文档库 最新最全的文档下载
当前位置:文档库 › 循环水杀菌剂

循环水杀菌剂

循环水杀菌剂
循环水杀菌剂

循环冷却水用杀菌剂综述

由于循环冷却水系统具有的特殊生态环境导致微生物在其中很容易繁殖。微生物的大量繁殖给冷却水系统带来许多危害,使系统传热效率降低,诱导金属腐蚀,严重时还可能造成管道堵塞。在实际运行系统中,最为直接有效的方法是投加杀菌剂控制系统中的微生物。

1杀菌剂的现状

1.1氧化性杀菌剂

1.1.1氯气。在水处理中,氯由于其具有高效、快速广谱、经济、物源广、使用较方便等优点,受到人们的青睐,是目前用量最大的杀菌剂。但经氯气处理,水中易产生三氯甲烷,它是一种致癌物质,同时其半衰期时间长,易对环境造成危害,因此各国相继出台法规,日益严格控制余氯的排放量[1]。另外,随着水处理配方逐渐向碱性水处理方案的过渡,氯气在高pH(>8.5)的条件下杀生活性差的缺点也显现出来屈此人们开发出一些氯的替代物,如ClO2、溴类杀生剂、臭氧等。

1.1.2二氧化氯。二氧化氯的杀生能力较氯强,约为氯的

2.5倍左右,特别适合应用于合成氨厂替代氯进行杀菌灭藻处理。国外于70年代中期开始将其应用于循环冷却水。但由于二氧化氯产品不稳定,运输时容易发生爆炸事故,限制了其广泛的应用。

针对这种情况人们采取现场发生ClO2、开发稳定性二氧化氯等措施,克服了这一难题。目前国内采用的现场ClO2发生装置主要有电解ClO2发生装置和化学法ClO2发生装置两类[2]。70年代美国百合兴国际化学有限公司开发出稳定性二氧化氯(BC—9 8)。我国也于80年代后期开发出了这一产品。

1.1.3臭氧。80年代末,臭氧作为一种杀菌剂应用于冷却水系统受到人们的广泛关注。由于臭氧所具有的一些优越性是传统的化学药剂所无法比拟的,目前,国外已将臭氧广泛地应用于冷却水处理中。使用结果表明,采用臭氧处理的系统可在高浓缩倍数下,甚至在零排污下运行。处理成本低于传统的化学处理法。在这方面我国尚处于起步阶段。

1.1.4过氧化物。近些年来过氧化氢作为工业水处理的杀菌剂引起人们注意。使用过氧化氢的一个优点是它不会形成有害的分解产物。但它存在着在低温和低浓度下活性较低,且可被过氧化氢酶和过氧化物酶分解的缺点。过氧醋酸克服了过氧化氢的缺点。

过氧醋酸以前只用于美国的食品工业。最近,FMC公司收到了环保局(EPA)的注册证,其组成为5%的过氧醋酸配方产品,可用作工业水处理杀生剂。由于其具有快速、广谱、高效的杀菌性,分解产物无毒、对环境友好等特点,展示了良好的应用前景。Jeffreg F.等人的试验表明[3],过氧醋酸与冷却水中一些常用的阻垢缓蚀剂,具有很好的相容性。效果比较试验表明,过氧醋酸的性能优于戊二醛和异噻唑啉酮。

1.1.5溴类杀菌剂[4-6]。目前在杀生剂市场出现以溴代氯的趋势。出现这一现象并不是偶然的。试验室的评估结果表明:溴在pH8.0以上时较氯有更高的杀生活性;在一些存在有工艺污染如有机物或氨污染的系统中,溴的杀生活性高于氯;游离溴和溴化合物衰变速率快,对环境的污染小。目前,人们常用的溴类杀菌剂主要有以下几种:

①卤化海因:主要有溴氯二甲基海因(BCDMm、二溴二甲基海因(DBDMH)、溴氯甲乙基海因(BCMEH)等。有报道表明,BCMEH效果最佳,0.45kg(1磅)BCMEH相当于3. 18kg(7磅)Cl2;

②活性溴化物:为由NaBr,经氯源(HOCl)活化而制得的液体或固体产物。特点是可大幅度降低氯的用量,并相应降低总余氯量;

③氯化溴:是一种高度活泼的液体,需由加料系统加到水中,因其危险性较大,限制了其推广应用。

1.2非氧化性杀生剂

1.2.1异噻唑啉酮。是一类衍生物的通称,Rohmand Hass公司对其进行广泛的研究,申请了一些专利[7-8]。它的常用组份为2-甲基-4-异喧唑啉-3-酮和5-氯-2-甲基-4-异噻唑啉-3-酮,商品异噻唑啉酮是两者1:3的混合物。其杀菌性能具有广谱性,同时对粘泥也有杀灭作用。在低浓度下有效,一般有效浓度在0.5mg/L,就能很好地控制细菌的生长。混溶性好,能与氯、缓蚀剂、阻垢分散剂和大多数阴离子、阳离子和非离子表面活性剂等相容。对环境无害,该药剂在水溶液中降解速度快。

对pH值适用范围广,一般pH值在5.5~9.5均能适用。同时具有投药间隔时间长,不起泡等优点。80年代中后期我国也有多家单位研制出类似国外的同类产品,并投人生产。在循环冷却水中的应用日益广泛。

1.2.2戊二醛是另一种非氧化性杀菌剂。国内已开始使用,其特点是几乎无毒,使用pH范围宽,耐较高温度,是杀硫酸盐还原菌的特效药剂,本身可以生物降解,其缺点是与氨、胺类化合物发生反应而失去活性,因此在漏氨严重的化肥厂不宜使用。戊二醛价格昂贵使其应用受阻。目前正在开展复配降低其用量的研究。LawrenceA.Grab等人的研究表明[9],戊二醛和季铵盐复配可大幅度降低成二醛的用量。

1.2.3季铵盐。除具有广谱、高效的杀菌性能外。

还有对菌藻污泥的剥离作用。早期的季铰盐以烷基二甲基苄基氯化铵为代表。目前国内冷却水系统广泛使用的洁尔灭和新洁尔灭均属于此类产品。随着时间的推移和技术进步。该类季铰盐不足之处也逐步显现出来。主要表现在药剂持续时间短、细菌易于对其产生抗药性。使用剂量大(100mg/L以上)。费用高,且使用时泡沫多。不易清除等缺点。为了克服上述缺点,国外又先后开发出了有代表性的一些季铵盐新品种,如双烷基季铵盐。双季铰盐、聚季铵盐等。双烷基季铰盐以双烷基二甲基氯化铵为代表,其中双烷基链长为C8~C12的产品,具有优良的抗菌性,该产品具有投药浓度低、药效持续时间长、灭菌效果好、泡沫少、合成工艺简单、成本低等优点。另外,据报道双烷基季铵盐与烷基二甲基苄基氯化铵复配可大幅度提高它们的杀菌性能[10]。这类产品在国内已有初步的生产和应用。DiZ等人[11]于1994年报道的化合物,带有双季铰盐的结构,它具有高效、广谱的抗菌性。水溶性的聚季铵盐用作杀菌剂在水处理、油田开采。食品及包装材料等领域已经有所应用。近年来的资料表明,人们对聚季铵盐的研究已由早期的制作水溶性聚合物转向制作不溶性聚合物方向发展,以改善杀菌剂的性能,降低它对环境、人畜的毒害。一般通过将季铵盐聚合,或将其固定在高分子载体上制成水不溶性聚合物杀菌剂。如文献[12]报道的以聚苯乙烯或交联聚苯乙烯的氯甲基化物等为载体进行季铵化,所得到的聚季铵盐水不溶性聚合物,当初始菌悬液细菌数约为5×108个/L的水,以10~12mL/min的流速流经聚合物树脂床时细菌存活率为0%~1%。该树脂失活后,可再生使用,具有长效性。可以预计这类聚合物在冷却水处理领域具有广阔的应用前景。

1.2.4季磷盐。1990年Gramham指出[13],杀生剂研究的最新进展之一是季磷盐的出现。这类化合物与季铵盐有着相似的结构,只是用磷阳离子代替氮阳离子。例如THPS(四羟烷基硫酸磷)、THPC(四羟烷基氯化磷)。THPS用作杀生剂,迄今虽对其各种性能参数的认识并不全面,但它用于工业水处理及油田水处理确实具有高效。快速、广谱,对环境、鱼类具有低毒,易生物降解和使用方便等优点。有研究表明,用于工业水处理,使用50μg/g THPS,在6h内能将2.5×105SRB/mL杀灭到2.7×103SRB/mL。早期的季磷盐主要带有三苯基膦的结构,已初步显示出好的抗菌性。如1987年Pernak 等报道的ph3P+CH2ORCl-,式中Ph为苯基,当式中R为碳数11的烷基链时,则有最佳的抗菌活性[14]。Akihiko。等研究的带有单、双长烷基链的季磷盐具有更佳的抗菌活性[15、16]。国内于90年代初开始由石化企业弓l进使用该类产品。1992年石化科学研究院开发出了类似于国外B~350(十四烷基三了基氯化磷)的季磷盐产品,并已在

循环冷却水系统中推广使用。

1.2.5其它种类的非氧化性杀生剂。目前市场上常见的非氧化性杀生剂还有氯酚类、有机锡化合物、有机硫化合物(异唑啉酮前已述)、铜盐等。氯酚类杀生剂国内生产的有以双氯酚(2,2"——二羟基—5,5"——二氯苯甲烷)为主的复合杀生剂。该类杀生剂由于其毒性大,易污染环境水体,故近年来已逐渐被淘汰。有机锡化合物在碱性州值范围内的效果最好。它们常与季铵盐或有机胺类复配成复合杀生剂以改善其分散性。实践证明,这类复合杀生剂还有增效作用。该类杀生剂目前国内没有生产。有机硫

化合物类杀生剂中目前国内使用较普遍的有二硫氰基甲烷、大蒜素(硫酮类化合物)。许多有机硫化合物杀生剂对于真菌、粘泥形成菌,尤其是硫酸盐还原菌十分有效。

2冷却水用杀菌剂发展方向

开发具有广谱、高效、低毒、性能/价格高、对环境友好的冷却水用杀菌剂是今后发展的必然趋势。正确解决环境安全与杀生效果之间的矛盾是杀生剂领域所面临的挑战。

从目前国际杀菌剂市场的特点来看,是继续远离氯气和氯化产物向比较安全的替代产品转移。

据文献[17]报道,1995年美国杀菌剂和氧化剂的销售额达到1亿5千万美元。其中有机硫化物和季铰化合物约占市场的2/3。1995年,有机硫化合物的消耗达1910万磅,价值4000万美元。其中50%~60%用于冷却水处理。预计今后有机硫化合物将以4%的年增长率增长。Robm and Hass公司的有机硫化合物Kahon——WT(异噻唑啉酮)是最畅销的产品。该公司所开发的4,5—二氯-2~n-辛烷-4-异噻唑啉酮-3-酮(D COI)曾获"美国总统绿色化学挑战奖"。二硫氰基甲烷预计销量要下降,因该产品在高pH下杀菌活性降低。而氯酚等对环境污染严重的杀生剂品种正逐步被淘汰。季铵化合物1995年总消耗为3710万磅,价值6900万美元,其中约有220万磅用于冷却水处理,年增长率约2%,其它杀菌剂,如Union Carbide公司的成二醛、DOW公司的二溴氮川;丙酰胺(DBNPA)、(Grcat Lakes和Lonia公司的溴代海因、Elf Atochem morth Ame rica公司的三丁基氧化锡也是市场上出售的杀菌剂品种。

在杀生剂市场中,对氯的管制正为其它氧化性杀生剂敞开大门,如溴、臭氧、二氧化氯和过氧化氢等。美国用于杀菌剂溴的消耗量1993年为7.7t以每年5%~6%的速度增长。臭氧在替代氯气方面获得了一定市场。目前它的市场份额虽然远比其它杀生剂小,

但增长很快。

3我国冷却水用杀菌剂发展方向

①冷却水系统中微牛物种类的多样性,决定了杀生剂种类的多样性。在这方面我国与国外的差距明显,国际市场已有的一些杀菌剂种类中我国能生产的不多,即使那些能生产的如季铵盐、有机硫化合物等,品种也较单一。因此今后应加大这方面的投入,扩大我们的杀生剂品种。

②加强基础理论研究,提高创新意识。随着冷却水处理配方向碱性处理方案过渡和人们环保意识的加强,对一些传统的杀菌剂提出了挑战。我们应把此作为机遇,努力开发新型的替代产品。

③提高我们的应用水平。在现有杀菌剂品种的基础上,开发复配产品,最大限度的发挥现有品种的潜力。

④开发有针对性的特效杀生剂品种。

转载文献,提供参考

杀菌剂分类大全 1

杀菌剂大全1 酰胺类杀菌剂 卵菌纲:高效甲霜灵、高效苯霜灵、噻酰菌胺、环丙酰菌胺、氟吡菌胺、吡噻菌胺(菌核病、灰霉病、白粉病)、双炔酰菌胺、苯酰菌胺、噻唑菌胺、氟啶酰菌胺、双炔酰菌胺 稻瘟病:氰菌胺、双氯氰菌胺、环酰菌胺(灰霉病) 土壤病害:磺菌胺、噻氟菌胺、 叶枯酞(抑制细菌)、环氟菌胺(白粉病)、硅噻菌胺(全蚀病)、萎锈灵(黑穗病、黄萎病、立枯病、防腐剂、具有生长刺激作用)、甲呋酰胺(黑穗病)、呋吡菌胺(纹枯病、菌核病、白绢病)、啶酰菌胺(白粉病、灰霉病、各种腐烂病、褐腐病和根腐病等)、甲磷菌胺、氟菌胺 通过抑制琥珀酸脱氢酶破坏病菌呼吸而致效 酰胺类化合物作为杀菌剂已有几十年的历史,大多数酰胺类杀菌剂的杀菌谱比较窄,近期又有许多新颖的化合物商品化,最明显的结构特点是杂环,特别值得提及的是吡噻菌胺(penthiopyrad)和啶酰菌胺(boscalid)具有较广的活性谱。 氟吗啉是沈阳化工研究院开发的丙烯酰胺类杀菌剂。是我国有史以来真正创制的农用杀菌剂、是首次获得中国和美国发明专利的农用杀菌剂。具有良好的内吸、保护和治疗活性。对卵菌亚纲病原菌引起的病害如霜霉病、疫病如黄瓜霜霉病、葡萄霜霉病、马铃薯晚疫病、番茄疫病、辣椒疫病、烟草疫病等有优异的活性。 噻氟菌胺是琥珀酸酯脱氢酶抑制剂,即在真菌三羧酸循环中抑制琥珀酸酯脱氢酶的合成。对丝核菌属、柄锈菌属、黑粉菌属、腥黑粉菌属、伏革菌属和核腔菌属等致病真菌有活性,对担子菌纲真菌引起的病害如立枯病等有特效。

氰菌胺和双氯氰菌胺分别是由日本农药公司和住友化学公司开发的酰胺类杀菌剂。主要用于防治稻瘟病。 环酰菌胺主要用于防治各种灰霉病以及相关的菌核病、黑斑病等。 硅噻菌胺是含硅的噻酚酰胺类杀菌剂。具体作用机理尚不清楚,可能是ATP 抑制剂。主要用于小麦全蚀病的防治。 呋吡菌胺(纹枯病、菌核病、白绢病)是日本住友化学公司开发的吡唑酰胺类杀菌剂,主要抑制真菌线粒体中琥珀酸的氧化作用,具有优异的预防和治疗效果。 噻唑菌胺(ethaboxam)是韩国LG农化公司研制开发的噻唑酰胺类杀菌剂,主要用于防治卵菌纲病害。 噻酰菌胺(tiadinil)是由日本农药公司开发的噻二唑酰胺类杀菌剂,主要用于防治稻瘟病。 啶酰菌胺(白粉病、灰霉病、各种腐烂病、褐腐病和根腐病等)0(boscalid)是由巴期夫公司开发的吡啶酰胺类杀菌剂,主要用于防治菌核病、锈病、马铃薯早疫病和灰霉病等。 吡噻菌胺(penthiopyrad)是由日本三井化学公司开发的吡唑酰胺类杀菌剂。主要用于防治白粉病和灰霉病等。 氟啶酰菌胺(fluopicolide)和双炔酰菌胺(mandipropami)分别由拜耳和先正达公司开发,具有优异的杀菌活性,均对霜霉病有特效。 二羧酰亚胺类杀菌剂 乙菌利(黑穗菌核白粉)、异菌脲(灰霉病)、腐霉利(菌核病、灰霉病、黑星病、褐腐病、大斑病)、乙烯菌核利(菌核菌、白粉、黑斑病、灰霉病)、克菌丹(地下地上方方面面保护)、灭菌丹(多种病害)、菌核利(菌核病、灰霉病)传统杀菌剂,通过抑制NADH细胞色素C还原酶破坏类酯类和膜的合成而致效甲氧基丙烯酸酯类杀菌剂 基本上所有真菌病害:嘧菌酯、氟嘧菌酯、醚菌酯、唑菌胺酯、烯肟菌酯、烯肟菌胺

(整理)常用杀菌剂的种类

常用杀菌剂的种类、性质及作用 奥美塞克——750g/十三吗啉 1、“奥美塞克”杀灭枝干腐烂病、干腐病、轮纹病特效。是目前防治枝干病害最为特效的产品。 2、“奥美塞克”具有内吸、保护、治疗、铲除四大高能作用。既安全,又不易产生抗性。对白粉病、霉心病、赤星病、褐斑病及烂根病也具有显著防效。 (一)农用抗生素 1、多抗霉素 【中文通用名称】多抗霉素 【英文通用名称】polylxin 【商品名称】宝丽安、多氧霉素、科生霉素、多氧清等。 【化学名称】肽嘧啶核苷类抗生素 【制剂类型】10%、3%、2%、1.5%多抗霉素可湿性粉剂,0.3%多抗霉素水剂 【理化性质】该类抗生素含有A至N 14种同系物的混合物。我国生产的多抗霉素主要成分是多抗霉素A和多抗霉素B,是多抗霉素金色产色链霉菌(Streptomyces aureo chromogenes)所产生的代谢物,含量为84%(相当于84×10单位/g),系无色针状结晶,熔点(m.p.)180℃。日本产的多抗霉素称为多氧霉素,是可可链霉素阿苏变种(Streptomyces cacaoi var.asoensis)产生的代谢产物,主要成分为多抗霉素B,占22%~25%(相当于22×10~25×10单位/g),系无定形结晶,分解温度(m.p.)为160℃。多抗霉素易溶于水,多抗霉素对人、畜低毒,在动物体内无蓄积,易排出体外。对鱼、水生生物及蜜蜂低毒。是环保型绿色农药。 【作用】多抗霉素是广谱性、具有内吸传导作用的抗生素类杀菌剂。对链格孢菌、葡萄孢菌、灰霉菌等真菌病害有较好防治效果。当药剂喷到病菌体上后,病原菌细胞壁壳多糖的生物合成受到干扰,使以壳多糖为基质构成细胞壁的真菌,芽管和菌丝体局部膨大、破裂,细胞内容物溢出,导致病原菌细胞不能正常生长发育而死亡。同时,该药剂还具有抑制病菌产生孢子及病斑扩大等作用。 多抗霉素在北方落叶果树上,主要是用来防治苹果斑点落叶病、霉心病、梨黑斑病、草莓的灰霉病等。尤其对霉心病的防治,苹果落花60%~80%时,喷布多抗霉素,防治霉心病效果显著,而且不影响坐果。 2、嘧啶核苷类抗菌素 【中文通用名称】嘧啶核苷类抗菌素 【英文通用名称】TF-120 【商品名称】农抗120、抗霉菌素120、120农用抗菌素 【化学名称】嘧啶核苷类抗菌素

常用杀菌剂的分类及简介

常用杀菌剂的分类及简介 杀菌剂可根据作用方式、原料来源及化学组成进行分类。 (一)按杀菌剂的原料来源分 1、无机杀菌剂如硫磺粉、石硫合剂、硫酸铜、升汞、石灰波 尔多液、氢氧化铜、氧化亚铜等。 2、有机硫杀菌剂如代森铵、敌锈钠、福美锌、代森锌、代森 锰锌、福美双等。 3、有机磷、砷杀菌剂如稻瘟净、克瘟散、乙磷铝、甲基立枯 磷、退菌特、稻脚青等。 4、取代苯类杀菌剂如甲基托布津、百菌清、敌克松等。 5、唑类杀菌剂如粉锈宁、多菌灵、恶霉灵、世高、丙环唑等。 6、抗菌素类杀菌剂井冈霉素、多抗霉素、春雷霉素、农用链 霉素、农抗120等。 7、复配杀菌剂如炭疽福美、杀毒矾、霜脲锰锌、甲霜灵• 锰锌、甲基硫菌灵•锰锌、甲霜灵—福美双可湿性粉剂等。 8、其他杀菌剂如甲霜灵、菌核利、腐霉利、扑海因、灭菌丹、 克菌丹等。 (二)按杀菌剂的使用方式分 1、保护剂在病原微生物没有接触植物或没浸入植物体之前, 用药剂处理植物或周围环境,达到抑制病原孢子萌发或杀死萌发的病原孢子,以保护植物免受其害,这种作用称为保护作用。具有此种作用的药剂为保护剂。如波尔多液、代森锌、硫酸铜、代森锰锌、百菌清等。

2、治疗剂病原微生物已经浸入植物体内,但植物表现病症处于潜伏期。药物从植物表皮渗人植物组织内部,经输导、扩散、或产生代谢物来杀死或抑制病原,使病株不再受害,并恢复健康。具有这种治疗作用的药剂称为治疗剂或化学治疗剂。如甲基托布津、多菌灵、春雷霉素等。 3、铲除剂指植物感病后施药能直接杀死已侵入植物的病原物。具有这种铲除作用的药剂为铲除剂。如福美砷、石硫合剂等。 (三)按杀菌剂在植物体内传导特性分 1、内吸性杀菌剂能被植物叶、茎、根、种子吸收进入植物体内,经植物体液输导、扩散、存留或产生代谢物,可防治一些深入到植物体内或种子胚乳内病害,以保护作物不受病原物的浸染或对已感病的植物进行治疗,因此具有治疗和保护作用。如多菌灵、力克菌、绿亨2号、多霉清、霜疫清、甲霜灵、乙磷铝、甲基托布津、敌克松、粉锈宁、、杀毒矾、拌种双等。 2、非内吸性杀菌剂指药剂不能被植物内吸并传导、存留。目前,大多数品种都是非内吸性的杀菌剂,此类药剂不易使病原物产生抗药性,比较经济,但大多数只具有保护作用,不能防治深入植物体内的病害。如硫酸锌、硫酸铜、多果定、百菌清、绿乳铜、表面活性剂、增效剂、硫合剂、草木灰、波尔多液、代森锰锌、福美双等。 此外,杀菌剂还可根据使用方法分类,如种子处理剂、土壤消毒剂、喷洒剂等。

循环水杀菌剂

循环水杀菌剂 概述 循环水系统是以水作为冷却介质,由换热设备、冷却设备、水泵、管道、过滤器等组成,并循环使用的一种给水系统,随着水的蒸发水中的含盐量和杂质增加,给异样菌提供了生长环境,加之用水装置在冷换过程中由于泄漏产生的泄漏物,给异样菌生长繁殖也提供了环境,这些细菌、真菌和藻类的繁殖给循环冷却水系统带来了危害,诱发金属腐蚀、结垢,使得系统传热效率降低,对冷换设备及供水管网的安全运行构成了威胁,使循环水浓缩倍数进一步升高,循环水系统因菌藻类问题导致的腐蚀结垢加剧,所以控制异样菌个数在指标范围内是循环水装置的主要任务。由于异样菌超标对生产有着严重危害,目前循环水装置异样菌控制的主要方式有:(1)通过投加氧化性杀菌剂次氯酸钠进行微生物控制,控制微生物繁衍,防止污泥大量产生。(2)通过投加非氧化性杀菌剂配合次氯酸钠投加来控制微生物的繁殖。(3)定期清除塔池积泥。 1、次氯酸钠介绍 次氯酸钠可以杀灭一切微生物,在水处理行业是一种高效无毒的杀菌灭藻剂,具有消毒、除异味、除生物粘泥等作用。产品一般为10%有效氯浓度液体:淡黄色,有少量刺激性气味,清澈透明,易溶于水,比重为1.18。 次氯酸钠分子式是NaClO,属于强碱弱酸盐,是一种能完全溶解于水的液体,是一种非天然存在的强氧化剂,属于高效、广谱、安全的强力杀菌剂,在杀菌效果方面与氯气相当,但它不像氯气会发生卤代反应而被某些有机物所消耗,也不像氯气等杀菌剂有剧毒,不会对操作人员造成直接伤害,故从安全角度考虑,在杀菌剂的选用上应优先选用次氯酸钠。次氯酸钠作为一种杀病毒药剂,它同水的亲和性很好,能与水任意比互溶,不存在液氯等药剂的安全隐患,且消毒效果被公认为和氯气相当。由于其消毒效果好,投加准确,操作安全,使用方便,易于储存,对环境无毒害,不存在跑气泄漏,因此可以在任意工作状况下投加。同时,高浓度的次氯酸钠液体还可以用于剥离设备及管道上附着的沾泥。次氯酸钠的灭菌原理主要是通过它的水解形成次氯酸,次氯酸再进一步分解形成新生态氧,新生态氧的极强氧化性使菌体和病毒的蛋白质变性,从而使病源微生物致死。根据化学测定,次氯酸钠的水解受PH值的影响,当pH超过9.5就会不利于次氯酸的生成。而绝大多数水质的pH值都在6—8.5,对于PPM级浓度的次氯酸钠在

常用杀菌剂使用说明

常用杀菌剂使用说明 代森锌 1.作用特点原药为灰白色或淡黄色粉末,有臭鸡蛋味。是一种保护性杀菌剂,对霜霉病菌、晚疫病菌及炭疽病菌等多种病菌有较强的触杀作用。其有效成分在水中易被氧化成异硫氰化合物,对病原菌体内含有―SH基的酶有强烈的抑制作用,并直接杀死病菌孢子,阻止病菌侵入,对作物安全。应掌握发病初期用药,持效期较短。对高等动物低毒,对皮肤、黏膜有刺激作用。 2.制剂 60%、65%、80%可湿性粉剂。 3.防治对象与使用技术发病初期,用80%可湿性粉剂 500倍液喷雾,可防治瓜类猝倒病、立枯病、角斑病、枯萎病、炭疽病、霜霉病等多种病害。隔7~10天再喷一次。 4.注意事项①不能与碱性农药及铜制剂混用。②本剂对人体皮肤、黏膜等有刺激作用,使用时要注意安全保护。③应贮存于干燥、避光和通风良好的仓库中,以免分解。 代森锰锌 (大生M45、大生富、喷克、新万生、山德生、丰收、大胜) 1.作用特点代森锰锌是一种广谱保护性杀菌剂,其作用机理是抑制菌体内丙酮酸的氧化。原药为灰黄色粉末,在高温时遇潮湿也易分解。对高等动物低毒,对人的皮肤和黏膜有一定刺激作用。对鱼类有毒,在试验剂量下,未发现“三致”现象。 2.制剂 70%、80%可湿性粉剂,42%悬浮剂,在各生产长家间因粉剂细度不同和药剂中增加黏胶剂等因素,防治效果各有千秋。 3.防治对象与使用技术防治瓜类的炭疽病、疫病、霜霉病、叶斑病、黑点病等,用70%代森锰锌可湿性粉剂400~600倍液,在发病初期喷施,隔7~10天后再喷施一次,共喷2~3次。也可选用80%大生M45或喷克、新万生等600~800倍,在发病初期喷施,隔6~7天再喷施一次,共喷2~3次。 4.注意事项①不能与碱性物质或铜制剂混用,但可与多种虫剂、杀菌剂、杀螨剂混用。②高温季节,中午避免用药。③使用大生M45、喷克、新万生等宜雨前喷施,雨后不必补喷,喷药要周到、均匀。 甲基硫菌灵(甲基托布津) 1.作用特点甲基硫菌灵是一种高效、低毒、低残留、广谱、内吸性杀菌剂,具保护和治疗两种作用。其作用机理是当该药喷施于植物表面,并被植物体吸收后,在植物体内,经一系列生化反应,被分解为甲基苯并咪唑―乙―氨基甲酸酯(即多菌灵)。干扰菌的有丝分裂中纺锤体的形成,使病菌孢子萌发长出的芽管扭曲异常,芽管细胞壁扭曲等,从而使病菌不能正常生长达到杀菌效果。纯品为无色结晶,难溶于水,对酸碱稳定。对高等动物低毒,对皮肤、黏膜刺激性低,对鱼类毒性低,对植物安全。 2.制剂 50%、70%可湿性粉剂。 3.防治对象与使用技术用70%可湿性粉剂500~700倍。防治灰霉病、白粉病、炭疽病、褐斑病、叶霉病等均有良好的预防和治疗效果,隔7~10天喷施一次,共喷2―3次;也可用种子重量的O.3%~0.4%进行拌种处理;或用70%可湿性粉剂500倍液灌根,防治枯萎病也有较好的效果。 4.注意事项①可与石硫合剂等碱性农药混用,但不能与含铜制剂混用,或前后紧接使用,也不能长期单独使用。①贮存于阴凉干燥处。③作物收获前14天停止使用。 百菌清(达科宁、TDN)

循环水杀菌剂比较

循环水杀菌剂比较公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

水处理技术要解决的主要是腐蚀、结垢、微生物三大问题。这三大问题相互关联,它们均直接或间接地影响冷却水系统的正常运行,其中微生物的影响面更大。 在碱性水处理技术(系统自然浓缩,不调pH,一般pH值在7.5~9.0之间)中,尤其是含氨冷却水中,氯类杀生剂的杀菌速度和效果大大降低,需要维持系统有效的余氯浓度所需要投加的氯类杀生剂剂量相应增加,这主要是因为,次氯酸在pH为6~8.5时,就发生电离,pH值在8.5以上时,氯基本以氯酸根的形式存在,由于氯酸根带有负电荷,与细菌表面的负电荷相斥,故不易接近细胞,次氯酸根的杀生作用只有次氯酸的1%~2%,从而使之杀菌能力大幅减弱或丧失。当水中含有氨时,由于氯类杀菌剂的强腐蚀性和易被氨、氮消耗以及残留余氯对环境的二次污染等不利因素,使氯类杀生剂无法满足迅速发展的水处理技术的需求。 目前被广泛用于循环水处理的氧化型杀菌剂氯气等氯类杀菌剂产品,由于不适用于碱性配方及众所周知的危险性,对环境的污染、对金属设备的腐蚀等缺点,迫切需要寻找一种新的杀菌剂来代替。优氯净、强氯精等氧化型杀菌剂虽然使用的安全性得到了提高,但由于气味刺鼻难闻,投加时易产生粉尘,给使用带来不便。次氯酸钠杀菌活性低,用量大,碱度大。随着水处理技术水平的提高,环保标准日益严格,人们致力于寻找一种高效、低毒的杀菌剂。 溴类杀生剂的杀菌机理与氯类杀生剂相似,但杀生效果快速,应用条件及环保因素等方面均优于氯类杀生剂,是氯类杀生剂的良好替代品,因此溴类杀生剂的开发研究势头迅猛。国外从七十年代后期开始开发溴类杀生剂,目前已在美国、日本、西欧等国广泛应用于工业冷却水系统及游泳池、戏水乐园等场所的杀菌处理。其主要产品有氯化溴、溴氯化合物、二溴氮氚丙酰胺、溴氯海因类产品。国际知名的化学品公司美国的NALCO、DOW、日本的栗田等均有自己的产品,目前溴类杀生剂市场成长已超过氯类杀生剂以每年10%以上的速度平稳增长。我国目前在溴类杀生剂开发应用领域还处于起步阶段,近年来先后有相关科研院所及生产厂家开发并应用了部分溴类杀生剂品种,取得了巨大的成绩。 抚顺精诚水处理技术有限公司作为国内最具活力专业水处理公司,积极引进吸收先进的技术,开发生产并应用了BROM 408/410溴基液体杀菌剂,该杀菌剂是结合国外最新研究成果研制生产的新一代杀菌剂,它克服了现有杀菌剂的不足,具有高效、低毒、广谱、快速、使用方便等特点,并在稳定性和实现无味,有效降低循环水中的浊度,可以实现液体连续计量投加方面取得突破,加上良好的性能价格优势,将成为日后溴类杀生剂的代表产品,具有极强的市场竞争力。 氧化性杀菌剂应用较早,在冷却水中已用了半个多世纪了,人们对它的了解越来越深入了。这类杀菌剂通常是一些强氧化剂,如卤素中的氯、溴和碘,还有氯的化合物、臭氧等。大体可分为五大类:氯基杀菌剂、溴基杀菌剂、二氧化氯、过氧化物和臭氧。 (1)氯基杀菌剂。这类杀菌剂的主要品种有氯气、次氯酸钠、次氯酸钙、氯胺丁、二氯及三氯异氰尿酸、二氯二甲基海因(DCDMH)等。广东兴宁电厂使用的是固态的氯锭或NaCLO溶液,它们对水中的微生物有优良的杀灭和抑制作用,但是它们的杀菌作用受水中的PH值影响很大,PH值越高,杀菌作用就越差,同时ClO-会与B30铜管中的镍反应,使B30铜管产生腐蚀,故高浓缩倍率循环水高PH值情况下,一般不使用Cl2及次氯酸盐。因此,在杀菌剂市场对氯气的限制使溴、臭氧和二氧化氯等受到广泛关注。 (2)溴基杀菌剂。这类杀菌剂的主要品种有溴化钠/氯气、次氯酸钠、臭氧、溴/氯溴、稳定性溴溶液、卤化海因 (BCDMH—溴氯二甲基海因、BCMEH—溴氯甲乙基海因、 DBDMH—二溴二甲基海因),溴化钠/氯化异氰尿酸等。有机溴杀菌剂是一种相对较新的杀菌剂,它在国外最初是作为一种粘泥抑制剂,主要用于控制冷却塔上的塔泥增长,后来发现它具有优异的杀菌灭藻性能,又将它作为循环冷却水系统的杀

常用杀菌剂总结

常用杀菌剂 这次再让我们广大农户了解一下有关于一些药的注意事项 :1、百菌清:不能与石硫等碱性农药混用,如敌稗,波尔多液,石硫合剂等 2、多菌灵:可与一般杀菌剂混用,但与杀虫剂、杀螨剂混用时要随混随用,不宜与碱性药剂混用。 3、64%杀毒矾:是由恶霜灵和代森锰锌混配制剂而成,具有内吸传导性和触杀性,防治霜霉科、白锈科,对作物稳定,不易产活药害,而且各种作物对杀毒矾的耐药性很高,不会引起药害。杀毒矾与农用链霉素相配黄瓜幼苗禁用 4、恶霜灵:【中文名称】恶霜灵;杀毒矾农用杀菌剂。对霜霉目病源菌具有很高的防效,有保护和治疗作用,持效期长。与代森锰锌浑身,其防效高于与灭菌丹、铜制剂混用,如64%恶霜·锰锌可湿性粉剂(杀毒矾) 5:番茄灰叶斑病每667平方米可用15%克菌灵烟霉剂(速克灵十百菌清)200克熏治 6、:如何用药防治番茄叶霉病:1.广谱性杀菌剂:如百菌清(达克宁)、扑海因(异菌脲)、甲基托布津等。这类药剂的优点是:防病谱广,安全、价格低、预防效果好。缺点是:治疗效果差。故应在发病前使用,或者配合治疗效果突出的药物使用。2.唑类药剂:如腈菌唑(仙生)、氟菌唑(特富灵)、苯醚甲环唑(世高)等,优点治疗效果显著,用药量低,内吸性强,持效期长,缺点是:用药量大会抑制作物生长。如果连续用药次数超过三次,很有可能造成番茄叶片变小、变硬、变脆、变黑等情况,因此应慎用,特别是在冬季低温时期更要少用,世高除外。在使用该类药剂时,可配合一些生长调节剂,如芸薹素内酯(施大源、云大120等)、细胞分裂素等使用,以减少其抑制番茄生长的副作用。3.抗生素类药剂:如春雷霉素、多抗霉素、农抗120等 接着第三条,这些药剂的优点是:安全、广谱、内吸性强,预防效果突出。但治疗效果较差。综合上述药剂特点,在使用药剂防治番茄叶霉病时应进行以下用药:叶片无病斑或发病率低于5%时,可选用广谱性杀菌剂,或世高,或抗生素类杀菌剂,也可以混合使用。当发病率高于5%,并有蔓延趋势时,应选用唑类杀菌剂。当然,需要配合芸薹素内酯、细胞分裂素等植物生长调节剂使用。发病特别严重时,可用唑类药剂混加广谱性药剂或抗生素类药剂的方法进行全面防治。 7、阿米西达: 嘧菌酯,阿米西达的杀菌谱是非常广,对四大类致病病真菌:子囊菌、担子菌、半知菌和卵菌纲中的绝大部分病原菌均有效。一药治多病是阿米西达的突出特点,与现有杀

循环冷却水杀菌剂综述

循环冷却水杀菌剂综述 由于循环冷却水系统具有的特殊生态环境导致微生物在其中很容易繁殖。微生物的大量繁殖给冷却水系统带来许多危害,使系统传热效率降低,诱导金属腐蚀,严重时还可能造成管道堵塞。在实际运行系统中,最为直接有效的方法是投加杀菌剂控制系统中的微生物。 1 杀菌剂的现状 1.1氧化性杀菌剂 1.1.1 氯气。 在水处理中,氯由于其具有高效、快速广谱、经济、物源广、使用较方便等优点,受到人们的青睐,是目前用量最大的杀菌剂。但经氯气处理,水中易产生三氯甲烷,它是一种致癌物质,同时其半衰期时间长,易对环境造成危害,因此各国相继出台法规,日益严格控制余氯的排放量[1]。另外,随着水处理配方逐渐向碱性水处理方案的过渡,氯气在高pH(>8.5)的条件下杀生活性差的缺点也显现出来屈此人们开发出一些氯的替代物,如 ClO2、溴类杀生剂、臭氧等。 1.1.2 二氧化氯。

二氧化氯的杀生能力较氯强,约为氯的2.5倍左右,特别适合应用于合成氨厂替代氯进行杀菌灭藻处理。国外于70年代中期开始将其应用于循环冷却水。但由于二氧化氯产品不稳定,运输时容易发生爆炸事故,限制了其广泛的应用。 针对这种情况人们采取现场发生ClO2、开发稳定性二氧化氯等措施,克服了这一难题。目前国内采用的现场ClO2发生装置主要有电解ClO2发生装置和化学法ClO2发生装置两类[2]。70年代美国百合兴国际化学有限公司开发出稳定性二氧化氯(BC—98)。我国也于80年代后期开发出了这一产品。 1.1.3 臭氧。80年代末,臭氧作为一种杀菌剂应用于冷却水系统受到人们的广泛关注。由于臭氧所具有的一些优越性是传统的化学药剂所无法比拟的,目前,国外已将臭氧广泛地应用于冷却水处理中。使用结果表明,采用臭氧处理的系统可在高浓缩倍数下,甚至在零排污下运行。处理成本低于传统的化学处理法。在这方面我国尚处于起步阶段。 1.1.4 过氧化物。近些年来过氧化氢作为工业水处理的杀菌剂引起人们注意。使用过氧化氢的一个优点是它不会形成有害的分解产物。但它存在着在低温和低浓度下活性较低,且可被过氧化氢酶和过氧化物酶分解的缺点。过氧醋酸克服了过氧化氢的缺点。过氧醋酸以前只用于美国的食品工业。最近,FMC公司收到了环保局(EPA)的注册证,其组成为5%的过氧醋酸配方产品,可用作工业水处理杀生剂。由于

绿化苗木常用杀菌剂和杀虫剂

常用杀菌剂和杀虫剂 (一)杀菌剂 1.波尔多液 波尔多液是一种常用的花木表面保护性杀菌剂。 它的特点是历史悠久,杀菌力强,药效范围广,作用持久。 它是由硫酸铜、石灰和水配制而成的。 配好的波尔多液,是一种天蓝色的胶状悬液,杀菌主要成分是碱式硫酸铜。波尔多液刚配好时悬浮性好,也具一定的稳定性,但搁置久后,悬浮的胶粒就会互相聚合沉淀,最终形成结晶。 该药液要现配现用,不宜贮存。 由于波尔多液呈碱性,与其他农药混用时应注意该特性,配制时忌用金属容器,否则易产生腐蚀作用。 波尔多液的配制: 根据硫酸铜和石灰的比例,将波尔多液分为等量式1:1、半量式1:0.5、倍量式1:2、多量式1:(3~5)和少量式1;(0.25~0.4)等类别。 波尔多液倍数,则是以硫酸铜与水之比例,例如160倍的波尔多液,即表示在160份水中有1份硫酸铜。实践中常两者结合,表示配合的比例。如等量式波尔多液100倍液,其配合比例为硫酸铜:石灰:水=1:1:100。 通常使用下列三种波尔多液,其原料配合量为: ①硫酸铜1公斤+生石灰1公斤+水100公斤,也就是1%等量式波尔

多液。 ②硫酸铜0.5公斤+生石灰1公斤+水100公斤,这便是0.5%倍量式波尔多液。 ③硫酸铜0.5公斤+生石灰0.5公斤+水100公斤,即0.5%等量式波尔多液。各种花木对波尔多液中铜离子敏感程度不一。 桃、梅、李、柿最敏感,故在生长期,对桃树不使用波尔多液; 樱桃、葡萄、柑桔对铜离子不敏感,但葡萄对石灰较敏感,通常要用石灰少量式的波尔多液。 波尔多液的配制方法有几种,其中两液法、稀铜浓石灰乳法较好。两液法是将硫酸铜和生石灰分别溶化于等量的水中,同时将两液倒人第三个容器中,边倒边搅均匀即成。 在配制杀菌剂时,此法常用,但需要三个容器,操作比较费事。 而稀铜浓石灰法,即用多量的水溶硫酸铜,用少量水溶石灰,配成稀铜浓石灰乳,然后将稀硫酸铜液均匀倒入浓石灰乳中,边倒边搅即成。波尔多液的防病作用,是铜离子对病菌的毒杀作用。 波尔多液喷洒在花木表面上,能形成水溶性很低的一层薄膜,它受到植物分泌物、空气中二氧化碳及病菌孢子萌发时分泌出来的有机酸作用,游离出铜离子。 当铜离子进入菌体后,使细胞原生质凝固变性,造成病菌死亡,达到防病的效果。 2.石灰硫磺合剂 石灰硫磺合剂简称石硫合剂,在生产中广泛应用,是一种重要的药剂,

循环冷却水杀菌剂综述

循环冷却水杀菌剂综述 摘要:由于循环冷却水系统具有的特殊生态环境导致微生物在其中很容易繁殖。微生物的大量繁殖给冷却水系统带来许多危害,使系统传热效率降低,诱导金属腐蚀,严重时还可能造成管道堵塞。在实际运行系统中,最为直接有效的方法是投加杀菌剂控制系统中的微生物。 关键字:循环冷却水杀菌剂 由于循环冷却水系统具有的特殊生态环境导致微生物在其中很容易繁殖。微生物的大量繁殖给冷却水系统带来许多危害,使系统传热效率降低,诱导金属腐蚀,严重时还可能造成管道堵塞。在实际运行系统中,最为直接有效的方法是投加杀菌剂控制系统中的微生物。 1 杀菌剂的现状 1.1氧化性杀菌剂 1.1.1 氯气。 在水处理中,氯由于其具有高效、快速广谱、经济、物源广、使用较方便等优点,受到人们的青睐,是目前用量最大的杀菌剂。但经氯气处理,水中易产生三氯甲烷,它是一种致癌物质,同时其半衰期时间长,易对环境造成危害,因此各国相继出台法规,日益严格控制余氯的排放量[1]。另外,随着水处理配方逐渐向碱性水处理方案的过渡,氯气在高pH(>8.5)的条件下杀生活性差的缺点也显现出来屈此人们开发出一些氯的替代物,如 ClO 2 、溴类杀生剂、臭氧等。 1.1.2 二氧化氯。 二氧化氯的杀生能力较氯强,约为氯的2.5倍左右,特别适合应用于合成氨厂替代氯进行杀菌灭藻处理。国外于70年代中期开始将其应用于循环冷却水。但由于二氧化氯产品不稳定,运输时容易发生爆炸事故,限制了其广泛的应用。 针对这种情况人们采取现场发生ClO 2 、开发稳定性二氧化氯等措施,克服了 这一难题。目前国内采用的现场ClO 2发生装置主要有电解ClO 2 发生装置和化学 法ClO 2 发生装置两类[2]。70年代美国百合兴国际化学有限公司开发出稳定性二氧化氯(BC—98)。我国也于80年代后期开发出了这一产品。

常见杀菌剂混用及混剂

蔬菜上常见杀菌剂混用及混剂 来源:《中国蔬菜》作者:王文桥发布日期:2011-11-16 16:38:07 查看次数:1433 次 摘要: 我国生产的农药品种中有大量的混剂,杀菌剂与杀菌剂或其他类型的农药现混现用的现象也很普遍。使用混剂或混用的目的在于扩大防治范围,延缓抗药性,增效,降低用药成本,省工省时。混剂或混用组合包括杀菌剂+杀菌剂、杀菌剂+杀虫剂、杀菌剂+叶面肥、杀菌剂+生物生长调节剂、杀菌剂+桶混助剂(如加入0.03 %有机硅表面活性剂),一般将保护性杀菌剂与内吸性杀菌剂混合使用,或将不同作用机理或作用方式的杀菌剂混用。例如,精甲霜灵+代森锰锌、霜脲氰+代森锰锌、烯酰吗啉+代森锰锌、噁唑菌酮+代森锰锌提供内外双重保护,即广谱性的保护性杀菌剂代森锰锌在植物表面杀死分生孢子(或游动孢子)减少病菌侵入植物组织,从而起到预防发病作用,而精甲霜灵、霜脲氰、烯酰吗啉、噁唑菌酮可被植物组织吸收,抑制已侵入植物组织的病菌萌发的分生孢子(或休止孢)芽管伸长或附着孢生长、菌丝生长,从而起到治疗作用。这种模式的混用往往有增效作用,同时扩大杀菌谱。吡唑醚菌酯、嘧菌酯等QoI类杀菌剂为呼吸作用抑制剂,对孢子萌发具有较强抑制作用,与苯醚甲环唑、咯菌腈、啶菌恶唑等菌丝生长抑制剂混用也可起到增效作用。在少数情况下,相同作用机理的药剂也可加工成混剂,例如苯醚甲环唑和丙环唑均为病原真菌甾醇生物合成抑制剂,苯醚甲环唑+丙环唑制成的混剂30 %爱苗悬浮剂是利用丙环唑和苯醚甲环唑在速效性上的互补性而配制的;多菌灵和乙霉威均为病原真菌有丝分裂抑制剂,影响有丝分裂所必需的纺锤丝中微管蛋白的合成,多菌灵+乙霉威配制成的50 %万霉灵可湿性粉剂是利用多菌灵与乙霉威之间存在着负交互抗性关系而配制的。 1 需要使用混剂或混用的几种情况 有时在一个作物上同时发生一种以上病害,需要喷施两种不同的杀菌剂,有时还会病虫并发,需要喷施杀菌剂、杀虫剂,为节省喷药次数,将两种杀菌剂或将杀菌剂与杀虫剂混合使用也未尝不可。例如,在保护地栽培的黄瓜上常常同时发生粉虱或蚜虫和霜霉病、灰霉病等,通常将防治粉虱或蚜虫的药剂(吡虫啉)与防治霜霉病的药剂(精甲霜灵·代森锰锌)或防治灰霉病的药剂(异菌脲、烟酰胺、咯菌腈等)混用。在保护地栽培的番茄上也会同时发生粉虱和叶霉病、灰霉病、晚疫病等,可将杀虫剂与杀菌剂现混现用。 为了达到防病的目的或增强植株抗病性,促进植物生长或培育壮苗,也可将杀菌剂与植物生长促进剂混用。例如菜农普遍将生长素2,4-D与防治灰霉病的杀菌剂(咯菌腈、嘧霉胺等)混合后涂抹番茄花蕾(或称蘸花)。含有植物生长或发育所必需的多种微量元素、植物生长调节剂的叶面肥与杀菌剂也可混用,但要注意它们相互作用是否无害于杀菌剂的性能和作用。杀菌剂与植物生长调节剂或微肥的混施,也必须注意杀菌剂与生长调节剂之间的相互影响,最好预先经过仔细的试验比较,确证没有副作用再混合使用。有机硅等许多表面活性剂与杀菌剂现混现用可改善药液在作物表面的湿润性、增加药剂的渗透性而提高效果,称为桶混助剂,一般的加用量为0.05 %~0.10 %。有机硅表面活性剂使用时的加入量约为0.03 %,由于在水中易于降解,只能现混现用。 有些农民为了节省喷药的时间,喜欢把多种农药一次性地混合后喷洒,称之为“四合一”、“一喷多防”……,这种方法需要谨慎使用,可能是危险的或不经济的,对植株造成药害,浪费部分不需要使用的药剂。因此,杀菌剂不宜任意混合使用。 2 杀菌剂混剂 混配制剂与混合使用不同,混合使用是由农药使用者根据需要将农药混合使用。混剂则是预先加工好的商品化制剂,用户买到了混剂后已不能改变其中的农药有效成分组成,因此,不管需要不需要,买来的混配制剂中的各种成分都只能一次性地全部喷出,一些原本并不需要的农药也都喷到作物上,

循环水中水处理杀菌剂的应用

循环水中水处理杀菌剂的应用 循环冷却水中会包含大量细菌和藻类。温度的升高会提供细菌和藻类生存所需要的环境,因而对冷却水进行杀菌去藻处理是必要的,此时水处理杀菌剂就是很好的选择。 1氧化性水处理杀菌剂 1.1氯气 在水处理过程中,氯气由于其具有高效、广谱、廉价、物源广、使用较方便等优点,受到人们的青睐,是目前用量最大的水处理杀菌剂。但经氯气处理水中易产生三氯甲烷致癌物质,同时其半衰期长,易对环境产生危害,因此各国相继出台法规,日益严格控制余氯的排放量。另外,氯气在高pH(>8.5)的条件下杀菌活性差的缺点也表现出来,因此人们开发出氯的替代物,如ClO2、溴类水处理杀菌剂等。 1.2二氧化氯 二氧化氯的杀生能力较氯强,约为氯的2.5倍,特别适合合成氨厂替代氯进行杀菌灭藻处理。国外于上世纪70年代中期开始将其应用于循环冷却水。但由于其性能不稳定,不宜运输,限制了其广泛应用。针对这种情况人们采用现场发生ClO2和开发稳定性二氧化氯等措施克服了这一难题。 1.3溴类水处理杀菌剂 溴水处理杀菌剂可以弥补氯水处理杀菌剂主要缺点,HOBr比HOCl 杀菌速度快,且适用pH范围广,尤其适用于碱性范围;溴胺和HOCl杀菌作用相当,因而可用于被NH3污染的系统中,且溴胺比氯胺类化合物容易降解,不易引起二次污染;Br2比Cl2不易挥发,杀菌时用量可以减少;Br2比Cl2对铜及铜合金的腐蚀要小。但Br2比Cl2价格高。

2非氧化性水处理杀菌剂 2.1异噻唑啉酮 其杀菌性能具有广谱性,同时对粘泥具有剥离作用。在低浓度下有效,一般有效浓度在0.5mg/L,就能很好地控制细菌的生长。相溶性好,能与缓蚀剂、阻垢分散剂及大多数阴离子、阳离子和非离子表面活性剂相容。对环境无害,该药剂在水溶液中降解速度快。对pH值适用范围广,一般pH值在5.5~9.5均能适用。同时具有投药间隔时间长,不起泡沫等优点。上世纪80年代中后期我国也有多家单位研制出类似国外的同类产品,并投入生产。在冷却水中的应用日益广阔。 2.2戊二醛戊二醛 几乎无毒,适用范围宽,耐较高温度,,是杀硫酸盐还原菌的特效药,其本身可以生物降解。其缺点是与氨、胺类化合物发生反应而失去活性,因此在漏氨严重的化肥厂不宜使用。 2.3季铵盐 它具有广谱、高效性能,还对菌藻污泥具有剥离作用。早期的季铵盐以十二烷基二甲基苄基氯化铵(1227)为代表,目前国内广泛使用的洁尔灭和新洁尔灭均属于此类产品。随着技术的进步,该类季铵盐的不足之处也逐步显现出来。主要表现在药剂持续时间短,细菌易对其产生抗药性且使用时泡沫多、不易清除等缺点。为了克服上述缺点,国外又开发出了有代表性的季铵盐新品种,如双烷基季铵盐、双季铵盐、聚季铵盐等。 目前这类产品在国内已经有一定的生产和应用。 2.4季膦盐 它的出现是目前水处理杀菌剂最新进展之一。这类化合物与季铵盐有着相似的结构,只是以磷阳离子代替氮阴离子。迄今虽然对它的各种性能参数认识并不全面,但它用于工业水处理及油田水处理确实具有高效、快速、广谱,对环境、鱼类具有低毒,易生物降解和使用方便等优点。

杀菌剂 30种常用杀菌剂

三十种常用杀菌剂 通用名称有效成分商品名称作用机理防治对象氢氧化铜波 尔多液(Copper hydroxide) 氢氧化铜 可杀得101、冠 菌铜、杀菌得、 冠菌清、猛杀 得、瑞扑、真菌 克 主要靠铜离子,铜离子被萌发的孢子 吸收,当达到一定浓度时,就可以杀 死孢子细胞,从而起到杀菌作用,但 此作用仅限于阻止孢子萌发,也即仅 有保护作用。 细菌性病害,适用于瓜类的叶 斑病、早(晚)疫病、霜霉病、 炭疽病、立枯病等多种病害, 以保护作用为主。 代森锰锌(Mancozeb)代森锰锌 大生M45、大生 富、喷克、新万 生、山德生、丰 收、大胜 抑制菌体内丙酮酸的氧化。 主要防治蔬菜霜霉病、炭疽 病、褐斑病等。 三乙膦酸铝 乙磷铝Fosety-Aluminiu m 三-(乙基磷 酸)铝 疫霉灵、乙磷 铝、疫霜灵 抑制病原真菌的孢子的萌发或阻止孢 子和菌丝体的生长。 主要防治黄瓜和白菜霜霉病、 水稻纹枯和稻瘟病、棉花疫 病、烟草黑胫病、橡胶割面条 溃疡病、胡椒病 甲霜灵·锰锌metalaxyl+m ancozeb [D,L-N-(2,6- 二甲基苯 基)-N-(2甲氧 基乙酰)丙氨 酸甲酯] 瑞毒霉.锰锌、 蕾多米尔.锰 锌、 甲霜灵主要是抑制了对a-鹅膏蕈碱 不敏感的RNA聚合酶A,从而阻碍了 rRNA前体的转录,具体胡抵制机理尚 不清楚。代森锰锌主要是抑制菌体内 丙酮酸的氧化。 对霜霉菌、疫霉菌和腐霉菌所 致的病害均有效 氟吗啉flumorph 4-[3-(3,4-二甲 基苯基)-3-(4- 氟苯基)丙烯 酰]吗啉 灭克 有关氟吗啉的具体作用机制目前仍不 清楚。Kuhn等根据其杀菌谱、杀菌活 性及形态学方面的研究结果推测其主 要作用机制是干扰病菌细胞壁物质的 合成或组装。 防治卵菌纲病原菌引起的霜 霉病及晚疫病等病害.。 霜霉威Propamocarb 3-(二甲基 氨基)丙基 氨基甲酸丙 酯 普力克、霜霉威 盐酸盐、丙酰胺 可抑制病菌细胞膜的形成,抑制菌丝 生长和孢子萌发,减少孢子囊形成和 游动孢子数量,从而达到防治病害的 目的。 防治蔬菜、果树的霜霉病、疫 病、猝倒病(腐霉和疫霉)有 优异的效果(对霜霉病、晚疫 病特效)藻状菌引起的病害。 重点卵菌门 烯酰吗啉· 锰锌Mancozeb+ Dimethomorph, W.P. 4-[3-(4-氯苯 基)-3-(3,4-二 甲氧基苯氧 基)丙烯酰]吗 啉和代森锰锌 安克-锰锌 抑制卵菌细胞壁的形成而起作用,只 有Z型异构体有活性,但是,由于在光 照下两异构体间可迅速相互转变,因 此Z型异构体在应用屯E型异构体是 一样的, 用于防治霜霉病、疫病、灰霉 病等病害 氟吡菌胺· 霜霉威Fluopicolide+ Propamocarb 氟吡菌胺和 3-(二甲基 氨基)丙基 氨基甲酸丙 酯 银法利 主要作用于细胞膜和细胞间的特点特 异性蛋白而表现杀菌活性,具有独特 的“薄层穿透力”,可加强药剂的横向 传导性及纵向输送力,对病原菌的各 主要形态均有很好的抑制活性;另一 单剂霜霉威是一种氨基甲酸酯类杀菌 剂,其作用机理是抑制病菌细胞膜成 分的磷脂和脂肪酸的生化合成,抑制 菌丝生长、孢子囊形成和孢子萌发, 具有局部内吸作用 主要防治霜霉病、疫病、晚疫 病、猝倒病等常见卵菌纲病害 霜脲氰·锰锌Cymoxanil+M ancozeb 1-(2-氰基-2- 甲氧基亚胺 基)-3-乙基脲 和代森锰锌 克霜、霜霸、 克露、妥冻 通过抑制病原菌细胞线粒体的电子转 移使氧化磷酸化的作用停止,使病原 菌细胞丧失能量来源而死亡 对疫霉、壳二孢属、尾孢属等 真菌性病害如疫霉病、霜霉病 均特效。 多菌灵Carbendazim 苯并咪唑-2- 氨基甲酸丙酯 苯并咪唑44号、 棉萎灵、贝芬 替、保卫田、枯 萎立克、 干扰真菌的有丝分裂中纺锤体的形 成,从而细胞分裂 防治瓜类枯萎病、蔓枯病、炭 疽病、白粉病、霜霉病,叶斑 病等多种病

常见杀菌剂特性总结

常见杀菌剂特性总结 代森锌 广谱;霜霉病菌、晚疫病菌及炭疽病菌等;发病初期用药,持效期 较短;瓜类猝倒病、立枯病、角斑病、枯萎病、炭疽病、霜霉病等多种 病害; 代森锰锌 瓜类的炭疽病、疫病、霜霉病、叶斑病、黑点病等;高温避免用药;雨后不必补喷; 甲基硫菌灵 广谱;保护和治疗;灰霉病、白粉病、炭疽病、褐斑病、叶霉病等;灌根,防治枯萎病;可与石硫合剂等碱性农药混用,但不能与含铜制剂 混用,或前后紧接使用,也不能长期单独使用;收获前14天停止使用;

甘薯、桃;水稻于幼穗形成期至孕穗期喷雾可防治稻瘟病、纹枯病等; 油菜在盛花期喷雾可防治菌核病;大豆结荚期喷雾防治灰斑病; 百菌清 广谱;具预防作用,没有内吸传导作用;不易受雨水冲刷,残效期长;番茄、蘑菇、草莓、茶树、桃、烟草,对某些苹果、葡萄品种有药害;防洽马铃薯晚疫病、早疫病及灰霉病在封行前;防治葡萄炭疽病、 白粉病、果腐病在开花后2周开始喷药;防治桃褐腐病、疮痂病在孕蕾 阶段和落花时,祧穿孔病通常在落花时;防治草莓灰霉病、叶枯病、叶 焦病及白粉病通常在开花初期、中期及未期各喷药1次; 甲霜灵 具上下传导,保护和治疗;残效期10~14天;瓜类霜霉菌、疫霉菌 和腐霉菌; 多菌灵 广谱,保护和治疗;对许多子囊菌和半知菌都有效,防治瓜类枯萎病、蔓枯病、炭疽病、白粉病、霜霉病,叶斑病等;桃、烟草、番茄; 麦类在始花期喷雾防治赤霉病;幼穗形成期至孕穗期喷药可防治纹枯病; 腐霉利 保护和治疗;持效期长,且能阻止病斑发展;叶、根内吸;对葡萄 孢属和核盘菌属所引起的病害有特效,如在高湿低温条件下发生的灰霉病、菌核病和对甲基托布津、多菌灵具抗性的病原菌有特效;不宜与有 机磷农药混配;在幼苗、弱苗、高温、高湿条件下喷洒,要注意施药浓度,避免药害产生;草莓、桃和樱桃;

杀菌剂综述

杀菌剂综述 一、污水处理系统中常见的细菌及其危害 在适宜的条件下,大多数细菌在污水系统中都可生长繁殖,其中危害最大的为硫酸 盐还原菌(SRB)、腐生菌(TGB)(也称粘泥形成菌)和铁细菌(FB)。 1、硫酸盐还原菌(SRB):厌氧条件下将硫酸盐还原成硫化物的细菌。 生长繁殖环境 pH值范围:5.5~9.0,最适宜pH值为6.5~7.5; 温度:该细菌的生长温度随品种而异,分中温及高温两种。中温型的为20~40℃, 最适宜的温度为25~35℃,高于45℃停止生长。高温型的最适宜温度为55~60℃。 生存部位: a. 水管线的滞流点如弯头、闸门、水表等处,也存在于垢下或管底沉积物中能够局 部形成厌氧的环境中; b. 各种水罐罐壁垢下及罐底淤泥中; c. 滤罐滤料及垫层中; d. 回注污水的注水井油管与套管环形空间中。 SRB的危害: 硫酸盐还原菌对钢铁腐蚀的原理:在厌气环境中有硫酸盐还原菌存在时,与污水接 触的钢铁表面也可形成若干对腐蚀电池。其反应如下: 在阳极部位铁被溶解: 4Fe→Fe2++3Fe2++8e 阴极部位反应比较复杂,在无氧又无硫酸盐还原菌时,仅发生放氢反应而停止腐蚀。当水中有SO42-及SRB时,SRB靠它的氢化酶及SO42-进行如下反应: 4Fe+SO42-+4H2O→FeS+3Fe(OH)2+OH- 在反应中六价硫还原成二价硫,SRB获得了能量,生成了腐蚀产物FeS及Fe(OH)2 当水中含有较多CO2时,S2-和Fe2+反应如下: S2-+ 2H2CO3→H2S+2HCO3- Fe2++ H2S→FeS+2H+ 在厌气环境下将水中无机硫酸盐还原成硫化氢,从而对钢罐及管线形成腐蚀;产生 的腐蚀产物FeS使水质变差,随水注入地层引起堵塞,该菌菌体也可堵塞地层。因此,有效地控制硫酸盐还原菌是十分必要的。

循环水处理综述分析

循环水处理综述分析 ——沂水长青环保能源有限公司 我公司的循环水冷却方式为敞开式循环水冷却,在地表水源不丰富的地区,火电厂的凝汽器、工业冷却水系统多采用冷却塔循环冷却,由于冷却水在循环使用的过程中,不断的浓缩,所以需要对冷却水进行一定程度的处理。 循环水中含有悬浮物、胶体、有机物、藻类和高浓度的无机盐,这些杂质的来源主要有三个:1、来自补充水,补充水中含有无机盐、悬浮物、胶体、有机物等杂质。 2、在冷却塔内由空气带入,在循环水与空气的逆流传热过程中同时发生对空气的洗涤作用,空气中的灰尘随之进入冷却水体,空气向水体传质的量很大,以我公司30MW机组为例,可以估算出每天有空气带入水中的灰尘量:1)循环冷却水量为5868m3/h。 2)冷却水进出水温差为10℃。 3)将1㎏循环水的温度每降低1℃需要0.20m3的空气。 4)根据GB3095—1996《环境空气质量标准》,总悬浮颗粒物二级TSP值为0.3mg/m3,由此估算每天进入水体的悬浮物的量达到84.5Kg,与此同时进入水体的还有沙粒、树叶、微生物、及二氧化硫、硫化氢、氨等可溶解性气体。 3、循环水在循环过程中自生的,主要是细菌、藻类、和生物粘泥等杂质 除了空气带入的杂质外,冷却塔、水池等处有良好的光照、适宜的温度、好氧的环境和充足的养料,这些条件十分有利于微生物的繁衍。在水流的冲刷下,部分微生物的代谢产物形成的粘泥不断进入水体,对循环水的水质影响很大。 由于无机盐只有补充水这一个来源,因此,在敞开式循环冷却水中,以悬浮物存在的杂质如藻类、微生物代谢产物等的增长速度远高于溶解物质的增长速度。这些悬浮物杂质会附着在冷却塔填料的表面上,为微生物滋生提供营养源循环水在使用的过程中,由于水不断的因蒸发而浓缩,随补充水进入系统的各种有机物、泥沙、各种盐类等杂质含量会不断的升高,再加上藻类和微生物的繁殖,使循环水呈现出较强的污染性。在这种水质条件下,凝汽器的不锈钢管内容易形成各种附着物。这些附着物的导热性较差,会造成凝汽器的真空度降低等问题,从而影响汽轮机的出力和运行的经济性。如果凝汽器的不锈钢管内表面有附着物生成,则有引起凝汽器不锈钢管沉积物下的腐蚀的可能;腐蚀严重时,会造成不锈钢管穿孔使冷却水漏人凝结水中,污染凝结水水质,影响锅炉的安全运行。随着循环水的不断浓缩,水中的一些低溶解性的盐类,主要是碳酸盐和磷酸盐,会析出并以结垢的形式附着在不锈钢管的表面,造成凝汽器的传热效率降低。传热效率的降低会导致凝汽器的真空度降低。一般情况下,当汽轮机的负荷不变时,真空度每下降1%,燃料消耗就要增加1%~2%。 由于循环冷却水的水质情况复杂,有多种杂质成分,因此冷却水系统中的沉积物也有多种类型,从沉积物的性质来划分,可以分为积沙、生物粘泥和水垢三类。 积沙主要是由于水中携带的泥沙、粘土等悬浮物形成的沉积物,一般发生在流速较低的区域或死角。这种沉积物的附着力不强,一般通过提高流速或改变水的流向可以冲出。胶球清洗对清除不锈钢管内的积泥是最有效的。 生物粘泥则主要是由水中微生物在活动过程中分泌出来的粘液与水中的

相关文档