文档库 最新最全的文档下载
当前位置:文档库 › 电磁场论文

电磁场论文

电磁场论文
电磁场论文

恒定电场的性质及应用

(新疆工程学院乌鲁木齐 830000)

摘要:一直以来,人们对电磁场的研究从来没有停止过,而恒定电场是电磁场导论重要的知识点之一,而恒定电场是闭合回路中电源两极上带的电荷和导线和其他电学元件上堆积的电荷共同激发而形成的,其特点是电场线处处沿着到导体方向,由于电荷的分布是稳定的。根据恒定电场性质其在生产生活中的应用取得了重大进展,从而了解在生产生活中的一些基本应用,因此知道恒定电场对于我们社会的发展具有重要意义。

关键词:恒定电场性质应用

0引言

随着世界科技的发展,现实中各种科技产品的性质与电磁场学有很大关系,恒定电场是电磁场学中重要的知识点之一,恒定电场的性质应用于在很多方面的应用研究具有重要实际价值意义,而恒定电场的研究推进了生产生活医学研究以及其他方面的现代化进程,具有不可忽视的重要作用。

1恒定电场在生产生活中应用对于恒定电场应分别考虑两种情况:一种是导电媒质中的恒定电场;另一种是通有恒定电流的导体周围电介质或空气中的恒定电场。而本文主要针对电媒质中的恒定电场性质及应用。

在输油管、水管等其他金属管道的无损检测和在线监测上,应用恒定电场的理论,开发了各种裂纹测探仪器。在地质勘探、探矿采矿及油田的勘探等一系列重大问题上,恒定电场的理论得到广泛的应用,形成了专门的学科——电法勘探。电法勘探的方法非常多,其应用范围也在不断扩大,例如,一种利用电阻率法注入恒定电流场,探测堤坝漏水的仪器在江、河、水库堤坝上得到广泛用。它能探明重大漏水险情、蚁穴、管涌及渗漏、临江侧集中渗漏进水点等,为及时抢护加固,预防大堤决口发挥了重要作用,并为洪水过后彻底处理堤防隐患提供了科学依据。在超导理论中,也涉及到恒定电场理论。地震的准确预报是目前尚未解决的重大课题。目前,有日本科学家提出从地电阻率的改变中来进行预报的思路受到广泛的重视。

1.1 裂纹测深仪

裂纹测深仪的应用场合在:第一:系统运行过程中使用通过定时监测,掌握构件上裂纹的发展状况,保证系统安全运行。用变针距探头,配合计算机通讯,可实现设备安全或生产质量的在线检测和预报。第二:加工制造过程中使用根据测量结果和制造要求制定修补措或决定对工件的取舍。裂纹测深仪采用电位检测法。电位检测法又称电位差检测法或电导检测法,其物理原理基于金属的导电性。它已应用到裂纹深度测量、板材厚度测量、表面淬硬层、渗层深度和复合板结合层质量检测等诸多方面。

当一定值电流流经被检金属试件时,试

件两端的电位差应服从欧姆定律:U=IR,由于电流I为恒定值,故电位差U仅取决于试件的电阻R。电阻R是受材料中许多因素影响的,例如试件的几何形状、尺度、试件自身的材质、试件是否有缺陷存在、缺陷的尺度方向等。利用电位差与上述因素之间的对应关系可以实现对试件几何尺寸的测量;可以用于材质检验;缺陷检测及对裂纹深度的测量等等。

裂纹深度测量原理:当电流从被检工件的检验部位通过时,将形成一定的电流、电位场。如工件表面存在裂纹,随着裂纹的形位、尺度的不同,它对电流电位场的影响也不同。利用测量电位分布的方法来判断金属材料中裂纹的状况,是电位法测量裂纹深度的依据。图5所示是将四个电流电极(或称电流探针)分别直线排列放置在工件的无裂纹部位(a)和有裂纹部位(b)时的电流电位场。

一个恒定的电流通过电流探针A和B在工件中产生电流场和一个与材料的组成和结构特性有关的电位分布,通过另一对电极c和d可以检测某两点间的电位差,并在电压表上显示。假定与材料有关的影响因素和几何尺寸均相同,以相同的电流分别在无裂纹和有裂纹的试样上测试,显然在测量极c和d 之间无裂纹试样的电位差与有裂纹试样的电位差之间的差异是由裂纹引起的。如果保持试验电流、被检工件材质、厚度不变,而只有裂纹深度变化时,则该电位差是一个裂纹深度的函数,通过标定可将电测系统取得的电位差信号转化成裂纹尺寸,从而实现裂纹深度的测量。

一个探伤仪系统由电源、探头、测量回路、显示器构成。探头分向工件被检部位通以恒定电流的电流探针和拾取电位差信号的测量探针。电源用于提供足够大的高稳定激励电流,探头的电流探针在工件被检部位建立电场,测量探针拾取电位信号,经测量回路放大供显示器显示。

1.2 电法勘探

根据地壳中各类岩石或矿体的电磁学性质(如导电性、导磁性、介电性)和电化学特性的差异,通过对人工或天然电场、电磁场或电化学场的空间分布规律和时间特性的观测和研究,寻找不同类型有用矿床和查明地质构造及解决地质问题的地球物理勘探方法。主要用于寻找金属、非金属矿床勘查地下水资源和能源、解决某些工程地质及深部地质问题。电法勘探的方法,按场源性质可分为人工场法(主动源法)、天然场法(被动源法);按观测空间可分为航空电法、地面电法、地下电法;按电磁场的时间特性可分为直流电法(时间域电法)、交流电法(频率域电法)、过渡过程法(脉冲瞬变场法);按产生异常电磁场的原因可分为传导类电法、感应类电法;按观测内容可分为纯异常场法、总合场法等。

我国常用的电法勘探方法有电阻率法、充电法、激发极化法、自然电场法、大地电磁测深法和电磁感应法等。电法勘探中的电阻率法常用的几种方法有:电剖面法;电测

深法;高密度电阻率法。电剖面法全称电阻率剖面法,采用固定电极距的电极排列,沿剖面线逐点供电和测量,获得视电阻率剖面曲线。通过分析对比,了解地下岩、土层电性变化,有效地解决某些地质问题。如追索构造破碎带,划分不同岩性陡立接触带,地下暗河,溶洞等。现场工作方法:(1)联合剖面法;(2)对称四极法;(3)复合对称四极法;(4)中间梯度法。

电测深法又称电阻率垂向测深法。它是对同一个测点,用一系列由小到大的极距进行视电阻率测量,反应由浅至深的地层垂向变化情况。通过对现场实测曲线进行分析和解释,可对观测点处垂向各地电性层的厚度和电阻率的大小。电测深法最适合于解决产状近水平,具有明显性差异的下列工程地质问题。

1.3电镀工艺

电镀是指在含有欲镀金属的盐类溶液中,以被镀基体金属为阴极,通过电解作用,使镀液中欲镀金属的阳离子在基体金属表面沉积出来,形成镀层的一种表面加工方法。镀层性能不同于基体金属,具有新的特征。根据镀层的功能分为防护性镀层,装饰性镀层及其它功能性镀层。

电镀是一种电化学过程,也是一种氧化还原过程.电镀的基本过程是将零件浸在金属盐的溶液中作为阴极,金属板作为阳极,接直流电源后,在零件上沉积出所需的镀层.例如:镀镍时,阴极为待镀零件,阳极为纯镍板,在阴阳极分别发生如下反应:阴极(镀件):Ni2++2e→Ni (主反应)2H++e→H2↑(副反应)阳极(镍板):Ni-2e→Ni2+ (主反应)4OH--4e→2H2O+O2+4e (副反应) 不是所有的金属离子都能从水溶液中沉积出来,如果阴极上氢离子还原为氢的副反应占主要地位,则金属离子难以在阴极上析出.根据实验,金属离子自水溶液中电沉积的可能性,可从元素周期表中得到一定的规律。电镀工艺合理得应用恒定电场,再液体中产生电流并成功完成工艺,成为恒定电场应用的典例。

1.4 磁记录技术

磁记录(写入)再生(读出)是由以磁性材料为主构成的磁头完成的。记录磁头是把电信号转变为磁场,这种磁头由线圈、软磁合金铁芯构成。磁介质是硬磁材料,为使磁化反转记录头必须产生一强磁场,它们之间相对移动在介质上就形成连续的磁化图形。再生磁头则是介质磁场转变成电信号,从而读出所记录的信号。

以磁盘机、磁带机为代表的数字磁记录设备作为计算机外存设备的主体,几十年来在外存领域一直占据统治地位。近年来,磁光盘和大容量半导体存储器的发展,已对磁记录的地位构成了一定的威胁。磁记录设备必须进一步提高记录性能、增大容量、缩小体积,才能适应计算机不断发展的需要,巩固其在外存领域的地位。另一方面,随着计算机应用领域的扩大,对外存设备的环境适应能力也提出了越来越高要求。特别在军事、航天以及高温高湿高污染等特殊应用场合,不仅要求设备具有优良存储记录性能,而且要求它们具有优良的抗恶劣环境的能力,以保证在这些条件下工作可靠性。磁盘、磁带等磁记录介质是磁记录设备中记录和存储信息的载体,它们的性能对磁记录设备的记录性能和环境适应能力有着决定性的影响。因此,为了适应计算机的发展和实际应用的需要,除了不断开发新型的高密度记

录介质外,还必须改进和提高介质抗恶劣环境能力。数字磁记录介质发展概况及动向。

磁记录技术已有近一个世纪的发展历史。从本世纪50年代起,随着计算机的发展,磁记录技术在数字磁记录领域获得了广泛的应用。这一技术数十年来一直长盛不衰,主要原因在于记录性能的不断改进和提高。过去30年来,磁记录设备的记录密度提高了近1000倍。由于磁头、磁道定位技术,读写信道电子学以及磁记录介质等方面的进步,当初预测的密度极限不断突破。近年来,在硬盘中已经实现了1--2GB/IN的记录密度。随着这些技术的继续改进,磁记录系统的性能还将获得进一步提高。

1.5涡流与集肤效应的应用

在电机中,当槽内线圈的铜排通以交流电时,将产生槽内漏磁场,铜排与定子交变磁场交链,在不同槽高处交链的情况不同,在各铜排中感应的漏磁感应电动势不等,导致在各根导体之间形成涡流,而使导体截面的电流密度沿槽高分布不均匀,且越靠近槽口处的电密越高,形成电流的集肤效应。集肤效应使导体内的有效电阻和铜耗增大。在变压器铁心中的变化磁场,其分布也是不均匀的。并且变化的磁场引起包围它的电场和电流,这种电流称为涡流。磁的集肤效应和涡流引起的损耗,是设计变压器和电器时考虑的问题之一。

2 结语

科技的发展离不开电磁学的应用,现今社会各个方面的技术领域都会涉及设计电磁学中某个知识的应用,而恒定电场只是它里面重要的一小部分。恒定电场是动态平衡下的电荷产生的。应用恒定电场的一些性质我们研究出了裂纹测深仪在设备安全或产质量加工制造过程中使用根据测量结果和制造要求制定修补措施或决定对工件的取舍。在地质勘探、探矿采矿及油田的勘探等一系列重大问题上,恒定电场的性质得到广泛的应用,形成了专门的学科——电法勘探,同时电镀工艺合理得应用恒定电场,再液体中产生电流并成功完成工艺,成为恒定电场应用的典例。而磁记录技术和涡流与集肤效应的应用,也充分说明了恒定电场性质及应用对于我们社会的发展具有划时代的影响力。

参考文献

[1]周省三,张文灿,杨宪章.电磁场的应用北京:高等教育出版,1991

[2]王泽中. 电磁场导论北京:中国电力出版社,1999

[3]刘国兴.电法勘探原理与方法北京:地质出版社,2005

[4]程志平电法勘探教程北京:高等教育出版社,2000

[5]张宏祥,王为电镀工艺学天津:天津科学技术出版社,2002

[6]李双美.微波辅助磁记录技术研究河南:河南师范大学出版社,2011

[7]王文江.磁记忆检测技术与应用研究浙江:浙江大学出版社,2003

[8]武海鑫.电涡流检测的正向问题研究及检测辽宁:大庆石油学院出版社,2010

经典电磁理论的建立.

经典电磁理论的建立 在古代,人们对静电和静磁现象已分别有一些认识,但从这门学科的发展来看,直到十八世纪末十九世纪初,电和磁之间的联系才被揭露出来,并逐步发展成为一门新的学科——电磁学。电磁学的发展之所以比较晚,主要是由于电磁学的研究需要借助于更为精密的仪器和更精确的实验方法,而这些条件只有生产发展到一定水平之后才能具备。 首先对于电和磁现象进行系统地实验研究的是英国的威廉·吉尔伯特。他通过一系列的实验认识到电力和磁力是性质不同的两种力。例如,磁力只对天然磁石起作用,而电力能作用于许多材料。他第一个将琥珀与毛皮摩擦后吸引轻小物体的性质叫做“电”。吉尔伯特这种关于电和磁在本质上不同的观点,给后来的电磁学的发展留下了深刻的影响,直至十九世纪初,许多科学家都把这两种现象看作是毫无联系的。吉尔伯特之后的整个十七世纪,对电和磁的研究进展不大。 到了十八世纪四十年代,起电装置的改善和大气现象的研究,引起了物理学家的极大兴趣。1745年荷兰莱顿大学的马森布罗克(1692~1761)和德国的克莱斯德(1700~1748)各自发明了“蓄电”的最早器具——莱顿瓶。1752年7月,美国的富兰克林进行了一次震动世界的吸取天电的风筝实验,从而使人们认识到天空的闪电和地面上的莱顿瓶放电现象是一致的。富兰克林还提出了电荷守恒的思想和电的“单流质”说,他认为一个物体所带的电流质是一个常量,如果流质在一个物体比常量多,就带负电,比常量少就带正电。他在风筝实验的基础上,发明了“避雷针”。由于他在电学方面做出了杰出贡献,而被誉为近代电学的奠基人。 我们知道,牛顿在发现万有引力的过程中,曾用数学方法证明过,如果引力随着引力中心距离的平方反比减少,一个均匀球壳对其内部的物体就没有引力的作用。1775年,富兰克林发现将一小块软木块悬于带电的金属罐内并不受到电力的作用。他的朋友普里斯特列(1733~1804)根据这个实验和牛顿对万有引力定律的数学证明推想电的作用力也遵守平方反比定律。1771年,英国物理学家卡文迪许也用类似的实验和推理的方法对电力相互作用的规律进行了研究,他从实验得到电力与距离的n 比定 律。库仑定律的发现为静电学奠定了理论基础。通过西蒙·泊松(1781~1840)、高斯(1777~1855)和乔治·格林(1793~1841)等人的工作,确定了处理静电场和静磁场的数学方法。 十八世纪末,1780年意大利的医生和动物学教授伽伐尼(1737~1798)在解剖青蛙时,发现了电流,这是电学发展史上的一个转折点。在伽伐尼发现的基础上,伏打于1800年制成伏打“电堆”,得到了比较强的电流,从而使人的认识由静电进入动电,由瞬时电流发展到恒定电流,为进一步研究电流运动的规律和电运动与其他运动形式的联系和转化创造了条件。

电磁场小论文

电磁场理论大作业 题目时变电磁场的唯一性 姓名王志全 学号2140920046 专业物理电子学 日期2015年1月15日

摘要:从麦克斯韦方程组的初边值问题出发,引入子区域边界条件和外边界条件,给出了均匀介质区域中时变电磁场惟一性定理的一般证明及其物理解释,得到了时变电磁场解惟一性的普遍条件,并对时变电磁场惟一性定理作了新的表述。 关键词:麦克斯韦方程组;时变电磁场;初边值问题;惟一性定理

1引言 我们都知道在静电场和静磁场的情况下,静电场和静磁场都具有唯一性定理:静电场静电场唯一性定理是在一个空间内,导体的带电量或者电势给定以后,空间电场分布恒定,唯一,边界条件可以是各导体电势,各导体电量或部分导体电量与部分导体电势之混合[1];静磁场的唯一性定理:我们假设磁场空间为一封闭曲面S所包围,如果S有限,则给定S面上的法向磁感应强度BSn件,以与高斯定理一致;如果S无限,则要求BS趋于0,其次,设磁介质各向同性,磁导率已知但允许出现非均匀性,以及在不同磁介质界面处出现间断[2]。静电场、静磁场和时谐电磁场定解问题的唯一性定理可应用微分几何的外微分分析对其进行统一表述和证明.那么在时变电磁场中是不是也具有唯一性定理呢? 法拉第电磁感应定律表明时变的磁场能够产生电场,反之,时变的电场也能够产生磁场。时变的电场和磁场相互激励、相互依存,构成了统一电磁场不可分割的两部分。自然界中所存在的磁场室友激励源产生的,一旦激励源确定后,电磁场也就随之确定了。如果考虑范围局限于一个有限区域内,那么这个有限区域内的电磁场,除了由处在这个区域内的激励源产生,还可以由这个区域外的激励源产生,仅知道这个区域内的激励源还不能完全确定这个区域内的电磁场。为了彻底确定这个区域内的电磁场,还必须知道区域外的激励源的影响。外部激励源的影响反映在区域边界的边值上。电磁场的基本问题就是给定所有边界上的边界条件求出满足麦克斯韦方程组描述的电磁场的解。同一电磁场问题的求解可以采用不同的场量作变量求解,也可以采用不同的方法求解用不同的变量或者是用不同的方法求解得的电磁场定解问题的解答是不是正确的?电磁场定解问题的解是不是独一无二的?这就是电磁场的唯一性问题。电磁场唯一性定理是电磁场理论中的基本定理之一。经典的电磁场名著《Electromagnetic Theory》是这样表述时变电磁场唯一性定理的:“在时间t>0的所有时刻,闭区域V内的电磁场是由整个V内 t 时边界上电矢量E(或磁矢量H)之切向分量的值之电和磁矢量的初始值,以及0 所唯一确定的。”麦克斯韦方程组是电磁场理论的核心内容,是分析电磁场问题的理论基础。根据这组方程,可以建立实际电磁场初边值问题的表达式,然后用某种方法求出该初边值问题的解。惟一性定理是保证用不同的方法求解麦克斯韦方程组时都能得到同样结果的理论依据。现行的电动力学和文献对于静电边值问题的惟一性定理和静磁边值问题的惟一性定理的证明讨论较多,臻于完善。而对时变电磁场惟一性定理的证明涉及不多,有些教科书虽有讨论,但采用边界上电磁场的零值强条件而不具一般意义;经典的电磁场名著讨论了E边值或H边值的边界条件却忽视了边值情况而存在局限。其主要表现有: (1)对切向边界条件的描述与实际使用状况不完全符合。该定理指出,为了唯一地确

电磁场与电磁波理论 概念归纳

A.电磁场理论B基本概念 1.什么是等值面?什么是矢量线? 等值面——所有具有相同数值的点组成的面 ★空间中所有的点均有等值面通过; ★所有的等值面均互不相交; ★同一个常数值可以有多个互不相交的等值面。 矢量线(通量线)---- 一系列有方向的曲线。 线上每一点的切线方向代表该点矢量场方向, 而横向的矢量线密度代表该点矢量场大小。 例如,电场中的电力线、磁场中的磁力线。 2.什么是右手法则或右手螺旋法则?本课程中的应用有哪些?(图) 右手定则是指当食指指向矢量A的方向,中指指向矢量B的方向,则大拇指的指向就是矢量积C=A*B的方向。 右手法则又叫右手螺旋法则,即矢量积C=A*B的方向就是在右手螺旋从矢量A转到矢量B的前进方向。 本课程中的应用: ★无限长直的恒定线电流的方向与其所产生的磁场的方向。 ★平面电磁波的电场方向、磁场方向和传播方向。 3.什么是电偶极子?电偶极矩矢量是如何定义的?电偶极子的电磁场分布是怎样的? 电偶极子——电介质中的分子在电场的作用下所形成的一对等值异号的点电荷。 电偶极矩矢量——大小等于点电荷的电量和间距的乘积,方向由负电荷指向正电荷。

4.麦克斯韦积分和微分方程组的瞬时形式和复数形式; 积分形式: 微分方式: (1)安培环路定律 (2)电磁感应定律 (3)磁通连续性定律 (4)高斯定律 5.结构方程

6.什么是电磁场边界条件?它们是如何得到的?(图) 边界条件——由麦克斯韦方程组的积分形式出发,得到的到场量在不同媒质交界面上应满足的关系式(近似式)。 边界条件是在无限大平面的情况得到的,但是它们适用于曲率半径足够大的光滑曲面。 7.不同媒质分界面上以及理想导体表面上电磁场边界条件及其物理意义; (1)导电媒质分界面的边界条件 ★ 导电媒质分界面上不存在传导面电流,但可以有面电荷。 在不同媒质分界面上,电场强度的切向分量、磁场强度的切向分量和磁感应强度的法向分量永远是连续的 (2)理想导体表面的边界条件 ★ 理想导体内部,时变电磁场处处为零。导体表面可以存在时变的面电流和面电荷。

电磁场与电磁波理论基础自学指导书

电磁场与电磁波理论基础自学指导书 课程简介:电磁场理论是通信技术的理论基础,是通信专业本科学生必须具备的知识结构的重要组成部分之一。使学生掌握电磁场的有关定理、定律、麦克斯韦方程等的物理意义及数学表达式。使学生熟悉一些重要的电磁场问题的数学模型(如波动方程、拉氏方程等)的建立过程以及分析方法。培养学生正确的思维方法和分析问题的能力,使学生对"场"与"路"这两种既密切相关又相距甚远的理论有深刻的认识,并学会用"场"的观点去观察、分析和计算一些简单、典型的场的问题。为以后的学习和工作打下坚实的理论基础。 第一章矢量分析场论初步 1主要内容 本章从矢量分析入手,介绍了标量场和矢量场的基本概念,学习了矢量的通量、散度以及散度定理,矢量的环流、旋度以及斯托克斯定理,标量的梯度,以及上述的物理量在圆柱和球坐标系下的表达形式,最后介绍了亥姆霍兹定理,该定理说明了研究一个矢量场从它的散度和旋度两方面入手。通过本章的学习,使学生掌握场矢量的散度、旋度和标量的梯度的概念和数学计算为以后的电磁场分析打下基础。 2学习要求 深刻理解标量场和矢量场的概念;深刻理解散度、旋度和梯度的概念、物理意义及相关定理; 熟练使用直角坐标、圆柱坐标和球坐标进行矢量的微积分运算; 了解亥姆霍兹定理的内容。 3重点及难点 重点:在直角坐标、圆柱坐标和球坐标中计算矢量场的散度和旋度、标量场的梯度以及矢量的线积分、面积分和体积分。 难点:正确理解和掌握散度、旋度和梯度的概念及定理,可以借助流体的流量和涡旋等自然界中比较具体而形象的相似问题来理解。 4思考题合作业 1.4, 1.8, 1.9, 1.11, 1.14, 1.16, 1.24 第二章静电场 1主要内容 本章我们从点电荷的库仑定律发,推导出静电场的基本方程(微分表达及积分表达),该基本方程第一组与静电场的散度和通量有关(高斯定律),第二组有关静电场的环量和旋度,推导的过程运用了叠加原理。由静电场的基本方程中的环量和旋度的基本方程,我们引入了电位的概念,并给出了电场强度与电位之间的关系以及电位的计算公式。运用静电场的基本方程及电位可以解决静电场中的场源互求问题(已知源求场或已知场求源)。然后介绍了电偶极子的概念,推导了电偶极子的电场强度与电位的表达式。接着介绍了介质的极化,被极化的分子可等效为电偶极子,所以介质极化产生的电位就可以借用电偶极子的相关结论。由极化介质的电位公式我们推导了介质中的高斯定律,在该定律中引入了一个新的量—

电磁学经典练习题与答案

高中物理电磁学练习题 一、在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确. 1.如图3-1所示,有一金属箔验电器,起初金属箔闭合,当带正电的棒靠近验电器上部的金属板时,金属箔开.在这个状态下,用手指接触验电器的金属板,金属箔闭合,问当手指从金属板上离开,然后使棒也远离验电器,金属箔的状态如何变化?从图3-1的①~④四个选项中选取一个正确的答案.[] 图3-1 A.图①B.图②C.图③D.图④ 2.下列关于静电场的说法中正确的是[] A.在点电荷形成的电场中没有场强相等的两点,但有电势相等的两点 B.正电荷只在电场力作用下,一定从高电势向低电势运动 C.场强为零处,电势不一定为零;电势为零处,场强不一定为零 D.初速为零的正电荷在电场力作用下不一定沿电场线运动 3.在静电场中,带电量大小为q的带电粒子(不计重力),仅在电场力的作用下,先后飞过相距为d的a、b两点,动能增加了ΔE,则[]A.a点的电势一定高于b点的电势 B.带电粒子的电势能一定减少 C.电场强度一定等于ΔE/dq D.a、b两点间的电势差大小一定等于ΔE/q 4.将原来相距较近的两个带同种电荷的小球同时由静止释放(小球放在光滑绝缘的水平面上),它们仅在相互间库仑力作用下运动的过程中[]A.它们的相互作用力不断减少 B.它们的加速度之比不断减小 C.它们的动量之和不断增加 D.它们的动能之和不断增加 5.如图3-2所示,两个正、负点电荷,在库仑力作用下,它们以两者连线上的某点为圆心做匀速圆周运动,以下说确的是[] 图3-2

A.它们所需要的向心力不相等 B.它们做圆周运动的角速度相等 C.它们的线速度与其质量成反比 D.它们的运动半径与电荷量成反比 6.如图3-3所示,水平固定的小圆盘A,带电量为Q,电势为零,从盘心处O由静止释放一质量为m,带电量为+q的小球,由于电场的作用,小球竖直上升的高度可达盘中心竖直线上的c点,Oc=h,又知道过竖直线上的b点时,小球速度最大,由此可知在Q所形成的电场中,可以确定的物理量是[] 图3-3 A.b点场强B.c点场强 C.b点电势D.c点电势 7.如图3-4所示,带电体Q固定,带电体P的带电量为q,质量为m,与绝缘的水平桌面间的动摩擦因数为μ,将P在A点由静止放开,则在Q的排斥下运动到B点停下,A、B相距为s,下列说确的是[] 图3-4 A.将P从B点由静止拉到A点,水平拉力最少做功2μmgs B.将P从B点由静止拉到A点,水平拉力做功μmgs C.P从A点运动到B点,电势能增加μmgs D.P从A点运动到B点,电势能减少μmgs 8.如图3-5所示,悬线下挂着一个带正电的小球,它的质量为m、电量为q,整个装置处于水平向右的匀强电场中,电场强度为E.[] 图3-5 A.小球平衡时,悬线与竖直方向夹角的正切为Eq/mg B.若剪断悬线,则小球做曲线运动 C.若剪断悬线,则小球做匀速运动 D.若剪断悬线,则小球做匀加速直线运动 9.将一个6V、6W的小灯甲连接在阻不能忽略的电源上,小灯恰好正常发光,现改将一个6V、3W的小灯乙连接到同电源上,则[]A.小灯乙可能正常发光 B.小灯乙可能因电压过高而烧毁 C.小灯乙可能因电压较低而不能正常发光 D.小灯乙一定正常发光 10.用三个电动势均为1.5V、阻均为0.5Ω的相同电池串联起来作电源,向三个阻值都是1Ω的用电器供电,要想获得最大的输出功率,在如图3-6所示电路中应选择的电路是[] 图3-6 11.如图3-10所示的电路中,R 1、R 2 、R 3 、R 4 、R 5 为阻值固定的 电阻,R 6 为可变电阻,A为阻可忽略的电流表,V为阻很大的电压表,电源的

电磁场论文

电 磁 场 论 文 电子072202H 王焱 200722070223

高新技术与电磁场理论 摘要本文就最近发展的高新技术中有关电磁场和电磁波问题展开探讨,并在此基础上对当前高新技术的发展与电磁场理论的关系进行了较全面的概括,同时提出了作者的个人看法。电磁场理论是电工学和电子学的一门十分重要的基础课程。无论是电机、电器、高压输电、测量仪表以及一切无线电工程系统,例如,通信、广播、雷达、导航等的无线收发、讯号传输、电波传播等等,大到宇宙空间的星体辐射,小到集成电路的布线位置都牵涉到电磁场理论的问题,这一点大家都已很清楚了。这里我准备就最近发展的高新技术中有关电磁场和电磁波的问题谈谈自己的一点认识。 1.电子学方面的高新技术在1991年的海湾战争中得到了最集中和最充分的表演。 在这场战争中号称世界第四大军事强国的伊拉克在以美国为首的多国部队的电子战的打击下,一开始整个电子指挥系统,包括通信,武器装备,重要设防等就遭到严重的干扰和破坏,呈现瘫痪挨打的被动局面。因此只打了42天战争就损失兵员30万,财产1000~2000亿美元,最后不得不答应无条件投降。相反,多国部队在这场投下炸弹为当年在日本投下的原子弹几十倍的激烈战争中,在80万兵员中只死亡149人。这一奇迹,充分显示出电子战的重大威力。因而有人称海湾战争是一场“频谱战争”,是“电子战争”,是“信息战争”。这场电子战的主要手段包括电子侦察与精确定位(包括全球定位系统(GPS)和辐射源定位),电子干扰、精密制导、隐身飞机、C3I系统等等。这些高新技术都牵涉到电波与天线的问题。与过去不同的是地空一体化,把遥远分开的作战分部统一指挥控制,统一协调起来。对武器的性能指标要求精密度更高,响应时间更短,抗干扰的能力更强。因此对自适应天线,相控阵天线、毫米波天线、微带天线、卫星通信、移动通信等等提出了更高的要求。而这些研究课题的基础离不开电磁场理论。 2.隐身技术是目前国防军事的热门话题。 在海湾战争中美军使用F-117A隐身飞机成功地突破伊拉克的空防线完成了许多危险性最大的战略性攻击任务,占攻击目标的40%,命中率高达85%。参战的44架F117A型隐身飞机共出动1300次,飞行6900小时,没有一架被击落,可见其隐身的有效性。飞机在鼻锥方向对微波雷达的RCS只有0 .0 2 5m2 ,为常规战斗机的1 / 2 0 0。隐身技术的很重要一个方面的内容是电磁波的散射问题。电磁波投射到飞行目标上将发生散射。散射回来的电磁波究竟有多大场强,怎样减少回波的强度以达到隐身的目的,这些问题引起了广大从事电磁场研究工作人员的关注。因此目前大量的研究工作集中在如何计算电磁波投射到各种不同材料组成的各种形状物体的散射场上。根据最近报导,用碳化硅烧结出来的陶瓷,能有效地吸收频率从1 0MHz到10 . 2Gz的电磁波,吸收率达到99. 2 %。电磁散射的研究不只是为了隐身的目的,对地下资源和地层结构的勘探,对目标识别,对天线辐射,对电磁兼容等都有非常重要的意义。逆散射是由已知散射场的分布反过来确定波源和散射体的位置形状和组成。目标识别形状重建和微波成像都是逆散理论的具体应用。 3.核爆炸产生强大的电磁脉冲,这种冲击波将摧毁在其周围的电子仪器的正常工作。 研究这种瞬时暴发的冲击波的传播规律、作用距离、场强大小和散射特性等无疑会对保护人身安全,保护仪器设备,采用屏蔽措施等等起到重要的指导作用。这种具有强大摧毁力的脉冲现在又被试图用作战争中的杀伤武器,即所谓高功率微波弹,其单个输出脉冲峰值功率可到15GW。如果辐射的能量密度达到3~13mW/cm2 ,就可使人产生神经紊乱,心力衰竭并致盲。而对于电子仪器只要有0 . 01~1μW/cm2 的能量密度,仪器就不能正常运转。此外,人们发现,利用冲击脉冲的宽广频谱,可以从散射波形中提取大量的信息,从而可以识别目标。大功率的脉冲源可以利用光导开关和集成阵列达到空间合成的一致性要求。小功率的冲击波雷达,由于设备简单,成本低,已在诸如地下探测,汽车防撞和机场管制等方面

电磁场理论发展历史及其在现代科技中的应用

电磁场理论发展历史及其在现代科技中的应用 摘要:电磁场理论在现代科技中有着广泛的应用。现代电子技术如通讯、广播、导航、雷达、遥感、测控、嗲面子对抗、电子仪器和测量系统,都离不开电磁场的发射,控制、传播和接收;从工业自动化到地质勘测,从电力、交通等工业农业到医疗卫生等国民经济领域,几乎全都涉及到电磁场理论的应用。不仅如此,电磁学一直是,将来仍是新兴科学的孕育点。在本文中主要介绍电磁场理论发现和发展的历史以及在现代科技中的也应用。 关键词:电磁学电磁场理论现代科技 对电磁场现象的研究是从十六世纪下半叶英国伊莉莎白女王的试医官吉尔伯特开始,然而他的研究方法很原始,基本上是定性地对现象的总结。对电磁场的近代研究是从十八世纪的卡文迪许、库伦开始,他们开创了用测量仪器对电磁场现象做定量的规律,引起了电磁场从定性到定量的飞跃。 库仑定律的建立基于英国科学家卡文迪许在1772年做的一个一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。库伦定律揭示了电荷间的静电作用力与它们之间的距离平方成反比。安培在假设了两个电流元之间的相互作用力沿着它们的连线之间的作用力正比于它们的长度和电流强度,而与它们之间的距离的平方成反比的公式,即提出了著名的安培环路定理。基于这与牛顿万有引力定律十分类似,S.D.泊松、C.F.高斯等人仿照引力理论,对电磁现象也引入了各种场矢量,如电场强度、电通量密度(电位移矢量)、磁场强度、磁通密度等,并将这些量表示为空间坐标的函数。但是当时对这些量仅是为了描述方便而提出的数学手段,实际上认为电荷之间或电流之间的物理作用是超距作用。 直到M.法拉第,他认为场是真实的物理存在,电力或磁力是经过场中的力线逐步传递的,最终才作用到电荷或电流上。他在1831年发现了著名的电磁感应定律,并用磁力线的模型对定律成功地进行了阐述,但是电磁感应定律的确认是在1851年,这一过程花了20年。1846年,M.法拉第还提出了光波是力线振动的设想,为以后麦克斯韦从数学上建立电磁场理论奠定了基础。J.C.麦克斯韦继承并发展了法拉第的这些思想,仿照流体力学中的方法,采用严格的数学形式,将

电磁场与电磁波论文

电磁场与电磁波论文 院系:电子信息学院 班级:电气11003班 学号:201005792 序号:33 姓名:张友强

电磁场与电磁波的应用 摘要: 磁是人类生存的要素之一。地球本身就是一个磁场,由于地球自身运动导致的两极缩短、赤道拉长、冰川融化、海平面上升等原因,地球的磁场强度正逐渐衰减。外加高楼林立、高压电网增多,人为地对地球磁力线造成干扰和破坏。所以,现在地球的磁场强度只有500年前的50%了,许多人出现种种缺磁症状。科学家研究证实,远离地球的宇航员在太空中所患的“太空综合症’’就是因缺磁而造成的。由此可见磁对于生命的重要性。磁场疗法,又称“磁疗法”、“磁穴疗法”,是让磁场作用于人体一定部位或穴位,使磁力线透人人体组织深处,以治疗疾病的一种方法。磁疗的作用机制是加速细胞的复活更新,增强血细胞的生命力,净化血液,改善微循环,纠正内分泌的失调和紊乱,调节肌体生理功能的阴阳平衡。 关键词:磁疗、电磁生物体、生物磁场、磁疗保健 电磁场与电磁波简介: 电磁波是电磁场的一种运动形态。电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。电磁场与电磁波在实际生产、生活、医学、军事等领域有着广泛的应用,具有不可替代的作用。如果没有发现电磁波,现在的社会生活将是无法想象的。生物电磁学是研究非电离辐射电磁波(场)与生物系统不同层次相互作用规律及其应用的边缘学科,主要涉及电磁场与微波技术和生物学。其意义在开发电磁能在医学、生物学方面的应用以及对电磁环境进行评价和防护。。生物电磁学与工程电磁场与微波技术的不同主要体现在:1、后者的作用对象是具有个体差异的生命物质;2、后者的作用对象是根据人为需要而选取并加工的电磁媒质或单元而前者的作用要让测量系统服从于作用对象。生物电磁学的研究内容主要设计五个方面:1、电磁场(波)的生物学效应,研究在电磁场(波)作用下生物系统产生了什么;2、生物学效应机理,研究在电磁场(波)作用下为什么会产生什么;3、生物电磁剂量学,研究在什么条件下会产生什么;4、生物组织的电磁特性,研究在电磁场(波)作用下产生什么的生物学本质;5、生物学效应的作用,研究产生的效应做什么和如何做。 正文: (一)在生产、生活上的应用 静电场的最常见的一个应用就是带电粒子的偏转,这样象控制电子或是质子的轨迹。很多装置,例如阴极射线示波器,回旋加速器,喷墨打印机以及速度选择器等都是基于这一原理的。阴极射线示波器中电子束的电量是恒定的,而喷墨打印机中微粒子的电量却随着打印的字符而变化。在所有的例子中带电粒子偏转都是通过两个平行板之间的电位差来实的。 1.磁悬浮列车 列车头部的电磁体N极被安装在靠前一点的轨道上的电磁体S极所吸引,同时又被

电磁场论文

电感器的分类作用与发展方向 摘要:相信你对电感器并不陌生。在电子产品中虽然电感器使用得不是很多,但在电路中的作用且很大。我认为电感器和电容器一样,也是一种储能元件,它能把电能转变为磁场能,并在磁场中储存能量。它经常和电容器一起工作,构成LC滤波器、LC振荡器等。它是不可缺少的元器件。 关键词:电感器、分类、特性、发展方向。 Abstract: I believe you are no stranger to the inductor. Electronic products inductor is not a lot, but the role in the circuit and I think that the inductors and capacitors, is also an energy storage element, it can electrical energy into magnetic energy and stored energy in a magnetic field. It often and capacitors work together, constitute the LC filter, the LC oscillator. It is indispensable components. Key words: Inductor, classification, characteristics, and the direction of development. 电感器是一种常用的电子元器件。当电流通过导线时,导线的周围会产生一定的电磁场,并在处于这个电磁场中的导线产生感应电动势——自感电动势,我们将这个作用称为电磁感应。为了加强电磁感应,人们常将绝缘的导线绕成一定圈数的线圈,我们将这个线圈称为电感线圈或电感器,简称为电感。 电感器是能够把电能转化为磁能而存储起来的元件。电感器的结构类似于变压器,但只有一个绕组。电感器具有一定的电感,它只阻

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第2章习题解答

第2章习题解答 2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a ρρρρ =, ()0a ρ≤≤。试求总电量Q 。 解:2π20000 2d d d d π3 l a V V Q V z la a ρρ ρρρ?ρ= ==? ? ?? 2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。当球以角速度ω绕某一直径(z 轴)旋转时,试求 其表面上的面电流密度。 解:面电荷密度为 2 04πS Q R ρ= 面电流密度为 002 00 sin sin sin 4π4πS S S Q Q J v R R R R ωθ ρρωθωθ=?== = 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=。已知导线的直径为d ,导线中的电流为0I ,试 求0S J 。 解:每根导线的体电流密度为 00 22 4π(/2)πI I J d d = = 由于导线是均匀密绕,则根据定义面电流密度为 04πS I J Jd d == 因此,等效面电流密度为 04πS I J e d ?= 2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。为使中间的 点电荷处于平衡状态,试求其位置。当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。由库仑定律,实验电荷受02q 的排斥力为 12 214πq F x ε= 实验电荷受0q 的排斥力为 022 1 4π()q F d x ε= - 要使实验电荷保持平衡,即21F F =,那么由0022 211 4π4π() q q x d x εε=-,可以解得 d d x 585.01 22=+= 如果实验电荷为0q -,那么平衡位置仍然为d d x 585.01 22=+=。只是这时实验电荷与0q 和02q 不 是排斥力,而是吸引力。 2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。 解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电 场为 ( ) ( 00 2 22 00001114π4π4π221x y y x x y q q q E e e e e a a q e e εεε? =+++ ?+=+

电磁学的发展及生活生产中的应用

电磁学的发展及生活生产中的应用摘要:电磁学核心及发展,电磁学应用(磁悬浮列车、电磁炮) 关键字:电磁学、磁悬浮、电磁炮 引言: 随着电话,电视等电子产品的广泛应用,电磁学也日益受到人们的重视。内容: 简单的说来,电磁学核心只有四个部份:库伦定律、安培定律、法拉第定律与麦克斯威方程式。并且顺序也一定如此。这可以说与电磁学的历史发展平行。其原因也不难想见;没有库伦定律对电荷的观念,安培定律中的电流就不容易说清楚。不理解法拉第的磁感生电,也很难了解麦克斯威的电磁交感。因此,要了解电磁学的应用就必须先了解它的发展。 早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。 电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。电磁学的进一步发展促进了电磁在生活技术当中的应用。 (一)民用--磁悬浮列车 1911年,俄国托木斯克工艺学院的一位教授曾根据电磁作用原理,设计并制成一个磁垫列车模型。该模型行驶时不与铁轨直接接触,而是利用电磁排斥力使车辆悬浮而与铁轨脱离,并用电动机驱动车辆快速前进。 1960年美国科学家詹姆斯?鲍威尔和高登?丹提出磁悬浮列车的设计,利用

强大的磁场将列车提升至离轨几十毫米,以时速300公里行驶而不与轨道发生摩擦。遗憾的是,他们的设计没有被美国所重视,而是被日本和德国捷足先登。德国的磁悬浮列车采用磁力吸引的原理,克劳斯?马菲公司和MBB公司于1971年研制成常导电磁铁吸引式磁浮模型试验车。 随着超导和高温超导热的出现,推动了超导磁悬浮列车的研制。1987年3月,日本完成了超导体磁悬浮列车的原型车,其外形呈流线形,车重17吨,可载44人,最高时速为420公里。车上装备的超导体电磁铁所产生的电磁力与地面槽形导轨上的线圈所产生的电磁力互相排斥,从而使车体上浮。槽形导轨两侧的线圈与车上电磁铁之间相互作用,从而产生牵引力使车体一边悬浮一边前进。由于是悬空行驶,因而基本上不作用车轮。但在起动时,还需有车轮做辅助支撑,这和飞机起降时需要轮子相似。这列超导磁悬浮列车由于试验线路太短,未能充分展示出空的卓越性能。 (二)军用—电磁炮 早在1845年,查尔斯?惠斯通就制作出了世界第一台磁阻直流电动机,并用它把金属棒抛射到20米远。此后,德国数学家柯比又提出了用电磁推进方法制造“电气炮”的设想。而第一个正式提出电磁发射(电磁炮)概念并进行试验的是挪威奥斯陆大学物理学教授伯克兰。他在1901年获得了“电火炮”专利。1920年,法国的福琼?维莱普勒发表了《电气火炮》文章。德国的汉斯莱曾将10克弹丸用电磁炮加速到1.2公里,秒的初速。1946年,美国的威斯汀豪斯电气公司建成了一个全尺寸的电磁飞机弹射器,取名“电拖”。 到20世纪70年代,随着脉冲功率技术的兴起和相关科学技术的发展,电磁发射技术取得了长足的进步。澳大利亚国立大学的查里德?马歇尔博士运用新技术,把3克弹丸加速到了5.9公里,秒。这一成就从实验上证明了用电磁力把物体推进到超高速度是可行的。他的成就1978年公布后,使世界相关领域的科学家振奋不

经典电磁场理论发展简史..

电磁场理论发展史 ——著名实验和相关科学家 纲要: 一、定性研究 1、吉尔伯特的研究 2、富兰克林 二、定量研究 1、反平方定律的提出 2、电流磁效应的发现 3、电磁感应定律及楞次定律 4、麦克斯韦方程 5、电磁波的发现 三、小结 一、定性研究 1、吉尔伯特的研究 他发现不仅摩擦过的琥珀有吸引轻小物体的性质,而且一系列其他物体如金刚石、水晶、硫磺、明矾等也有这种性质,他把这种性质称为电性,他是第一个用“电力”、“电吸引”、“磁极”等术语的人。吉尔伯特把电现象和磁现象进行比较,发现它们具有以下几个截然不同的性质: 1.磁性是磁体本身具有的,而电性是需要用摩擦的方法产生; 2.磁性有两种——吸引和排斥,而电性仅仅有吸引(吉尔伯特不知道有排斥); 3.磁石只对可以磁化的物质才有力的作用,而带电体可以吸引任何轻小物体; 4.磁体之间的作用不受中间的纸片、亚麻布等物体的影响,而带电体之间的作用要受到中间这些物质的影响。当带电体浸在水中,电力的作用可以消失,而磁体的磁力在水中不会消失; 5.磁力是一种定向力,而电力是一种移动力。

2、富兰克林的研究 富兰克林(公元1706一1790)原来是费城的印刷商,他通过书本和科学上的来往获得了丰富知识,他利用莱顿瓶做出的第一项重要工作,是根据莱顿瓶内外两种电荷的相消性,在杜菲的“玻璃电”和“树脂电”的基础上提出正电和负电的概念。 富兰克林所做的第二项重要工作是统一了天电和地电。 二、定量研究 1、反平方定律的提出 1750年前后,彼得堡科学院院士埃皮努斯在实验中发现;当发生相互作用的电荷之间的距离缩短时,两者之间的吸引力和排斥力便增加。1766年富兰克林写信给他在德国的一位朋友普利斯特利(公元1733一1804),介绍了他在实验中发现在金属杯中的软木球完全不受金属杯电性的影响的现象。他请普利斯特利给予验证。 英国科学家卡文迪许在1772年做了一个电学实验,他用一个金属球壳使之带电,发现电荷全部分布在球壳的外表面,球腔中任何一点都没有电的作用。 法国物理学家库仑(公元1736—1806),起先致力于扭转和摩擦方面的研究。由于发表了有关扭力的论文,于1781年当选为国家科学院院士。他从事研究毛发和金属丝的扭转弹性。1784年法国科学院发出船用罗盘最优结构的悬奖征文,库仑转而研究电力和磁力问题。 1785年库仑自制了一台精巧的扭秤,作了电的斥力实验,建立了著名的库仑定律:两电荷之间的作用力与其距离的平方成反比,和两者所带电量的乘积成正比。 公式:F=k*(q1*q2)/r^2 2、电流磁效应的发现 丹麦物理学家奥斯特(公元1777—1851)首次发现电流磁效应,揭开了电和磁两种现象的内在联系,从此开始了电磁学的真正研究。 1820年4月在一次关于电和磁的讲课快结束时,他抱着试试看的心情做了实验,在一根根细的铂丝导线的下面放一个用玻璃罩罩着的小磁针,用伽伐尼电池将铂丝通电,他发现磁针偏转,这现象虽然未引起听讲人的注意,却使他非常激

电磁场与波小论文

电磁场与波理论在实践中的应用电磁波无所不在,不可不知。电磁波(又称电磁辐射)是由同相振荡且互相垂直的电场与磁场在空间中以波的形式移动,其传播方向垂直于电场与磁场构成的平面,有效的传递能量和动量。电磁辐射可以按照频率分类,从低频率到高频率,包括有无线电波、微波、红外线、可见光、紫外光、X-射线和伽马射线等等。人眼可接收到的电磁辐射,波长大约在380至780纳米之间,称为可见光。只要是本身温度大于绝对零度的物体,都可以发射电磁辐射,而世界上并不存在温度等于或低于绝对零度的物体。 电磁波是电磁场的一种运动形态。电与磁可说是一体两面,电流会产生磁场,变动的磁场则会产生电流。变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。 电磁场理论在现代科技中有着广泛的应用。现代电子技术如通讯、广播、导航、雷达、遥感、测控、嗲面子对抗、电子仪器和测量系统,都离不开电磁场的发射,控制、传播和接收;从假期,工业自动化到地质勘测,从电力、交通等工业‘农业到医疗卫生等国民经济领域,几乎全都涉及到电磁场理论的应用。不仅如此,电磁学一直是,将来仍是新兴科学的孕育点。 接下来举几个具体的例子来说明电磁场理论在科技中的应用。 1.雷达 雷达的基本功能是利用目标对电波的散射而发现目标,并测定不表的空间

位置。它也是电磁场与波在军事中的一项重要应用。 简单连续波雷达系统中的动目标鉴别分辨是以多普勒效应为基础的。设固定雷达发出电磁波的频率为f0,则发射波的周期T0=1/f0,设动目标以恒速为u向着雷达移动,如图所示,在t0所示,在t0时刻动目标在R0位置,在t1时刻动目标在R1位置。 雷达发射的电磁波到达目标所需的时间为: t0时刻发射的电磁波(峰A),到达移动目标,回波在t1时刻被雷达接收 是出现第二个峰(峰B),回波在t2时刻被雷达接收 雷达在t+T 发射和接收波形如下图所示:

电磁场与电磁波理论(第二版)(徐立勤,曹伟)第1章习题解答

第1章习题解答 1.4 计算下列标量场u 的梯度u ? : (1)234u x y z =; (2)u xy yz zx =++; (3)222323u x y z =-+。 解:(1) 34224233234x y z x y z u u u u e e e e xy z e x y z e x y z x y z ????=++=++??? (2)()()()x y z x y z u u u u e e e e y z e x z e y x x y z ????=++=+++++??? (3)646x y z x y z u u u u e e e e x e y e z x y z ????=++=-+??? 1.6 设()22,,1f x y z x y y z =++。试求在点()2,1,3A 处f 的方向导数最大的方向的单位矢量及其方向导 数。方向导数最小值是多少?它在什么方向? 解: ()2222x y z x y z f f f f e e e e xy e x yz e y x y z ????=++=+++??? 因为410x y z x y z A f f f f e e e e e e x y z ????=++=++??? 所以 ( max 410l x y z f e e e e l ?==++? ( min 410l x y z f e e e e l ?==-++? 1.10 求下列矢量场在给定点的散度值: (1)()x y z A xyz e x e y e z =++ 在()1,3,2M 处; (2)242x y z A e x e xy e z =++ 在()1,1,3M 处; (3)())1222x y z A e x e y e z x y z =++++ 在()1,1,1M 处。 解:(1) 222636y x z M A A A A xyz xyz xyz xyz A x y z ?????=++=++=??=??? (2)42212y x z M A A A A x z A x y z ?????= ++=++??=??? (3)y x z A A A A x y z ?????=++ ??? ( )( )( ) 2222 2222 2222 3 3 3 x y z x x y z y x y z z ++-++-++ -= + + = M A ??=

电磁学发展简史

电磁学发展简史 07 电联毛华超 一.早期的电磁学研究 早期的电磁学研究比较零散,下面按照时间顺序将主要事件列出如下:1650年,德国物理学家格里凯在对静电研究的基础上,制造了第一台摩擦起电机。1720年,格雷研究了电的传导现象,发现了导体与绝缘体的区别,同时也发现了静电感应现象。1733年,杜菲经过实验区分出两种电荷,称为松脂电和玻璃电,即现在的负电和正电。他还总结出静电相互作用的基本特征,同性排斥,异性相吸。1745年,荷兰莱顿大学的穆欣布罗克和德国的克莱斯特发明了一种能存储电荷的装置-莱顿瓶,它和起电机一样,意义重大,为电的实验研究提供了基本的实验工具。1752年,美国科学家富兰克林对放电现象进行了研究,他冒着生命危险进行了著名的风筝实验,发明了避雷针。1777年,法国物理学家库仑通过研究毛发和金属丝的扭转弹性而发明了扭秤。1785-1786年,他用这种扭秤测量了电荷之间的作用力,并且从牛顿的万有引力规律得到启发,用类比的方法得到了电荷相互作用力与距离的平反成反比的规律,后来被称为库仑定律在早期的电磁学研究中,还值得提到的一个科学家是大家都已经在中学物理课本中学过的欧姆定律的创立者-欧姆。欧姆,1787年3月16日生于德国埃尔兰根城,父亲是锁匠。父亲自学了数学和物理方面的知识,并教给少年时期的欧姆,唤起了欧姆对科学的兴趣。16岁时他进入埃尔兰根大学研究数学、物理与哲学,由于经济困难,中途缀学,到1813年才完成博士学业。欧姆是一个很有天才和科学抱负的人,他长期担任中学教师,由于缺少资料和仪器,给他的研究工作带来不少困难,但他在孤独与困难的环境中始终坚持不懈地进行科学研究,自己动手制作仪器。欧姆对导线中的电流进行了研究。他从傅立叶发现的热传导规律受到启发,导热杆中两点间的热流正比于这两点间的温度差。因而欧姆认为,电流现象与此相似,猜想导线中两点之间的电流也许正比于它们之间的某种驱动力,即现在所称的电动势,并且花了很大的精力在这方面进行研究。开始他用伏打电堆作电源,但是因为电流不稳定,效果不好。后来他接受别人的建议改用温差电池作电源,从而保证了电流的稳定性。但是如何测量电流的大小,这在当时还是一个没有解决的难题。开始,欧姆利用电流的热效应,用热胀冷缩的方法来测量电流,但这种方法难以得到精确的结果。后来他把奥斯特关于电流磁效应的发现和库仑扭秤结合起来,巧妙地设计了一个电流扭秤,用一根扭丝悬挂一磁针,让通电导线和磁针都沿子午线方向平行放置。再用铋和铜温差电池,一端浸在沸水中,另一端浸在碎冰中,并用两个水银槽作电极,与铜线相连。当导线中通过电流时,磁针的偏转角与导线中的电流成正比。实验中他用粗细相同、长度不同的八根铜导线进行了测量,得出了欧姆定律,也就是通过导体的电流与电势差成正比与电阻成反比。这个结果发表于1826年,次年他又出版了《关于电路的数学研究》,给出了欧姆定律的理论推导。欧姆定律发现初期,许多物理学家不能正确理解和评价这一发现,并遭到怀疑和尖锐的批评。研究成果被忽视,经济极其困难,使欧姆精神抑郁。直到1841年英国皇家学会授予他最高荣誉的科普利金牌,才引起德国科学界的重视。 二.安培和法拉第奠定了电动力学基础 1820年间,奥斯特在给学生讲课时,意外地发现了电流的小磁针偏转的现象。当导线通电流时,小磁针产生了偏转。这个消息传到巴黎后,启发了法国物理学家安培。他思考,既然磁与磁之间、电流与磁之间都有作用力,那么电流与电流之间是否也存在作用力呢?他重复了奥斯特的实验,几天后向巴黎科学院提交了第一篇论文,提出了磁针转动方向与电流

电磁场与电磁波论文

电磁场与电磁波 —电能的无线传输 姓名:李明 班级:电科1101班 学号:20113011

引言 电能的传输长期以来主要是由导线直接接触进行传输,随着用电设备对供电品质、可靠性、方便性等要求的不断提高,还有特殊场合、殊地理环境的供电,使得接触式电能传输方式,越来越不能满足实际需要;便携式电子设备和家电对快捷方便地获取电能的需求越来越强烈。因此,无线电能传输越来越受到人们的关注,并被美国《技术评论》杂志评选为未来十大科研方向之一。 无线电能传输技术最早由著名电气工程师(物理学家)尼古拉·特斯拉提出,就是借助于电磁场或电磁波进行能量传递的一种技术。按照电能传输原理的不同,无线电能传输分为:电磁感应式、电磁共振式和电磁辐射式。通过该项技术可以实现以探讨将远程无线功率传输系统做成电子式互感器,研究其在高压测量方面的应用,还可以探讨更远的距离使将来室内电器实现无线化,所有室内电器设备都装有无接触功率传输系统,电气设备通过无接触功率接收装置远距离高效率的接收电能工作,而电能发射装置是可以装在墙壁内或者地板下的,使电气设备摆脱电线插座的束缚。此外,无线输电技术在特殊的场合也具有广阔的应用前景。例如可以给一些难以架设线路或危险的地区供电;可以解决地面太阳能电站、风力电站、原子能电站的电能输送问题。深入了解其无线传输电能的意义和方向,具有十分积极的意义。 一、电能无线传输技术的简介 1.1电能无线传输的现状 1.1.1电能无线传输的研究现状 一、国外研究现状 国外对无线电能传输技术的研究较早,早在20 世纪70 年代中期就出现了无线电动牙刷,随后发布了几项有关这类设备的美国专利。20世纪90 年代初期,新西兰奥克兰大学对感应耦合功率传输技术(ICPT)进行研究,经过十多年的努力,该技术在理论和实践上已经获得重大突破。研究主要集中在给移动设备,特别是在恶劣环境下工作的设备的供电问题,如电动汽车、起重机、手提充电器、电梯、传送带、运货行车,以及水下、井下设备。其能量等级、距离、效率等指标都在不断提高,目前实用设备己达200kW、数千米的传输距离和85%的以上的传输效率。 二、国内研究现状 国内在无线输电技术方面研究还处于起步阶段,近年来,中科院院士严陆光和西安交通大学的王兆安等人也开始对该新型电能接入技术进行研究。重庆大学自动化学院非接触电能传输技术研发课题组自2001 年便开始了对国内外非接触式电能接入技术相关基础理论与实用技术的密切跟踪和研究,并与国际上在该领域研发工作处于领先水平的新西兰奥克兰大学波依斯教授为首的课题组核心成员Patrick AiguoHu 博士进行了深层次的学术交流与科技合作,在理论和技术成果上有了较大的突破。2007年2月,课题组攻克了非接触感应供电的关键技术难题,建立了完整的理论体系,并研制出了非接触电能传输装置,该装置能够实现600 至1000W 的电能输出,传输效率为70%,并且能够向多个用电设备同时供电,

相关文档