文档库 最新最全的文档下载
当前位置:文档库 › 自耦变压器使用方法

自耦变压器使用方法

自耦变压器使用方法

自耦变压器使用方法

自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高.

自耦变压器与普通变压器不同之处是:

1、其一次侧与二次侧不仅有磁的联系,而且有电的联系,而普通变压器仅是磁的联系。

2、电源通过变压器的容量是由两个部分组成:即一次绕组与公用绕组之间电磁感应功率,和一次绕组直接传导的传导功率。

3、由于自耦变绕组是由一次绕组和公用绕组两部分组成,一次绕组的匝数较普通变压器一次绕组匝数和高度及公用绕组电流及产生的漏抗都相应减少,自耦变的短路电抗X 自是普通变压器的短路电抗X普的(1-1/k)倍,k为变压器变比。

4、若自耦变压器设有第三绕组,其第三绕组将占用公用绕组容量,影响自耦变运行方式和交换容量。

5、由于自耦变压器中性点必须接地,使继电保护的定植整定和配置复杂化。

6、自耦变压器体积小,重量轻,便于运输,造价低。

自耦变压器工作原理

自耦变压器的工作原理 1自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高. 2其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈```一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压``,自耦变压器是自己影响自己`` 3自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,其余部分称为串联绕组,同容量的自藕变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、电压等级的提高和输送容量的增大,自藕变压器由于其容量大、损耗小、造价低而得到广泛应用. 由电磁感应的原理可知,变压器并不要有分开的原绕组和副绕组,只有一个线圈也能达到变换电压的 目的.在图1中,当变压器原绕组W1接入交流电源U1时,变压器原绕组每匝的电压降,电压平均分配在变压器原绕组1,2,变压器副绕组W2的电压等于原绕组每匝电压乘以3,4的匝数.在U1不变的下,变更W1和W2的比例,就得到不同的U2值.这种原,副绕组直接串联,自行偶合的变压器就叫自藕变压器,又叫单圈变压器. 普通变压器的原,副绕组是互相绝缘的,只用磁的联系而没有电的联系,依线圈组数的不同,这 种变压器又可分为双圈变压器或多圈变压器.由电磁感应的原理可知,并不要有分开的原绕组和副 绕组,只有一个线圈也https://www.wendangku.net/doc/db4667571.html,能达到变换电压的目的.在图1中,当原绕组W1接入交流电源U1时,原绕组每匝的电压降,电压平均分配在原绕组1,2,,副绕组W2的电压等于原绕组每匝电压乘 以3,4的匝数.在U1不变的下,变更W1和W2的比例,就得到不同的U2值.这种原,副绕组直接串联,自行偶合的变压器称为自耦变压器,又叫单圈变压器. 自耦变压器中的电压,电流和匝数的关系和变压器,既:U1/U2=W1/W2=I2/I1=K 自耦变压器最大特点是,副绕组是原绕组的一部分(如图1的自耦降压变压器),或原绕组是副绕组的一部分(如图2的自耦升压变压器).

变压器容量计算

变压器: 变压器(Transformer)是利用电磁感应的原理来改变交流电压的装置,主要构件是初级线圈、次级线圈和铁芯(磁芯)。主要功能有:电压变换、电流变换、阻抗变换、隔离、稳压(磁饱和变压器)等。 变压器按用途可以分为:配电变压器、电力变压器、全密封变压器、组合式变压器、干式变压器、油浸式变压器、单相变压器、电炉变压器、整流变压器、电抗器、抗干扰变压器、防雷变压器、箱式变电器试验变压器、转角变压器、大电流变压器、励磁变压器等。 容量: 常指一个物体的容积的大小,容量的公制单位是升。容量也指物体或者空间所能够容纳的单位物体的数量。 变压器额定容量: 变压器额定容量是指主分接下视在功率的惯用值。在变压器铭牌上规定的容量就是额定容量,它是指分接开关位于主分接,是额定满载电压、额定电流与相应的相系数的乘积。对三相变压器而言,额定总容量容量等于=3根号额定线电压×线电流,额定容量一般以kVA 或MVA表示。额定容量是在规定的整个正常使用寿命期间,如30年,所能连续输出最大容量。而实际输出容量为有负载时的电压、额定电流与相应系数的乘积。 概念: 额定容量是指主分接下视在功率的惯用值。在变压器铭牌上规定

的容量就是额定容量,它是指分接开关位于主分接,是额定空载电压、额定电流与相应的相系数的乘积。对三相变压器而言,额定容量等于=根号3×额定相电压×相电流,额定容量一般以kVA或MVA表示。 计算: 额定容量是在规定的整个正常使用寿命期间,如30年,所能连续输出最大容量。而实际输出容量为有负载时的电压(感性负载时,负载时电压小于额定空载电压)、额定电流与相应系数的乘积。

变压器容量的选择与计算

变压器容量的选择与计算 电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。 一、台数选择 变压器的台数一般根据负荷等级、用电容量和经济运行等条件综合考虑确定。当符合下列条件之一时,宜装设两台及以上变压器: 1.有大量一级或二级负荷在变压器出现故障或检修时,多台变压器可保证一、二级负荷的供电可靠性。当仅有少量二级负荷时,也可装设一台变压器,但变电所低压侧必须有足够容量的联络电源作为备用。 2.季节性负荷变化较大根据实际负荷的大小,相应投入变压器的台数,可做到经济运行、节约电能。 3.集中负荷容量较大虽为三级负荷,但一台变压器供电容量不够,这时也应装设两台及以上变压器。 当备用电源容量受到限制时,宜将重要负荷集中并且与非重要负荷分别由不同的变压器供电,以方便备用电源的切换。 二、容量选择 变压器容量的选择,要根据它所带设备的计算负荷,还有所带负荷的种类和特点来确定。首先要准确求计算负荷,计算负荷是供电设备计算的基本依据。确定计算负荷目前最常用的一种方法是需要系数法,按需要系数法确定三相用电设备组计算负荷的基本公式为:

有功计算负荷(kw ) c m d e P P K P == 无功计算负荷(kvar ) tan c c Q P ?= 视在计算负荷(kvA ) cos c c P S ?= 计算电流(A ) c I = 式中 N U ——用电设备所在电网的额定电压(kv ); d K ——需要系数; Pe ——设备额定功率; K Σq ——无功功率同期系数; K Σp ——有功功率同期系数; tan φ设备功率因数角的正切值。 例如:某380V 线路上,接有水泵电动机5台,共200kW ,另有通风机5台共55kW ,确定线路上总的计算负荷的步骤为 (1)水泵电动机组需要系数d K =0.7~0.8(取d K =0.8),cos 0.8?=,tan 0.75?=,因此 (2)通风机组需要系数d K =0.7~0.8(取d K =0.8),cos 0.8?=,tan 0.75?=,因此 考虑各组用电设备的同时系数,取有功负荷的为0.95P K =∑,无功负荷的为 0.97q K =∑,总计算负荷为

自耦变压器原理

自耦变压器原理 随着工业的不断发展,除了普通双绕组电力变压器外,相应地出现了适用于各种用途的特殊变压器,虽然种类和规格很多,但是其基本原理与普通双绕组变压器相同或相似,不再作一一讨论。本文主要介绍较常用的自耦变压器的工作原理。 自耦变压器概述 自耦的耦是电磁耦合的意思,普通的变压器是通过原副边线圈电磁耦合来传递能量,原副边没有直接电的联系,自耦变压器原副边有直接电的联系,它的低压线圈就是高压线圈的一部分。 通信线路的防护设备中也会使用自耦变压器等保护设备。 自耦变压器是指它的绕组是,初级和次级在同一条绕组上的变压器。根据结构还可细分为可调压式和固定式。 自耦变压器是根据电磁感应现象中的自感现象制成的,它主要作用调节电压高低。 自感电动势是由于通过线圈本身的电流产生变化,使得穿过线圈的磁通发生变化而引起线圈两端产生的电动势。因为感应电动势的高低与线圈的匝数成正比例,所以整个线圈中的局部绕组产生的电动势一定低于全部绕组产生的电动势。如果把局部绕组和全部绕组分别作为初级和次级,就构成了自耦变压器。同样,改变两部分绕组的匝数比也就改变了变压比。 自耦变压器结构简单,成本低。制成的自耦调压器、自耦降压补偿器等被广泛使用。但是由于自耦变压器的初、次级在电路上没有实现隔离,安全性能不高。所以在要求使用安全电压的场所,被禁止使用自耦变压器。 一、自耦变压器工作原理 1.结构特点及用途 前面叙述的变压器,其一、二次绕组是分开绕制的,它们虽装在同一铁心上,但相互之间是绝缘的,即一、二次绕组之间只有磁的耦合,而没有电的直接联系。这种变压器称为双绕组变压器。如果把一、二次绕组合二为一,使二次绕组成为一次绕组的一部分,这种只有一个绕组的变压器称为自耦变压器,如图所示。可见自耦变压器的一、二次绕组之间除了有磁的耦合外,还有电的直接联系。由下面的分析可知,自耦变压器可节省铜和铁的消耗量,从而减小变压器的体积、重量,降低制造成本,且有利于大型变压器的运输和安装。在高压输电系统中,自耦变压器主要用来连接两个电压等级相近的电力网,作联络变压器之用。在实验室常用具有滑动触点的自耦调压器获得可任意调节的交流电压。此外,

设备功率计算变压器容量

根据设备功率计算变压器容量(一) 一)根据你提供的设备清单如下: 电焊机25 台,功率分别为: 3.0KVA*8 ;8KVA*6 ;16KVA*5 ;30KVA*2 ;180KVA*2 ; 200KVA*2 ; & =50% 电焊机,Kx=0.35, 二)你厂所需500KVA 的变压器理由计算如下: KVA 即千伏安,表示电焊机的容量, & =50%表示电焊机的额定暂载率是50%,在进行负荷计算的时候,电焊机应该统一换算到 1 00 %来计算。 Kx=0.35, 表示电焊机的需用系数是0.35。需用系数是综合了同时系数、负荷系数、设备效率、线路效率之后得到的一个系数。各种设备不尽相同。 P js表示计算负荷的有功功率。是综合了各类因素后,得到的设备计算功率。 Q js 表示计算负荷的无功功率。有功功率乘以功率因数角度的正切值,等于无功 功率。也就是你上面的Q js=P js*tg① cos①表示功率因数。功率因数越高,系统的无功功率越低。不同的设备,功率因数也不尽相同。在你的计算式中,取了电焊机的功率因数为0.7。如果是我计算的话,我就取0.4?0.45,呵呵!因为我觉得电焊机的功率因数是没有0.7的。 另外,在你的计算中,没有对焊接设备进行容量转换。我上面说了,电焊机应该统一将暂载率换算到100 %来计算。换算公式为:P e=P N* ((额定暂载率除以100%暂载率)开根号) P e是换算后的功率,P N是额定功率 额定功率二额定容量*功率因数 因此,你的共计25 台焊机的额定容量应该是S二 3.0KVA*8+8KVA*6+16KVA*5+30KVA*2+180KVA*2+200KVA*2 = 972KVA 则额定功率为972KVA*0.4 = 388.8KW (我这里计算是取的功率因数为0.4,没有按你的0.7 计算) 那么换算功率为388.8KW* (50% /100 %)开根号= 388.8KW*根号0.5 = 388.8*0.707 = 274.9KW 然后将需用系数Kx=0.35代入,则计算负荷P js=K x*P e = 274.9KW*0.35 = 96.2KW 到这里,又出现了一个问题。因为大家都知道,电焊机属于单相负载(不论接一零一火220V或者接两根火线380V,都成为单相负载),因此计算负荷有个单相到三相转换的过程。转换方法就是,如果接的是220V,也就是接入相电压时,等效功率要乘以3,如果接的是380V,也就是接入线电压时,等效功率要乘以根号3。因为

什么是自耦变压自耦变压器工作原理

什么是自耦变压自耦变压器工作原理

————————————————————————————————作者:————————————————————————————————日期:

什么是自耦变压器?自耦变压器工作原理 自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,其余部分称为串联绕组,同容量的自藕变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、电压等级的提高和输送容量的增大,自藕变压器由于其容量大、损耗小、造价低而得到广泛应用。 在一个闭合的铁芯上绕两个或以上的线圈,当一个线圈通入交流电源时(就是初级线圈),线圈中流过交变电流,这个交变电流在铁芯中产生交变磁场,交变主磁通在初级线圈中产生自身感应电动势,同时另外一个线圈(就是次级线圈)中感应互感电动势。通过改变初、次级的线圈匝数比的关系来改变初、次级线圈端电压,实现电压的变换,一般匝数比为1.5:1~2:1。因为初级和次级线圈直接相连,有跨级漏电的危险。所以不能作行灯变压器。

1.自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高。 ⒉其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈。一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。 ⒊自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,自耦变压器的其余部分称为串联绕组,同容量的自耦变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力

自耦变压器降压启动电路图

自耦变压器降压起动, 又称为补偿器降压起动, 可用抽头调节自耦变压器的变比以改变起动电流和启动转矩大小。传统自耦变压器起动大多数是用加时间继电器来控制。以下是根据某本中级电工培训指导书上自耦变压器降压起动控制线路所存在的弊病做了改进。改进后的控制线路投入使用以来, 运行稳定、可靠, 没有出现故障。 一、原动作原理 原电路的控制原理如图1 所示 自耦变压器降压启动电路图【改进版】 控制电路的本意是, 按下起动按钮SB2, 交流接触器1KM和2KM线圈得电, 触头1KM和2KM闭合, 自耦变压器串入电动机降压起动; 同时时间继电器KT 线圈也得电, KT 的触头延时动作, KT 常闭触头延时先断开, 1KM、2KM和KT 线圈先后失电, 1KM和2KM主触头断开, 变压器脱离电动机电路, 而KT 常开触头后闭合,1KM常闭闭合, 3KM线圈在1KM和2KM失电之后得电, 3KM主触头闭合, 电动机进入全压运行。再按下停止按钮使电动机停转。采用这种控制电路, 电动机的“ 起动- 自动延时- 运行”一次操作完成, 非常方便和安全。但是在正式运行时, 会产生这种现象: 在接线完全正确的情况下线路有时便可正常运行,有时便不能正常运行, 即按下起动按钮SB2 之后, 电动机降压起动了, 当转到全压运行时,便停 下来, 3KM线圈通不了电。 二、线路的弊病- 竞争冒险现象 分析其图1 控制线路的弊病是遇到了电磁元件之间的“ 触点竞争”问题, 即出现了 竞争冒险现象, 造成整个电路工作的不可靠。电路运行过程中, 当KT延时到后, 其延时常闭触点总是由于机械运动原因先断开而延时常开触点后闭合, 当延时常闭触点先断开后, 1KM 线圈随即断电, 1KM1 常闭闭合为3KM 线圈通电做准备, 同时1KMr 常开断开, KT 线圈随即断电, 由于磁场不能突变为零和衔铁复位需要时间, 故有时候延时常开触点来得及闭合, 这时3KM线圈可通电, 3KM常开触点闭合自锁, 电动机转入全压运行。但有时候因受到某些干扰而失控, KT 延时常开触点来不及闭合, KT 的磁场已消失和衔铁已复位, 3KM线圈通不了电, 从而导致了前面所提到的故障问题。此线路造成竞争冒险即上述现象的主要原因是设计过程中只考虑了电磁系统与触点系统的逻辑联系, 而忽略了触点系统动作时间性和滞后性对系统的影响, 从而造成竞争冒险。

自耦变压器工作原理

1自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高. 2其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈```一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压``,自耦变压器是自己影响自己`` 3自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,其余部分称为串联绕组,同容量的自藕变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、电压等级的提高和输送容量的增大,自藕变压器由于其容量大、损耗小、造价低而得到广泛应用. 由电磁感应的原理可知,变压器并不要有分开的原绕组和副绕组,只有一个线圈也能达到变换电压的目的.在图1中,当变压器原绕组W1接入交流电源U1时,变压器原绕组每匝的电压降,电压平均分配在变压器原绕组1,2,变压器副绕组W2的电压等于原绕组每匝电压乘以3,4的匝数.在U1不变的下,变更W1和W2的比例,就得到不同的U2值.这种原,副绕组直接串联,自行偶合的变压器就叫自藕变压器,又叫单圈变压器. 普通变压器的原,副绕组是互相绝缘的,只用磁的联系而没有电的联系,依线圈组数的不同,这种变压器又可分为双圈变压器或多圈变压器.由电磁感应的原理可知,并不要有分开的原绕组和副绕组,只有一个线圈也能达到变换电压的目的.在图1中,当原绕组W1接入交流电源U1时,原绕组每匝的电压降,电压平均分配在原绕组1,2,,副绕组W2的电压等于原绕组每匝电压乘以3,4的匝数.在U1不变的下,变更W1和W2的比例,就得到不同的U2值.这种原,副绕组直接串联,自行偶合的变压器称为自耦变压器,又叫单圈变压器. 自耦变压器中的电压,电流和匝数的关系和变压器,既:U1/U2=W1/W2=I2/I1=K 自耦变压器最大特点是,副绕组是原绕组的一部分(如图1的自耦降压变压器),或原绕组是副绕组的一部分(如图2的自耦升压变压器). 图1: 图2: 自藕变压器原,副绕组的电流方向和普通变压器一样是相反的. 在忽略变压器的激磁电流和损耗的下,可如下关系式 降压:I2=I1+I,I=I2-I1 升压:I2=I1-I,I=I1-I2 P1=U1I1,P2=U2I2 式中: I1是原绕组电流,I2是副绕组电流 U1是原绕组电压,U2是副绕组电压 P1是原绕组功率,P2是副绕组功率

自耦变压器

自耦变压器 科技名词定义 中文名称:自耦变压器 英文名称:autotransformer 定义:至少有两个绕组具有公共部分的变压器。 所属学科:电力(一级学科);变电(二级学科) 本内容由全国科学技术名词审定委员会审定公布

编辑本段概述 石家庄金山变压器有限公司 自耦变压器是指它的绕组是初级和次级是在同一调绕组上的变压器。根据结构还可细分为可调压式和固定式。 编辑本段什么是变压器? 自耦变压器降压启动控制线路 在一个闭合的铁芯上绕两个或以上的线圈,当一个线圈通入交流电源时(就是初级线圈),线圈中流过交变电流,这个交变电流在铁芯中产生交变磁场,交变主磁通在初级线圈中产生自身感应电动势,同时另外一个线圈(就是次级线圈)中感应互感电动势。通过改变初、次级的线圈匝数比的关系来改变初、次级线圈端电压,实现电压的变换,一般匝数比为1.5:1~2:1。

因为初级和次级线圈直接相连,有跨级漏电的危险。所以不能作行灯变压器。 编辑本段自耦变压器和与干式变压器的区别 在目前的电网中,从220KV电压等级才开始有自耦变压器,多用作电网间的联络变。220KV以下几乎没有自耦变。 自耦变压器在较低电压下是使用最多是用来作为电机降压启动使用 对于干式变压器来讲,它的绝缘介质是树脂之类的固体,没有油浸式变压器中的绝缘油,所以称为干式。干式变压器由于散热条件差,所以容量不能做得很大,一般只有中小型变压器,电压等级也基本上在35KV及以下,但现在国内外也都已经有额定电压达到66kV甚至更高的干式变压器,容量也可达30000kVA甚至更高。 编辑本段自耦变压器的工作原理 自耦变压器零序差动保护原理图

变压器容量选择算步骤

变压器容量选择计算步骤 当我们提到变压器容量的时候,很多人不知道变压器容量计算公式是什么。那么变压器容量怎么计算呢?下面就跟电工学习网一起来看看吧。 一、变压器容量计算公式 1、计算负载的每相最大功率 将A相、B相、C相每相负载功率独立相加,如A相负载总功率10KW,B相负载总功率9KW,C相负载总功率11KW,取最大值11KW。(注:单相每台设备的功率按照铭牌上面的最大值计算,三相设备功率除以3,等于这台设备的每相功率。) 例如:C相负载总功率=(电脑300WX10台)+(空调2KWX4台)=11KW

2、计算三相总功率 11KWX3相=33KW(变压器三相总功率) 三相总功率/0.8,这是最重要的步骤,目前市场上销售的变压器90%以上功率因素只有0.8,所以需要除以0.8的功率因素。 33KW/0.8=41.25KW(变压器总功率) 变压器总功率/0.85,根据《电力工程设计手册》,变压器容量应根据计算负荷选择,对平稳负荷供电的单台变压器,负荷率一般取85%左右。 41.25KW/0.85=48.529KW(需要购买的变压器功率),那么在购买时选择50KVA的变压器就可以了。

二、关于变压器容量计算的一些问题 1、变压器的额定容量,应该是变压器在规定的使用条件下,能够保证变压器正常运行的最大载荷视在功率; 2、这个视在功率就是变压器的输出功率,也是变压器能带最大负载的视在功率; 3、变压器额定运行时,变压器的输出视在功率等于额定容量; 4、变压器额定运行时,变压器的输入视在功率大于额定容量;

5、由于变压器的效率很高,一般认为变压器额定运行时,变压器的输入视在功率等于额定容量,由此进行的运算及结果也是基本准确的; 6、所以在使用变压器时,你只要观察变压器输出的电流、电压、功率因数及其视在功率等于或小于额定容量就是安全的(使用条件满足时); 7、有人认为变压器有损耗,必须在额定容量90%以下运行是错误的! 8、变压器在设计选用容量时,根据计算负荷要乘以安全系数是对的。

自耦变压器降压启动电路图

自耦变压器降压启动电路图【改进版】 自耦变压器降压起动, 又称为补偿器降压起动, 可用抽头调节自耦变压器的变比以改变起动电流和启动转矩大小。传统自耦变压器起动大多数是用加时间继电器来控制。以下是根据某本中级电工培训指导书上自耦变压器降压起动控制线路所存在的弊病做了改进。改进后的控制线路投入使用以来, 运行稳定、可靠, 没有出现故障。 一、原动作原理 原电路的控制原理如图1 所示

自耦变压器降压启动电路图【改进版】 控制电路的本意是, 按下起动按钮SB2, 交流接触器1KM和2KM线圈得电, 触头1KM 和2KM闭合, 自耦变压器串入电动机降压起动; 同时时间继电器KT 线圈也得电, KT 的触头延时动作, KT 常闭触头延时先断开, 1KM、2KM和KT 线圈先后失电, 1KM和2KM主触头断开, 变压器脱离电动机电路, 而KT 常开触头后闭合,1KM常闭闭合, 3KM线圈在1KM 和2KM失电之后得电, 3KM主触头闭合, 电动机进入全压运行。再按下停止按钮使电动机停转。采用这种控制电路, 电动机的“ 起动- 自动延时- 运行”一次操作完成, 非常方便和安全。但是在正式运行时, 会产生这种现象: 在接线完全正确的情况下线路有时便可正常运行,

有时便不能正常运行, 即按下起动按钮SB2 之后, 电动机降压起动了, 当转到全压运行时,便停下来, 3KM线圈通不了电。 二、线路的弊病- 竞争冒险现象 分析其图1 控制线路的弊病是遇到了电磁元件之间的“ 触点竞争”问题, 即出现了竞争冒险现象, 造成整个电路工作的不可靠。电路运行过程中, 当KT延时到后, 其延时常闭触点总是由于机械运动原因先断开而延时常开触点后闭合, 当延时常闭触点先断开后, 1KM 线圈随即断电, 1KM1 常闭闭合为3KM 线圈通电做准备, 同时1KMr 常开断开, KT 线圈随即断电, 由于磁场不能突变为零和衔铁复位需要时间, 故有时候延时常开触点来得及闭合, 这时3KM线圈可通电, 3KM常开触点闭合自锁, 电动机转入全压运行。但有时候因受到某些干扰而失控, KT 延时常开触点来不及闭合, KT 的磁场已消失和衔铁已复位, 3KM线圈通不了电, 从而导致了前面所提到的故障问题。此线路造成竞争冒险即上述现象的主要原因是设计过程中只考虑了电磁系统与触点系统的逻辑联系, 而忽略了触点系统动作时间性和滞后性对系统的影响, 从而造成竞争冒险。 三、改进后的接线方法 经过分析, 主要是控制电路中辅助触点使用不合理造成线路设计的不完善, 针对此线 路存在的缺点对原控制电路部分进行改进, 其接线方法见图2。 四、改进后的工作原理 接通电源后, 按下起动按钮SB2, 交流接触器1KM、2KM线圈得电吸合, 1KM和2KM 主触头闭合, 自耦变压器串入电动机降压起动; 同时, 时间继电器KT 线圈也得电吸合, KT 瞬时常开触点闭合自锁。经一定时间延时后, KT 延时常开触头闭合, KT 延时常闭触头断开, 1KM线圈断电, 1KM1 常闭闭合, 3KM 线圈通电,3KM1 常开触头闭合自锁, 3KM1 常闭触头断开联锁, 使2KM及KT 线圈断电复位, 电动。

自耦变压器原理简介

自耦变压器原理简介 浏览200 发布时间09/03/21自耦变压器常用于交流输变电线路和交流调压器中,是一种只有一组线圈的变压器,线圈按设计原则有不同数量的中间抽头,按照不同的接法可以对交流电压实现升压或降压。 自耦变压器属于无隔离的变压器,其原理图如下所示: 自耦变压器升压原理图示自耦变压器降压原理图示 自耦变压器工作原理 自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,其余部分称为串联绕组,同容量的自耦变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、电压等级的提高和输送容量的增大,自藕变压器由于其容量大、损耗小、造价低而得到广泛应用. 在图1中,当变压器原绕组 V1接入交流电源时,电压平均分配在变压器V1绕组两端,变压器V2绕组的电压等于V1绕组每匝电压乘以V2绕组的匝数.在电源电压不变的下,变更V1和V2的比例,就得到不同的V2值.这种原,副绕组直接串联,自行耦合的变压器就叫自藕变压器,又叫单圈变压器.普通变压器的原,副绕组是互相绝缘的,只用磁的联系而没有电的联系,依线圈组数的不同,这种变压器又可分为双圈变压器或多圈变压器 自耦变压器最大特点是,副绕组是原绕组的一部分(降压变压器),或原绕组是副绕组的一部分(升压变压器)。 自耦变压器的优点:

两个绕组部分重叠,因此可以节省了部分铜线、体积较细、结构较为简单。 自耦变压器的缺点: 初级绕组和次级绕组之间不能完全隔离。 在降压线路中,假使次级绕组因意外断开,就会使输出电压值升至和初级的一样高,引致危险。

变压器容量的选择与计算

变压器容量的选择与计算 【摘要】电力变压器是供配电系统中必不可少且应用极广的设备,正确合理地选择变压器,是电力系统经济、安全、可靠地运行的保证,在节能降耗方面也有重要意义。本文详细地阐述了根据系统负荷选择变压器的方法和步骤。 【关键词】变压器计算负荷无功补偿 电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。 一、台数选择 变压器的台数一般根据负荷等级、用电容量和经济运行等条件综合考虑确定。当符合下列条件之一时,宜装设两台及以上变压器: 1.有大量一级或二级负荷在变压器出现故障或检修时,多台变压器可保证一、二级负荷的供电可靠性。当仅有少量二级负荷时,也可装设一台变压器,但变电所低压侧必须有足够容量的联络电源作为备用。 2.季节性负荷变化较大根据实际负荷的大小,相应投入变压器的台数,可做到经济运行、节约电能。 3.集中负荷容量较大虽为三级负荷,但一台变压器供电容量不够,这时也应装设两台及以上变压器。 当备用电源容量受到限制时,宜将重要负荷集中并且与非重要负

荷分别由不同的变压器供电,以方便备用电源的切换。 二、容量选择 变压器容量的选择,要根据它所带设备的计算负荷,还有所带负荷的种类和特点来确定。首先要准确求计算负荷,计算负荷是供电设计计算的基本依据。确定计算负荷目前最常用的一种方法是需要系数法,按需要系数法确定三相用电设备组计算负荷的基本公式为: 有功计算负荷(kw ) c m d e P P K P == 无功计算负荷(kvar ) tan c c Q P ?= 视在计算负荷(kvA ) cos c c P S ? = 计算电流(A ) c I = 式中 N U ——用电设备所在电网的额定电压(kv ); d K ——需要系数; 例如:某380V 线路上,接有水泵电动机5台,共200kW ,另有通风机5台共55kW ,确定线路上总的计算负荷的步骤为 (1)水泵电动机组 查表得d K =0.7~0.8(取d K =0.8),cos 0.8?=,tan 0.75?=,因此 .1.1.10.8200160c d e P K P kw kw ==?= .1.11tan 1600.75120var c c Q P kw k ?==?= (2)通风机组 查表得d K =0.7~0.8(取d K =0.8),cos 0.8?=, tan 0.75?=,因此 .2.2.20.85544c d e P K P kw kw ==?=

施工现场用电概况及变压器容量计算

施工现场用电概况及变压器容量计算 一、西岸用电设备主要有: 1、西岸7个墩: 5台冲击钻机(55KW/台)、5台泥浆泵(22KW/台)、1台空压机(132KW/台)、主墩1台龙门吊(30KW/台)、2台主墩塔吊(60KW/台)、地锚2台塔吊(60KW/台); 2、拌和楼: 2台拌和机(85KW/台)、2台输送泵(60KW/台,考虑用柴油输送泵); 3、钢箱梁制作区: 2台空压机(105KW/台)、30台电焊机单相380V JC=65%(22KW/台)、2台龙门吊(30KW/台); 4、钢筋、钢结构制作区: 20台电焊机单相380V JC=65%(22KW/台)、2台卷扬机(16KW/台); 5、架桥机: 70KW; 6、小箱梁制作区: 2台卷扬机(22KW/台)、2台龙门吊(30KW/台)、5台电焊机(22KW/台); 7、办公、生活区:

100KW ; 8、工地照明: 70KW 。 注:由于钢箱梁制作时间比较后,时间不长,所以本项目部先报装一个630KVA 的变压器,到钢箱梁制作前不够用再报装一个315KVA 的变压器。 变压器容量的计算公式: 有功功率:si x c P K P ∑=(kW ) 无功功率:?tg P Q c c =(k var ) 视在功率:2c 2c c Q P S +=(k VA ) 式中: x K —用电设备组的需要系数; si P ∑—用电设备组的各设备的设备功率之和,kW ; ?tg —用电设备组的平均功率因数角的正切值。 西岸现场的变压器容量计算(代入计算公式): 1、冲击钻机: 取kx=0.25 ?cos =0.7,则?tg =1.02 P C =0.25×5×55=68.75kW Q C =68.75×1.02=70.125 Kvar 2、主墩空压机: 取kx=0.25 ?cos =0.7,则?tg =1.02 P C =0.25×1×132=33kW

施工临时供电变压器容量计算方法一

施工临时供电变压器容量计算方法一(估算)--参见《袖珍建筑工程造价计算手册》 变压器容量计算公式: P =K0(K1∑P1/ (cos?×η)+K2∑P2+K3∑P3+K4∑P4) P 施工用电变压器总容量(KVA) ∑P1电动机额定功率(KW)∑P2电焊机(对焊机)额定容量(KVA)∑P3室内照明(包括空调)(KW)∑P4 室外照明(KW)(K0取值范围为1.05~1.1,取1.05) K1、K2、K3、K4为需要系数,其中: K1:电动机:3~10台取0.7,11~30台取0.6,30台以上取0.5。K2:电焊机:3~10台取0.6,10台以上取0.5。K3:室内照明:0.8 K4:室外照明:1.0。cos?:电动机的平均功率因素,取0.75 η:各台电动机平均效率,取0.86 照明用电量可按动力用电总量的10%计算。有效供电半径一般在500m以内。 施工用电量及变压器容量计算书实例(估算之二,网摘) 一.编制依据 《施工现场临时用电安全技术规范》JGJ46-2005 《工程建设标准强制性条文》 《建筑工程施工现场供电安全规范》GB50194--93《建筑施工现场安全规范检查标准》JGJ59-99 《电力工程电缆设计规范》GB50217《简明施工计算手册》第三版(江正荣、朱国梁编著) 二.施工现场用电初步统计 1)计算公式 工地临时供电包括施工及照明用电两个方面,参照《简明施工计算手册》第三版(江正荣、朱国梁编著)计算公式(17-17)如下:P =η(K1∑P1/ cos?+K2∑P2+K3∑P3+K4∑P4其中 η─ 用电不均衡系数,取值1.1;P─ 计算用电量(kW),即供电设备总需要容量; ΣP1 ── 全部电动机额定用电量之和;ΣP2 ── 电焊机额定用电量之和;ΣP3 ──室内照明设备额定用电量之和; ΣP4 ──室外照明设备额定用电量之和;K1 ── 全部动力用电设备同时使用系数,取0.6; K2 ── 电焊机同时使用系数,取0.6;K3 ── 室内照明设备同时使用系数,取0.8; K4 ── 室外照明设备同时使用系数,取1.0;cosφ ── 用电设备功率因数,取0.75。 2)施工现场用电量统计表(略)经过计算得到ΣP1 = 208.5 KWΣP2 = 170.2 KW ΣP3 = 10 KWΣP4 = 24 KW 3)用电量计算P = 1.1×(0.6×208.5/0.75+0.6×170.2+0.8×10+1×24) = 331.012 KW 三.变压器容量计算 变压器容量参照《简明施工计算手册》第三版(江正荣、朱国梁编著)计算公式(17-19)如下: P变= 1.05×P=1.05×331.012 = 347.56 KW 则现场提供的变压器SL7-400/10满足要求。 建筑工地用电负荷计算及变压器容量计算与选择(之三教材版) (2009-8-13 22:15:51) 一、土建施工用电的需要系数和功率因数 用电设备名称用电设备数量功率因数(cosφ)[tgφ]需用系数(Kη) 混凝土搅拌机及砂浆搅拌机 10以下0.65 【1.17】0.7 10~30 0.65 0.6 30以上0.6 【1.33】0.5 破碎机、筛洗石机10以下0.75 【0.88】0.75 10~50 0.7 【1.02】0.7 点焊机 0.6 0.43~1 对焊机 0.7 0.43~1 皮带运输机 0.75 0.7 提升机、起重机、卷扬机10以下0.65 0.2 振捣器0.7 0.7 仓库照明 1.0【0.0】0.35 户内照明 0.8 户外照明 1【0】 0.35

自耦变压器的原理、接线、结构

自耦变压器的原理、接线、结构 自耦变压器降压启动控制线路 在一个闭合的铁芯上绕两个或以上的线圈,当一个线圈通入交流电源时(就是初级线圈),线圈中流过交变电流,这个交变电流在铁芯中产生交变磁场,交变主磁通在初 级线圈中产生自身感应电动势,同时另外一个线圈(就是次级线圈)中感应互感电动势。通过改变初、次级的线圈匝数比的关系来改变初、次级线圈端电压,实现电压的 变换,一般匝数比为1.5:1~2:1。因为初级和次级线圈直接相连,有跨级漏电的危险。所以不能作行灯变压器。 区别在电网中,从220KV电压等级才开始有自耦变压器,多用作电网间的联络变。 220KV以下几乎没有自耦变压器。自耦变压器在较低电压下是使用最多是用来作为电 机降压启动使用。 对于干式变压器来讲,它的绝缘介质是树脂之类的固体,没有油浸式变压器中的绝缘油,所以称为干式。干式变压器由于散热条件差,所以容量不能做得很大,一般只有 中小型变压器,电压等级也基本上在35KV及以下,但国内外也都已经有额定电压达到66kV甚至更高的干式变压器,容量也可达30000kVA甚至更高。 工作原理自耦变压器零序差动保护原理图 自耦变压器 1.自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高. ⒉其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈一般的变压器是 左边一个原线圈通过电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。 ⒊自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一 部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线 匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,自耦变压器的其余部 分称为串联绕组,同容量的自耦变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、 电压等级的提高和输送容量的增大,自耦变压器由于其容量大、损耗小、造价低而得 到广泛应用.。 三相自耦变压器

变压器容量计算公式

变压器容量计算公式(总1页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

变压器容量计算公式 打桩机2台 150KW\台 300KW 龙门吊3 80KW\台 240KW 搅拌机4台 20KW\台 80KW 施工用电,计算一下需要多少KVA的变压器 用什么公示啊急用在线等 满意回答 620KW 1000KVA的变压器额定电流为1000000÷400÷1.732=1443A 如果功率因数控制在0.9以上,可以满足你目前的设备需求。 具体用那个公示呀能说下么 因为620KW的电流要根据电阻、电导率、线路远近和功率因数来计算,只能是估算大约1200~1300A,然后根据变压器的电流计算方式,估算出1000KVA的容量可以满足你的要求。 变压器容量计算 总容量210KW,需要多大的变压器。 总负荷容量210KW,负荷电流399A, 需要变压器的容量:S(视在功率)=1.732*0.4*399=276.4KVA 变压器长期运行的负荷率不宜超过85% 一般控制在70%-80% , 补偿后功率因数一般能达到0.95 但变压器允许短时的过负荷其中油变的过负荷能力比干变要强,发生事故时干变120%负荷能运行1小时油变130%负荷能运行2小时 根据《电力工程设计手册》,变压器容量应根据计算负荷选择,对平稳负荷供电的单台变压器,负荷率一般取85%左右。 即:β=S/Se 式中:S—计算负荷容量(kVA);Se—变压器容量(kVA);β—负荷率(通常取80%~90%) 已知道现场用电电流,怎样选择变压器的容量。 1.7321*线电压*相电流=变压器容量,单位KVA

自耦变压器的原理、接线、结构

自耦变压器的原理、接线、结构自耦变压器降压启动控制线路 在一个闭合的铁芯上绕两个或以上的线圈,当一个线圈通入交流电源时(就是初级线圈),线圈中流过交变电流,这个交变电流在铁芯中产生交变磁场,交变主磁通在初级线圈中产生自身感应电动势,同时另外一个线圈(就是次级线圈)中感应互感电动势。通过改变初、次级的线圈匝数比的关系来改变初、次级线圈端电压,实现电压的变换,一般匝数比为1.5:1~2:1。因为初级和次级线圈直接相连,有跨级漏电的危险。所以不能作行灯变压器。 区别在电网中,从220KV电压等级才开始有自耦变压器,多用作电网间的联络变。220KV以下几乎没有自耦变压器。自耦变压器在较低电压下是使用最多是用来作为电机降压启动使用。 对于干式变压器来讲,它的绝缘介质是树脂之类的固体,没有油浸式变压器中的绝缘油,所以称为干式。干式变压器由于散热条件差,所以容量不能做得很大,一般只有中小型变压器,电压等级也基本上在35KV及以下,但国内外也都已经有额定电压达到66kV甚至更高的干式变压器,容量也可达30000kVA甚至更高。 工作原理自耦变压器零序差动保护原理图 自耦变压器 1.自耦变压器是输出和输入共用一组线圈的特殊变压器.升压和降压用不同的抽头来实现.比共用线圈少的部分抽头电压就降低.比共用线圈多的部分抽头电压就升高. ⒉其实原理和普通变压器一样的,只不过他的原线圈就是它的副线圈一般的变压器是左边一个原线圈通过电磁感应,使右边的副线圈产生电压,自耦变压器是自己影响自己。 ⒊自耦变压器是只有一个绕组的变压器,当作为降压变压器使用时,从绕组中抽出一部分线匝作为二次绕组;当作为升压变压器使用时,外施电压只加在绕组的—部分线匝上。通常把同时属于一次和二次的那部分绕组称为公共绕组,自耦变压器的其余部分称为串联绕组,同容量的自耦变压器与普通变压器相比,不但尺寸小,而且效率高,并且变压器容量越大,电压越高.这个优点就越加突出。因此随着电力系统的发展、电压等级的提高和输送容量的增大,自耦变压器由于其容量大、损耗小、造价低而得到广泛应用.。 三相自耦变压器

变压器容量的选择与计算

精心整理 变压器容量的选择与计算 电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠与经济有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是主接线设计中一个主要问题。 1.2.3.变压器容量的选择,要根据它所带设备的计算负荷,还有所带负荷的种类和特点来确定。首先要准确求计算负荷,计算负荷是供电设备计算的基本依据。确定计算负荷目前最常用的一种方法是需要系数法,按需要系数法确定三相用电设备组计算负荷的基本公式为: 有功计算负荷(kw )c m d e P P K P ==

无功计算负荷(kvar )tan c c Q P ?= 视在计算负荷(kvA )cos c c P S ?= 计算电流(A )c I = 式中N U ——用电设备所在电网的额定电压(kv ); ,(1 (2 q K =∑负荷C S 对仅有一台变压器运行的变电所,变压器容量应满足下列条件 考虑到节能和留有余量,变压器的负荷率一般取70%~85%。 对两台变压器运行的变电所,通常采用等容量的变压器,每台容量应同时满足以下两个条件: ①满足总计算负荷70%的需要,即.0.7N T C S S ≈;

②满足全部一、二级负荷()C S I+∏的需要,即.()N T C S S I+∏≥。 条件①是考虑到两台变压器运行时,每台变压器各承受总计算负荷的50%,负载率约为0.7,此时变压器效率较高。而在事故情况下,一台变压器承受总计算负荷时,只过载40%,可继续运行一段时间。在此时间内,完全有可能调整生产,可切除三级负荷。条件②是考虑在事故情况下,一台变压器仍能保证一、二级负荷的供电。 择: 较小容量的电力变压器。如上例情况,在没有功率补偿装置时,功率因数为0.794,达不到国家标准,造成电能浪费,假设要使功率因数提高到0.95,无功补偿容量Q N.C 应为: 84.7=kvar 所以经补偿后的结果为:

相关文档
相关文档 最新文档