文档库 最新最全的文档下载
当前位置:文档库 › 浅谈模糊控制

浅谈模糊控制

浅谈模糊控制
浅谈模糊控制

维普资讯 https://www.wendangku.net/doc/db17726542.html,

模糊控制的优缺点

模糊控制的优缺点

————————————————————————————————作者:————————————————————————————————日期:

1.模糊控制中模糊的含义 模糊控制中的模糊其实就是不确定性。从属于该概念和不属于该概念之间没有明显的分界线。模糊的概念导致了模糊现象。 2.模糊控制的定义 模糊控制就是利用模糊数学知识模仿人脑的思维对模糊的现象进行识别和判断,给出精确的控制量,利用计算机予以实现的自动控制。 3.模糊控制的基本思想 模糊控制的基本思想:根据操作人员的操作经验,总结出一套完整的控制规则,根据系统当前的运行状态,经过模糊推理,模糊判断等运算求出控制量,实现对被控制对象的控制。 4.模糊的控制的特点 不完全依赖于纯粹的数学模型,依赖的是模糊规则。模糊规则是操作者经过大量的操作实践总结出来的一套完整的控制规则。 模糊控制的对象称为黑匣(由于不知道被控对象的内部结构、机理,无法用语言去描述其运动规律,无法去建立精确的数学模型)。但是模糊规则又是模糊数学模型。 5 模糊控制的优缺点及需要解决的问题分析 5.1模糊控制的优点 (1)使用语言方便,可不需要过程的精确数学模型;(不需要精确的数学模型) (2)鲁棒性强,适于解决过程控制中的非线性、强耦合时变、

滞后等问题;鲁棒性即系统的健壮性。 (3)有较强的容错能力。具有适应受控对象动力学特征变化、环境特征变化和动行条件变化的能力; (4)操作人员易于通过人的自然语言进行人机界面联系,这些模糊条件语句容易加到过程的控制环节上。 5.2模糊控制的缺点 (1)信息简单的模糊处理将导致系统的控制精度降低和动态品质变差; (2)模糊控制的设计尚缺乏系统性,无法定义控制目标。 6.模糊数学 模糊数学就是利用数学知识研究和解决模糊现象。在数学和模糊现象之间架起了一座桥梁。 6.1模糊集合的概念 每一个概念都有内涵和外延。 内涵就是指概念的本质属性的集合。外延就是符合某种本质属性的全体对象的集合。 模糊数学的基础就是模糊理论集。 在模糊集合设计到的论域U 上,给定了一个映射A,A :U →[0,1] ,)(x x A μ ,则称A 为论域U 上的模糊集合或者模糊子集; )(x A μ表示U 中各个元素x 属于集合A 的程度,称为元素x 属于模糊集合A 的隶属函数。当x 是一个确定的0x 时,称)(0x A μ为元素0x 对于模糊集合A 的隶属 度。 F 集合引出的几个概念

很难找的基于模糊控制的程序源代码

#include #include #include #include struct Fzb { int yyz; //语言之 int ly; //论域 float lsd; //隶属值 struct Fzb *next; }; class Fuzzy { private: int g[49][3]; //定义了规则库,用于函数间调用 float R[169][13]; //定义了关系矩阵,用于函数间调用 float H[13][13]; //定义了查询表矩阵,用于函数间的调用public: struct Fzb * Creatfzb(); //建立赋值表函数 void Printfzb(struct Fzb *head1); //输出赋值表 void Inputgzk(); //导入规则库 void jlgx(struct Fzb*E,struct Fzb*EC,struct Fzb*U); //建立关系矩阵void jlcxb(struct Fzb*E,struct Fzb*EC,struct Fzb*U); //建立查询表}; struct Fzb *Fuzzy::Creatfzb() { float f[8][14]={ {0,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}, {-3,1,0.5,0,0,0,0,0,0,0,0,0,0,0}, {-2,0,0.5,1,0.5,0,0,0,0,0,0,0,0,0}, {-1,0,0,0,0.5,1,0.5,0,0,0,0,0,0,0}, {0,0,0,0,0,0,0.5,1,0.5,0,0,0,0,0}, {1,0,0,0,0,0,0,0,0.5,1,0.5,0,0,0}, {2,0,0,0,0,0,0,0,0,0,0.5,1,0.5,0}, {3,0,0,0,0,0,0,0,0,0,0,0,0.5,1}}; //默认输入赋值表 int i,k,j; fstream in,out; struct Fzb *head,*p1,*p2; int n=0; head=NULL; p1=new(Fzb); for(k=1;k<8;k++) for(j=1;j<14;j++)

模糊控制详细讲解实例

一、速度控制算法: 首先定义速度偏差-50 km/h ≤e (k )≤50km/h ,-20≤ec (i )= e (k )- e (k-1)≤20,阀值e swith =10km/h 设计思想:油门控制采用增量式PID 控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e (k )<0 ① e (k )>- e swith and throttlr_1≠0 选择油门控制 ② 否则:先将油门控制量置0,再选择刹车控制 0

基于模糊控制的速度跟踪控制问题(C语言以及MATLAB仿真实现)

基于模糊控制的速度控制 ——地面智能移动车辆速度控制系统问题描述 利用模糊控制的方法解决速度跟踪问题,即已知期望速度(desire speed),控制油门(throttle output)和刹车(brake output)来跟踪该速度。已知输入:车速和发动机转速(值可观测)。欲控制刹车和油门电压(同一时刻只有一个量起作用)。 算法思想 模糊控制器是一语言控制器,使得操作人员易于使用自然语言进行人机对话。模糊控制器是一种容易控制、掌握的较理想的非线性控制器,具有较佳的适应性及强健性(Robustness)、较佳的容错性(Fault Tolerance)。利用控制法则来描述系统变量间的关系。不用数值而用语言式的模糊变量来描述系统,模糊控制器不必对被控制对象建立完整的数学模式。 Figure 1模糊控制器的结构图 模糊控制的优点: (1)模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用。 (2)由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控制对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。 (3)基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同,容易导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 (4)模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。 简化系统设计的复杂性,特别适用于非线性、时变、模型不完全的系统上。 模糊控制的缺点

模糊控制详细讲解实例之欧阳歌谷创作

一、速度控制算法: 欧阳歌谷(2021.02.01) 首先定义速度偏差-50 km/h≤e(k)≤50km/h,-20≤ec(i)=e(k)-e(k-1)≤20,阀值eswith=10km/h 设计思想:油门控制采用增量式PID控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e(k)<0 ①e(k)>-eswith and throttlr_1≠0 选择油门控制 ②否则:先将油门控制量置0,再选择刹车控制 0

E/EC和U取相同的隶属度函数即: 说明:边界选择钟形隶属度函数,中间选用三角形隶属度函数,图像略 实际EC和E输入值若超出论域范围,则取相应的端点值。 3.模糊控制规则 由隶属度函数可以得到语言值隶属度(通过图像直接可以看出)如下表: 表1:E/EC和U语言值隶属度向量表 设置模糊规则库如下表: 表2:模糊规则表 3.模糊推理 由模糊规则表3可以知道输入E与EC和输出U的模糊关系,这里我取两个例子做模糊推理如下: if (E is NB) and (EC is NM) then (U is PB) 那么他的模糊关系子矩阵为:

基于simulink的模糊控制仿真

已知系统的传递函数为:1/(10s+1)*e(-0.5s)。假设系统给定为阶跃值r=30,系统初始值r0=0.试分别设计 (1)常规的PID控制器; (2)常规的模糊控制器; (3)比较两种控制器的效果; (4)当通过改变模糊控制器的比例因子时,系统响应有什么变化? 一.基于simulink的PID控制器的仿真及其调试: 调节后的Kp,Ki,Kd分别为:10 ,1,0.05。 示波器观察到的波形为: 二.基于simulink的模糊控制器的仿真及其调试: (1)启动matlab后,在主窗口中键入fuzzy回车,屏幕上就会显现出如下图所示的“FIS Editor”界面,即模糊推理系统编辑器。

(2)双击输入量或输出量模框中的任何一个,都会弹出隶属函数编辑器,简称MF编辑器。

(3)在FIS Editor界面顺序单击菜单Editor—Rules出现模糊规则编辑器。 本次设计采用双输入(偏差E和偏差变化量EC)单输出(U)模糊控制器,E的论域是[-6,6],EC的论域是[-6,6],U的论域是[-6,6]。它们的状态分别是负大(NB)、负中(NM)、负小(NS)、零(ZO)、正小(PS)、正中(PM)、正大(PB)。语言值的隶属函数选择三角形的隶属度函数。推理规则选用Mamdani 控制规则。 该控制器的控制规则表如图所示:

Simulink仿真图如下: 在调试过程中发现加入积分调节器有助于消除静差,通过试凑法得出量化因子,比例因子以及积分常数。Ke,Kec,Ku,Ki分别是: 3 ,2.5 ,3.5 ,0.27

三.实验心得: 通过比较PID控制器和模糊控制器,我们可知两个系统观察到的波形并没有太大的区别。相对而言,对于给出精确数学模型的控制对象,PID控制器显得更具有优势,其一是操作简单,其二是调节三个参数可以达到满意的效果;对于给出给出精确数学模型的控制对象,模糊控制器并没有展现出太大的优势,其一是操作繁琐,其二是模糊控制器调节参数的难度并不亚于PID控制器。 在实验中增大模糊控制器的比例因子Ku会加快系统的响应速度,但Ku过大将会导致系统输出上升速率过快,从而使系统产生较大的超调量乃至发生振荡;Ku过小,系统输出上升速率变小,将导致系统稳态精度变差。

简易模糊控制器设计及MATLAB仿真

简易模糊控制器的设计及仿真 摘要:模糊控制(Fuzzy Control )是以模糊集理论、模糊语言和模糊逻辑推理为基础的一种控制方法,它从行为上模仿人的模糊推理和决策过程。本文利用MATLAB/SIMULINK 与FUZZY TOOLBOX 对给定的二阶动态系统,确定模糊控制器的结构,输入和输出语言变量、语言值及隶属函数,模糊控制规则,比较其与常规控制器的控制效果,用MATLAB 实现模糊控制的仿真。 关键词:模糊控制 参数整定 MATLAB 仿真 二阶动态系统模型: ()()1140130120 ++s s 采用simulink 图库,实现常规PID 和模糊自整定PID 。 一.确定模糊控制器结构 模糊自整定PID 为2输入3输出的模糊控制器。在MATLAB 的命令窗口中键入fuzzy 即可打开FIS 编辑器,其界面如下图所示。此时编辑器里面还没有FIS 系统,其文件名为Untitled ,且被默认为Mandani 型系统。默认的有一个输入,一个输出,还有中间的规则处理器。在FIS 编辑器界面上需要做一下几步工作。 首先,模糊自整定PID 为2输入3输出的模糊控制器,因此需要增加一个输入两个输出,进行的操作为:选择Edit 菜单下的Add Variable/Input 菜单项。

如下图。 其次,给输入输出变量命名。单击各个输入和输出框,在Current Variable 选项区域的Name文本框中修改变量名。如下图 最后,保存系统。单击File菜单,选择Export下的To Disk项。这里将创建的系统命名为PID_auot.fi。 二.定义输入、输出模糊集及隶属函数

模糊控制的应用实例与分析

模糊控制的应用 学院实验学院 专业电子信息工程 姓名 指导教师___________ 日期20门年9月20日 在自动控制中,包括经典理论和现代控制理论中有一个共同的特点,即控制器的综合设计都要建立在被控对象准确的数学模型(如微分方程等)

的基础上,但是在实际工业生产中,很多系统的影响因素很多,十分复杂。建立精确的数学模型特别困难,甚至是不可能的。这种情况下,模糊控制的诞生就显得意头重大,模糊控制不用建立数学模型,根据实际系统的输入输出的结果数据,参考现场操作人员的运行经验,就可对系统进行实时控制。模糊控制实际上是一种非线性控制,从属于智能控制的范畴。现代控制系统中的的控制能方便地解决工业领域常见的非线性、时变、在滞后、强耦合、变结构、结束条件苛刻等复杂问题。可编程控制器以其高可靠性、编程方便、耐恶劣环境、功能强大等特性很好地解决了工业控制领域普遍关心的可靠、安全、灵活、方便、经济等问题,这两者的结合,可在实际工程中广泛应用。 所谓模糊控制,其定义是是以模糊数学作为理论基础,以人的控制经验作为控制的知识模型,以模糊集合、模糊语言变量以及模糊逻辑推理作为控制算法的一种控制。模糊控制具有以下突出特点: ⑴模糊控制是一种基于规则的控制,它直接采用语言型控制规则,出发点 是现场操作人员的控制经验或相关专家的知识,在设计中不需要建立被控对象的精确的数学模型,因而使得控制机理和策略易于接受与理解,设计简单,便于应用 ⑵由工业过程的定性认识出发,比较容易建立语言控制规则,因而模糊控 制对那些数学模型难以获取,动态特性不易掌握或变化非常显著的对象非常适用。

⑶基于模型的控制算法及系统设计方法,由于出发点和性能指标的不同, 容易导致较大差异;但一个系统语言控制规则却具有相对的独立性,利用这些控制规律间的模糊连接,容易找到折中的选择,使控制效果优于常规控制器。 ⑷模糊控制是基于启发性的知识及语言决策规则设计的,这有利于模拟人 工控制的过程和方法,增强控制系统的适应能力,使之具有一定的智能水平。 ⑸模糊控制系统的鲁棒性強,干扰和参数变化对控制效果的影响被大大减 弱,尤其适合于非线性、时变及纯滞后系统的控制。 由于有着诸多优点,模糊理论在控制领域得到了广泛应用。下面我们就以下示例介绍模糊控制在实际中的应用: 电机调速控制系统见图1,模糊控制器的输入变量为实际转速与转速给定值之间的差值e及其变化率仝,输出变量为电机的电压变化量u。图2为电机调试输出结果,其横坐标为时间轴,纵坐标为转速。当设定转速为2 OOOr / s时,电机能很快稳定运行于2 OOOr / s;当设定转速下降到1 OOOr / s时,转速又很快下降到1 OOOr / s稳定运 行。

模糊控制用于机器人避障

北京工业大学 结课论文 课题名称:基于模糊控制的机器人避障 姓名:鑫元 12521121 唐堂 12521130 成绩: 引言

智能小车是移动机器人的一种,可通过计算机编程来实现其对行驶方向、启停以及速度的控制。要想让智能小车在行驶过程中能成功地避开障碍物,必须对其进行路径规划?,路径规划的任务是为小车规划一条从起始点到目标点的无碰路径。路径规划方法有:BP人工神经网络法(Back Propagation)、机器学习(Reinforcement Learning)、以及模糊控制(Fuzzy Control)方法等。模糊技术具有人类智能的模糊性和推理能力,在路径规划中,模糊推理的应用主要体现在基于行为的导航方式上,即将机器人的运动过程分解为避障、边界跟踪、调速、目标制导等基本行为,各基本行为的激活由不同的机构分别控制,机器人的最终操作由高层控制机构对基本行为进行平衡后作出综合反应。模糊控制方法将信息获取和模糊推理过程有机结合,其优点在于不依赖机器人的动力学、运动学模型,系统控制融入了人类经验,同时计算量小,构成方法较为简单,节省系统资源,实时性。本文探讨了模糊控制技术在避障路径规划中的应用,并对其进行了仿真设计。 摘要 基于MATLAB的仿真结果表明模糊逻辑推理方法在智能小车的导航控制中具有良好的效果。 目录

引言,摘要 (1) 1.模糊控制技术基本理 (3) 2模糊控制器设计 (4) 3.避障算法设计 (6) 4 仿真实验 (14) 5.实验截图 (17) 6. 结论 (19) 7.实验心得 (20) 8.参考文献 (22)

1模糊控制技术基本原理 环境中存在障碍物时,路径规划控制系统具有高度不确定性,是一个多输入多输出(MIMO)系统。对于这种具有高度不确定性的MIMO系统,传统的控制方法不能达到很好的控制效果。模糊推理控制方法将人类的驾驶经验融入系统控制之中,因此可以较好地满足系统自适应性、鲁棒性和实时性的要求。模糊控制方式借助模糊数学这一工具通过推理来实现控制。模糊逻辑模拟了人类思维的模糊性,它采用与人类语言相近的语言变量进行推理,因此借助这一工具可将人类的控制经验融人系统控制之中,使得系统可以像有经验的操作者一样去控制复杂、激励不明的系统。总的说来模糊控制具有以下特点: 1)不依赖于被控对象的精确数学模型,易于对不确定性系统进行控制; 2)易于控制、易于掌握的较理想非线性控制器,是一种语言控制器; 3)抗干扰能力强,响应速磨陕,并对系统参数的变化有较强的鲁棒性。 模糊控制器的基本结构由模糊输入接口、模糊推理以及模糊输出接口三个模块组成。模糊输入接口的主要功能是实现精确量的模糊化,即把物理量的精确值转换成语言变量值。语言变量的分档根据实际情况而定,一般分为3—7档,档数越多,控制精度越高,计算量也越大。模糊推理决策机构的主要功能是模仿人的思维特征,根据总结人工控制策略取得的语言控制规则进行模糊推理,并决策出模糊输出控制量。模糊输出接口的主要功能是把输出模糊量转化为精确量,施于被控对象。 2模糊控制器设计

模糊控制器设计的基本方法

第5章 模糊控制器设计的基本方法 5.1 模糊控制器的结构设计 结构设计:确定输入、输出变量的个数(几入几出)。 5.2 模糊控制规则设计 1. 语言变量词集 {}PB PM PS O NS NM NB ,,,,,, 2. 确立模糊集隶属函数(赋值表) 3. 建立模糊控制规则,几种基本语句形式: 若A 则B c R A B A E =?+? 若A 则B 否则C c R A B A C =?+? 若A 或B 且C 或D 则E ()()R A B E C D E =+?+????????? 4. 建立控制规则表 5.3 模糊化方法及解模糊化方法 模糊化方法 1. 将[]b a ,内精确量离散化为[]n n +-,内的模糊量 2. 将其区间精确量x 模糊化为一个单点集,即0)(,1)(==x x μμ 模糊推理及非模糊化方法 1. MIN-MAX ——重心法 11112222n 00R and R and R and and '? n n n A B C A B C A B C x y c →→→→= 三步曲: 取最小 1111'()()()()c A o B o C z x y z μμμμ=∧∧ 取最大 12''''()()()()n c c c c z z z z μμμμ=∨∨∨ 2. 最大隶属度法 例: 10.3 0.80.5 0.511234 5 C =+----- +++,选3-=*u

20.30.80.40.21101234 5 C =+ +++ + ,选 5.12 21=+=*u 5.4 论域、量化因子及比例因子选择 论域:模糊变量的取值范围 基本论域:精确量的取值范围 误差量化因子:e e x n k /= 比例因子:e y k u u /= 误差变化量化因子:c c x m k /= 5.5 模糊控制算法的流程 m j n i C u B EC A E ij j i ,,2,1;,,2,1 then then if ===== 其中 i A 、 j B 、ij C 是定义在误差、误差变化和控制量论域X 、Y 、Z 上的模糊集合,则该语句所表示的模糊关系为 j i ij j i C B A R ,??= m j n i j i C B A R z y x z y x ij j i ===== ,1 ,1)()()(),,(μμμ μ 根据模糊推理合成规则可得:R B A U )(?= Y y X x B A R U y x z y x z ∈∈=)()(),,()(μμμμ 设论域{}{}{}l m n z z z Z y y y x x x X ,,,,,,,Y ,,,,212121 ===,则X ,Y ,Z 上的模糊集合分别为一个n ,m 和l 元的模糊向量,而描述控制规则的模糊关系R 为一个m n ?行l 列矩阵。 由i x 及i y 可算出ij u ,对所有X ,Y 中元素所有组合全部计算出相应的控制量变化值,可写成矩阵()ij n m u ?,制成的表即为查询表或称为模糊控制表。 * 模糊控制器设计举例(二维模糊控制器) 1. 结构设计:二维模糊控制器,即二输入一输出。 2. 模糊控制规则:共21条语句,其中第一条规则为 t h e n o r and or if :1 PB u NM NB EC NM NB E R === 3. 对模糊变量E ,EC ,u 赋值(见教材中的表)

选取一个模糊控制的实例讲解

选取一个模糊控制的实例讲解,有文章,有仿真,有详细的推导过程。 一.实验题目:基于模糊控制系统的单级倒立摆 二.实验目的与要求: 倒立摆是联结在小车上的杆,通过小车的运动能保持竖立不倒的一种装置,它是一个典型的非线性、快速、多变量和自然不稳定系统,但是我们可以通过对它施加一定的控制使其稳定。对它的研究在理论上和方法上都有其重要意义。倒立摆的研究不仅要追求增加摆的级数,而且更重要的是如何发展现有的控制方法。同时, 它和火箭的姿态控制以及步行机器 人的稳定控制有很多相似之处,由此研究产生的理论和方法对一般工业过程也有广泛用途。 本文研究了倒立摆的控制机理,用Lagrange 方法推导了一级倒立摆的数学模型,这为研究多级和其它类型的倒立摆甚至更高层次的控制策略奠定了一个良好的基础。对系统进行了稳定性、可控性分析,得出倒立摆系统是一个开环不稳定但可控的系统的结论。 本文主要研究用极点配置、最优控制和模糊控制方法对倒立摆进行稳定控制。最优控制方法是基于状态反馈,但能实现输出指标最优的一种控制方法,方法和参数调节较简单,有着广泛的应用。模糊控制有不依赖于数学模型、适用于非线性系统等优点,所以本文尝试了用模糊控制对倒立摆进行控制,以将先进的控制方法用于实际中。 同时,对倒立摆系统的研究也将遵循从建模到仿真到实控,软硬件结合的系统的控制流程。在这过程中,借助数学工具Matlab7及仿真软件Simulink,作了大量的仿真研究工作,仿真结果表明系统能跟踪输入,并具有较好的抗干扰性。最后对实验室的倒立摆装置进行了软、硬件的调试,获得了较好的控制效果。 三.实验步骤: 1.一级倒立摆系统模型的建立 在忽略了空气阻力、各种摩擦之后(这也是为了保证Lagrange 方程的建立),可 将一级倒立摆系统抽象为由小车和匀质杆组成的系统,本系统设定如下: 小车质量M;摆杆质量m,长为l;小车在x 轴上移动;摆与竖直方向夹角为θ,规定正方向如图所示;加在小车x 轴上的力为F;

基于MATLAB的模糊控制系统设计

实验一基于MATLAB的模糊控制系统设计 1.1实验内容 (1)基于MATLAB图形模糊推理系统设计,小费模糊推理系统; (2)飞机下降速度模糊推理系统设计; (3)水箱液位模糊控制系统设计及仿真运行。 1.2实验步骤 1小费模糊推理系统设计 (1)在MATLAB的命令窗口输入fuzzy命令,打开模糊逻辑工具箱的图形用户界面窗口,新建一个Madmdani模糊推理系统。 (2)增加一个输入变量,将输入变量命名为service、food,输出变量为tip,这样建立了一个两输入单输出模糊推理系统框架。 (3)设计模糊化模块:双击变量图标打开Membership Fgunction Editor 窗口,分别将两个输入变量的论域均设为[0,10],输出论域为[0,30]。 通过增加隶属度函数来进行模糊空间划分。 输入变量service划分为三个模糊集:poor、good和excellent,隶属度函数均为高斯函数,参数分别为[1.5 0]、[1,5 5]和[1.5 10]; 输入变量food划分为两个模糊集:rancid和delicious,隶属度函数均为梯形函数,参数分别为[0 0 1 3]和[7 9 10 10]; 输出变量tip划分为三个模糊集:cheap、average和generous,隶属度函数均为三角形函数,参数分别为[0 5 10]、[10 15 20]和[20 25 30]。

(4)设置模糊规则:打开Rule Editor窗口,通过选择添加三条模糊规则: ①if (service is poor) or (food is rancid) then (tip is cheap) ②if (service is good) then (tip is average) ③if (service is excellent) or (food is delicious) then (tip is generous) 三条规则的权重均为 1.

模糊控制的基本原理

模糊控制的基本原理 模糊控制是以模糊集合理论、模糊语言及模糊逻辑为基础的控制,它是 模糊数学在控制系统中的应用,是一种非线性智能控制。 模糊控制是利用人的知识对控制对象进行控制的一种方法,通常用“if条件,then结果”的形式来表现,所以又通俗地称为语言控制。一般用于无法以 严密的数学表示的控制对象模型,即可利用人(熟练专家)的经验和知识来很好 地控制。因此,利用人的智力,模糊地进行系统控制的方法就是模糊控制。模 糊控制的基本原理如图所示: 模糊控制系统原理框图 它的核心部分为模糊控制器。模糊控制器的控制规律由计算机的程序实现,实现一步模糊控制算法的过程是:微机采样获取被控制量的精确值,然后将此量与给定值比较得到误差信号E;一般选误差信号E作为模糊控制器的一个输入量,把E的精确量进行模糊量化变成模糊量,误差E的模糊量可用相应的模糊语言表示;从而得到误差E的模糊语言集合的一个子集e(e实际上是一个模糊向量); 再由e和模糊控制规则R(模糊关系)根据推理的合成规则进行模糊决策,得到模糊控制量u为: 式中u为一个模糊量;为了对被控对象施加精确的控制,还需要将模糊量u 进行非模糊化处理转换为精确量:得到精确数字量后,经数模转换变为精确的模拟量送给执行机构,对被控对象进行一步控制;然后,进行第二次采样,完成第二步控制……。这样循环下去,就实现了被控对象的模糊控制。 模糊控制(Fuzzy Control)是以模糊集合理论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制。模糊控制同常规的控制方案相比,主要特点有: (1)模糊控制只要求掌握现场操作人员或有关专家的经验、知识或操作数据,不需要建立过程的数学模型,所以适用于不易获得精确数学模型的被控过程,或结构参数不很清楚等场合。 (2)模糊控制是一种语言变量控制器,其控制规则只用语言变量的形式定性的表达,不用传递函数与状态方程,只要对人们的经验加以总结,进而从中提炼出规则,直接给出语言变量,再应用推理方法进行观察与控制。 (3)系统的鲁棒性强,尤其适用于时变、非线性、时延系统的控制。 (4)从不同的观点出发,可以设计不同的目标函数,其语言控制规则分别是独立的,但是整个系统的设计可得到总体的协调控制。 它是处理推理系统和控制系统中不精确和不确定性问题的一种有效方法,同时也构成了智能控制的重要组成部分。 模糊控制器的组成框图主要分为三部分:精确量的模糊化,规则库模糊推理,

模糊控制算法的研究

模糊控制算法的研究 0842812128夏中宇 模糊控制概述 “模糊”是人类感知万物,获取知识,思维推理,决策实施的重要特征。“模糊”比“清晰”所拥有的信息容量更大,内涵更丰富,更符合客观世界。 在日常生活中,人们的思维中有许多模糊的概念,如大、小、冷、热等,都没有明确的内涵和外延,只能用模糊集合来描述。人们常用的经验规则都是用模糊条件语句表达,例如,当我们拧开水阀往水桶里注水时,有这样的经验:桶里没水或水较少时,应开大水阀;桶里水较多时,应将水阀关小些;当水桶里水快满时,则应把阀门关得很小;而水桶里水满时应迅速关掉水阀。其中,“较少”、“较多”、“小一些”、“很小”等,这些表示水位和控制阀门动作的概念都具有模糊性。即有经验的操作人员的控制规则具有相当的模糊性。模糊控制就是利用计算机模拟人的思维方式,按照人的操作规则进行控制,实现人的控制经验。 模糊控制理论是由美国著名的学者加利福尼亚大学教授Zadeh·L·A于1965年首先提出,它以模糊数学为基础,用语言规则表示方法和先进的计算机技术,由模糊推理进行决策的一种高级控制策略。 1974年,英国伦敦大学教授Mamdani·E·H研制成功第一个模糊控制器,充分展示了模糊技术的应用前景。 模糊控制概况 模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。1965年,美国的L.A.Zadeh 创立了模糊集合论;1973年他给出了模糊逻辑控制的定义和相关的定理。1974年,英国的E.H.Mamdani首先用模糊控制语句组成模糊控制器,并把它应用于锅炉和蒸汽机的控制,在实验室获得成功。这一开拓性的工作标志着模糊控制论的诞生。 模糊控制实质上是一种非线性控制,从属于智能控制的范畴。模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。模糊控制的发展最初在西方遇到了较大的阻力;然而在东方尤其是在日本,却得到了迅速而广泛的推广应用。近20多年来,模糊控制不论从理论上还是技术上都有了长足的进步,成为自动控制领域中一个非常活跃而又硕果累累的分支。其典型应用的例子涉及生产和生活的许多方面,例如在家用电器设备中有模糊洗衣机、空调、微波炉、吸尘器、照相机和摄录机等;在工业控制领域中有水净化处理、发酵过程、化学反应釜、水泥窑炉等的模糊控制;在专用系统和其它方面有地铁靠站停车、汽车驾驶、电梯、自动扶梯、蒸汽引擎以及机器人的模糊控制等。 模糊控制的基本理论 所谓模糊控制,就是在控制方法上应用模糊集理论、模糊语言变量及模糊逻辑推理的知识来模拟人的模糊思维方法,用计算机实现与操作者相同的控制。该理论以模糊集合、模糊语言变量和模糊逻辑为基础,用比较简单的数学形式直接将人的判断、思维过程表达出来,从而逐渐得到了广泛应用。应用领域包括图像识别、自动机理论、语言研究、控制论以及信号处理等方面。在自动控制领域,以模糊集理论为基础发展起来的模糊控制为将人的控制经验及推理过程纳入自动控制提供了一条便捷途径。 1.知识库

模糊控制与PID控制方法的比较

上海交通大学学报 JOURNAL OF SHANGHAI JIAOTONG UNIVERSITY 1999年 第三十三卷 Vol.33 第4期 No.4 1999 模糊控制与PID控制方法的比较 张恩勤, 施颂椒, 翁正新 摘 要:研究了常规模糊控制器与PID控制器的关系.基于T-S模型,在一定的附加条件下,对这些模糊控制器进行了分析,理论上给出了这类模糊控制器与PID控制器参数间的定量关系式,并指出两者间的本质联系.仿真结果表明了模糊控制器与PID控制器的相似性,多个规则的模糊控制器要优于PID控制器,同时给出了一类模糊PID复合控制器(TS-PID)的设计方法.该类复合控制器兼有模糊控制器与PID控制器优点,具有较深远的应用前景. 关键词:模糊控制;PID控制;T-S模型 中图分类号:TP 273.3 文献标识码:A Comparative Study of Fuzzy Control and PID Control ZHANG En-qin, SHI Song-jiao, WENG Zheng-xin Dept. of Automation, Shanghai Jiaotong Univ., Shanghai 200030, China Abstract: Fuzzy control and PID control are two main control methods in industry process. How to design a new controller combining the merits of these two is of great application value. A type of fuzzy controller based on T-S model was studied. The qualitative relationship between the parameters of this type of fuzzy controller and PID controller was theoretically proposed. The simulation results demonstrate that conventional fuzzy controller and PID controller have similar characters, but the fuzzy controller based on more rules has better qualities. Meanwhile, a design method of the complex fuzzy controller based on T-S model was given, which is of great value in industry application potentially. Key words: fuzzy control; PID control; T-S model 众多学者对模糊控制和PID控制进行了比较.Tang[1]对常规模糊控制器机理进行了分析,指出一般模糊控制器同PI控制器的相似性.Ying[2]和Li[3]从不同方面对模糊控制器进行分析,指出同PID控制器的因子K p、K i、K d之间的关系.他们的分析均是基于一种类比形式.本文基于T-S模型[4],指出了模糊控制器同PID控制器的关系:一类特殊的基于T-S模型的模糊控制器是一种复合PID控制器. 1 PID控制方法及模糊控制方法

PID控制与模糊控制比较

PID控制与模糊控制的比较 专业:控制理论与控制工程 班级:级班 姓名:X X X 学号: xxxxxxxxxxxxxx

摘要:介绍了PID控制系统和模糊控制系统的工作原理。PID控制器结构简单,实现简单,控制效果良好,已经得到了广泛的应用。而模糊控制器相对复杂,但在许多的智能化家用电器中也得到了大量应用。但对于一个简单的系统来讲,哪一种控制方法更好,是不是越智能的控制就能得到越好的效果。 关键词:PID控制,模糊控制,比较

Abstract: Introduced the working principle of PID control system and fuzzy control system. PID controller structure is simple, implementation is simple, the control effect is good, has been widely used. And fuzzy controller is relatively complicated, but in a lot of intelligent household appliances also received a large number of applications. But for a simple system, which kind of control method is better, is weather the intelligent control can obtain the good effect. Key words: PID control, fuzzy control, compare

模糊控制器设计的基本方法

第5章 模糊控制器设计的基本方法 5.1 模糊控制器的结构设计 结构设计:确定输入、输出变量的个数(几入几出)。 5.2 模糊控制规则设计 1. 语言变量词集 {}PB PM PS O NS NM NB ,,,,,, 2. 确立模糊集隶属函数(赋值表) 3. 建立模糊控制规则,几种基本语句形式: 若A %则B % c R A B A E =?+?%%%% 若A %则B %否则C % c R A B A C =?+?%%%%% 若A %或B %且C %或D %则E ()()R A B E C D E =+?+?????????g %%%% % 4. 建立控制规则表 5.3 模糊化方法及解模糊化方法 模糊化方法 1. 将[]b a ,内精确量离散化为[]n n +-,内的模糊量 2. 将其区间精确量x 模糊化为一个单点集,即0)(,1)(==x x μμ 模糊推理及非模糊化方法 1. MIN-MAX ——重心法 三步曲: 取最小 1111'()()()()c A o B o C z x y z μμμμ=∧∧ 取最大 12''''()()()()n c c c c z z z z μμμμ=∨∨∨L 2. 最大隶属度法 例: 10.30.80.50.5112345C =+-----% +++,选3-=*u

20.30.80.40.211012345C =+% ++++,选5.1221=+=*u 5.4 论域、量化因子及比例因子选择 论域:模糊变量的取值范围 基本论域:精确量的取值范围 误差量化因子:e e x n k /= 比例因子:e y k u u /= 误差变化量化因子:c c x m k /= 5.5 模糊控制算法的流程 其中 i A 、 j B 、ij C 是定义在误差、误差变化和控制量论域X 、Y 、Z 上的模糊集合,则该语句所表示的模糊关系为 根据模糊推理合成规则可得:R B A U ο)(?= 设论域{}{}{}l m n z z z Z y y y x x x X ,,,,,,,Y ,,,,212121ΛΛΛ===,则X ,Y ,Z 上的模糊集合分别为一个n ,m 和l 元的模糊向量,而描述控制规则的模糊关系R 为一个m n ?行l 列矩阵。 由i x 及i y 可算出ij u ,对所有X ,Y 中元素所有组合全部计算出相应的控制量变化值,可写成矩阵()ij n m u ?,制成的表即为查询表或称为模糊控制表。 * 模糊控制器设计举例(二维模糊控制器) 1. 结构设计:二维模糊控制器,即二输入一输出。 2. 模糊控制规则:共21条语句,其中第一条规则为 3. 对模糊变量E ,EC ,u 赋值(见教材中的表) 4. 建立模糊控制表: 注意:对于e 和ec 隶属函数数值取量化等级上为1,其余为0,这样可简化

模糊控制理论的心得与体会

模糊控制理论的心得与体会 模糊理论(Fuzzy Logic)是在美国加州大学伯克利分校电气工程系的 L.A.zadeh教授于1965年创立的模糊集合理论的数学基础上发展起来的,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面的内容.美国加州大学的L.A.Zadeh教授在1965年发表了著名的论文,文中首次提出表达事物模糊性的重要概念:隶属函数,从而突破了19世纪末笛卡尔的经典集合理论, 奠定模糊理论的基础. 1966年,P.N.Marinos发表模糊逻辑的研究报告,1974年,L.A.Zadeh发表模糊推理的研究报告,从此,模糊理论成了一个热门的课题。1974年,英国的E.H.Mamdani首次用模糊逻辑和模糊推理实现了世界上第一个实验性的蒸汽机控制,并取得了比传统的直接数字控制算法更好的效果,从而宣告模糊控制的诞生。1980年丹麦的L.P.Holmb lad和Ostergard在水泥窑炉采用模糊控制并取得了成功,这是第一个商业化的有实际意义的模糊控制器。 事实上,模糊理论应用最有效,最广泛的领域就是模糊控制,模糊控制在各种领域出人意料的解决了传统控制理论无法解决的或难以解决的问题,并 取得了一些令人信服的成效。 一模糊控制的基本思想及应用方向 把人类专家对特定的被控对象或过程的控制策略总结成一系列以"IF(条件)THEN(作用)"形式表示的控制规则,通过模糊推理得到控制作用集,作用于被控对象或过程.控制作用集为一组条件语句,状态语句和控制作用均为一组被量化了的模糊语言集,如"正大","负大","正小","负小",零等。 模糊控制的几个研究方向: ·模糊控制的稳定性研究 ·模糊模型及辩识 ·模糊最优控制 ·模糊自组织控制 ·模糊自适应控制 ·多模态模糊控制

相关文档
相关文档 最新文档