文档库 最新最全的文档下载
当前位置:文档库 › 热力学统计物理课后答案2

热力学统计物理课后答案2

热力学统计物理课后答案2
热力学统计物理课后答案2

第六章 近独立粒子的最概然分布

6.1中 试根据式(6.2.13)证明:在体积V 内,在ε到d ε+ε的能量范围内,三维自由粒子的量子态数为

()()13

2232d 2d .V

D m h

πεεεε=

解: 式(6.2.13)给出,在体积3V L =内,在x p 到d ,x x y p p p +到

d ,y y x p p p +到d x x p p +的动量范围内,自由粒子可能的量子态数为

3

d d d .x y z V

p p p h (1) 用动量空间的球坐标描述自由粒子的动量,并对动量方向积分,可得在体积V 内,动量大小在p 到d p p +范围内三维自由粒子可能的量子态数为

2

3

4πd .V p p h (2) 上式可以理解为将μ空间体积元24d Vp p π(体积V ,动量球壳24πd p p )除以相格大小3h 而得到的状态数. 自由粒子的能量动量关系为

2

.2p m

ε= 因此

d .

p p p md ε==

将上式代入式(2),即得在体积V 内,在ε到d εε+的能量范围内,三维自由粒子的量子态数为

()13

2232π()d 2d .V

D m h

εεεε= (3)

6.4 在极端相对论情形下,粒子的能量动量关系为

.cp ε=

试求在体积V 内,在ε到的能量范围内三维粒子的量子态数. 解:式(6.2.16)已给出在体积V 内,动量大小在p 到d p p +范围内三维自由粒子可能的状态数为

2

3

4d .V p p h π (1) 将极端相对论粒子的能量动量关系

cp ε=

代入,可得在体积V 内,在ε到d εε+的能量范围内,极端相对论粒子的量子态数为

()()

23

4πd d .V

D ch εεεε=

(2)

6.5 设系统含有两种粒子,其粒子数分别为N 和N '. 粒子间的相互作用很弱,可以看作是近独立的. 假设粒子可以分辨,处在一个个体量子态的粒子数不受限制. 试证明,在平衡状态下两种粒子的最概然分布分别为

l

l l a e αβεω--=

,l l l a e αβεω''--''=

其中l ε和l ε'是两种粒子的能级,l ω和l ω'是能级的简并度.

解: 当系统含有两种粒子,其粒子数分别为N 和N ',总能量为E ,体积为V 时,两种粒子的分布{}l a 和{}

l a '必须满足条件

,

,

l

l l l l l

l

l

l

l

a

N a N a a E

εε''==''+=∑∑∑∑ (1)

才有可能实现.

在粒子可以分辨,且处在一个个体量子态的粒子数不受限制的情形下,两种粒子分别处在分布{}l a 和{}

l a '时各自的微观状态数为

!

,!!.!l l a l l

l l

a l l

l l

N Ωa N Ωa ωω'

=

'''='∏∏∏∏ (2)

系统的微观状态数()0Ω为

()0.ΩΩΩ'=? (3)

平衡状态下系统的最概然分布是在满足式(1)的条件下使()0Ω或

()0

In Ω为极大的分布. 利用斯特令公式,由式(3)可得

()()

In ln ln ln ln ln ln ln ,

l l l l l l l l l

l

l

l

ΩΩΩN N a a a N N a a a ωω'=?''''''=-++-+∑∑∑∑

为求使()0ln Ω为极大的分布,令l a 和l a '各有l a δ和l a δ'的变化,()0ln Ω将因而有()0δln Ω的变化. 使()0ln Ω为极大的分布{}l a 和{}

l a '必使

()0

δln 0,Ω=

()

0δln ln δln δ0.l

l

l l l l l

l a a Ω

a a ωω??'??'=-- ?=

? ?'????

∑∑ 但这些δl a 和δl a '不完全是独立的,它们必须满足条件

δδ0,

δδ0,

δδδ0.

l l

l l

l l l l l

l

N a N a E a a εε==''==''=+=∑∑∑∑

用拉氏乘子,αα'和β分别乘这三个式子并从()0δln Ω中减去,得

()0

δln δδδln δln δ0.

l l

l l l l l l l l ΩN N E

a a a a ααβαβεαβεωω''---??'??'''=-++- ++? ? ?'????=∑∑

根据拉氏乘子法原理,每个δl a 和δl a '的系数都等于零,所以得

ln 0,

ln 0,

l

l l

l l l a a αβεωαβεω++='

''++='

.

l

l l l l l a e a e αβεαβεωω--'

'--=''= (4)

拉氏乘子,αα'和β由条件(1)确定. 式(4)表明,两种粒子各自

遵从玻耳兹曼分布. 两个分布的α和α'可以不同,但有共同的β. 原因在于我们开始就假设两种粒子的粒子数,N N '和能量E 具有确定值,这意味着在相互作用中两种粒子可以交换能量,但不会相互转化. 从上述结果还可以看出,由两个弱相互作用的子系统构成的系统达到平衡时,两个子系统有相同的β.

6.6 同上题,如果粒子是玻色子或费米子,结果如何? 解: 当系统含有N 个玻色子,N '个费米子,总能量为E ,体积为V 时,粒子的分布{}l a 和{}

l a '必须满足条件

,

,

l

l l

l

a

N a N =''=∑∑

l l

l

l

l

l

a a E εε''+=∑∑ (1)

才有可能实现.

玻色子处在分布{}l a ,费米子处在分布{}

l a '时,其微观状态数分别为

()()(

)

1!,!1!

.

!!

l l l

l l l l

l l l a Ωa Ωa a ωωωω+-=-'

'='''-∏

系统的微观状态数()0Ω为

()0.ΩΩΩ'=? (3)

平衡状态下系统的最概然分布是在满足式(1)条件下使()0Ω或()0ln Ω为极大的分布. 将式(2)和式(3)取对数,利用斯特令公式可得

()()()()()0ln ln ln ln ln ln ln .

l l l l l l l l l

l

l

l

l

l

l

l

l

l

Ωa a a a a a a a ωωωωωωωω=++--+

????''''''''----????∑∑

令各l a 和l a '有δl a 和δl a '的变化,()0ln Ω将因而有()0δln Ω的变化,使用权()0ln Ω为极大的分布{}l a 和{}

l a '必使

()0

δln 0,Ω=

()

()

()

0ln δln δln δ0.

l l l l l l l l l l a a Ω

a a a a ωω''-+'

=+'

=∑∑ 但这此致δl a 和δl a '不完全是独立的,它们必须满足条件

δδ0,

δδ0,

δδδ0.

l l

l l

l l l l l

l

N a N a E a a εε==''==''=+=∑∑∑∑

用拉氏乘子,αα'和β分别乘这三个式子并从()0δln Ω中减去,得

()()()

δln δδδln δln δ0.

l l l l l l l l l l l l ΩN N E

a a a a a a ααβωωαβεαβε''---??

''-+?? ?

'''=---+-- ? ?'?? ?

??

=∑∑

根据拉氏乘子法原理,每个δl a 和δl a '的系数都等于零,所以得

ln 0,

ln

0,

l l

l l

l l l l a a a ωαβεωαβεω+--=''-''--='

,

1

.

1

l

l l

l l

l a e

a e αβεαβεωω--''--=

-''=+ (4) 拉氏乘子,αα'和β由条件(1)确定. 式(4)表明,两种粒子分别遵从玻色分布和费米分布,其中α和α'不同,但β相等.

第七章 玻耳兹曼统计

7 7.2 试根据公式l

l

l

p a V

ε?=-?∑证明,对于相对论粒子

()122222x

y

z

cp c

n

n n

L

π

ε==++, (),,0,1,2,

,x y z n n n =±±

1.3U

p V

=

上述结论对于玻耳兹曼分布、玻色分布和费米分布都成立. 解: 处在边长为L 的立方体中,极端相对论粒子的能量本征值为

()122222x y z

n n n

x

y

z

c

n

n n

L

πε=++ (),,0,1,2,,x y z n n n =±± (1)

用指标l 表示量子数,,,x y z n n n V 表示系统的体积,3V L =,可将上式简记为

13

,l aV ε-

= (2)

其中

()

122222.x

y

z

a c n n n

π=++

由此可得

4311.33l l aV V V

εε

-?=-=-? (3) 代入压强公式,得

1.33l l

l l l

l

U

p a a V V V εε?=-==?∑∑ (4) 本题与7.1题结果的差异来自能量本征值与体积V 函数关系的不同. 式(4)对玻耳兹曼分布、玻色分布和费米分布都适用.

7.4 试证明,对于遵从玻耳兹曼分布的定域系统,熵函数可以表示为

ln ,s s s

S Nk P P =-∑

式中s P 是粒子处在量子态s 的概率,

1

,s s

s e e P N Z αβεβε---==

s

是对粒子的所有量子态求和.

对于满足经典极限条件的非定域系统,熵的表达式有何不同?

解: 根据式(6.6.9),处在能量为s ε的量子态s 上的平均粒子数为

.s s f e αβε--= (1)

以N 表示系统的粒子数,粒子处在量子态s 上的概率为

1

.s s

s e e P N Z αβεβε---== (2)

显然,s P 满足归一化条件

1,s s

P =∑ (3)

式中s

∑是对粒子的所有可能的量子态求和. 粒子的平均能量可以表

示为

.s s s

E P ε=∑ (4)

根据式(7.1.13),定域系统的熵为

()

()

1111ln ln ln ln s s s

S Nk Z Z Nk Z Nk P Z βββε

βε???=- ?

???=+=+∑

ln .s s s

Nk P P =-∑ (5)

最后一步用了式(2),即

1ln ln .s s P Z βε=-- (6)

式(5)的熵表达式是颇具启发性的. 熵是广延量,具有相加性. 式(5)意味着一个粒子的熵等于ln .s s s

k P P -∑ 它取决于粒子处在各个

可能状态的概率

s P . 如果粒子肯定处在某个状态r ,即s sr P δ=,粒子的熵等于零. 反

之,当粒子可能处在多个微观状态时,粒子的熵大于零. 这与熵是无序度的量度的理解自然是一致的. 如果换一个角度考虑,粒子的状态完全确定意味着我们对它有完全的信息,粒子以一定的概率处在各个可能的微观状态意味着我们对它缺乏完全的信息. 所以,也

可以将熵理解为信息缺乏的量度. 第九章补充题5还将证明,在正则系综理论中熵也有类似的表达式. 沙农(Shannon )在更普遍的意义上引进了信息熵的概念,成为通信理论的出发点. 甄尼斯(Jaynes )提出将熵当作统计力学的基本假设,请参看第九章补充题5.

对于满足经典极限条件的非定域系统,式(7.1.13′)给出

11ln ln ln !,S Nk Z Z k N ββ???=-- ????

上式可表为

0ln ,s s s

S Nk P P S =-+∑ (7)

其中

()0ln !ln 1.S k N Nk N =-=--

因为

,s s f NP =

将式(7)用s f 表出,并注意

,s

s

f

N =∑

可得

ln .s s s

S k f f Nk =-+∑ (8)

这是满足玻耳兹曼分布的非定域系统的熵的一个表达式. 请与习题8.2的结果比较.

7.6 晶体含有N 个原子. 原子在晶体中的正常位置如图中的“O ”所示. 当原子离开正常位置而占据图中的“?”位置时,晶体中就出现缺位和填隙原子. 晶体的这种缺陷称为弗伦克尔(Frenkel )缺陷.

(a )假设正常位置和填隙位置都是N ,试证明,由于在晶体中形成n 个缺位和填隙原子而具有的熵等于

()!

2In

.!!

N S k n N n =-

(b )设原子在填隙位置和正常位置的能量差为u . 试由自由能

F nu TS =-为极小证明,温度为T 时,缺位和填隙原子数为

2u kT

n Ne

-≈ (设n N <<).

解: 固体中原子的相互作用使固体形成规则的晶格结构. 晶格的格点是原子的平衡位置. 当所有原子都处在其平衡位置时,固体的能量最低. 绝对零度下物质将尽可能处在其能量最低的状态. 由于量子效应,绝对零度下原子并非静止在格点上而是围绕格点作零点振动. 温度升高时,一方面晶格振动会随温度升高而变得剧烈;另一方面有的原子会离开其正常的格点位置占据填隙位置,有的原子离开正常的格点位置占据晶体表面的格点位置而形成新的一层,使固体出现缺陷,前者称为弗伦克尔缺陷,后者称为肖脱基(Shottky )缺陷. 本题讨论弗伦克尔缺陷,肖脱基缺陷将在7.7题讨论.

(a )设晶体含有N 个原子,晶格中正常的格点位置亦为N . 当

1N >>时可以认为填隙位置与正常位置数目相同. 当固体的N 个正

常位置出现n 个缺位

时,由于缺位位置的不同,可以有()!

!!

N n N n -个微观状态. 同样,由

于填隙位置的不同,也可以有

()!

!!

N n N n -个微观状态. 因此当固体中

出现n 个缺位和n 个填隙原子时,可能的微观状态数为

()()!!

,!!!!

N N Ωn N n n N n =

?-- (1)

形成弗伦克尔缺陷导致的熵为

()ln !2ln

.

!!

S k Ω

N k n N n ==- (2) (b )以u 表示原子处在填隙位置与正常位置的能量差. 形成n 个缺位和填隙原子后,固体内能的增加为

.U nu = (3)

自由能的改变为

()()()!2ln

!!

2ln ln ln .

F nu TS

N nu kT n N n nu kT N N n n N n N n =-=--=-----???? (4)

假设形成缺陷后固体的体积不变,温度为T 时平衡态的自由能为极小要求

0.F

n

?=? 由式(4)得

2ln 0,F N n

u kT n n

?-=-=? 即

ln

,2N n u

n kT

-= 由于n N <<,上式可以近似为

2e

.u kT

n N -≈ (5)

实际固体中u 的典型值约为1eV ,在300K 时,有

208.7e 10.n

N

--≈= 高温下比值会增大.

上述讨论中假设形成缺隐时固体的体积不变. 在这假设下应用了自由能判据,u 也成为与温度无关的常量.讨论中也忽略了形成缺陷与晶格振动的相互影响. 这些假设都是近似成立的.

7.10 气体以恒定速度0υ沿z 方向作整体运动,求分子的平均平动能量.

解: 根据7.8题式(9),以恒定速度0υ沿z 方向作整体运动的气体,其分子的速度分布为

()2

22032

2e d d d .2x y z m υυυυkT x y z m N υυυkT π??-++-????

?? ???

(1) 分子平动量的平均值为

()()()2220222032

22221

2

2222221e d d d 22

111e d e d e d .2222x y z x y z m υυυυkT x y z x y z m m m

υυυυkT kT kT

x x y y z z m m υυυυυυkT m m υυm υυm υυkT εππ??-++-+∞

????

-∞

----+∞+∞+∞-∞-∞-∞??=++ ?

??

????=++ ? ?????

???

???

上式头两项积分后分别等于12

kT ,第三项的积分等于

()()()()2

22z 0001

2

2222200z 022001e d 2e d e d 2211.22

z z m m m υυυυυυkT kT kT

z z z z m m υυυυυυυυkT kT m υm υπ------+∞+∞+∞-∞-∞-∞?????-+- ? ?

????

=

+-???

因此,

2

03

1.22

kT m υε=+ (2)

式(2)表明,气体分子的平动能量等于无规热运动的平均能量32

kT 及整体运动能量201

2

m υ之和.

重 7.11 表面活性物质的分子在液面上作二维自由运动,可以看作二维气体. 试写出二维气体中分子的速度分布和速率分布,并求平均速率υ,最概然速率m υ和方均根速率s .υ

解: 参照式(7.3.7)—(7.3.9),可以直接写出在液面上作二维

运动的表面活性物质分子的速度分布和速率分布. 速度分布为

()222e d d .2x y m υυkT x y m υυkT

π-+ (1) 速率分布为

222e d .2m

υkT m υυkT

ππ- (2) 平均速率为

2

220

e

d m υkT

m υυυkT

-

+∞

=

?

=

(3)

速率平方的平均值为

22

320

e d 2.m υkT

m υυυkT kT m -+∞==?

因此方均根速率为

s υ==

(4) 最概然速率m υ条件

2

2d e 0d m υkT

υυ-??= ? ???

确定. 由此可得

m υ=

(5) 值得注意,上述,,s m υυυ三种速率均小于三维气体相应的速率,这是由于二维和三维气体中速率在υ到d υυ+中的分子数分别与速度空间的体积元2d υυπ和24d υυπ成正比,因而二维气体中大速率分子的相对比例低于三维气体的缘故.

7.12 根据麦克斯韦速度分布律导出两分子的相对速度

21r =-υυυ和相对速率r r υ=υ的概率分布,并求相对速率的平均值.r υ

解: 根据麦克斯韦速度分布,分子1和分子2各自处在速度间隔1d υ和2d υ的概率为

12d d d W W W =?

22

12

132

2

2212e d e d .22m υm υkT

kT m m kT kT ππ--????=? ? ???

??

υυ (1) 上述两个分子的运动也可以用它们的质心运动和相对运动来描述. 以c υ表示质心速度、r υ表示相对速度,则

1122

12

,c m m m m +=

+υυυ

21.r =-υυυ (2)

在12m m m ==的情形下,上式简化为

()12211

,

2

.

c r =

+=-υυυυυυ 容易验明,两种描述给出的动能K 相同,即

222211221111.2222

c r K m υm υM υυμ=

+=+ (3) 式中

121212

,

,

M m m m m m m μ=+=

+

分别是质心的质量和相对运动的约化质量. 在12m m m ==的情形下,有

2,

.2

M m m μ==

根据积分变换公式

12d d d d ,c r J =υυυυ (4)

可以证明1J =,所以式(1)也可表达为

22332

2

v

22d e

d e

d 22c r

r

m υυ

d kT

kT c r M W kT kT μμππ--????=? ? ???

??

υυ

d d ,c r W W = (5)

其中相对速度r υ的概率分布为

2

3

2

2d e d .2r

υkT

r r W kT μμπ-??= ???

υ (6)

相对速率的分布为

232

22r 4e d .2r

υ

kT r υυkT μμππ-?? ???

(7) 相对速率r υ的平均值为

232

320

4e

d 2r

υkT

r r r

υυυkT μμππ-

+∞

??

= ?

??=?

= (8)

式中υ=.

7.13 试证明,单位时间内碰到单位面积器壁上,速率介于υ与

d υυ+之间的分子数为

()232

3

2d e

d .2m

υkT m Γυn υυkT π-??=π ???

解: 参照式(7.3.16),单位时间内碰到法线方向沿z 轴的单位面积器壁上,速度在d d d x y z υυυ范围内的子数为

d d d d .z x y z Γf υυυυ= (1)

用速度空间的球坐标,可以将式(1)表为

2d cos sin d d d .Γf υυυθθθ?= (2)

对d θ和d ?积分,θ从0到π

,2

?从0到2π,有

π2π

20

sin cos d d π.θθθ?=?

?

因此得单位时间内碰到单位面积器壁上,速率介于υ与d υυ+之间的

分子数为

()232

3

2d πe

d .2m

υkT m Γυn υυkT π-??= ???

(3)

7.14 分子从器壁的小孔射出,求在射出的分子束中,分子的

平均速率、方均根速率和平均能量.

解: 7.13题式(3)已求得了单位时间内,碰到单位面积器壁上,速率在υ至υd υ+范围的分子数为

()2

3

2

3

2d πe d .2πm υ

kT m Γυn υυkT -??= ???

(1) 如果器壁有小孔,分子可以通过小孔逸出. 当小孔足够小,对容器内分子的平衡分布影响可以忽略时,单位时间内逸出的分子数就等于碰到小孔面积上的分子数. 因此在射出的分子束中,分子的平均速率为

()()

22

4200320

d e d d e

d m υkT

m υkT

υΓυυυυΓυυυ

-

+∞

+∞

+∞

-+∞

==

???

?

=

(2) 速率平方的平均值为

2

2522

0320

e d e

d m υkT

m υkT

υυυ

υυ

-

+∞

-+∞

=

??

4kT

m

=

(3) 即速率的方均根值为

s υ==

(4) 平均动能为

2

12.2

m υkT = (5) 上述结果表明,分子束中分子的平均速率和平均动能均大于容器内气体分子的相应平均值. 原因在于,大速率分子有较大的概率从小孔逸出,使式(1)含有因子3υ,而平衡态分子速率分布(7.3.9)含因子2υ的缘故.

7.16 已知粒子遵从经典玻耳兹曼分布,其能量表达式为

()22

221,2x y z p p p ax bx m

ε=

++++ 其中,a b 是常量,求粒子的平均能量.

解: 应用能量均分定理求粒子的平均能量时,需要注意所难能量表达式ε中2ax 和bx 两面三刀项都是x 的函数,不能直接将能量均分定理用于2ax 项而得

出212

ax kT =的结论. 要通过配方将ε表达为

()2

2222

1.224x y z b b p p p a x m a a ε??=++++- ??

? (1) 在式(1)中,仅第四项是x 的函数,又是平方项. 由能量均分定理知

()2

2222

124x y z b b p p p a x m a a ε??=++++- ??

?

2

2.4b kT a

=- (2)

7.18 试求双原子分子理想气体的振动熵.

解: 将双原子分子中原子的相对振动近似看作简谐振动. 以ω表示振动的圆频率,振动能级为

1,

0,1,2,

2

n n n εω??

=+= ??

?

(1)

振动配分函数为

()1v 21

01

2

v

1e

,

1e 1ln Z ln 1.

2

n n Z e

e βωβωβω

β

ω

βω??∞

-+ ?

??

=---==

-=---∑ (2)

双原子理想气体的熵为

()v v v 11ln ln Z ln 1e e 1

S Nk Z Nk β

ω

βωβββω

-???=- ?

?????=--??-??

v v v

ln 1e ,e 1

T

T T Nk θθθ-????

??

=-- ???????-?

?

(3) 其中v k

ω

θ=是振动的特征温度.

7.19 对于双原子分子,常温下kT 远大于转动的能级间距. 试求双原子分子理想气体的转动熵.

解: 在kT 远大于转动能级间距的情形下,可以用经典近似求转动配分函数1.r Z 根据式(7.5.23)(令其中的0h h =),有

22

2112sin 1

21e d d d d p p r

I Z p p h θ?βθθ?θ???

-+ ???

=?

2

2.I β

= (1) 双原子分子理想气体的转动熵为

112lnZ lnZ 2ln 1r r S Nk I Nk βββ???=- ?

???

????=+??

?????

ln 1.r T Nk θ??

=+ ???

(2)

式中2

2r Ik

θ=

是转动特征温度,2I r μ=是分子绕质心的转动惯量,

12

12

m m m m μ=

+是约化质量.

补充题 1 试根据麦克斯韦速度分布律证明,速率和平均能量的涨落为

()

(

)

()2

2

283,π3.2

kT υυ

m kT εε

??

-=

- ???

-=

解:速率υ的涨落为

(

)

()

2

2

2.υυυυ-=- (1)

式(7.3.14)和(7.3.13)已给出

()

22

3,8,πkT

υm

kT υm

=

= 所以

(

)

2

83.kT υυ

m

π??-=

- ???

(2) 平动能量ε的涨落为

()

()2

2

2

.εεεε-=- (3)

将麦克斯韦速率分布(7.3.9)用平动能量21

2

m υε=表出,可得气体分

子的平动能量在ε到d εε+的概率为

12

d .kT

εεε-

(4)

由此可得

32

522

3e

d ,2

15e

d ,4

kT

kT

kT kT ε

ε

εεεεεε-

+∞

-

+∞

===

=

?

所以

(

)

()2

2

3.2

kT εε

-=

(5)

补充题2 体积为V 的容器保持恒定的温度T ,容器内的气体通过面积为A 的小孔缓慢地漏入周围的真空中,求容器中气体压强降到初始压强的1e

所需的时间.

解: 假设小孔很小,分子从小孔逸出不影响容器内气体分子的平衡分布,即分子从小孔逸出的过程形成泻流过程.

以()N t 表示在时刻t 容器内的分子数. 根据式(7.3.18),在t 到

t dt +时间内通过面积为A 的小孔逸出的分子数为

()1d ,4N t υA t V

其中

υ=

是容器内气体分子的平均速率. 容器温度保持不变,υ也就保持不变. 因此,在dt 时间内容器中分子数的增量为

()1d d .4N t N υA t V

=- (1) 将上式改写为

d 1d ,4N υA

t N V

=- 积分,得

()40e

,υA t V

N t N -= (2)

式中0N 是初始时刻容器内的分子数. 根据物态方程

,pV nkT =

在,V T 保持不变的情形下,气体的压强与分子数成正比. 所以在时刻t 气体的压强()p t 为

()40e

,υA t V

p t p -= (3)

0p 是初始时刻的压强. 当

14υA

t V

=时,容器内的压强将降到初始时刻的1e

,所需时间为

4.V

t υA

=

(4)

补充题 3 以()11,,;,r r q q p p ε表示玻耳兹曼系统中粒子的能量,试证明

,i

ij j

x kT x ε

δ?=? 其中,i j x x 分别是2r 个广议坐标和动量中的任意一个,上式称为广义能量均分定理.

解: 根据玻耳兹曼分布,有

()

()

,,e d .e

d q p i

j

i

q p j

x x x x βεβεεωεω

--???=??? (1)

式中11d d d d d r r q q p p ω=是μ空间的体积元. 令()()d d d ,d j j j x ωωω=是除

d j x 外其余21r -个广义坐标和动量的微分. 将式(1)改写为

()

()()

,,e d d ,e

d q p i

j j j

i

q p j

x x x x x βεβεεωεω

--???=??? (2)

并对其中的j dx 进行分部积分,得

1

1

e d e e d ,j

i i

j i j j j x x x x x x x x βεβεβε

εβ

β---??=-+

???? 其中第一项要将j x 的上下限代入. 如果j x 是粒子的动量,将上下限

±∞代入后ε趋于无穷,使第一项为零;如果j x 是粒子的坐标,其上

下限是±∞或器壁坐

标,代入后ε也趋于无穷,亦使第一项为零. 考虑到

i

ij j

x x δ?=?,即有

1

d e d .j i

j ij j j

x x x x βεεδβ

-?=

??? (3)

代回式(2),得

.i

ij j

x kT x ε

δ?=? (4) 式(4)称为广义能量均分定理. 假如ε中含有i x 的项可以表为平方项,即

热力学与统计物理第二章知识总结

§2.1内能、焓、自由能和吉布斯函数的全微分 热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律,而且其它热力学函数也可以由这三个基本热力学函数导出。 焓:自由能: 吉布斯函数: 下面我们由热力学的基本方程(1) 即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分 焓、自由能和吉布斯函数的全微分 o焓的全微分 由焓的定义式,求微分,得, 将(1)式代入上式得(2) o自由能的全微分 由得 (3) o吉布斯函数的全微分 (4)

从方程(1)(2)(3)(4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH,dF,和dG独立变量分别是S,V;S,P;T,V和T,P 所以函数U(S,V),H(S,P),F(T,V),G(T,P)就是我们在§2.5将要讲到的特性函数。下面从这几个函数和它们的全微分方程来推出麦氏关系。 二、热力学(Maxwell)关系(麦克斯韦或麦氏) (1)U(S,V) 利用全微分性质(5) 用(1)式相比得(6) 再利用求偏导数的次序可以交换的性质,即 (6)式得(7) (2) H(S,P) 同(2)式相比有 由得(8) (3) F(T,V)

同(3)式相比 (9) (4) G(T,P) 同(4)式相比有 (10) (7),(8),(9),(10)式给出了热力学量的偏导数之间的关系,称为麦克斯韦(J.C.Maxwell)关系,简称麦氏关系。它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。例如,只要知道物态方程,就可以利用(9),(10)式求出熵的变化,即可求出熵函数。 §2.2麦氏关系的简单应用 证明 1. 求 选T,V为独立变量,则内能U(T,V)的全微分为 (1) 熵函数S(T,V)的全微分为( 2)

热力学统计物理试题及其完整答案版

《热力学统计物理》试题参考解答及评分标准 一、1. B, 2. B, 3. A, 4. D, 5. B, 6. A, 7. C, 8. C, 9. A, 10. A. 评分标准:本题共20分, 每个答案2分。 二、 1. 状态, 2. 态, 系统从外界吸收, 3. p -, 4. ω )21(+ n , ,2,1,0=n , 5. l e a l l βεαω--=, 6. 0, 7. T V F )(??-, 8. 负温度状态, 9. n p T G ,)(??-, 10. n p S H ,)(??。 评分标准:本题共20分, 每个答案2分。 三、 1. 正确。 理由:pdV SdT dF --=。 2. 错误。 理由:T V F p ??? ????-=。 3. 错误。 理由:自由粒子为不受外力的作用而作自由运动的粒子。 4. 错误。 理由:组成玻色系统和费米系统的粒子是不可分辨的,而组成玻耳兹曼系统的 粒子是可以分辨的。 评分标准:每小题2.5分。其中判断1分,理由1.5分。 四、1.证: 由正则分布Es s e Z βρ-=1,得 s s E Z βρ--=ln ln . (1) 将上式代入广义熵的表示式,得 ]ln [ln ][ln ββ β??-=+=Z Z k U Z k . (2) 上式即正则系综中系统熵的表示式。 或者,由正则分布中熵的表示式出发 ][ln s s s E Z k βρ+=∑, (3) 利用(1)式,由上式得熵的普遍表示式 ∑-=s s s k S ρρln . (4) 评分标准:(1),(2)式各5分。 2. 证明:理想气体的热容量为n C ,则?dT C Q n =。由热力学第一定律得 pdV dT C dT C V n +=, 0)(=--pdV dT C C V n . (1) 将理想气体状态方程RT pV =微分,有

热力学统计物理各章重点总结..

第一章 概念 1.系统:孤立系统、闭系、开系 与其他物体既没有物质交换也没有能量交换的系统称为孤立系; 与外界没有物质交换,但有能量交换的系统称为闭系; 与外界既有物质交换,又有能量交换的系统称为开系; 2.平衡态 ~ 平衡态的特点:1.系统的各种宏观性质都不随时间变化;2.热力学的平衡状态是一种动的平衡,常称为热动平衡;3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态。 3.准静态过程和非准静态过程 准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。 非准静态过程,系统的平衡态受到破坏 4.内能、焓和熵 。 内能是状态函数。当系统的初态A和终态B给定后,内能之差就有确定值,与系统由A到达B所经历的过程无关; 表示在等压过程中系统从外界吸收的热量等于态函数焓的增加值。这是态函数焓的重要特性 克劳修斯引进态函数熵。定义: 5.热容量:等容热容量和等压热容量及比值<

定容热容量: 定压热容量: 6.循环过程和卡诺循环 循环过程(简称循环):如果一系统由某个状态出发,经过任意一系列过程,最后回到原来的状态,这样的过程称为循环过程。系统经历一个循环后,其内能不变。 理想气体卡诺循环是以理想气体为工作物质、由两个等温过程和两个绝热过程构成的可逆循环过程。 7.。 8.可逆过程和不可逆过程 不可逆过程:如果一个过程发生后,不论用任何曲折复杂的方法都不可能使它产生的后果完全消除而使一切恢复原状。 可逆过程:如果一个过程发生后,它所产生的后果可以完全消除而令一切恢复原状。 8.自由能:F和G ( 定义态函数:自由能F,F=U-TS 定义态函数:吉布斯函数G,G=U-TS+PV,可得GA-GB-W1 定律及推论

热力学与统计物理试题及答案

热力学与统计物理试题及 答案 Revised by BLUE on the afternoon of December 12,2020.

一.选择(25分 ) 1.下列不是热学状态参量的是( ) A.力学参量 B 。几何参量 C.电流参量 D.化学参量 2.下列关于状态函数的定义正确的是( ) A.系统的吉布斯函数是:G=U-TS+PV B.系统的自由能是:F=U+TS C.系统的焓是:H=U-PV D.系统的熵函数是:S=U/T 3.彼此处于热平衡的两个物体必存在一个共同的物理量,这个物理量就是( ) A.态函数 B.内能 C.温度 D.熵 4.热力学第一定律的数学表达式可写为( ) A.W Q U U A B +=- B.W Q U U B A +=- C.W Q U U A B -=- D.W Q U U B A -=- 5.熵增加原理只适用于( ) A.闭合系统 B.孤立系统 C.均匀系统 D.开放系统

二.填空(25分) 1.孤立系统的熵增加原理可用公式表示为()。 2.热力学基本微分方程du=()。 3.热力学第二定律告诉我们,自然界中与热现象有关的实际过程都是()。 4.在S.V不变的情况下,平衡态的()最小。 5.在T.VB不变的情形下,可以利用()作为平衡判据。 三.简答(20分) 1.什么是平衡态平衡态具有哪些特点 2. 3.什么是开系,闭系,孤立系? 四.证明(10分) 证明范氏气体的定容热容量只是温度的函数,与比容无关 五.计算(20分) 试求理想气体的体胀系数α,压强系数β,等温压缩系数 T K

参考答案 一.选择 1~5AACAB 二.填空 1. ds≧0 2. Tds-pdv 3. 不可逆的 4. 内能 5. 自由能判据 三.简答 1.一个孤立系统,不论其初态如何复杂,经过足够长的时间后,将会达到这样状态,系统的各种宏观性质在长时间内不发生变化,这样的状态称为热力学平衡态。特点:不限于孤立系统 弛豫时间 涨落 热动平衡 2.开系:与外界既有物质交换,又有能量交换的系统

热力学和统计物理的答案解析第二章

第二章 均匀物质的热力学性质 2.1 已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加. 解:根据题设,气体的压强可表为 (),p f V T = (1) 式中()f V 是体积V 的函数. 由自由能的全微分 得麦氏关系 .T V S p V T ??????= ? ??????? (2) 将式(1)代入,有 ().T V S p p f V V T T ??????=== ? ??????? (3) 由于0,0p T >>,故有0T S V ???> ????. 这意味着,在温度保持不变时,该气体的熵随体积而增加. 2.2 设一物质的物态方程具有以下形式: 试证明其内能与体积无关. 解:根据题设,物质的物态方程具有以下形式: (),p f V T = (1) 故有 ().V p f V T ???= ???? (2) 但根据式(,有 ,T V U p T p V T ??????=- ? ??????? (3) 所以 ()0.T U Tf V p V ???=-= ???? (4) 这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度T 的函数.

2.3 求证: ()0;H S a p ???< ???? ()0.U S b V ???> ???? 解:焓的全微分为 .dH TdS Vdp =+ (1) 令0dH =,得 0.H S V p T ???=-< ???? (2) 内能的全微分为 .dU TdS pdV =- (3) 令0dU =,得 0.U S p V T ???=> ???? (4) 2.4 已知0T U V ???= ????,求证0.T U p ???= ???? 解:对复合函数 (,)(,(,))U T P U T V T p = (1) 求偏导数,有 .T T T U U V p V p ?????????= ? ? ?????????? (2) 如果0T U V ???= ????,即有 0.T U p ???= ???? (3) 式(2)也可以用雅可比行列式证明: .T T U V V p ??????= ? ??????? (2) 2.5 试证明一个均匀物体的在准静态等压过程中熵随体积的增减取决于等压下温度随体积的增减. 解:热力学用偏导数p S V ??? ????描述等压过程中的熵随体积的变化率,

热力学统计物理试题(B卷)

热力学·统计物理试题(B 卷) 适用于200×级本科物理学专业 (200×-200×学年度第×学期) 1. (10分) 证明范氏气体的定容热容量只是温度的函数,与比容无关. 2. (20分) 试证明,相变潜热随温度的变化率为 βp c dT dL =-α p c -+T L αβαβv v L T v T v p p -??? ????????? ????-???? ? ??? 如果β相是气相,α相是凝聚相,试证明上式可简化为: α βp p c c dT dL -= 3.(10分) 若将U 看作独立变数T , V , n 1,… n k 的函数,试证明: (1)V U V n U n U i i i ??+??=∑ (2)V U v n U u i i i ??+??= 4.(20分) 试证明,对于遵从玻尔兹曼分布的系统,熵函数可以表示为 ∑-=s Ps Ps Nk S ln 式中P s 是总粒子处于量子态s 的概率,1Z e N e P s s s βεβεα---= =,∑s 对粒子的所有量子态求和。 5.(20分) 铁磁体中的自旋波也是一种准粒子,遵从玻色分布,色散关系是 2Ak =ω.试证明在低温下,这种准粒子的激发所导致的热容与2/3T 成正比. 6.(20分) 在极端相对论情形下电子能量与动量的关系为cp =ε,其中c 为光速.试求自由电子气体在0K 时的费米能量,内能和简并压.

附标准答案 1. (10分) 解证:范氏气体()RT b v v a p =-??? ? ? +2

由式(2.2.7)? T v U ??? ????=T V T p ??? ????-p =T 2 v a p b v R =-- (5分) T v U ??? ????=2v a ?)(),(0T f v a U v T U +-= =V C V T U ??? ????=)(T f ' ;与v 无关。 (5分) 2.(20分) 证明:显然属于一级相变; ()())(αβS S T L -=; 其中())(,T p T S S =, 在p ~T 相平衡曲线上. ()[]??? ? ??????+??? ?????+-=dT dp p S T T S T S S dT dL αβ 其中:=??? ?????T S () P T S ???? ????β()P T S ???? ????-α =???? ??????dT dp p S [()P T S ???? ????β()P T S ? ??? ????-α]dT dp ? (5分) 又有:T C P =P T S ??? ????;()())(αβS S T L -= 由麦氏关系(2.2.4): -=???? ????T p S P T V ??? ???? (5分) 上几式联立(并将一级相变的克拉伯珑方程代入)得: βp c dT dL =-α p c -+T L αβαβv v L T v T v p p -??? ????????? ????-???? ? ??? (5分) 若β相是气相,α相是凝聚相;() αV ~0;()p T V ???? ???α~0; β相按理想气体处理。pV=RT ?α βp p c c dT dL -= (5分) 3.(10分) 证明:(1) ),,,(),,,(11k k n n V T U n n V T U ΛΛλλλλ=

热力学与统计物理第二章知识总结

§内能、焓、自由能和吉布斯函数的全微分 热力学函数中的物态方程、内能和熵是基本热力学函数,不仅因为它们对应热力学状态描述第零定律、第一定律和第二定律,而且其它热力学函数也可以由这三个基本热力学函数导出。 焓:自由能: 吉布斯函数: 下面我们由热力学的基本方程(1) 即内能的全微分表达式推导焓、自由能和吉布斯函数的全微分 焓、自由能和吉布斯函数的全微分 o焓的全微分 由焓的定义式,求微分,得, ; 将(1)式代入上式得(2) o自由能的全微分 由得 (3) o吉布斯函数的全微分 (4)

从方程(1)(2)(3)(4)我们容易写出内能、焓、自由能和吉布斯函数的全微分dU,dH,dF,和dG独立变量分别是S,V;S,P;T,V和T,P 所以函数U(S,V),H(S,P),F(T,V),G(T,P)就是我们在§将要讲到的特性函数。下面从这几个函数和它们的全微分方程来推出麦氏关系。 二、热力学(Maxwell)关系(麦克斯韦或麦氏) ~ (1)U(S,V) 利用全微分性质(5) 用(1)式相比得(6) 再利用求偏导数的次序可以交换的性质,即 (6)式得(7) (2)H(S,P) 同(2)式相比有 由得(8) (3)F(T,V) ~

同(3)式相比 (9) (4)G(T,P) 同(4)式相比有 (10) (7),(8),(9),(10)式给出了热力学量的偏导数之间的关系,称为麦克斯韦()关系,简称麦氏关系。它是热力学参量偏导数之间的关系,利用麦氏关系,可以从以知的热力学量推导出系统的全部热力学量,可以将不能直接测量的物理量表示出来。例如,只要知道物态方程,就可以利用(9),(10)式求出熵的变化,即可求出熵函数。 §麦氏关系的简单应用 证明 ' 1. 求 选T,V为独立变量,则内能U(T,V)的全微分为 (1)

热力学与统计物理第三章知识总结

§3.1 热动平衡判据 当均匀系统与外界达到平衡时,系统的热力学参量必须满足一定的条件,称为系统的平衡条件。这些条件可以利用一些热力学函数作为平衡判据而求出。下面先介绍几种常用的平衡判据。 oisd一、平衡判据 1、熵判据 熵增加原理,表示当孤立系统达到平衡态时,它的熵增加到极大值,也就是说,如果一个孤立系统达到了熵极大的状态,系统就达到了平衡态。于是,我们就能利用熵函数的这一性质来判定孤立系统是否处于平衡态,这称为熵判据。孤立系统是完全隔绝的,与其他物体既没有热量的交换,也没有功的交换。如果只有体积变化功,孤立系条件相当与体积不变和内能不变。 因此熵判据可以表述如下:一个系统在体积和内能不变的情形下,对于各种可能的虚变动,平衡态的熵最大。在数学上这相当于在保持体积和内能不变的条件下通过对熵函数求微分而求熵的极大值。如果将熵函数作泰勒展开,准确到二级有 d因此孤立系统处在稳定平衡态的充分必要条件为 既围绕某一状态发生的各种可能的虚变动引起的熵变,该状态的熵就具有极大值,是稳定的平衡状态。 如果熵函数有几个可能的极大值,则其中最大的极大相应于稳定平衡,其它较小的极大相应于亚稳平衡。亚稳平衡是这样一种平衡,对于无穷小的变动是稳定是,对于有限大的变动是不稳定的。如果对于某些变动,熵函数的数值不变,,这相当于中性平衡了。 熵判据是基本的平衡判据,它虽然只适用于孤立系统,但是要把参与变化的全部物体都包括在系统之内,原则上可以对各种热动平衡问题作出回答。不过在实际应用上,对于某些经常遇到的物理条件,引入其它判据是方便的,以下将讨论其它判据。 2、自由能判据

表示在等温等容条件下,系统的自由能永不增加。这就是说,处在等温等容条件下的系统,如果达到了自由能为极小的状态,系统就达到了平衡态。我们可以利用函数的这一性质来判定等温等容系统是否处于平衡态,其判据是:系统在等温等容条件下,对于各种可能的变动,平衡态的自由能最小。这一判据称为自由能判据。 按照数学上的极大值条件,自由能判据可以表示为: ; 由此可以确定平衡条件和平衡的稳定性条件。 所以等温等容系统处于稳定平衡状态的必要和充分条件为: 3吉布斯函数判据 在等温等压过程中,系统的吉布斯函数永不增加。可以得到吉布斯函数判据:系统在等温等压条件下,对于各种可能的变动,平衡态的吉布斯函数最小。 数学表达式为 , 等温等压系统处在稳定平衡状态的必要和充分条件为 除了熵,自由能和吉布斯函数判据以外,还可以根据其它的热力学函数性质进行判断。例如,内能判据,焓判据等。 二、平衡条件 做为热动平衡判据的初步应用,我们考虑一个均匀的物质系统与具有恒定温度和恒定压强的热源相互接触,在接触中二者可以通过功和热量的方式交换能量。我们推求在达到平衡时所要满足的平衡条件和平衡稳定条件。 1.平衡条件 现在利用熵判据求系统的平衡条件。我们将系统和热源合起来构成一个孤立系统,设系统的 熵为S,热源的熵为因为熵是一个广延量,具有可加性,则孤立系统的总熵(用) 为: (1) 当达到平衡态时,根据极值条件可得: (2)

2020年热力学统计物理各章重点总结

热力学统计物理各章重点总结第一章概念系统孤立系统、闭系、开系与其他物体既没有 物质交换也没有能量交换的系统称为孤立系; 与外界没有物质交换,但有能量交换的系统称为闭系; 与外界既有物质交换,又有能量交换的系统称为开系; 平衡态平衡态的特点系统的各种宏观性质都不随时间变化; 热力学的平衡状态是一种动的平衡,常称为热动平衡; 在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落; 对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态 的概念推断系统是否处在平衡状态。 准静态过程和非准静态过程准静态过程进行得非常缓慢的过程,系统在过程汇总经历的每 一个状态都可以看做平衡态。 非准静态过程,系统的平衡态受到破坏内能、焓和熵内能是状态函数。当系统的初态A 和终态B给定后,内能之差就有确定值,与系统由A到达B所经历的过程无关; 表示在等 压过程中系统从外界吸收的热量等于态函数焓的增加值。这是态函数焓的重要特性克劳修斯 引进态函数熵。定义: 热容量等容热容量和等压热容量及比值定容热容量: 定压热容量: 循环过程和卡诺循环循环过程(简称循环)如果一系统由某个状 态出发,经过任意一系列过程,最后回到原来的状态,这样的过程称为循环过程。系统经历 一个循环后,其内能不变。 理想气体卡诺循环是以理想气体为工作物质、由两个等温过程和两个绝热过程构成的可逆循 环过程。 可逆过程和不可逆过程不可逆过程如果一个过程发生后,不论用任何曲折复杂的方法都不 可能使它产生的后果完全消除而使一切恢复原状。 可逆过程如果一个过程发生后,它所产生的后果可以完全消除而令一切恢复原状。 自由能F和G 定义态函数自由能F,F=U-TS 定义态函数吉布斯函数G,G=U-TS+PV, 可得GA-GB3-W1 定律及推论热力学第零定律-温标如果物体A和物体B各自与外在 同一状态的物体C达到热平衡,若令A与B进行热接触,它们也将处在热平衡。 三要素 (1)选择测温质; (2)选取固定点;

热力学统计物理课后习题答案

第七章 玻耳兹曼统计 7.1试根据公式V a P L l l ??- =∑ε证明,对于非相对论粒子 () 2 222 22212z y x n n n L m m P ++?? ? ??== πε, ( ,2,1,0,,±±=z y x n n n )有V U P 32= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。 证明:处在边长为L 的立方体中,非相对论粒子的能量本征值为 () 2222 2,,2212z y x n n n n n n L m m P z y x ++?? ? ??== πε ( ,2,1,0,,±±=z y x n n n )-------(1) 为书写简便,我们将上式简记为3 2 -=aV ε-----------------------(2) 其中V=L 3 是系统的体积,常量() 22 222)2(z y x n n n m a ++= π,并以单一指标l 代表n x ,n y ,n z 三个量子数。 由(2)式可得 V aV V l L εε323235 -=-=??----------------------(3) 代入压强公式,有V U a V V a P l l l L l l 3232 = =??-=∑∑εε----------------------(4) 式中 l l l a U ε ∑= 是系统的能。 上述证明未涉及分布的具体表达式,因此上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。 注:(4)式只适用于粒子仅有平移运动的情形。如果粒子还有其他的自由度,式(4)中的U 仅指平动能。 7.2根据公式V a P L l l ??- =∑ε证明,对于极端相对论粒子 () 2 1 2 222z y x n n n L c cp ++== πε, ,2,1,0,,±±=z y x n n n 有V U P 31= 上述结论对于玻尔兹曼分布,玻色分布和费米分布都成立。 证明:处在边长为L 的立方体中,极端相对论粒子的能量本征值为 () 2 1 22 2,,2z y x n n n n n n L c z y x ++= πε, ,2,1,0,,±±=z y x n n n -------(1) 为书写简便,我们将上式简记为3 1-=aV ε-----------------------(2) 其中V=L 3 是系统的体积,常量( ) 2 1 2 2 2 2z y x n n n c a ++= π,并以单一指标l 代表n x ,n y ,n z 三 个量子数。

热力学与统计物理答案详解第二章的

第二章 均匀物质的热力学性质 2.1 已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加. 解:根据题设,气体的压强可表为 (),p f V T = (1) 式中()f V 是体积V 的函数. 由自由能的全微分 dF SdT pdV =-- 得麦氏关系 .T V S p V T ??????= ? ??????? (2) 将式(1)代入,有 ().T V S p p f V V T T ?????? === ? ? ?????? (3) 由于0,0p T >>,故有0T S V ??? > ????. 这意味着,在温度保持不变时,该气体的熵随体积而增加. 2.2 设一物质的物态方程具有以下形式: (),p f V T = 试证明其内能与体积无关. 解:根据题设,物质的物态方程具有以下形式: (),p f V T = (1) 故有 ().V p f V T ???= ???? (2) 但根据式(2.2.7),有 ,T V U p T p V T ?????? =- ? ??????? (3) 所以

()0.T U Tf V p V ???=-= ???? (4) 这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度T 的函数. 2.3 求证: ()0;H S a p ???< ???? ()0.U S b V ??? > ???? 解:焓的全微分为 .dH TdS Vdp =+ (1) 令0dH =,得 0.H S V p T ???=-< ???? (2) 内能的全微分为 .dU TdS pdV =- (3) 令0dU =,得 0.U S p V T ??? => ? ??? (4) 2.4 已知0T U V ??? = ????,求证0.T U p ?? ?= ???? 解:对复合函数 (,)(,(,))U T P U T V T p = (1) 求偏导数,有 .T T T U U V p V p ?????????= ? ? ?????????? (2) 如果0T U V ??? = ????,即有 0.T U p ?? ?= ???? (3) 式(2)也可以用雅可比行列式证明:

热力学统计物理总复习知识点

热力学部分 第一章 热力学的基本规律 1、热力学与统计物理学所研究的对象:由大量微观粒子组成的宏观物质系统 其中所要研究的系统可分为三类 孤立系:与其他物体既没有物质交换也没有能量交换的系统; 闭系:与外界有能量交换但没有物质交换的系统; 开系:与外界既有能量交换又有物质交换的系统。 2、热力学系统平衡状态的四种参量:几何参量、力学参量、化学参量和电磁参量。 3、一个物理性质均匀的热力学系统称为一个相;根据相的数量,可以分为单相系和复相系。 4、热平衡定律(热力学第零定律):如果两个物体各自与第三个物体达到热平衡,它们彼此 也处在热平衡. 5、符合玻意耳定律、阿氏定律和理想气体温标的气体称为理想气体。 6、范德瓦尔斯方程是考虑了气体分子之间的相互作用力(排斥力和吸引力),对理想气体状 态方程作了修正之后的实际气体的物态方程。 7、准静态过程:过程由无限靠近的平衡态组成,过程进行的每一步,系统都处于平衡态。 8、准静态过程外界对气体所作的功:,外界对气体所作的功是个过程量。 9、绝热过程:系统状态的变化完全是机械作用或电磁作用的结果而没有受到其他影响。绝 热过程中内能U 是一个态函数:A B U U W -= 10、热力学第一定律(即能量守恒定律)表述:任何形式的能量,既不能消灭也不能创造, 只能从一种形式转换成另一种形式,在转换过程中能量的总量保持恒定;热力学表达式: Q W U U A B +=-;微分形式:W Q U d d d += 11、态函数焓H :pV U H +=,等压过程:V p U H ?+?=?,与热力学第一定律的公 式一比较即得:等压过程系统从外界吸收的热量等于态函数焓的增加量。 12、焦耳定律:气体的内能只是温度的函数,与体积无关,即)(T U U =。 13.定压热容比:p p T H C ??? ????=;定容热容比:V V T U C ??? ????= 迈耶公式:nR C C V p =- 14、绝热过程的状态方程:const =γpV ;const =γ TV ;const 1 =-γγT p 。 15、卡诺循环过程由两个等温过程和两个绝热过程组成。正循环为卡诺热机,效率 211T T -=η,逆循环为卡诺制冷机,效率为2 11T T T -=η(只能用于卡诺热机)。 16、热力学第二定律:克劳修斯表述:不可能把热量从低温物体传到高温物体 而不引起其他变化(表明热传导过程是不可逆的); 开尔文(汤姆孙)表述:不可能从单一热源吸收热量使之完全变成有用的功而不引起其 他变化(表明功变热的过程是不可逆的); 另一种开氏表述:第二类永动机不可能造成的。 V p W d d -=

热力学统计物理练习试题和答案

热力学·统计物理练习题 一、填空题. 本大题70个小题,把答案写在横线上。 1.当热力学系统与外界无相互作用时,经过足够长时间,其宏观性质 时间改变,其所处的 为热力学平衡态。 2. 系统,经过足够长时间,其 不随时间改变,其所处的状态为热力学平衡态。 3.均匀物质系统的热力学平衡态可由力学参量、电磁参量、几何参量、化学参量等四类参量描述,但有 是独立的。 4.对于非孤立系统,当其与外界作为一个整体处于热力学平衡态时,此时的系统所处的状态是 。 5.欲描述非平衡系统的状态,需要将系统分成若干个小部分,使每小部分具有 小,但微观上又包含大量粒子,则每小部分都可视为 。 6.描述热力学系统平衡态的独立参量和 之间关系的方程式叫物态方程,其一般表达式为 。 7.均匀物质系统的独立参量有 个,而过程方程独立参量只有 个。 8.定压膨胀系数的意义是在 不变的条件下系统体积随 的相对变化。 9.定容压力系数的意义是在 不变条件下系统的压强随 的相对变化。 10.等温压缩系数的意义是在 不变条件下系统的体积随 的相对变化。 11.循环关系的表达式为 。 12.在无摩擦准静态过程中存在着几种不同形式的功,则系统对外界作的功∑-=δi i dy Y W ,其中i y 是 ,i Y 是与i y 相应的 。 13.W Q U U A B +=-,其中W 是 作的功。 14.?=+=0W Q dU ,-W 是 作的功,且-W 等于 。 15.?δ+δ2L 11W Q ?δ+δ2 L 12W Q (1、2均为热力学平衡态,L 1、L 2为准静态过程)。 16.第一类永动机是指 的永动机。 17.能是 函数,能的改变决定于 和 。 18.焓是 函数,在等压过程中,焓的变化等于 的热量。 19.理想气体能 温度有关,而与体积 。

热力学与统计物理答案第二章

第二章 均匀物质的热力学性质 已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加. 解:根据题设,气体的压强可表为 (),p f V T = (1) 式中()f V 是体积V 的函数. 由自由能的全微分 dF SdT pdV =-- 得麦氏关系 .T V S p V T ??????= ? ??????? (2) 将式(1)代入,有 ().T V S p p f V V T T ?????? === ? ? ?????? (3) 由于0,0p T >>,故有0T S V ??? > ????. 这意味着,在温度保持不变时,该气体的熵随体积而增加. 设一物质的物态方程具有以下形式: (),p f V T = 试证明其内能与体积无关.

解:根据题设,物质的物态方程具有以下形式: (),p f V T = (1) 故有 ().V p f V T ???= ???? (2) 但根据式(2.2.7),有 ,T V U p T p V T ??????=- ? ??????? (3) 所以 ()0.T U Tf V p V ??? =-= ???? (4) 这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度T 的函数. 求证: ()0;H S a p ???< ???? ()0.U S b V ??? > ???? 解:焓的全微分为 .dH TdS Vdp =+ (1) 令0dH =,得 0.H S V p T ???=-< ???? (2)

内能的全微分为 .dU TdS pdV =- (3) 令0dU =,得 0.U S p V T ???=> ???? (4) 已知0T U V ??? = ????,求证0.T U p ?? ?= ???? 解:对复合函数 (,)(,(,))U T P U T V T p = (1) 求偏导数,有 .T T T U U V p V p ???? ?????= ? ? ?????????? (2) 如果0T U V ??? = ????,即有 0.T U p ?? ?= ???? (3) 式(2)也可以用雅可比行列式证明: (, )(, )(,)(,)(, )(,) T U U T p p T U T V T V T p T ????= ? ??????= ??

热力学统计物理各章重点总结..教学提纲

热力学统计物理各章重点总结..

第一章 概念 1.系统:孤立系统、闭系、开系 与其他物体既没有物质交换也没有能量交换的系统称为孤立系; 与外界没有物质交换,但有能量交换的系统称为闭系; 与外界既有物质交换,又有能量交换的系统称为开系; 2.平衡态 平衡态的特点:1.系统的各种宏观性质都不随时间变化;2.热力学的平衡状态是一种动的平衡,常称为热动平衡;3.在平衡状态下,系统宏观物理量的数值仍会发生或大或小的涨落;4.对于非孤立系,可以把系统与外界合起来看做一个复合的孤立系统,根据孤立系统平衡状态的概念推断系统是否处在平衡状态。 3.准静态过程和非准静态过程 准静态过程:进行得非常缓慢的过程,系统在过程汇总经历的每一个状态都可以看做平衡态。 非准静态过程,系统的平衡态受到破坏 4.内能、焓和熵 内能是状态函数。当系统的初态A和终态B给定后,内能之差就有确定值,与系统由A到达B所经历的过程无关; 表示在等压过程中系统从外界吸收的热量等于态函数焓的增加值。这是态函数焓的重要特性 克劳修斯引进态函数熵。定义:

5.热容量:等容热容量和等压热容量及比值定容热容量: 定压热容量: 6.循环过程和卡诺循环 循环过程(简称循环):如果一系统由某个状态出发,经过任意一系列过程,最后回到原来的状态,这样的过程称为循环过程。系统经历一个循环后,其内能不变。 理想气体卡诺循环是以理想气体为工作物质、由两个等温过程和两个绝热过程构成的可逆循环过程。 7.可逆过程和不可逆过程 不可逆过程:如果一个过程发生后,不论用任何曲折复杂的方法都不可能使它产生的后果完全消除而使一切恢复原状。 可逆过程:如果一个过程发生后,它所产生的后果可以完全消除而令一切恢复原状。 8.自由能:F和G 定义态函数:自由能F,F=U-TS

热力学统计物理精彩试题

简述题 1. 写出系统处在平衡态的自由能判据。 一个处在温度和体积不变条件下的系统,处在稳定平衡态的充要条件是,对于各种可能的有限虚变动,所引起的自由能的改变均大于零。即0F ?>。 2. 写出系统处在平衡态的吉布斯函数判据。 一个处在温度和压强不变条件下的系统,处在稳定平衡态的充要条件是,对于各种可能的有限虚变动,所引起的吉布斯函数的改变均大于零。即0G ?>。 3. 写出系统处在平衡态的熵判据。 一个处在内能和体积不变条件下的系统,处在稳定平衡态的充要条件是,对于各种可能的有限虚变动,所引起的熵变均小于零。即 0S ?< 4. 熵的统计解释。 由波耳兹曼关系ln S k =Ω 可知,系统熵的大小反映出系统在该宏观状态下所具有的可能的微观状态的多少。而可能的微观状态的多少,反映出在该宏观平衡态下系统的混乱度的大小。故,熵是系统内部混乱度的量度。 5. 为什么在常温或低温下原子内部的电子对热容量没有贡献? 不考虑能级的精细结构时,原子内的电子激发态与基态的能量差为1~10eV ,相应的特征温度为4 5 K 10~10。在常温或低温下,电子通过热运动获得如此大的能量而跃迁到激发态的概率几乎为零,平均而言电子被冻结基态,因此对热容量没有贡献。 6. 为什么在常温或低温下双原子分子的振动对热容量贡献可以忽略? 因为双原子分子的振动特征温度3 K θ~10v ,在常温或低温下 kT <

热力学统计物理课后11

第一章 热力学的基本规律 1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数 κT 。 解:已知理想气体的物态方程为 ,pV nRT = (1) 由此易得 11 ,p V nR V T pV T α???= == ? ??? (2) 11 ,V p nR p T pV T β???= == ? ??? (3) 2111 .T T V nRT V p V p p κ???????=-=--= ? ? ???????? (4) 1.2 证明任何一种具有两个独立参量,T p 的物质,其物态方程可由实验测得的体胀系数α及等温压缩系数κT ,根据下述积分求得: ()ln T V =αdT κdp -? 如果11 ,T T p ακ== ,试求物态方程。 解:以,T p 为自变量,物质的物态方程为 (),,V V T p = 其全微分为 .p T V V dV dT dp T p ?????? =+ ? ? ?????? (1) 全式除以V ,有 11.p T dV V V dT dp V V T V p ??????=+ ? ???????

根据体胀系数α和等温压缩系数T κ的定义,可将上式改写为 .T dV dT dp V α κ=- (2) 上式是以,T p 为自变量的完整微分,沿一任意的积分路线积分,有 ()ln .T V dT dp ακ=-? (3) 若1 1,T T p ακ==,式(3)可表为 11ln .V dT dp T p ?? =- ???? (4) 选择图示的积分路线,从00(,)T p 积分到()0,T p ,再积分到(,T p ),相应地体 积由0V 最终变到V ,有 000 ln =ln ln ,V T p V T p - 即 000 p V pV C T T ==(常量), 或 .pV CT = (5)

热力学统计物理试题(B卷)

热力学·统计物理试题(B 卷) 适用于200×级本科物理学专业 (200×-200×学年度第×学期) 1. (10分) 证明范氏气体的定容热容量只是温度的函数,与比容无关. 2. (20分) 试证明,相变潜热随温度的变化率为 β p c dT dL =-αp c -+T L αβαβ v v L T v T v p p -??? ????????? ????-???? ???? 如果β相是气相,α相是凝聚相,试证明上式可简化为: α βp p c c dT dL -= 3.(10分) 若将U 看作独立变数T , V , n 1,… n k 的函数,试证明: (1)V U V n U n U i i i ??+??= ∑ (2)V U v n U u i i i ??+??= 4.(20分) 试证明,对于遵从玻尔兹曼分布的系统,熵函数可以表示为 ∑-=s Ps Ps Nk S ln 式中P s 是总粒子处于量子态s 的概率,1Z e N e P s s s βεβεα---= =,∑s 对粒子的所有量子态求和。 5.(20分) 铁磁体中的自旋波也是一种准粒子,遵从玻色分布,色散关系是2 Ak =ω.试证明在低温下,这种准粒子的激发所导致的热容与2 /3T 成正比.

6.(20分)在极端相对论情形下电子能量与动量的关系为 cp = ε,其中c为光速.试求自 由电子气体在0K时的费米能量,内能和简并压.

附标准答案 1. (10分) 解证:范氏气体()RT b v v a p =-?? ? ??+ 2 由式(2.2.7)? T v U ??? ????=T V T p ??? ????-p =T 2 v a p b v R =-- (5分) T v U ??? ????=2v a ?)(),(0T f v a U v T U +-= =V C V T U ??? ????=)(T f ' ;与v 无关。 (5分) 2.(20分) 证明:显然属于一级相变; ()())(αβS S T L -=; 其中())(,T p T S S =, 在p ~T 相平衡曲线上. ()[]??? ? ??????+??? ?????+-=dT dp p S T T S T S S dT dL αβ 其中:=??? ?????T S ()P T S ???? ????β()P T S ???? ????-α =???? ??????dT dp p S [()P T S ? ??? ? ???β()P T S ???? ????-α]dT dp ? (5分) 又有:T C P =P T S ??? ????;()() )(αβS S T L -= 由麦氏关系(2.2.4): -=???? ????T p S P T V ??? ???? (5分) 上几式联立(并将一级相变的克拉伯珑方程代入)得: β p c dT dL =-αp c -+T L αβαβ v v L T v T v p p -??? ????????? ????-???? ???? (5分) 若β相是气相,α相是凝聚相;() αV ~0;()p T V ???? ???α~0; β相按理想气体处理。pV=RT

热力学统计物理答案 第一章

第一章 热力学的基本规律 习题1.1 试求理想气体的体胀系数α,压强系数β和等温压缩系数T κ。 解:由得:nRT PV = V n R T P P n R T V == ; 所以, T P nR V T V V P 1 1)(1== ??=α T PV Rn T P P V /1)(1== ??=β P P n R T V P V V T T /11 1)(12=--=??-=κ 习题1.2 试证明任何一种具有两个独立参量的物质p T ,,其物态方程可由实验测得的体胀系数α及等温压缩系数T κ,根据下述积分求得:?-=)(ln dp dT V T κα如果1T α= 1 T p κ= ,试求物态方程。 解: 因为0),,(=p V T f ,所以,我们可写成),(p T V V =,由此, dp p V dT T V dV T p )()( ??+??=, 因为T T p p V V T V V )(1,)(1??-=??=κα 所以, dp dT V dV dp V dT V dV T T κακα-=-=, 所以, ?-=dp dT V T καln ,当p T T /1,/1==κα. CT pV p dp T dT V =-=? :,ln 得到 习题 1.3测得一块铜块的体胀系数和等温压缩系数分别为1510*85.4--=K α和 1710*8.7--=n T p κ,T κα,可近似看作常量,今使铜块加热至10°C 。问(1压强 要增加多少n p 才能使铜块体积不变?(2若压强增加100n p ,铜块的体积改多少 解:分别设为V xp n ?;,由定义得: 74410*8.7*10010*85.4;10*858.4----=?=V x T κ 所以,410*07.4,622-=?=V p x n 错

相关文档
相关文档 最新文档