文档库 最新最全的文档下载
当前位置:文档库 › Max297开关电容滤波器应用

Max297开关电容滤波器应用

Max297开关电容滤波器应用
Max297开关电容滤波器应用

Max297八阶低通椭圆型开关电容滤波器1.一般说明

MAx297是便于使用的八阶低通椭圆型开关电容滤波器,能够按照0.1Hz到50kHz(MAx297)的转折频率来配置。

MAx297的1.5过渡比提供了锐变倾斜边缘和一80dB阻带衰减。这种滤波器的响应特性都已确定,所以设计任务只限于选择时钟频率,此时钟频率控制着滤波器的转折频率。

使用内部振荡器,可用一外部电容来确定时钟频率,也可直接使用外部的时钟信号。为了构成用于后置滤波或抗混叠的连续时间低通滤波器,设置了一个独立的运放(非反向输入端接地)。陡峭的倾斜缘和高的阶次,使得这些滤波器十分适合于需要最大通带的抗混叠之用和需要滤去频率域中紧邻信号的通信之用。

MAx297有8脚双列直插和16脚宽SO封装,只占用很小的空间便能提供极优

2.应用

*数据采集系统*抗混叠

*数模变换后置滤波*声音/数字信号滤波3.典型工作电路

MAX297的典型工作电路如图3.76所示,电源引脚应接旁路电容。

4.特点

*八阶低通椭圆型滤波器

*时钟可调转折频率范围:0.1Hz至50kHz(MAX297)

*不需要外部的电阻或电容越的性能。

*时钟对转折频率比:50:1(MAX297)

*内部的或外部的时钟

*在十5v单电源电压或+5v双电源电压条件下运行

*用于抗混香或时钟噪声滤波的独立运放

*8脚双列直插或16脚宽SO封装

5.引脚排列及引脚说明:MAX297的引脚排列如图:

6.应用资料

*电源:

MAX297由双电源或单电源供电。双电源的电压范围是+ 2.375v到+55V,建议用0.1uF旁路电容器从每一电源端跨接到地。使用单电源电压时,连接v-接到地并且用一电阻分压网络将GND引脚偏置在半电源电压点,如图所示。

7.应用电路:

max297组成的截止频率为5KHz的LPF

滤波电容、去耦电容、旁路电容的作用

滤波电容、去耦电容、旁路电容作用 滤波电容用在电源整流电路中,用来滤除交流成分。使输出的直流更平滑。去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作。旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过。 1.关于去耦电容蓄能作用的理解 1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射。数字,集成电路,IC,FAQ,Design compiler,数字信号处理,滤波器,DSP,VCS,NC,coverage,覆盖率,modelsim,unix,c,verilog,hdl,VHDL,IP,STA,vera,验证,primetime,FIFO,SDRAM,SRAM,IIR,FIR,DPLL L a O(i_ P e 而实际上,芯片附近的电容还有蓄能的作用,这是第二位的。 你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水, 这时候,水不是直接来自于水库,那样距离太远了, 等水过来,我们已经渴的不行了。Digital IC Designer's forum:h X,t

py7A(r4QF 实际水是来自于大楼顶上的水塔,水塔其实是一个buffer 的作用。 如果微观来看,高频器件在工作的时候,其电流是不连续的,而且频率很高,L x!H\D"P/} 而器件VCC到总电源有一段距离,即便距离不长,在频率很高的情况下,:`&y"S$O(S9WV5s%^"L 阻抗Z=i*wL+R,线路的电感影响也会非常大,数字,集成电路,IC,FAQ,Design compiler,数字信号处理,滤波器,DSP,VCS,NC,coverage,覆盖率,modelsim,unix,c,verilog,hdl,VHDL,IP,STA,vera,验证,primetime,FIFO,SDRAM,SRAM,IIR,FIR,DPLL2G K v{I;N,J(R x 会导致器件在需要电流的时候,不能被及时供给。数字,集成电路,IC,FAQ,Design compiler,数字信号处理,滤波器,DSP,VCS,NC,coverage,覆盖率,modelsim,unix,c,verilog,hdl,VHDL,IP,STA,vera,验证,primetime,FIFO,SDRAM,SRAM,IIR,FIR,DPLL1q Q&\6g i*V7o n O 而去耦电容可以弥补此不足。 这也是为什么很多电路板在高频器件VCC管脚处放置小电容的原因之一

接近开关原理及接线图

电容/电感/霍尔式接近开关的工作原理 1、电感式接近开关工作原理 电感式接近开关属于一种有开关量输出的位置传感器,它由LC高频振荡器和放大处理电路组成,利用金属物体在接近这个能产生电磁场的振荡感应头时,使物体内部产生涡流。这个涡流反作用于接近开关,使接近开关振荡能力衰减,内部电路的参数发生变化,由此识别出有无金属物体接近,进而控制开关的通或断。这种接近开关所能检测的物体必须是金属物体。工作流程方框图及接线图如下所示:

2、电容式接近开关工作原理 电容式接近开关亦属于一种具有开关量输出的位置传感器,它的测量头通常是构成电容器的一个极板,而另一个极板是物体的本身,当物体移向接近开关时,物体和接近开关的介电常数发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通和关断。这种接近开关的检测物体,并不限于金属导体,也可以是绝缘的液体或粉状物体,在检测较低介电常数ε的物体时,可以顺时针调节多圈电位器(位于开关后部)来增加感应灵敏度,一般调节电位器使电容式的接近开关在0.7-0.8Sn的位置动作。工作流程方框图及接线图如下所示:

3、霍尔式接近开关工作原理 当一块通有电流的金属或半导体薄片垂直地放在磁场中时,薄片的两端就会产生电位差,这种现象就称为霍尔效应。两端具有的电位差值称为霍尔电势U, 其表达式为U=K·I·B/d其中K为霍尔系数,I为薄片中通过的电流,B为外加磁场(洛伦慈力Lorrentz)的磁感应强度,d是薄片的厚度。 由此可见,霍尔效应的灵敏度高低与外加磁场的磁感应强度成正比的关系。我门销售的霍尔开关就属于这种有源磁电转换器件,它是在霍尔效应原理的基础上,利用集成封装和组装工艺制作而成,它可方便的把磁输入信号转换成实际应用中的电信号,同时又具备工业场合实际应用易操作和可靠性的要求。 霍尔开关的输入端是以磁感应强度B来表征的,当B值达到一定的程度(如B1)时,霍尔开关内部的触发器翻转,霍尔开关的输出电平状态也随之翻转。输出端一般采用晶体管输出,和接近开关类似有NPN、PNP、常开型、常闭型、锁存型(双极性)、双信号输出之分。 霍尔开关具有无触电、低功耗、长使用寿命、响应频率高等特点,内部采用环氧树脂封灌成一体化,所以能在各类恶劣环境下可靠的工作。霍尔开关可应用于接近开关,压力开关,里程表等,作为一种新型的电器配件。 霍尔开关的功能类似干簧管磁控开关,但是比它寿命长,响应快无磨损,而且安装时要注意磁铁的极性,磁铁极性装反无法工作。 内部原理图及输入/输出的转移特性和接线图如下所示:

电容在电路中的作用

电容在电路中的作用 (欢迎光临中国IEEE https://www.wendangku.net/doc/d113542784.html,) 更新时间: 电容器在电力系统中是提高功率因数的重要器件;在电子电路中是获得振荡、滤波、相移、旁路、耦合等作用的主要元件。 一、电解电容在电路中的作用 1,滤波作用,在电源电路中,整流电路将交流变成脉动的直流,而在整流电路之后接入一个较大容量的电解电容,利用其充放电特性,使整流后的脉动直流电压变成相对比较稳定的直流电压。在实际中,为了防止电路各部分供电电压因负载变化而产生变化,所以在电源的输出端及负载的电源输入端一般接有数十至数百微法的电解电容.由于大容量的电解电容一般具有一定的电感,对高频及脉冲干扰信号不能有效地滤除,故在其两端并联了一只容量为 0.001--0.lpF的电容,以滤除高频及脉冲干扰. 2,耦合作用:在低频信号的传递与放大过程中,为防止前后两级电路的静态工作点相互影响,常采用电容藕合.为了防止信号中韵低频分量损失过大,一般总采用容量较大的电解电容。 二、电解电容的判断方法 电解电容常见的故障有,容量减少,容量消失、击穿短路及漏电,其中容量变化是因电解电容在使用或放置过程中其内部的电解液逐渐干涸引起,而击穿与漏电一般为所加的电压过高或本身质量不佳引起。判断电源电容的好坏一般采用万用表的电阻档进行测量.具体方法为:将电容两管脚短路进行放电,用万用表的黑表笔接电解电容的正极。红表笔接负极(对指针式万用表,用数字式万用表测量时表笔互调),正常时表针应先向电阻小的方向摆动,然后逐渐返回直至无穷大处。表针的摆动幅度越大或返回的速度越慢,说明电容的容量越大,反之则说明电容的容量越小.如表针指在中间某处不再变化,说明此电容漏电,如电阻指示值很小或为零,则表明此电容已击穿短路.因万用表使用的电池电压一般很低,所以在测量低耐压的电容时比较准确,而当电容的耐压较高时,打时尽管测量正常,但加上高压时则有可能发生漏电或击穿现象.

如何选择和计算滤波电容--电容使用详述

如何选择和计算滤波电容?--电容使用详述 嵌入式非其他类中的 2009-05-31 17:32 阅读617 评论1 字号:大中小 问:在电路设计过程中,要用电容来进行滤波.有时要用电解电容,有时要陶瓷电容.有时两种均要用到.我想问一下:用电解电容的作用是什么?用普通陶瓷电容的作用是什么?如何计算其容量的???对于电解电容的耐压 又该如何选择确定? 哪些情况用电解电容,哪些情况下用陶瓷电容,哪些情况下两种均要用? ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 答: ----- 滤波电容范围太广了,这里简单说说电源旁路(去藕)电容。 滤波电容的选择要看你是用在局部电源还是全局电源。对局部电源来说就是要起到瞬态供电的作用。为什么要加电容来供电呢?是因为器件对电流的需求随着驱动的需求快速变化(比如DDR controller),而在高频的范围内讨论,电路的分布参数都要进行考虑。由于分布电感的存在,阻碍了电流的剧烈变化,使得在芯片电源脚上电压降低--也就是形成了噪声。而且,现在的反馈式电源都有一个反应时间--也就是要等到电压波动发生了一段时间(通常是ms或者us级)才会做出调整,对于ns 级的电流需求变化来说,这种延迟,也形成了实际的噪声。所以,电容的作用就是要提供一个低感抗(阻抗)的路线,满足电流需 求的快速变化。 基于以上的理论,计算电容量就要按照电容能提供电流变化的能量去计算。选择电容的种类,就需要按照它的寄生电感去考虑--也就是寄生电感要小于电源路径的分布电感。 具体的说明在很多书上都有。提供一个参考书:high speed digital design ch8.2. ------------------------------ 讨论问题必须从本质上出发。首先,可能都知道电容对直流是起隔离作用的,而电感器的作用则相反。所有的都是基于基本原理的。那这时,电容就有了最常见的两个作用。一是用于极间隔离直流,有人也叫作耦合电容,因为它隔离了直流,但要通过交流信号。直流的通路局限在几级间,这样可以简化工作点很复杂的计算,二是滤波。基本上就是这两种。作为耦合,对电容的数值要求不严,只要其阻抗不要太大,从而对信号衰减过大即可。但对于后者,就要求从滤波器的角度出发来考虑,比如输入端的电源滤波,既要求滤除低频(如有工频引起的)噪声,又要滤除高频噪声,故就需要同时使用大电容和小电容。有人会说,有了大电容,还要小的干什么?这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨细据此可以确定电容量。而对于耐压,任何时候都必须满足,否则,就会爆炸,即使对于非电解电容,有时不爆炸,其性能也有所下降。讲起来,太多了,先谈这么多。 --------------------- 都是滤波的作用,铝电解电容容量比较大,主要用于虑除低频干扰。容量大约为1mA电流对应2~3μf,如过要求高的时候可以1mA对应5~6μf。无极性电容用于虑除高频信号。单独使用的时候大部分是去藕用的。有时可以与电解电容并联使用。陶瓷电容的高频特性比较好,但是在某个频率(大约是6MHz记不 太清了)是容量下降的很快。 ---------- 电容的寄生电感主要包括内部结构决定的电感和引线电感。电解电容的寄生电感主要由内部结构决定。印象中铝电解电容在20~30k以上就表现除明显的电感特性。钽电容在1MHz左右。陶瓷电容的高频特性就好很多。但是陶瓷电容有压电效应,不适于音频放大电路的输入和输出。 --------------- 这是因为大的电容,由于极板和引脚端大,导致电感也大,故对高频不起作用。而小电容则刚好相反。巨

各种接近开关的应用

不同种类接近开关 1、无源接近开关 这种开关不需要电源,通过磁力感应控制开关的闭合状态。当磁或者铁质触发器靠近开关磁场时,和开关内部磁力作用控制闭合。特点:不需要电源,非接触式,免维护,环保。触发必须为铁,镍之类的磁性材料。 2、涡流式接近开关 这种开关有时也叫电感式接近开关。它是利用导电物体在接近这个能产生电磁场接近开关时,使物体内部产生涡流。这个涡流反作用到接近开关,使开关内部电路参数发生变化,由此识别出有无导电物体移近,进而控制开关的通或断。这种接近开关所能检测的物体必须是导电体。翼闸闸板上就用到了这种接近开关。 3、电容式接近开关 这种开关的测量通常是构成电容器的一个极板,而另一个极板是开关的外壳。这个外壳在测量过程中通常是接地或与设备的机壳相连接。当有物体移向接近开关时,不论它是否为导体,由于它的接近,总要使电容的介电常数发生变化,从而使电容量发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通或断开。这种接近开关检测的对象,不限于导体,可以绝缘的液体或粉状物等。 4、霍尔接近开关 霍尔元件是一种磁敏元件。利用霍尔元件做成的开关,叫做霍尔开关。当磁性物件移近霍尔开关时,开关检测面上的霍尔元件因产生霍尔效应而使开关内部电路状态发生变化,由此识别附近有磁性物体存在,进而控制开关的通或断。这种接近开关的检测对象必须是磁性物体。 5、光电式接近开关 利用光电效应做成的开关叫光电开关。将发光器件与光电器件按一定方向装在同一个检测头内。当有反光面(被检测物体)接近时,光电器件接收到反射光后便在信号输出,由此便可“感知”有物体接近。 6、热释电式接近开关 用能感知温度变化的元件做成的开关叫热释电式接近开关。这种开关是将热释电器件安装在开关的检测面上,当有与环境温度不同的物体接近时,热释电器件的输出便变化,由此便可检测出有物体接近。 7、其它型式的接近开关 当观察者或系统对波源的距离发生改变时,接近到的波的频率会发生偏移,这种现象称为多普勒效应。声纳和雷达就是利用这个效应的原理制成的。利用多普勒效应可制成超声波接近开关、微波接近开关等。当有物体移近时,接近开关接收到的反射信号会产生多普勒频移,由此可以识别出有无物体接近。 主要用途

电解电容其作用

电解电容其作用 隔直流:作用是阻止直流通过而让交流通过。 旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。 耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路。 滤波:将整流以后的锯齿波变为平滑的脉动波,接近于直流。 储能:储存电能,用于必须要的时候释放。 1uF/100V,0.1uF/100V,0.01uF/100V,0.0033uF/100V。以上为无感CCB电容。作用如下: 隔直流:作用是阻止直流通过而让交流通过。 旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。 耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路。 滤波:将整流以后的锯齿波变为平滑的脉动波,接近于直流。 电容的其他性质 一、电容的分类和作用 电容(Electric capacity),由两个金属极,中间夹有绝缘材料(介质)构成。由于绝缘材料的不同,所构成的电容器的种类也有所不同。按结构可分为:固定电容,可变电容,微调电容。 按介质材料可分为:气体介质电容,液体介质电容,无机固体介质电容,有机固体介质电容电解电容。 按极性分为:有极性电容和无极性电容。我们最常见到的就是电解电容。 电容在电路中具有隔断直流电,通过交流电的作用,因此常用于级间耦合、滤波、去耦、旁路及信号调谐。 二、电容的单位 电阻的基本单位是:F (法),此外还有μF(微法)、pF(皮法),另外还有一个用的比较少的单位,那就是:nF(纳法),由于电容 F 的容量非常大,所以我们看到的一般都是μF、nF、pF的单位,而不是F的单位。 他们之间的具体换算如下: 1F=1000000μF 1μF=1000nF=1000000pF 三、电容的耐压单位:V(伏特) 每一个电容都有它的耐压值,这是电容的重要参数之一。普通无极性电容的标称耐压值有:63V、100V、160V、250V、400V、600V、1000V 等,有极性电容的耐压值相对要比无极性电容的耐压要低,一般的标称耐压值有:4V、6.3V、10V、16V、25V、35V、50V、63V、80V、100V、220V、400V等。 四、电容的种类 电容的种类有很多,可以从原理上分为:无极性可变电容、无极性固定电容、有极性电容等,从材料上可以分为:CBB电容(聚乙烯),涤纶电容、瓷片电容、云母电容、独石电容、电解电容、钽电容等。 五、电容的特点 无感CBB电容 2层聚丙乙烯塑料和2层金属箔交替夹杂然后捆绑而成。无感,高频特性好,体积较小不适合做大容量,价格比较高,耐热性能较差。 电解电容两片铝带和两层绝缘膜相互层叠,转捆后浸泡在电解液(含酸性的合成溶液)中。容量大。高频特性不好。 电解电容器元件符号上带+号,+号代表意思 表示这种电容接入电路中时,+号极必须位于高电位,不能做低电位。这种电容一般用于直流电路中。

开关电容式变换器的工作原理

开关电容式变换器的工作原理 多种倍增输出的开关电容式变换器的工作原理利用更多的受控开关和电容,改变 输出电压与输入电压之比,并在供电电池使用过程中,随着电压的降低,自动地依次 改变电路的倍增因子,伎其由小到大变化,就能保证在电池电压变化时,有足够高的 输出电压来驱动。电压倍增的原理—。最大效率为,平均效率为腮。采用脚薄型则封装,尺寸为,方形。关于输出电压倍增及其模式的自动切换和没有多少区别,这里不 再重复。软启动含有软启动线路,以限制电源接退时和过渡模式下输入端的浪涌电流。在电源接通之初,输出ABC电子电容直接由输入以斜升的电流充电电荷泵还没有工作,经过,如果所有的阴极电位没有到以上,则毗转入倍模式,的输出电流按的阶梯向预 设值步进增大如果再经过,所有的阴极电位仍然没有在以上,则转入倍模式,的输出 电流再一次按的阶梯向预设值步进增大。 不论何时,如果输出电压低于,则软启动程序都将复位到倍输出模式。输出电流 的设置利用串行接口,可以对主屏副屏和闪光灯皿的电流进行设置。此串行接口有两 条线和,用来控制主副屏删亮度闪光灯和的变化以及四最大电流随温度的降额情况, 为串行数据线,为串行时钟线,采用标准的串行接口写字节命令。只是一个从设备受 控设备,依赖于主设备一般为微处艾博希电子理器来产生时钟信号。主设备在总线上 启动数据传送并产生时钟信号,先向传送位的地址字节,接着传送位的控制字节,控 制字节包含位的命令编码和位的数据。每次传送序列以”打头,而以”结束。控制字 节的格式如表。输出电流为的开关电容型变换器是凌特公司产品,和的功能相似,能 驱动个主屏个副屏和个删四,总输出电流为有个电流为的恒流源分别驱动每个最大的 显示电流由内部的精确的基准电流源确定亮度调节有级利用两条串行接口线,位的数 模转换器信号对每个电流源独立地控制其迈断调光和改变亮度水平输出电压按倍倍倍 倍增电路自动切换工作模式,接通电源后开始按倍电压模式工作,只要有一个皿电流 下降,电路自动转入增压模式。 它是一种高效低噪声的电荷泵型器件。电路采用脚塑料封装,尺寸为咖,其实 用电路中一实际为条引出线,分别和的阴极相连,为每个阴极提供恒定的电流,此电流可由。调高到,按级阶梯调节,由内部的位和软件确定,如果内部的数 据寄存器四一设置为,则输出电流为。通过电路采用脚薄型封装,尺寸为删皿皿,厚度仅为咖。是的外形及实用电路。的开关管及二极管均需外接,内部集 成有驱动开关管栅极的输出,它能提供驱动的源电流和的灌电流。由接于脚电 源高端及脚的电阻决定的电流人印。串行口的控制,一还刃以用作漏极开路输出,—。是两条串行输入线,输IC现货商入时钟和数据。每来一个时钟脉冲, 其作用和上面介绍的中的串行口相似,冉重复。引脚是所有数据线的电源,将 置于欠电压封锁阉值以下时,的数据寄存器均被复位为。该脚应当用或的陶瓷 电容旁路接地。脚是的伎能禁止脚,当该脚由低变高时,四按预定的亮度点亮。

滤波电容的作用

滤波电容的作用简单讲是使滤波后输出的电压为稳定的直流电压,其工作原理是整流电压高于电容电压时电容充电,当整流电压低于电容电压时电容放电,在充放电的过程中,使输出电压基本稳定。 整流电路是将交流电变成直流电的一种电路,但其输出的直流电的脉动成分较大,而一般电子设备所需直流电源的脉动系数要求小于0.01.故整流输出的电压必须采取一定的措施.尽量降低输出电压中的脉动成分,同时要尽量保存输出电压中的直流成分,使输出电压接近于较理想的直流电,这样的电路就是直流电源中的滤波电路。 常用的滤波电路有无源滤波和有源滤波两大类。无源滤波的主要形式有电容滤波、电感滤波和复式滤波(包括倒L型、LC滤波、LCπ型滤波和RCπ型滤波等)。有源滤波的主要形式是有源RC滤波,也被称作电子滤波器。 直流电中的脉动成分的大小用脉动系数来表示,此值越大,则滤波器的滤波效果越差。 脉动系数(S)=输出电压交流分量的基波最大值/输出电压的直流分量 半波整流输出电压的脉动系数为S=1.57,全波整流和桥式整流的输出电压的脉动系数S≈O.67。对于全波和桥式整流电路采用C型滤波电路后,其脉动 系数S=1/(4(RLC/T-1)。(T为整流输出的直流脉动电压的周期。) RC-π型滤波电路,实质上是在电容滤波的基础上再加一级RC滤波电路组 成的。如图1虚线 框即为加的一级RC滤波电路。若用S'表示C1两端电压的脉动系数,则输出电压两端的脉动系数S=(1/ωC2R')S'。 由分析可知,在ω值一定的情况下,R愈大,C2愈大,则脉动系数愈小,也就是滤波效果就越好。而R值增大时,电阻上的直流压降会增大,这样就增大了直流电源的内部损耗;若增大C2的电容量,又会增大电容器的体积和重量,实现起来也不现实。 为了解决这个矛盾,于是常常采用有源滤波电路,也被称作电子滤波器。电路如图2。它是由C1、R、C2组成的π型RC滤波电路与有源器件--晶体管T组成的射极输出器连接而成的电路。由图2可知,流过R的电流IR=IE/(1+β)=IRL /(1+β)。流过电阻R的电流仅为负载电流的1/(1+β).所以可以采用较大的R,与C2配合以获得较好的滤波效果,以使C2两端的电压的脉动成分减小,输出电压和C2两端的电压基本相等,因此输出电压的脉动成分也得到了削减。 从RL负载电阻两端看,基极回路的滤波元件R、C2折合到射极回路,相当于R减小了(1+β)倍,而C2增大了(1+β)倍。这样所需的电容C2只是一般RCπ 型滤波器所需电容的1/β,比如晶体管的直流放大系数β=50,如果用一般RCπ 型滤波器所需电容容量为1000μF,如采用电子滤波器,那么电容只需要20μF

电容式接近开关及其应用

电容式接近开关及其应用 作者:邓重一 1 引言 随着我国经济的快速发展,现代城市人 口的增加、城市范围的扩大,能源紧张问题越来越突出了。特别是水资源,它与工农业生产以及人民的生活息息相关,由于一些地区以前无计划性地乱的开采,出现了缺水的现象。 如何有效地管理和节约用水是当务之急。本文利用电容 式接近开关和其它器件设计了一种 控制水龙头开与关的系统。本系统具有控制灵敏、使用方便、工作寿命长的特点。 2 电容式接近开关介绍 电容式接近开关属于一种具有开关量输出的位置传感器,它的测量头通常构成电容器的一个极板,而另一个极板是物体的本身,当物体移向接近开关时,物体和接近开关的介电常数ε发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通和关断。被这种接近开关的检测物体,并不限于金属导体,也可以是绝缘的液体或粉状物体,在检测较低介电常数ε的物体时,可以顺时针调节多圈电位器(位于开关后部)来增加感应灵敏度,一般调节电位器使电容式的接近开关在0.7-0.8Sn(Sn为电容式接近开关的标准检测距离)的位置动作。这里选用的是浙江省洞头县光电开关厂生产的CLG型M18×70标准结构的开关。它的外型图与尺寸标示图分别如图1与图2所示。 图1 CLG型M18×70电容式接近开关外型图 图2CLG型M18×70标准结构开关外部尺寸图

操作参数如表1所示。 部分常用材料介电常数如表2所示。

3系统组成及设计过程 系统组成框图如图3所示,从框图可以看出控制信号的流程:当人或其它物体接近电容式接近开关时,等效电容的容量值会发生变化,从而改变LC振荡器的振荡频率,F/V电路将LC振荡器输出的频率量转化成电压量后,交给信号处理电路,该部分将电压信号进行一系列的处理(包括:放大、整形等)后传给开关量变换电路,开关量转换电路实际上是A/D 转换器,它将模拟电压转换为数字量,水龙头控制电路由开关量转换电路的输出量控制,它产生控制信号控制水龙头的开与关。本系统设计成当人接近水龙头一定距离时,水龙头自动开启,离开一定距离后水龙头自动关闭。 图3 控制系统组成框图 3.1 部分关键电路介绍振荡电路与F/V变换电路及信号处理部分 连线图如图4所示,由555定时器组成的振荡器,它的振荡频率为:f=1/0.69*(R1+2*R2)*(C//CT),C就是电容式接近开关的等效电容值,CT为频率调节电容,通过C的变化从而使振荡频率变化,将此种变化传给F/V电路,引起F/V电路的输出电压变化。由锁相环CD4046组成的F/V变换电路将频率值变成电压值后,经精密运放OP-07线性放大后输入到开关量转换器(A/D转换器)的输入端。 图4 振荡电路与F/V部分及信号处理电路连线图 A/D转换器将模拟信号转换成数字信号后,输入到水龙头控制电路的输入端,由水龙水控制电路控制水龙头的开与关,这些电路简单,这里限于篇幅,不作介绍。 3.2 系统安装要求 安装要求示意图如图5所示,图中S1表示检测面与支架的间距,要求≥1Sn,S2表示检测

开关电容滤波器的设计

开关电容低通滤波器的设计原理分析 为了滤除信号中掺杂的高频噪声,设计一种六阶级联式开关电容低通滤波器,以数据采样技术代替传统有源RC滤波器中的大电阻,有利于电路的大规模集成。滤波器由双二阶子电路级联而成,电路中的电容值利用动态定标技术计算确定。用Hspice进行仿真验证,结果表明:开关电容低通滤波器能较好地时信号进行整形,其频率特性符合设计指标。 滤波技术是信号分析和处理中的重要分支,它的作用是从接收到的信号中提取有用的信息,抑制或消除无用的或有害的干扰信号,有助于提高信号完整度和系统稳定性。滤波器正是采用滤波技术的具有一定传输选择性的信号处理装置。随着现代集成电路技术和MOS工艺的飞速发展,模拟集成滤波器的实现已经成为现代工业的一个重大课题,也是当今国际上的前沿课题。 传统的连续时间模拟滤波器采用有源RC结构,能够应用到较高的频率,但是电路中多采用大电容和大电阻,在集成电路制造时会占用大量的芯片面积。在现代集成电路工艺中,很难得到精确的电阻值和电容值,而且电阻值随温度变化很大,精度只能达到30%。 1972年,美国科学家Fried发表了用开关和电容模拟电阻R的论文,由此开关电容技术成为模拟集成滤波器设计中常用的方法。开关电容滤波器是由运算放大器、电容器和MOS 开关组成的有源开关电容网络,以数据采样技术代替大电阻,减小了芯片的面积和功耗,且电路的极点和时间常数由电容的比值确定,可实现高精度的模拟集成滤波器。本文设计一种开关电容低通滤波器,用于滤除有用信号中掺杂的高频噪声。 1 开关电容技术的原理 图1中的开关电容等效电阻电路由两个独立的电压源V1、V2,两个受控开关S1、S2和电容C组成。开关S1和S2受两相不交叠的时钟φ1和φ2控制,时钟频率均为fs。

1.04_曹文静_反激式开关电容PWM直流变换器_6

非隔离反激式开关电容PWM直流变换器 曹文静金科阮新波 (南京航空航天大学,江苏 南京 210016) Non-Isolated Flyback Switching Capacitor PWM DC-DC Converter CAO Wenjing, JIN Ke, RUAN Xinbo (Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China) Abstract: This paper proposes a novel non-isolated flyback switching capacitor PWM DC-DC converter. The converter is a combination of a switching capacitor converter and a traditional PWM DC-DC converter, and it has the following advantages: 1) Zero voltage switching of all the MOSFETs. 2) The transformer leakage inductor and the blocking capacitor resonate to reach the soft-switching of the switches. 3) Its efficiency is not sensitive to leakage inductor, so that the ordinary discrete transformer which is easy to install can be used to save the cost. 4) Single phase option makes it more flexible. A single-phase 700kHz 1.2V/35A output POL prototype was built to verify the analysis. 摘要:本文介绍了一种非隔离反激式开关电容PWM直流变换器,该变换器是开关电容变换器和传统的调压直流变换器的结合,具有如下优点:1)开关管的零电压开关(Zero-voltage-switching, ZVS);2)变压器漏感与隔直电容谐振,实现开关管的软开关;3)变压器漏感对效率的影响小,可以使用常规的分立式变压器,节约成本且易于安装;4)变换器是单相的,结构简单,应用灵活。在理论分析的基础上,搭建了一台单相700kHz 1.2V/35A POL原理样机验证了理论分析的正确性。 关键词:开关电容变换器调压变换器漏感零电压开关1. 引言 新一代的计算机和通讯设备,采用开放式结构,用模块化的方法处理信号、数据和功率。这使得分布式电源系统(Distributed power systems, DPS) 的应用成为必然。互联网的广泛普及需要更先进的、高品质和更可靠的能源网络作为基础设施的支持,自然需要采取分布式发电、配电以及电能调节的方式。未来的电能处理系统在实际操作上应该全部都是通过功率变换装置将电力负载连接到电源。先进的功率处理系统应当具备可控、可重构的特点,可以在通讯、计算机、互联网基础设施、汽车、航空等领域应用。并且 国家自然科学基金(51007038)资助项目;台达环境与教育基金会《电 力电子科教发展计划》资助项目。能够实现从给定的源变换到所需形式的电能,提供给相应的负载。 随着信息产业的快速发展,高效率高动态特性负载点(Point-of-load, POL)变换器得到了越来越多的应用。例如给CPU供电的VRM就是一种特殊的POL 变换器。随着计算机和通讯技术的快速发展,目前CPU的工作电压降低到1V,甚至1V以下,且动态电流上升率达到2A/ns[1]。高功率密度和高效率是当今DC/DC模块的主要目标。 增大开关频率可以增大控制带宽,减少输出滤波电容的数量。然而,目前广泛运用的传统多相Buck 变换器在高频工作时存在开关损耗大、驱动损耗大、SR体二极管损耗大等严重的缺点[2-8]。 文献[9]-[10]提出了自驱动ZVS非隔离全桥DC/DC变换器,如图1所示。与传统两相Buck变换器相比,它具有以下优点:1)功率管的零电压开关; 2)消除了SR驱动器,降低了成本;3)不需要调节死区时间,减小了SR体二极管导通损耗;4) 增大占空比,减小了主开关管关断损耗和SR体二极管的反向恢复损耗。与Buck相比,自驱动ZVS非隔离全桥DC/DC变换器可以实现更高效率的电能转换。然而,该变换器具有以下缺点:1) 必须两相工作,环流损 图1 自驱动ZVS非隔离全桥DC/DC变换器

滤波电容详解

电源滤波电路 注:本文献只用于学习,禁止任何商业用途!!! 电感的阻抗与频率成正比,电容的阻抗与频率成反比.所以,电感可以阻扼高频通过,电容可以阻扼低频 通过.二者适当组合,就可过滤各种频率信号.如在整流电路中,将电容并在负载上或将电感串联在负载上,可 滤去交流纹波.。 电感滤波属电流滤波,是靠通过电流产生电磁感应来平滑输出电流,输出电压低,低于交流电压有效值;适用于大电流,电流越大滤波效果越好。电容和电感的很多特性是恰恰相反的。 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 电源滤波电容的大小,平时做设计,前级用4.7u,用于滤低频,二级用0.1u,用于滤高频,4.7uF 的电容作用是减小输出脉动和低频干扰,0.1uF的电容应该是减小由于负载电流瞬时变化引起的高频干扰。一般前面那个越大越好,两个电容值相差大概100倍左右。电源滤波,开关电源,要看你的ESR(电容的 等效串联电阻)有多大,而高频电容的选择最好在其自谐振频率上。大电容是防止浪涌,机理就好比大水库防洪能力更强一样;小电容滤高频干扰,任何器件都可以等效成一个电阻、电感、电容的串并联电路,也就有了自谐振,只有在这个自谐振频率上,等效电阻最小,所以滤波最好! 尽量将去耦电容和滤波电容等放置在对应元件的周围。去耦电容和滤波电容的布置是改善电路板的电源质量,提高抗干扰能力的一项重要举措。实际上,印制电路板的走线、引脚连线和接线等都有可能带来较大的电感效应,电感的存在会在电源线上引起纹波和毛刺,而在电源和地之间放置一个0.1uF的去耦电容可以有效滤除高频纹波,如果电路板上使用的是贴片电容,可以使贴片电容紧靠着元件的电源引脚。对于一些电源转换芯片,或者是电源输入端,最好还布置一个10uF或者更大的电容,以进一步改善电源 的质量。 电容的等效模型为一电感L,一电阻R和电容C的串联, 电感L为电容引线所至,电阻R代表电容的有功功率损耗,电容C.

常用的接近开关应用简介

建议删除该贴!!| 收藏| 回复| 2008-08-08 09:57:08 楼主 一、性能特点 在各类开关中,有一种对接近它的物体有感知能力的元件——位移传感器。利用位移传感器对接近物体的敏感特性达到控制开关通或断的目的,这就是接近开关。当有物体移向接近开关,并接近到一定距离时,位移传感器才有“感知”,开关才会动作。通常把这个距离叫“检出距离”。不同的接近开关检出距离也不同。有时被检测验物体是按一定的时间间隔,一个接一个地移向接近开关,又一个一个地离开,这样不断地重复。不同的接近开关,对检测对象的响应能力是不同的。这种响应特性被称为“响应频率”。 二、种类 因为位移传感器可以根据不同的原理和不同的方法做成,而不同的位移传感器对物体的“感知”方法也不同,所以常见的接近开关有以下几种: 1.涡流式接近开关 这种开关有时也叫电感式接近开关。它是利用导电物体在接近这个能产生电磁场接近开关时,使物体内部产生涡流。这个涡流反作用到接近开关,使开关内部电路参数发生变化,由此识别出有无导电物体移近,进而控制开关的通或断。这种接近开关所能检测的物体必须是导电体。 2.电容式接近开关 这种开关的测量通常是构成电容器的一个极板,而另一个极板是开关的外壳。这个外壳在测量过程中通常是接地或与设备的机壳相连接。当有物体移向接近开关时,不论它是否为导体,由于它的接近,总要使电容的介电常数发生变化,从而使电容量发生变化,使得和测量头相连的电路状态也随之发生变化,由此便可控制开关的接通或断开。这种接近开关检测的对象,不限于导体,可以绝缘的液体或粉状物等。 3.霍尔接近开关 霍尔元件是一种磁敏元件。利用霍尔元件做成的开关,叫做霍尔开关。当磁性物件移近霍尔开关时,开关检测面上的霍尔元件因产生霍尔效应而使开关内部电路状态发生变化,由此识别附近有磁性物体存在,进而控制开关的通或断。这种接近开关的检测对象必须是磁性物体。 4.光电式接近开关 利用光电效应做成的开关叫光电开关。将发光器件与光电器件按一定方向装在同一个检测头内。当有反光面(被检测物体)接近时,光电器件接收到反射光后便在信号输出,由此便可“感知”有物体接近。 5.热释电式接近开关 用能感知温度变化的元件做成的开关叫热释电式接近开关。这种开关是将热释电器件安装在开关的检测面上,当有与环境温度不同的物体接近时,热释电器件的输出便变化,由此便可检测出有物体接近。 6.其它型式的接近开关 当观察者或系统对波源的距离发生改变时,接近到的波的频率会发生偏移,这种现象称为多普勒效应。声纳和雷达就是利用这个效应的原理制成的。利用多普勒效应可制成超声波接近开关、微波接近开关等。当有物体移近时,接近开关接收到的反射信号会产生多普勒频移,由此可以识别出有无物体接近。 三、主要用途 接近开关在航空、航空、航天技术以及工业生产中都有广泛的应用。在日常生活中,如宾馆、饭店、车库的自动门,自动热风机上都有应用。在安全防盗方面,如资料档案、财会、金融、博物馆、金库等重地,通常都装有由各种接近开关组成的防盗装置。在测量技术中,如长度,位置的测量;在控制技术中,如位移、速度、加速度的测量和控制,也都使用着大量的接近开关。 四、选用注意事项 在一般的工业生产场所,通常都选用涡流式接近开关和电容式接近开关。因为这两种接近开关对环境的要求条件较低。当被测对象是导电物体或可以固定在一块金属物上的物体时,一般都选用涡流式接近开关,因为它的响应频率高、抗环境干扰性能好、应用范围广、价格较低。若所测对象是非金属(或金属)、液位高度、粉状物高度、塑料、烟草等。则应选用电容式接近开关。这种开关的响应频率低,但稳定性好。安装时应考虑环境因素的影响。若被物为导磁材料或者为了区别和它在一同运动的物体而把磁钢埋在被测物

电容器在电路中的作用(很全)

电容器的基本特性是“通交流、隔直流”。所以在电路中可用作耦合、滤波、旁路、去耦…… 。电容器的容抗是随频率增高而下降;电感的感抗是随频率增高而增大。所以在电容、电感的串联或并联电路中,总会有一个频率下容抗与感抗的数值相等,这时就产生谐振现象。所以电容与电感可以用来制作滤波器(低通、高通、带通)、陷波器、均衡器等。用在振荡电路中,制作LC、RC振荡电路。滤波电容并接在整流后的电源上,用于补平脉冲直流的波形。 耦合电容连接在交流放大电路级与级之间作信号通路,因为放大电路的输入端和输出端都有直流工作点,采用电容耦合可隔断直流通过工作点,耦合电容其实就是起隔直作用,所以也叫隔直电容; 旁路电容作用与滤波电容相似,但旁路电容不是接在电源上,而是接在电子电路的某一工作点,用于滤去谐振或干扰产生的杂波; 滤波电容、感性负载供电线路上的补偿电容、LC谐振电路上的电容都是起储能作用。 如何选择电路中的电容 通常音频电路中包括滤波、耦合、旁路、分频等电容,如何在电路中更有效地选择使用各种不同类型的电容器对音响音质的改善具有较大的影响。1.滤波电容整流后由于滤波用的电容器容量较大,故必须使用电解电容。滤波电容用于功率放大器时,其值应为10000μF以上,用于前置放大器时,容量为1000μF左右即可。当电源滤波电路直接供给放大器工作时,其容量越大音质越好。但大容量的电容将使阻抗从10KHz附近开始上升。这时应采取几个稍小电通常音频电路中包括滤波、耦合、旁路、分频等电容,如何在电路中更有效地选择使用 各种不同类型的电容器对音响音质的改善具有较大的影响。 1.滤波电容 整流后由于滤波用的电容器容量较大,故必须使用电解电容。滤波电容用于功率放大器 时,其值应为10000μF 以上,用于前置放大器时,容量为1000μF 左右即可。 当电源滤波电路直接供给放大器工作时,其容量越大音质越好。但大容量的电容将使阻 抗从10KHz 附近开始上升。这时应采取几个稍小电容并联成大电容同时也应并联几个薄 膜电容,在大电容旁以抑制高频阻抗的上升,如下图所示。 图 1 滤波电路的并联 2.耦合电容 耦合电容的容量一般在0.1μF~ 1μF 之间,以使用云母、丙烯、陶瓷等损耗较小的 电容音质效果较好。 3.前置放大器、分频器等 前置放大器、音频控制器、分频器上使用的电容,其容量在100pF~0.1μF 之间,而扬 声器分频LC 网络一般采用1μF~ 数10μF 之间容量较大的电容,目前高档分频器中采 用CBB电容居多。 小容量时宜采用云母,苯乙烯电容。而LC 网络使用的电容,容量较大,应使用金属化 塑料薄膜或无极性电解电容器,其中无机性电解电容如采用非蚀刻式,则更能获取极佳 音质。 电容的基础知识 —————————————— 一、电容的分类和作用 电容(Ele ct ric ca pa ci ty),由两个金属极,中间夹有绝缘材料(介质)构成。由于绝缘材料的不同,所构成的电容器的种类也有所不同: 按结构可分为:固定电容,可变电容,微调电容。 按介质材料可分为:气体介质电容,液体介质电容,无机固体介质电容,有机固体介质电容电解电容。 按极性分为:有极性电容和无极性电容。我们最常见到的就是电解电容。 电容在电路中具有隔断直流电,通过交流电的作用,因此常用于级间耦合、滤波、去耦、旁路及信号调谐 二、电容的符号

开关电容滤波器的设计与应用

开关电容滤波器的设计与应用 吴 猛 (中国兵器工业第214研究所 蚌埠 233042) 摘 要 本文介绍了开关电容滤波器的结构与工作原理,并对美国L I N E AR 公司开关电容滤波器器件LTC1068系列具体应用做了介绍。 关键词 开关电容 滤波器 1 引 言 开关电容滤波器是利用开关电容网络构成的滤波器,它的出现促进了有源滤波器的集成化,随着集成电路制造工艺水平的提高,集成开关电容 滤波器的尺寸变得越来越小,设计也越来越简单,已大量运用到通讯及其他数字化系统。目前,国际市场上开关电容滤波器件主要是美国MAX I M 和L I N E AR 公司生产的MAX29X 和LT C1068系列。本文将介绍L I N EAR 公司LT C1068 的原 图1 LTC1068结构图 第23卷第4期2005年12月 集成电路通讯 J ICH EN GD I ANLU TON GXUN Vol .23 No .4 Dec .2005

理及应用。 2 LTC1068电路结构 美国L I N E AR公司的LTC1068系列是低噪 声、高精度的通用滤波器组合模块,由4个相同的2阶开关电容滤波器单元组成。内部结构如图1所示: LT C1068系列芯片之间差别仅仅是时钟频率与中心频率之比(f CLK /f O)不同,单块芯片可以被设计成2阶、4阶或8阶滤波器。L I N ERA公司 的开关电容滤波器按固定标称比f CLK /f O而设计。 多数应用场合设计滤波器要求不同的f CLK /f O,可通过用外部电阻和不同的连接方式加以解决。 3 引脚功能及技术特点 3.1 引脚排列 引脚排列如图2所示 : 图2 LTC1068引脚图3.2 引脚功能 LTC1068引脚功能如表1所示: 表1 LTC1068引脚功能 引脚序号符 号功 能引脚序号符 号功 能1I N VB信号反相输入端28I N VC信号反相输入端 2HP B/NB信号高通输入端27HPC/NC信号高通输入端 3BP B信号带通输入端26BPC信号带通输入端 4LP B信号低通输入端25LPC信号低通输入端 5S B求和端24SC求和端 6NC空脚23V-负电源 7AG ND数字地22NC空脚 8V+正电源21CLK时钟信号输入端 9NC空脚20NC空脚 10S A求和端19S D求和端 11LP A信号低通输入端18LP D信号低通输入端 12BP A信号带通输入端17BP D信号带通输入端 13HP A/NA信号高通输入端16HP D/ND信号高通输入端 14I N VA信号反相输入端15I N VD信号反相输入端 3.3 技术特点 a.工作电压可选择双电源±5V,单电源5V 或3.3V; b.2阶滤波器中心频率误差±0.3%(典型 13  第23卷第4期 集成电路通讯

相关文档
相关文档 最新文档