极小值点,则a=( ) A.-4 B.-2 C.4 D.2 解析f′(x)=3x2-12,∴x<-2时,f′(x)>0,-22时, f′(x)>0,∴x=2是f(x)的极小值点. 答案 D 2.函数f(x)=1 2 x2-ln x的最小值为( ) A.1 2 B.1 C.0 D.不存在 解析f′(x)=x-1 x = x2-1 x ,且x>0.令f′(x)>0,得x>1;令f′(x)<0,得 0

解析 设圆柱的底面半径为R ,母线长为l ,则V =πR 2 l =27π,∴l =27R 2, 要使用料最省,只须使圆柱的侧面积与下底面面积之和S 最小. 由题意,S =πR 2+2πRl =πR 2+2π·27 R . ∴S ′=2πR -54π R 2 ,令S ′=0,得R =3,则当R =3时,S 最小.故选A. 答案 A 5.(2017·东北四校联考)已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( ) A.(-1,2) B.(-∞,-3)∪(6,+∞) C.(-3,6) D.(-∞,-1)∪(2,+∞) 解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根. ∴Δ=4a 2-4×3(a +6)>0,即a 2-3a -18>0, ∴a >6或a <-3. 答案 B 二、填空题 6.(2017·肇庆模拟)已知函数f (x )=x 3+ax 2+3x -9,若x =-3是函数f (x )的一个极值点,则实数a =________. 解析 f ′(x )=3x 2+2ax +3. 依题意知,-3是方程f ′(x )=0的根, 所以3×(-3)2+2a ×(-3)+3=0,解得a =5. 经检验,a =5时,f (x )在x =-3处取得极值. 答案 5 7.(2016·北京卷改编)设函数f (x )=???x 3 -3x ,x ≤0, -2x ,x >0,则f (x )的最大值为 ________. 解析 当x >0时,f (x )=-2x <0; 当x ≤0时,f ′(x )=3x 2-3=3(x -1)(x +1),当x <-1时,f ′(x )>0,f (x )是增函数,当-1

高考数学:利用导数研究函数的单调性、极值、最值

利用导数研究函数的单调性、极值、最值 一、选择题 1.(2016·全国卷Ⅰ高考文科·T12)若函数f (x )=x-1 3sin2x+asinx 在(-∞,+∞)上单调递增,则a 的取值范围是 ( ) A.[-1,1] B.11,3 ? ? -??? ? C.11,33??- ???? D.11,3? ? --???? 【解析】选C.方法一:用特殊值法: 取a=-1,f (x )=x-1 3 sin2x-sinx , f'(x )=1-23 cos2x-cosx , 但f'(0)=1-23-1=-23 <0,不具备在(-∞,+∞)上单调递增,排除A ,B ,D. 方法二:f'(x )=1-23 cos2x+acosx ≥0对x ∈R 恒成立, 故1-23 (2cos 2x-1)+acosx ≥0, 即acosx-43cos 2 x+53 ≥0恒成立, 令t=cosx ,所以-43t 2+at+53 ≥0对t ∈[-1,1]恒成立, 构造函数f (t )=- 43 t 2 +at+53 , 开口向下的二次函数f (t )的最小值的可能值为端点值, 故只需()()1f 1a 0,31f 1a 0,3 ?-=-≥????=+≥?? 解得-13≤a ≤13 . 2.(2016·四川高考理科·T9)设直线l 1,l 2分别是函数f (x )=lnx,0x 1,lnx,x 1, ?-<?图象上点P 1,P 2处的切 线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是 ( ) A.(0,1) B.(0,2)

C.(0,+∞) D.(1,+∞) 【解题指南】设出两切点的坐标,两切线方程,从而求出点P 的坐标,表示出三角形的面积,进而求出取值范围. 【解析】选A.由题设知:不妨设P 1,P 2点的坐标分别为: P 1(x 1,y 1),P 2(x 2,y 2),其中0??得l 1的斜率k 1为-11 x ,l 2的斜率k 2为2 1x ;又l 1与l 2垂直,且00,f'(x )<0的解集得出函数的极值点. 【解析】选D. f'(x )=3x 2-12=3()()x 2x 2-+,令f'(x )=0,得x=-2或x=2,易知f (x )在()2,2-上单调递减,在()2,∞+上单调递增,故f (x )的极小值为f ()2,所以a=2. 二、解答题 4.(2016·全国卷Ⅰ高考理科·T21)已知函数f (x )=(x-2)e x +a (x-1)2 有两个零点. (1)求a 的取值范围. (2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2. 【解析】(1)f'(x )=(x-1)e x +2a (x-1)=(x-1)(e x +2a ).

导数与函数的极值、最值练习含答案

第2课时 导数与函数的极值、最值 一、选择题 1.下列函数中,既是奇函数又存在极值的是 ( ) A .y =x 3 B .y =ln(-x ) C .y =x e -x D .y =x +2 x 解析 由题可知,B ,C 选项中的函数不是奇函数,A 选项中,函数y =x 3单调递增(无极值),D 选项中的函数既为奇函数又存在极值. 答案 D 2.(2017·石家庄质检)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,若t =ab ,则t 的最大值为 ( ) A .2 B .3 C .6 D .9 解析 f ′(x )=12x 2-2ax -2b ,则f ′(1)=12-2a -2b =0,则a +b =6, 又a >0,b >0,则t =ab ≤? ????a +b 22 =9,当且仅当a =b =3时取等号. 答案 D 3.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ? ???? a >12,当x ∈(-2,0)时, f (x )的最小值为1,则a 的值等于 ( ) A.14 B.13 C.1 2 D .1 解析 由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1 a , 当00;当x >1 a 时,f ′(x )<0.

∴f (x )max =f ? ???? 1a =-ln a -1=-1,解得a =1. 答案 D 4.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是 ( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞) 解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根, ∴Δ=4a 2-4×3×(a +6)>0,即a 2-3a -18>0, ∴a >6或a <-3. 答案 B 5.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x 的一个极值点,则下列图像不可能为y =f (x )图像的是 ( ) 解析 因为[f (x )e x ]′=f ′(x )e x +f (x )(e x )′=[f (x )+f ′(x )]e x ,且x =-1为函数f (x )e x 的一个极值点,所以f (-1)+f ′(-1)=0;选项D 中,f (-1)>0,f ′(-1)>0,不满足f ′(-1)+f (-1)=0. 答案 D 二、填空题 6.(2017·咸阳模拟)已知函数f (x )=x 3+ax 2+3x -9,若x =-3是函数f (x )的一个极值点,则实数a =________.

2017函数的最值与导数学案.doc

3.3.3 函数的最值与导数 【学习目标】 是多少?最小值是多少? 2.函数的最大值、最小值与函数的极大值和极小值的区别与联系是什么?能列表的应采用列表的方法. 3.利用导数求函数的最大值和最小值的方法是什么? 4.利用导数求函数的最值步骤是什么? 5.不等式恒成立问题,常常转化为求函数的最值,f(x)≥c对x∈R 恒成立,常怎么转化? f(x)≤c对x∈R恒成立,常怎么转化?【自主检测】 1.下列说法正确的是( ) A.函数的极大值就是函数的最大值 B.函数的极小值就是函数的最小值 C.函数的最值一定是极值 D.在闭区间上的连续函数一定存在最值

2.函数y=f(x)在区间[a,b ]上的最大值是M ,最小值是m,若M=m, 则f ′(x) ( ) A.等于0 B.大于0 C.小于0 D.以上都有可能 【典型例题】 例1.(1)求()31443f x x x =-+在[]0,3的最大值与最小值; (2)求函数5224+-=x x y 在区间[]2,2-上的最大值与最小值; (3)求函数x x x y -+=23在闭区间]1,2[-上的最大值与最小值. 例2.已知函数f (x )=x 3+ax 2+bx +c 在x =-23 与x =1时都取得极值 (1)求a 、b 的值与函数f (x )的单调区间; (2)若对x ∈[]12-,,不等式f (x )b,则 ( ) A .2,29a b =-=- B .2,3a b == C .3,2a b == D .2,3a b =-=- 2. 已知f(x)=2x 3-6x 2+m(m 为常数)在[-2,2]上有最大值3,求此函数在[-2,2]上的最小值__________________. 4.求函数5224+-=x x y 在区间[]2,2-上的最大值与最小值,并画出函数的图像.

相关文档
相关文档 最新文档