文档库 最新最全的文档下载
当前位置:文档库 › Photoinduced electron-transfer systems

Photoinduced electron-transfer systems

Photoinduced electron-transfer systems
Photoinduced electron-transfer systems

Photoinduced electron-transfer systems consisting of electron-donating pyrenes or anthracenes and benzimidazolines for reductive transformation of carbonyl compounds

Eietsu Hasegawa,a,*Shinya Takizawa,a Takayuki Seida,a Akira Yamaguchi,a Naoto Yamaguchi,a Naoki Chiba,a Tomoya Takahashi,a Hiroshi Ikeda b and Kimio Akiyama c

a Department of Chemistry,Faculty of Science,Niigata University,Ikarashi,Niigata950-2181,Japan

b Department of Chemistry,Graduate School of Science,Tohoku University,Sendai980-8578,Japan

c Institute of Multidisciplinary Research for Advance

d Materials,Tohoku University,Sendai980-8577,Japan

Received26December2005;accepted18February2006

Available online2May2006

Abstract—Photoinduced electron-transfer reactions of several ketone substrates were studied to evaluate the utilities of1,6-bis(dimethyl-amino)pyrene(BDMAP),1,6-dimethoxypyrene(DMP),9,10-bis(dimethylamino)anthracene(BDMAA),and9,10-dimethoxyanthracene (DMA)as electron-donating sensitizers cooperating with2-aryl-1,3-dimethylbenzimidazolines.BDMAP and DMP generally led higher conversion of ketones and better yield of reduction products compared to BDMAA and DMA.

ó2006Elsevier Ltd.All rights reserved.

1.Introduction

Electron transfer is a fundamental reaction process,which is operating in reduction and oxidation(redox)reactions in chemical and biological systems.1Single electron transfer (SET)of neutral organic molecules generates radical ions that undergo various transformations.2Whereas using redox reagents as well as electrochemical procedures are tradi-tional ways to generate these reactive species,photoinduced electron-transfer(PET)is an alternative method.1Without a doubt,PET chemistry of organic molecules has been a central topic in organic photochemistry over the past several decades.3Signi?cant progress has been accomplished in understanding PET reaction mechanisms and application of PET reactions to organic synthesis.Reactivity of radical cations generated by PET processes between electron-donat-ing substrates and electron-accepting sensitizers has been extensively investigated.3On the other hand,reactivity of radical anions has been less explored in PET reactions,4 which must be in part ascribed to the fact that practical elec-tron-donating sensitizers are few as compared to electron-accepting sensitizers such as aromatic nitriles,quinones, and cationic salts.

In the course of our research program focused on reaction mechanism and synthetic application of carbonyl radical anions(ketyl radicals)in PET reactions,5we needed to?nd effective PET conditions to generate such radical anions. Especially,to promote reactions of substrates not ef?ciently absorbing light?ltered by Pyrex?of which ordinary photo-reaction vessels are made,electron-donating sensitizers ab-sorbing light of longer wavelength were desired.Related to this purpose,we have also found that some benzimidazo-lines act as effective electron-and proton-donors to promote PET reduction of various carbonyl compounds in which their radical anions are generated.6In this context,we became interested in developing electron-donating sensitizers co-operating with benzimidazolines for PET-promoted reduc-tions of carbonyl compounds.

For this objective,we chose dimethylamino-or methoxy-substituted pyrenes or anthracenes,7namely1,6-bis-(dimethylamino)pyrene(BDMAP),1,6-dimethoxypyrene

N

DMPBI (Y = H)

ADMBI (Y = 4-MeO)

DMTBI (Y = 4-Me)

DCDMBI (Y = 3,5-Cl2)

HPDMBI (Y = 2-HO) BDMAP (X = Me2N)

DMP (X = MeO)

BDMAA (X = Me2N)

DMA (X = MeO)

electron-donating sensitizers electron- and proton-donors Chart1.

*

Corresponding author.Tel./fax:+81252626159;e-mail:ehase@chem. sc.niigata-u.ac.jp

0040–4020/$-see front matteró2006Elsevier Ltd.All rights reserved. doi:10.1016/j.tet.2006.03.061

(DMP),9,10-bis(dimethylamino)anthracene (BDMAA),and 9,10-dimethoxyanthracene (DMA),8and ?ve 2-aryl-1,3-dimethylbenzimidazolines (DMBIs),which are shown in Chart 1.Carbonyl substrates,epoxy ketones 1,a -bromo-methyltetralone 3,carbon–carbon multiple bond tethered ketones 5,and 3-methylbenzophenone 7,and the correspond-ing PET reaction products 2,4,6,and 8are represented in Chart 2.In the reactions,unimolecular or bimolecular rear-rangements of ketyl radicals of these substrates are expected to proceed,i.e.,C a –O bond cleavage of the ketyl radicals of 1,10C b –Br bond cleavage of the ketyl radical of 3,6e intramo-lecular ketyl radical addition to C–C multiple bonds for 5,11and dimerization of ketyl radical of 7.6g We also conducted PET reactions using above four sensitizers with N ,N -diethyl-N -trimethylsilylmethylamine (TMSA),12and using Ru(bpy)3Cl 2,well-known PET sensitizer,13with DMBI.In this paper,we report the results obtained and discuss the features and the utilities of these PET systems.

2.Results and discussion

2.1.Fundamental properties of sensitizers and benz-imidazolines,and basic concept of PET systems Selected photophysical and electrochemical data of the sensitizers are summarized in Table 1.These pyrenes and anthracenes can absorb the light of longer wavelength than both ketone substrates and DMBIs studied.As shown in Figure 1,cyclic voltammograms of BDMAP and DMP demonstrate reversible redox processes (differences of redox peak potentials are 56mV and 66mV,respectively),while those of BDMAA and DMA do not.

Expected PET reaction pathways are presented in Scheme 1.Selective photoexcitation of a sensitizer produces its singlet excited state (1sensitizer*).The excited sensitizer donates single electron to a ketone within its lifetime to produce a radical cation of the sensitizer (sensitizer

+)and a radical anion of the ketone.Feasibility of this initial SET step is

evaluated using the equation D G ?E ox 1=2àE ex àE red

1=2tC ,in which E ox 1=2and E ex are a half-wave oxidation potential of the ground state and an excitation energy of a sensitizer,respectively,E red 1=2is a half-wave reduction potential of ketone substrate studied,14and C is the coulomb term that depends

1a (R = Ph)1b (R = Me)

OH

2

R

2a (R = Ph)2b (R = Me)

1c 2c 5a (R = Me)5b (R = Et)

6a (R = Me)6b (R = Et)

78

OH

2Me 5c 6c

R Me

ketone substrates

products

3

4

Chart 2.

Table 1.Photophysical and electrochemical data of sensitizers a Sensitizer l max (log 3)(nm)l end (nm)l F max (nm)t (ns)E ex (kcal/mol)b E ox 1=2in V vs SCE E ox*in V vs SCE BDMAP 373(4.35)

450450

5.3c 64(2.8)+0.43d à2.4DMP 335(4.38),351(4.57),376(4.16),397(4.24)420402,4237.0e 72(3.1)+0.85d à2.2BDMAA 397(3.76)

490—f —f ca.60(2.6)f,g +0.24ca.à2.4DMA

361

(3.79),381(3.95),402(3.87)

430

436

14.3h

70

(3.0)

+0.98

à2.0

a Measured in MeCN.l max ,Absorption maximum;l end ,end absorption;l F max ,?uorescence maximum;t ,lifetime;E ex ,excitation energy;E ox

1=2,Half-wave oxidation potential of ground state and E ox*,oxidation potential of the excited state that is obtained by the equation E ox

1=2àE ex .b Values in parentheses are reported in eV .c In 5%aqueous THF (Ref.7d ).d Standard potential.

e The lifetime in DMF was 6.5ns (this work).

f BDMAA was non-?uorescent.

g Estimated from the absorption spectrum.h

In heptane (Ref.9b ).

BDMAP 00.20.4

0.60.8+E

+E

+E

+E

i DMP

0.40.60.81 1.2

i

BDMAA

-0.200.20.40.6

i DMA

0.70.9 1.1 1.3

i

Figure 1.Cyclic voltammograms of sensitizers (E in V vs SCE).

6582

E.Hasegawa et al./Tetrahedron 62(2006)6581–6588

on the polarity of solvent used;the value for MeCN was reported to be à0.06eV .15Formed sensitizer

+,except for BDMAA

+,is exoergonically reduced by DMBIs to its

ground state because E ox 1=2of DMBIs (E ox

1=2in V vs SCE:+0.33,+0.28,+0.29,+0.40,and +0.30for DMPBI,ADMBI,DMTBI,DCDMBI,and HPDMBI,respectively)are lower than that of each sensitizer.Then,a radical cation of DMBI (DMBI

+)and a radical anion of the ketone react with each other.For an effective sensitization (Scheme 1),a radical ion pair generated from a sensitizer and a ketone should smoothly dissociate.Therefore,a polar solvent is rec-ommended to be used because such dissociation proceeds more ef?ciently in polar solvents than in nonpolar sol-vents.16,17Also noted that,in these PET reactions,HPDMBI is expected to act as a two-electron-and two-proton-donor,6f,g while other DMBIs are expected to perform as two-electron-and one-proton-donors that require addition of appropriate proton-donors (ROH)for reduction of ketones (Scheme 2).6

Scheme 2.

2.2.C a –O bond cleavage of a ,b -epoxy ketones 1The ?rst examples of PET reactions of a ,b -epoxy ketones with amines were independently reported by Cossy 10a and us.10b At that moment,triethylamine was used as an electron-and proton-donor,and yields of the expected b -hydroxy ketones were moderate.Furthermore,it was found that b -diketones were major products instead of the desired b -hydroxy ketones in the reactions of 1,3-diaryl-2,3-epoxy-1-propanones (chalcone epoxides)with triethylamine.10b A breakthrough to solve this problem was a discovery of DMBIs,which act as effective electron-and proton-donors to give b -hydroxy ketones.6

First,we conducted PET reactions of epoxy ketones 1to compare DMP,BDMAA,and DMA with previously exam-ined BDMAP.6Whereas reactions of 1a with ADMBI in DMF–AcOH afforded 2a (86%for BDMAP,85%for DMP,68%for BDMAA,62%for DMA based on the con-versions of 1a ),some conversions from 1a to 2a were also

observed without irradiation in the cases of BDMAP and BDMAA.Therefore,we concluded that 1a is too reactive to evaluate these sensitizers.Then,we conducted PET reac-tions of 1b under two different sensitization conditions,using sensitizer–ADMBI–AcOH 6d and sensitizer–HPDMBI (Table 2).6f In most of the cases,2b was obtained in good yields based on the conversion of 1b .However,in the case of BDMAA with ADMBI and AcOH,2b could not be isolated although 1b was consumed (exp 3).Because the decomposition of 2b was suspected during irradiation,2b was subjected to the same reaction condition using BDMAA.However,2b was quantitatively recovered.Al-though this unique behavior of BDMAA could not be ratio-nalized at the moment,combination of ADMBI and AcOH seems not to be tolerated with BDMAA (also see exp 3in Table 6).In the reactions using HPDMBI,the conversion of 1b in the case of BDMAA was lower than those of other sensitizers (compare exp 7to exps 5,6,and 8).This must be in part ascribed to endoergonic electron transfer between BDMAA

+and DMBIs (Scheme 1).

We then studied substituent effects of the phenyl group of DMBI on PET reaction of 1c with BDMAP under the condi-tions same as experiment 1in Table 2.Plots of the conver-sion of 1c versus E ox 1=2of DMBIs are presented in Figure 2.The conversion of 1c decreased as E ox 1=2increases,being con-sistent with the expected SET between BDMAP

+and DMBI (Scheme 1).

A set of Ru(bpy)3Cl 2and amines is a well-known sensitiza-tion system for reductive transformation

of organic com-pounds,13d–h and Ru(bpy)3Cl 2is considered to have some

advantages compared with organic sensitizers,for example,photoexcitation using longer wavelength of light is possible,and separation of Ru(bpy)3Cl 2is more easily performed.Then,we examined PET reaction of 1b using Ru(bpy)3Cl 2with ADMBI and AcOH or with HPDMBI (Table 3).In this sensitization system,Ru(I)is an expected reducing agent.Based on the standard potential of Ru(I)(E ?à1.30w à1.33V vs SCE),13a–c,18reducing ability of Ru(I)must be

Table 2.PET reactions of 1b with DMBI a

1b

2b Exp Sensitizer DMBI Additive Conv.of 1b b (%)Yield of 2b b,c (%)1BDMAP ADMBI AcOH 64802DMP ADMBI AcOH 67d 843

BDMAA ADMBI AcOH 57—e 4

DMA ADMBI

AcOH 54645BDMAP HPDMBI —41936DMP HPDMBI —30867BDMAA HPDMBI —15928

DMA

HPDMBI

30

90

a

Compound 1b (0.40mmol),sensitizer (0.05equiv vs 1b ),DMBI (1.2equiv vs 1b ),AcOH (5.0equiv vs 1b ),DMF (4mL),l >340nm for 1h.

b Determined on the basis of isolated compounds.

c Base

d on th

e conversion o

f 1b .d Determined with 1H NMR.

e

Detected with 1H NMR but not isolated.

1h ν

O

DMBI

products

Scheme 1.

6583

E.Hasegawa et al./Tetrahedron 62(2006)6581–6588

weaker than those of the excited states of above electron-donating pyrenes and anthracenes (see E ox*in Table 1).As anticipated,although the reactions of 1b proceeded,yields of 2b were relatively low as compared to those reported in Table 2.

2.3.C b –Br bond cleavage of a -bromomethyltetralone 3Next,we conducted PET reactions of 2-bromomethyl-2-(3-butenyl)-1-tetralone 3with ADMBI or TMSA (Table 4).Although yields of the expected spiro-cyclization product 4were good in all cases,the conversions of 3in the reactions with BDMAP or DMP were greater than those with BDMAA or DMA.This tendency was more signi?cant in the reactions with TMSA.SET steps between ADMBI and sensitizers

+,except for BDMAA

+,are exoergonic as de-scribed above.On the other hand,calculated free energy changes for SET between TMSA (E ox 1=2?+0.49V vs SCE)and sensitizers

+

suggest that SET with DMP

+is exoergonic (D G ?à8.3kcal/mol)while SET with BDMAP

+is slightly endoergonic (D G ?+1.4kcal/mol).However,the conver-sions of 3were not signi?cantly different from each other (greater than 50%in both cases).This phenomena would

be ascribed to an ef?cient and irreversible fragmentation of TMSA

+.4a,19

2.4.Intramolecular ketone–ole?n or –acetylene coupling of C–C multiple bond tethered ketones 5

Cossy and co-workers reported that PET-promoted intra-molecular coupling reactions of ketone carbonyls with C–C multiple bonds.11However,the light of shorter wavelength (254nm)was usually used,and highly toxic hexamethyl-phosphorictriamide (HMPA)was in some cases required to obtain cyclization products in better yields.Therefore,we became interested in testing applicability of our PET methods to these synthetically relevant transformations.Then,we conducted reactions of 5a with HPDMBI using four sensitizers.The results presented in Table 5clearly in-dicate that both the conversion of 5a and the yield of 6a were essentially same regardless of the sensitizer (exps 1–4).Similar cyclization reactions of 5b and 5c were achieved by BDMAP with HPDMBI to produce 6b and 6c ,respectively.Notably,addition of Mg(ClO 4)2signi?cantly increased the

Table 3.PET reactions of 1b with Ru(bpy)3Cl 2and DMBI

a

1b

322b

νExp DMBI Solv Additive Conv.of 1b b (%)Yield of 2b b,c (%)1ADMBI DMF AcOH 71412HPDMBI DMF —45703HPDMBI MeCN —41754HPDMBI THF —25715

HPDMBI

MeOH

36

72

a

Compound 1b (0.40mmol),Ru(bpy)3Cl 2(0.01equiv vs 1b ),DMBI (1.2equiv vs 1b ),AcOH (5.0equiv vs 1b ),solvent (4mL),l >390nm for 3h.

b Determined with 1H NMR.c

Based on the conversion of 1b .

Table 4.PET reactions of 3with ADMBI or TMSA

a

3

4Exp

Sensitizer Amine Conv.of 3b (%)Yield of 4b,c (%)1BDMAP ADMBI 83572DMP ADMBI 70543BDMAA ADMBI 42534DMA ADMBI 56595BDMAP TMSA 68676DMP TMSA 53597BDMAA TMSA 19698

DMA

TMSA

27

46

a

Compound 3(0.50mmol),sensitizer (0.05equiv vs 3),ADMBI (1.2equiv vs 3),TMSA (5.0equiv vs 3),DMF (5mL),l >360nm for 5h.b

Determined with 1H NMR.c

Based on the conversion of 3.

20

304050C o n v e r s i o n o f 1c (%)

6070

80901000.25

0.30.350.40.45

+E ox 1/2 in V vs SCE

Figure 2.Plots of conversion of 1c versus oxidation potentials of DMBIs in PET reaction of 1c using BDMAP and DMBIs with AcOH in DMF.Table 5.PET reactions of 5with HPDMBI a

5

26

(R = Me, Et)

Exp 5Sensitizer Additive Conv.of 5b (%)Yield of 6b,c (%)15a BDMAP —715925a DMP —726235a BDMAA —755545a DMA —786055b BDMAP —

687165b BDMAP Mg(ClO 4)293887

5c

BDMAP

58

86

a

Compound 5(0.40mmol),sensitizer (0.05equiv vs 5a ;0.1equiv vs 5b and 5c ),HPDMBI (1.2equiv vs 5),Mg(ClO 4)2(1.2equiv vs 5b ),DMF (4mL for exps 1–4;2mL for exps 5–7),l >340nm for 22h for exps 1–5and 7;for 16h for exp 6.b Determined with 1H NMR.c

Based on the conversion of 5.

6584

E.Hasegawa et al./Tetrahedron 62(2006)6581–6588

conversion of5b and the yield of6b for the shorter reaction time(compare exp6to exp5).This phenomenon would be ra-tionalized by the assumption that back-electron transfer from 5 àto BDMAP +is suppressed through ion-pair exchange with Mg(ClO4)2,and therefore the reaction is accelerated.20 2.5.Pinacol coupling of3-methylbenzophenone7

We recently found that3-methylbenzophenone7was a suit-able substrate to probe the mechanism of PET reactions with DMBIs.6g Thus,we decided to examine the PET reaction of 7using the sensitizers with ADMBI and AcOH,or with HPDMBI(Table6).Whereas benzpinacol8was obtained al-most quantitatively in the case of DMP with ADMBI and AcOH(exp2),BDMAA did not work at all(exp3).Both BDMAP and DMA were similarly effective(exps1and4). In the cases of HPDMBI,both the conversion of7and the yield of8were greater in the reactions with BDMAP and DMP than in those with BDMAA and DMA.It should also be noted that selective formation of8rather than benzhydrol is similar to the product selectivity observed in the PET reac-tions of7with DMPBI and AcOH or with HPDMBI without sensitizers.6g In the latter case,speci?c interactions of radi-cal ion pairs are involved.Therefore,observed product selec-tivity in this work is consistent with the proposed reaction pathways in which reaction between independently gener-ated7 àand DMBI+ proceeds(Scheme1).

3.Conclusion

We have studied PET reactions of several ketone substrates using electron-donating pyrenes or anthracenes as sensitizers with benzimidazolines as electron-and proton-donors(re-ducing reagents).Differences in effectiveness of these sen-sitizers were observed depending on the substrates and conditions.Among properties to be required for an effective sensitizer is the stability of its radical cation.Based on the cy-clic voltammetry of sensitizers(Fig.1),radical cations of the pyrenes must be more stable than those of the anthracenes in the sensitization cycle in Scheme1,which is compatible with some of the results described above.Therefore,we would like to conclude that BDMAP and DMP are more reliable sensitizers than BDMAA and DMA.As a result,we recom-mend both BDMAP and DMP as visible light absorbing and electron-donating sensitizers for PET reactions.Another no-table point is that DMP,unprecedented PET sensitizer,acted reasonably well in above examples.We will further explore the PET reactions of DMP and other alkoxy substituted pyrenes.The results and discussion described in this paper will hopefully provide useful information for any individual who is interested in PET chemistry to perform reductive transformation of organic compounds.

4.Experimental

4.1.General

NMR spectra were recorded in CDCl3with Me4Si as an internal standard at200and270MHz for1H NMR,and 50MHz for13C NMR.Uncorrected melting points are re-ported.Absorption and?uorescence spectra were measured in MeCN.The?uorescence lifetime was determined by time-correlated single photon counting technique based on picoseconds laser pulse excitation.Oxidation and reduction potentials in MeCN were measured with cyclic voltammetry using platinum electrodes as working and counter elec-trodes,Ag/0.01M AgNO3as a reference electrode,and 0.1M Et4NClO4as a supporting electrolyte at the scan rate of100mV/s.Sample solutions were purged with N2 before measurements.Ferrocene was used as a reference.21 Standard Potentials of ferrocene/ferrocenium couple were measured to be+0.066V and+0.439V versus Ag/AgNO3 and SCE,respectively.Then,peak potentials of sensitizers, DMBIs,and ketone substrates were converted to those against SCE.Half-wave potentials were obtained from these peak potentials by subtracting or adding0.029V.22Photo-reactions were conducted in a Pyrex test tube(1.5cm dia-meter)immersed in a water bath at room temperature with either a500W Xe lamp or500W Xe–Hg lamp as a light source.Column chromatography was performed with silica-gel(Wakogel C-200).Preparative TLC was performed on20cm?20cm plates coated with silica-gel(Wakogel B-5F).Anhydrous DMF was purchased and used for the photoreactions.MeCN was distilled over P2O5and subse-quently with K2CO3.THF was distilled over sodium–benzo-phenone under N2.Other reagents and solvents were purchased and used without further puri?cation.DMPBI,23a ADMBI,6g HPDMBI,6g DMTBI,23b and DCDMBI23b were prepared by the previously reported methods.6g BDMAP,9a DMP,9a BDMAA,9c DMA9a,24were prepared by the slight modi?cations of the literature procedures(see below).Sub-strates(1a,10b1b,251c,255a,115b,115c,11and76g)and photoproducts(2a,10b2b,252c,256a,116b,116c,11and86g) are known compounds.Preparation of3and spectral data of 3and4are described below because their characterizations have not been completed.6e

4.2.Preparations of sensitizers

4.2.1.Preparation of BDMAP.9a1,6-Diaminopyrene was prepared by the reaction of pyrene with HNO3,followed by the reduction of1,6-dinitropyrene with Na2S$9H2O. Then,an aqueous MeOH solution(H2O+MeOH?21mL+86mL)of1,6-diaminopyrene(1.9g,8.3mmol),

Table6.PET reactions of7with DMBI a

7

8 (Ar = 3-MeC6H4)

Exp Sensitizer DMBI Additive Conv.of

7b(%)Yield of 8b,c(%)

1BDMAP ADMBI AcOH7886

2DMP ADMBI AcOH100100

3BDMAA ADMBI AcOH60

4d DMA ADMBI AcOH6479

5BDMAP HPDMBI—34100

6DMP HPDMBI—5792

7BDMAA HPDMBI—1753

8d DMA HPDMBI—2277

a Compound7(0.20mmol),sensitizer(0.05equiv vs7),DMBI(1.2equiv vs7),AcOH(6.6equiv vs7),DMF(2mL),l>360nm for4h.

b Determined with1H NMR.

c Base

d on th

e conversion of7.

d Benzhydrol was also obtained:13%for exp4and6%for exp8.6585

E.Hasegawa et al./Tetrahedron62(2006)6581–6588

CaCO3(1.8g,18mmol),and MeI(20.7mL,0.33mol)was heated at55 C for29h.After addition of MeI(20.0mL, 0.32mol),the mixture was heated for another36h.Precip-itated yellow solid obtained after cooling was heated with NaOEt(19.7g,0.29mol)at90 C for48h.After concentra-tion and addition of H2O,extraction with C6H6was per-formed.The extract was treated with H2O,satd aqueous NaCl,and dried over anhydrous MgSO4,and then concen-trated.Silica-gel column chromatography(CH2Cl2)gave yellow solid that was recrystallized twice from EtOH to give BDMAP(709mg,2.5mmol,30%)as yellow plates: mp163.2–164.5 C(lit.9a164–165 C).

4.2.2.Preparations of DMP and DMA.26Pyrene(4.3g, 21mmol)and K2Cr2O7(6.2g,21mmol)in8M H2SO4 (44mL)were heated at90 C for1h and subsequently at 120 C for3h.The mixture was poured into H2O and the precipitated red-brown solid was?ltered.The solid was subjected to silica-gel column separation(AcOH)to give

a mixture of1,6-pyrenedione and1,8-pyrenedione(1.2g,

5.2mmol,25%).27A part of the mixture(250mg, 1.08mmol),Na2S2O4(1.13g,

6.48mmol),and n-Bu4NBr (35mg,0.11mmol)in aqueous THF(H2O+THF?4.7mL+ 2.7mL)were stirred at room temperature for1h.KOH (1.39g,24.8mmol)in H2O(3.6mL)was added,and Me2SO4(2.1mL,22.7mmol)was slowly added in an ice-water bath.After the resulting mixture was stirred at room temperature for22h,addition of H2O was followed by extraction with CH2Cl2.The extract was treated with H2O and dried over anhydrous MgSO4,and then concentrated. Silica-gel column chromatography(CH2Cl2)gave a mixture of1,6-dimethoxypyrene and1,8-dimethoxypyrene.The mixture was subjected to fractional recrystallization three times from C6H5Cl,and then DMP(52.7mg,0.20mmol, 19%)was obtained as yellow needles:mp250–252 C (lit.9a244–245 C).DMA was prepared from anthraquinone (624mg,3.00mmol)in the similar manner to DMP(see above).Successive recrystallization of the crude product from EtOH gave DMA(466mg,1.95mmol,65%)as pale yellow plates:mp204–207 C(lit.24198–199 C).

4.2.3.Preparation of BDMAA.9c9,10-Diaminoanthracene was obtained by the reaction of anthraquinone(6.0g, 29mmol)with formamide,followed by a treatment with KOH.To the crude9,10-diaminoanthracene were added MeOH(8mL),MeI(8.0mL,129mmol),and subsequently Na2CO3(3.2g,30mmol)in H2O(8mL).After the resulting mixture was stirred under N2for16h at room temperature and heated at60 C for24h,addition of H2O was followed by extraction with CHCl3.The extract was treated with H2O, satd aqueous NaHCO3,and dried over anhydrous MgSO4, and then concentrated.Silica-gel column chromatography (CHCl3/n-C6H14?2/1)gave yellow solids,which were re-crystallized twice from EtOH to give BDMAA(552mg, 2.09mmol,19%from anthraquinone)as yellow plates:mp 197–200 C.

4.3.Preparation of2-bromomethyl-2-(3-butenyl)-1-tetralone3

To the mixture of NaH(ca.66%in oil,604mg,16.6mmol) and HMPA(2.9mL,16.6mmol)in THF(23mL)was slowly added a THF solution(7mL)of2-(3-butenyl)-1-tetralone(1.66g,8.31mmol)that was obtained through the

sequence of NaH promoted reaction of4-bromo-1-butene with ethyl1-tetralone-2-carboxylate28and NaOH promoted

hydrolytic decarboxylation,and stirred for1h under N2.

Then,CH2Br2(2.9mL,41.6mmol)was added and the re-sulting mixture was heated at75 C for22h.After addition

of H2O,extraction with Et2O was performed.The extract

was treated with satd aqueous Na2S2O3,satd aqueous NaHCO3,satd aqueous NaCl,and dried over anhydrous

MgSO4,and then concentrated.Silica-gel column chromato-

graphy(C6H6/n-C6H14?1/1)and subsequent distillation gave3(924mg, 3.15mmol,38%)as colorless oil:bp

105–110 C(0.45mmHg);IR(Neat)1681cmà1;1H NMR

(270MHz)d1.73–2.37(m,6H),2.93–3.15(m,2H),3.66

(d,J?10.4Hz,1H),3.76(d,J?10.4Hz,1H),4.91–5.04 (m,2H),5.66–5.81(m,1H),7.22–7.34(m,2H),7.45–7.51 (m,1H),8.02–8.05(m,1H)ppm;13C NMR(50MHz) d24.9,27.9,31.1,32.5,39.1,48.5,115.1,126.8,128.1, 128.8,131.3,133.6,137.6,142.9,198.4ppm.HRMS (ESI)calcd for C15H17O79BrNa+:315.0361,found: 315.0355;C15H17O81BrNa+:317.0341,found:317.0335.

4.4.General procedure of PET reactions

A solution of a ketone substrate(0.20–0.50mmol)and DMBI

(0.24–0.60mmol)or TMSA(2.50mmol)with a sensitizer (generally 1.0–4.0?10à2mmol and 4.0?10à3mmol for Ru(bpy)3Cl2)in DMF(2–5mL)or other solvents(MeCN, THF,MeOH4mL)in the presence or absence of AcOH (1.32–2.00mmol)or Mg(ClO4)2(0.48mmol)was purged with N2for5min prior to irradiation.This solution was irradi-ated with the light(l>340and360nm for pyrenes and anthra-cenes,and390nm for Ru(bpy)3Cl2)using a cut-off glass-?lter for an appropriate irradiation time.While a photolysate without additive was concentrated,a photolysate containing AcOH or Mg(ClO4)2was subjected to the extraction with EtOAc or C6H6.The extract was treated with satd aqueous NaHCO3, satd aqueous NaCl,and dried over anhydrous MgSO4,and then concentrated.For the reactions of7,the resulting residue was directly analyzed with1H NMR using triphenylmethane as an internal standard.For other reactions,the residues were sub-jected to silica-gel TLC or column separation for the reactions of1,3or5using appropriate mixed solvents(EtOAc/n-C6H14 for1,C6H6/n-C6H14for3,EtOAc/C6H6for5)to give the start-ing ketones and the products.Photoproducts were identi?ed by analyses with their NMR and IR spectra.Product4(3/1mixture of two diastereomers):colorless oil;IR(Neat)1678cmà1;1H NMR(270MHz)d1.00(d,J?6.5Hz,3H,major isomer),1.07 (d,J?6.8Hz,3H,minor isomer),1.12–2.28(m,9H),2.91–3.06(m,2H),7.18–7.31(m,2H),7.40–7.46(m,1H),8.02–8.05(m,1H)ppm;13C NMR(50MHz)d19.8,20.2,26.3, 26.7,34.2,34.3,34.4,34.5,35.4,35.7,36.5,42.6,44.6,53.4, 126.4,127.9,128.5,131.5,132.8,143.5,202.2ppm.Anal. Calcd for C15H18O:C,84.07;H,8.47;found:C,83.91;H,8.63.

Acknowledgements

E.H.and H.I.thank the Ministry of Education,Culture, Sports,Science,and Technology of Japan for?nancial support in the form of Grants-in-Aid for Scienti?c Research C(No.15550028)and for Scienti?c Research in Priority

6586 E.Hasegawa et al./Tetrahedron62(2006)6581–6588

Areas(Area No.417),respectively.E.H.thanks?nancial support from the Uchida Energy Science Promotion Founda-tion.H.I.gratefully acknowledges?nancial support from the Izumi Science and Technology Foundation and the Shorai Foundation.We thank Dr. D. D.M.Wayner(National Research Council of Canada)for his valuable comments on electrochemistry.We also thank Professor K.Okada (Osaka City University)for his donation of Ru(bpy)3Cl2. Generous assistance provided by Professors T.Horaguchi (Niigata University),M.Ueda(Tohoku University),and S.Tero-Kubota(Tohoku University)is also acknowledged.

References and notes

1.(a)Eberson,L.Electron Transfer Reactions in Organic Chem-

istry;Springer:Berlin,1987;(b)Advances in Electron Transfer Chemistry;Mariano,P.S.,Ed.;JAI:Greenwich,CT,1991–1999;V ols.1–6;(c)Electron Transfer in Chemistry;

Balzani,V.,Ed.;Wiley-VCH:Weinheim,2001;V ols.1–5. 2.(a)Schmittel,M.;Burghart,A.Angew.Chem.,Int.Ed.1997,

36,2550–2589;(b)Berger,D.J.;Tanko,J.M.The Chemistry of Double–Bonded Functional Groups;Patai,S.,Ed.;Wiley: New York,NY,1997;pp1281–1354;(c)Schmittel,M.;Ghorai, M.K.Electron Transfer in Chemistry;Balzani,V.,Ed.;Wiley-VCH:Weinheim,2001;V ol.2,pp5–54.

3.(a)Photoinduced Electron Transfer;Fox,M.A.,Chanon,M.,

Eds.;Elsevier:Amsterdam,1988;Parts A–D;(b)Kavarnos,

G.J.Fundamental of Photoinduced Electron Transfer;VCH:

New York,NY,1993;(c)CRC Handbook of Organic Photo-chemistry and Photobiology,1st ed.;Horspool,W.M.,Song, P.S.,Eds.;CRC:Boca Raton,FL,1994,and2nd ed.;

Horspool,W.M.,Lenci,F.,Eds.;CRC:Boca Raton,FL,2003.

4.Representative reviews for PET-promoted reductions of car-

bonyl compounds with amine donors.(a)Yoon,U.C.;Marinao, P.S.;Givens,R.S.;Atwater,B.W.,III.Advances in Electron Transfer Chemistry;Mariano,P.S.,Ed.;JAI:Greenwich,CT, 1994;V ol.4,pp117–205;(b)Cossy,J.;Pete,J.P.Advances in Electron Transfer Chemistry;Mariano,P.S.,Ed.;JAI: Greenwich,CT,1996;V ol.5,pp141–195.

5.Hasegawa,E.J.Photoscience2003,10,61–69.

6.(a)Hasegawa, E.;Kato,T.;Kitazume,T.;Yanagi,K.;

Hasegawa,K.;Horaguchi,T.Tetrahedron Lett.1996,37, 7079–7082;(b)Hasegawa,E.;Tamura,Y.;Tosaka,E.Chem.

Commun.1997,1895–1896;(c)Hasegawa,E.;Yoneoka,A.;

Suzuki,K.;Kato,T.;Kitazume,T.;Yanagi,K.Tetrahedron 1999,55,12957–12968;(d)Hasegawa, E.;Chiba,N.;

Nakajima,A.;Suzuki,K.;Yoneoka,A.;Iwaya,K.Synthesis 2001,1248–1252;(e)Hasegawa,E.;Takizawa,S.;Iwaya,K.;

Kurokawa,M.;Chiba,N.;Yamamichi,https://www.wendangku.net/doc/d913585042.html,mun.

2002,1966–1967;(f)Hasegawa,E.;Chiba,N.;Takahashi,T.;

Takizawa,S.;Kitayama,T.;Suzuki,T.Chem.Lett.2004,33, 18–19;(g)Hasegawa,E.;Seida,T.;Chiba,T.;Takahashi,T.;

Ikeda,https://www.wendangku.net/doc/d913585042.html,.Chem.2005,70,9632–9635.

7.Representative examples for PET reactions using dimethyl-

amino-or methoxy-substituted arenes as sensitizers.(a)Lee, J.A.;Israel,https://www.wendangku.net/doc/d913585042.html,.Chem.1983,48,4557–4563;(b) Hamada,T.;Nishida,A.;Yonemitsu,O.J.Am.Chem.Soc.

1986,108,140–145;(c)Nishida,A.;Hamada,T.;Yonemitsu, https://www.wendangku.net/doc/d913585042.html,.Chem.1988,53,3386–3387;(d)Okada,K.;Oka-moto,K.;Oda,M.J.Am.Chem.Soc.1988,110,8736–8738;

(e)Pandey,G.;Rao,K.S.S.P.;Rao,https://www.wendangku.net/doc/d913585042.html,.Chem.

1996,61,6799–6804;(f)Banerjee,A.;Falvey,https://www.wendangku.net/doc/d913585042.html,.

Chem.1997,62,6245–6251;(g)Pandey,G.;Hajira,S.;Ghorai, M.K.;Kumar,K.R.J.Am.Chem.Soc.1997,119,8777–8787;

(h)Pandey,G.;Rao,K.S.S.P.;Rao,https://www.wendangku.net/doc/d913585042.html,.Chem.

2000,65,4309–4314.

8.Although these pyrenes and anthracenes are previously known

(Ref.9)and both BDMAP(Refs.6,7d)and DMA(Ref.7a,h) have been used for some PET reactions,PET reactions of DMP and BDMAA have not been reported.In addition,no sys-tematic study on the utilities of these four compounds as sensi-tizers for PET reactions has been conducted.

9.(a)Zweig,A.;Maurer,A.H.;Roberts,https://www.wendangku.net/doc/d913585042.html,.Chem.

1967,32,1322–1329;(b)Dreeskamp,H.;Pabst,J.Chem.

Phys.Lett.1979,61,262–265;(c)Chung,Y.;Duerr,B.F.;

McKelvey,T.A.;Najappan,P.;Czarnik,https://www.wendangku.net/doc/d913585042.html,.Chem.

1989,54,1018–1032.

10.(a)Cossy,J.;Aclinou,P.;Bellosta,V.;Furet,N.;Baranne-

Lafont,J.;Sparfel,D.;Souchaud,C.Tetrahedron Lett.1991, 32,1315–1316;(b)Hasegawa,E.;Ishiyama,K.;Horaguchi, T.;Shimizu,https://www.wendangku.net/doc/d913585042.html,.Chem.1991,56,1631–1635;(c)Cossy, J.;Bouzide,A.;Ibhi,S.;Aclinou,P.Tetrahedron1991,47, 7775–7782;(d)Kirschberg,T.;Mattay,https://www.wendangku.net/doc/d913585042.html,.Chem.

1996,61,8885–8896;(e)Hasegawa,E.;Ishiyama,K.;Fujita, T.;Kato,T.;Abe,https://www.wendangku.net/doc/d913585042.html,.Chem.1997,62,2396–2400;(f) Zhang,J.;Jin,M.-Z.;Zhang,W.;Yang,L.;Liu,Z.-L.Tetra-hedron Lett.2002,43,9687–9689;(g)Recent review: Hasegawa,E.;Kamata,M.CRC Handbook of Organic Photo-chemistry and Photobiology,2nd ed.;Horspool,W.M., Lenci,F.,Eds.;CRC:Boca Raton,FL,2003;Chapter53, pp1–17.

11.Belotti,D.;Cossy,J.;Pete,J.P.;Portella,https://www.wendangku.net/doc/d913585042.html,.Chem.

1986,51,4196–4200.

12.(a)Hasegawa,E.;Xu,W.;Mariano,P.S.;Yoon,U.C.;Kim,

J.U.J.Am.Chem.Soc.1988,110,8099–8111;(b)Hasegawa,

E.;Brum?eld,M.A.;Yoon,U.C.;Mariano,https://www.wendangku.net/doc/d913585042.html,.Chem.

1988,53,5435–5442.

13.Representative examples for PET reactions using Ru(bpy)3Cl2

with amines.(a)DeLaive,P.J.;Lee,J.T.;Sprinschinik,H.W.;

Abruna,H.;Meyer,T.J.;Whitten,D.G.J.Am.Chem.Soc.

1977,99,7094–7097;(b)Ballardini,R.;Varani,G.;Indelli, M.T.;Scandola,F.;Balzani,V.J.Am.Chem.Soc.1978,100, 7219–7223;(c)Bock,C.R.;Connor,J.A.;Gutierrez,A.R.;

Meyer,T.J.;Whitten,D.G.;Sullivan,B.P.;Nagle,J.K.

J.Am.Chem.Soc.1979,101,4815–4824;(d)Pac, C.;

Miyauchi,Y.;Ishitani,O.;Ihama,M.;Yasuda,M.;Sakurai,

https://www.wendangku.net/doc/d913585042.html,.Chem.1984,49,26–34;(e)Ishitani,O.;Yanagida,

S.;Takamuku,S.;Pac,https://www.wendangku.net/doc/d913585042.html,.Chem.1987,52,2790–2796;(f)Willner,I.;Tsfania,T.;Eichen,https://www.wendangku.net/doc/d913585042.html,.Chem.

1990,55,2656–2662;(g)Fukuzumi,S.;Mochizuki,S.;

Tanaka,T.J.Phys.Chem.1990,94,722–726;(h)Okada,K.;

Okubo,K.;Morita,N.;Oda,M.Chem.Lett.1993,2021–2024.

14.Reduction potentials(E red

1=2

in V vs SCE)of some representative substrates areà1.59V for1a,à1.82V for3,andà1.78V for 7,respectively.In the cases of1b,1c,and5a,the reduction peaks were not observed belowà2.3V.

15.(a)Rehm,D.;Weller,A.Isr.J.Chem.1970,8,259–271;(b)

Weller,A.Z.Phys.Chem.Neue Folge1982,133,93–98. 16.In principle,a polar solvent accelerates initial PET processes

(Refs.3,15,17),and is desirable for a PET reaction involving sensitization.However,if a reaction requires a chemical pro-cess within a radical ion pair,e.g.,proton transfer from a radical cation to a radical anion(Ref.17),nonpolar solvents are in some cases more favorable to lead better yields of products

6587

E.Hasegawa et al./Tetrahedron62(2006)6581–6588

as compared to polar solvents(Ref.10e).Therefore,a choice of

a suitable solvent for each case is important for preparative

PET reactions.

17.Devadoss,C.;Fessenden,R.W.J.Phys.Chem.1991,95,

7253–7260.

18.Tokel-Takvoryan,N.E.;Hemingway,R.E.;Bard,A.J.J.Am.

Chem.Soc.1973,95,6582–6589.

19.(a)Zhang,X.;Ye,S.R.;Hong,S.;Freccero,M.;Albini,A.;

Falvey,D.E.;Mariano,P.S.J.Am.Chem.Soc.1994,116, 4211–4220;(b)Su,Z.;Mariano,P.S.;Falvey,D.E.;Yoon, U.C.;Oh,S.W.J.Am.Chem.Soc.1998,120,10676–10686.

20.Representative examples of inorganic salt effects on PET reac-

tions.(a)Simon,J.D.;Peters,K.S.J.Am.Chem.Soc.1983, 105,4875–4882;(b)Mizuno,K.;Ichinose,N.;Otsuji,Y.

Chem.Lett.1985,455–458;(c)Review:Loupy,A.;Tchoubar,

B.;Astruc,D.Chem.Rev.1992,92,1141–1165.21.(a)Gritzne,G.;Kuta,J.Pure Appl.Chem.1984,56,461–466;

(b)Workentin,M.S.;Parker,V.D.;Morkin,T.L.;Wayner,

D.D.M.J.Phys.Chem.A1998,102,6503–6512.

22.Mann,C.K.;Barnes,K.K.Electrochemical Reactions in

Nonaqueous Systems;Marcel Dekker:New York,NY,1970.

23.(a)Chikashita,H.;Itoh,K.Bull.Chem.Soc.Jpn.1986,59,

1747–1752;(b)Lee,I.-S.H.;Jeoung,E.H.;Kreevoy,M.

J.Am.Chem.Soc.1997,119,2722–2728.

24.Meek,J.S.;Monroe,P.A.;Bouboulis,https://www.wendangku.net/doc/d913585042.html,.Chem.

1963,28,2572–2577.

25.Hasegawa,E.;Ishiyama,K.;Kato,T.;Horaguchi,T.;Shimizu,

T.;Tanaka,S.;Yamashita,https://www.wendangku.net/doc/d913585042.html,.Chem.1992,57,5352–5359.

26.Kraus,G.A.;Man,https://www.wendangku.net/doc/d913585042.html,mun.1986,16,1037–1042.

27.Fatiadi,A.J.J.Chromatogr.1965,20,319–324.

28.Bowman,W.R.;Westlake,P.J.Tetrahedron1992,48,4027–

4038.

6588 E.Hasegawa et al./Tetrahedron62(2006)6581–6588

cisco3750三层交换机配置说明

三层交换机可以通过Telnet方式或超级终端方式连上,第一次使用的三层交换机需要进行配置,具体步骤如下: 1)、用Cisco 3750三层交换机自带的一条串行电缆将其Console口与1台维护笔记本的串口(需要知道是Com1还是Com2)相连。 2)在维护笔记本上执行以下操作:“开始→程序→附件→通讯→超级终端”,在“连接描述”对话框的名称一栏中输入“cisco3750”(此名字没有实际意义,可以随便输入),创建一个叫做"cisco3750"的新连接,点击"确定",缺省的使用COM1(根据维护计算机连接的端口选择),在"串口设置"中将波特率改为9600波特,其他参数不变,点击"确定"就可以得到三层交换机的控制台。 3)、设置结束,打开三层交换机电源,就会出现三层交换机的启动信息。这时就可以像在终端一样对三层交换机进行操作了。此时不要进行任何操作,以免破坏三层交换机的启动进程,直到三层交换机出现了: “Copyright (c) 1986-2006 by Cisco Systems, Inc. Compiled Fri 28-Jul-06 08:46 by yenanh” 回车,提示“Would you like to terminate autoinstall? [yes]:”是否要终止自动安装,输入N,进入配置页面: “--- System Configuration Dialog --- Would you like to enter the initial configuration dialog? [yes/no]:” 输入N,选择不需要,提示“Switch>00:14:58: %LINK-5-CHANGED: Interface Vlan1, changed state to administratively down”,出现“switch>”就可以输入命令进行配置。 switch >en(进入特权模式) switch #configure(进入组态模式) switch ( config ) #hostname 3750 (交换机重命名) 3750( config )#Interface vlan 1 (进入vlan1设置) 3750( config-if ) #ip add 171.100.12.1 255.255.255.0(设置vlan1的IP,连接其端口的设备必须以其IP作为网关) 3750( config-if ) #no shutdown (激活vlan1的端口)

电子血压计的设计与验证(DOC)

电子血压计的设计与验证 医学院(生物医学工程) 【摘要】 血压是人体重要的生理参数之一,对其的准确监测将对心血管疾病诊断和治疗具有重要意义。本设计是采用振荡法的无创血压测量技术来实现电子血压计,结合了现代传感技术、计算机与信号处理技术。本文主要从硬件方面介绍了电子血压计的设计,主要包括电源电路、放大滤波电路、LCD显示电路、控制电路和数字处理等电路设计和核心器件选型,系统中采用压力传感器US9111和LMV2264运放对信号进行信号转换、放大、滤波,以STM32F103RBT6单片机为核心,实现泵阀控制和对采集到的压力与脉搏信号进行处理,并上传测量的数据到上位机进行显示,实现系统功能,达到预期的设计目标。 【关键词】血压,硬件系统,显示;

1 前言 1.1 研究背景 1.1.1电子血压计概述 通常所说的血压是指动脉血压,血压是血液在血管内流动时,作用于血管壁的压力,它是推动血液在血管内流动的动力。心室收缩,血液从心室流入动脉,此时血液对动脉的压力最高,即动脉血压的峰值,称为收缩压(systolic blood pressure ,SBP )[1]。心室舒张,动脉血管弹性回缩,血液仍慢慢继续向前流动,但血压下降,此时的压力称为舒张压(diastolic blood pressure,DBP),即血压的谷值[2]。血压是机体重要的生命特征之一,可以反映出人体心脏和血管的功能状况,是临床上诊断疾病、观察治疗效果、进行诊后判断等的重要依据[3]。 电子血压计是基于采用无创血压测量方法的生命信息监测医疗设备,无创血压测量方法主要有听诊法和示波法,其中示波法又称震荡法,本设计的测量原理是示波法。电子血压计有臂式、腕式之分,腕式电子血压计的优点是小巧便携,但测量结果不够精确;上臂血压计虽然机型较大携带不便,但是精度较高,更具有临床意义,所以本次设计目标也是上臂式电子血压计。血压计的技术经历了最原始的第一代、第二代(半自动血压计)、第三代(智能血压计)的发展。第一代电子血压计是在减压时进行测量,使用的主要元器件包括压力传感器、快速加压气泵和机械快速排气阀。第一代电子血压计由于机械式排气阀的不稳定,测量结果也不稳定,误差较大。第二代电子血压计也是在减压时进行测量,第二代是电子控制排气阀,可以智能加压,减小人为误差,使得测量结果更加稳定。第三代电子血压计是在加压时就进行测量,目前国际上掌握这一技术的公司并不多。第一代和第二代电子血压计都是上臂式的,第三代是腕式电子血压计,由于掌握MWI技术(加压时测量)的公司很少和腕式电子血压计不适合有血流障碍的病人使用,所以现在使用最广泛的是第二代电子血压计[4]。 1.1.2问题的提出 随着人口老龄化,人们生活水平的提高以及保健观念日益增强,人们越来越注重自己和家人的健康。血压是人体重要的生理参数,血压的正常与否能判断一个人身体是否健康。高血压是最常见的心血管疾病,严重影响人们的生活质量和健康。据有关统计资料显示,目前我国的高血压患者已达两亿,并且每年都以300万以上的速度在增加[5],高血压患者的年龄层也逐渐年轻化,关于高血压的预防和治疗已成为我国一个热门的话题。高血压不仅是影响人们健康的慢性疾病,更是冠心病、心肌梗死、心力衰竭等心血管疾病的祸首,所以血压的测量对预防此类疾病起到至关重要的作用。对于全球特别是我国市场来说,血压计的需求量是十分庞大的。中国是世界最大的电子血压计的生产基地,也是国际最大的电子血压计消费市场,但是市场上销售的电子血压计质量不一,消费者容易购入质量差的产品,而且我国很多医院依然在使用水银血压计。水银血压计的测量必须由专业的医学人士进行,过程比较复杂,测量结果可能会因医生的不同而不同,而且水银压力计的水银具有剧毒性,对人体是有害的,使用过程要十分小心,所以研究出一款便携、廉价、准确的压力计,具有极大的市场潜力。

思科交换机指示灯全解

思科交换机指示灯全解 交换机的前面板有几个指示灯,用于监控系统的活动和性能。这些指示灯称之为发光二极管(LED)。前面板上的指示灯包括: ·系统指示灯 ·远程电源供应指示灯 ·端口模式指示灯 ·端口状态指示灯 1:系统指示灯 显示系统是否已经接通电源并且正常工作。 指示灯颜色系统状态 关闭系统未加电 绿色系统运行正常 琥珀色系统加电但运行不正常 2:远程电源供应(rps)指示灯 指示灯显示交换机是否有远程电源供电。RPS指示灯表明了交换机的RPS状态。 指示灯颜色RPS状态 关闭RPS关闭或未安装 持续绿色RPS已连接并可用 闪烁绿色RPS正在支持堆叠(stack)中的另一台交换机 持续琥珀色RPS已连接但动作不正常

闪烁琥珀色交换机内部电源出现故障,正在使用RPS端口指示灯(这个算是重点了考试要考)端口模式指示灯显示模式按钮的当前状态。各种模式用于决定如何对端口状态LED进行解释。如果要选择或修改端口模式,连续的按压Mode按钮直到Mode LED指示在所需的模式。端口状态LED能代表多种含义,取决于Mode LED的当前值 Mode按钮有三种状态: ·STAT(状态,states) ·UTL(利用率,Utilization) ·FDUP(全双工,full duplex) 如果交换机的状态灯为闪烁的橙色,一般表明在某一个端口。模块或者交换机有硬件故障。如果端口或者模块状态不正常,状态灯也为闪烁的橙色。 4:端口状态指示灯 模式LED端口模式描述 STAT端口状态显示端口状态这个是缺省模式 VTIL交换机利用率显示目前该端口倍交换机使用的带宽 DUPLX端口双工模式可用是全双工或半双工 SPEED端口速度端口运行速度 要选择或者改变端口模式,可用通过按压Mode按钮直至所需要的模式被选中。 模式LED颜色描述 STAT 端口状态关闭关闭无链路 持续绿色链路正常运行

思科三层交换机配置总结

思科交换机的基本配置命令学习 CISCO交换机基本配置:Console端口连接 用户模式hostname# ; 特权模式hostname(config)# ; 全局配置模式hostname(config-if)# ; 交换机口令设置: switch>enable ;进入特权模式 switch#config terminal ;进入全局配置模式 switch(config)#hostname csico ;设置交换机的主机名 switch(config)#enable secret csico1 ;设置特权加密口令 switch(config)#enable password csico8 ;设置特权非密口令 switch(config)#line console 0 ;进入控制台口 switch(config-line)#line vty 0 4 ;进入虚拟终端 switch(config-line)#login ;虚拟终端允许登录 switch(config-line)#password csico6 ;设置虚拟终端登录口令csico6 switch#exit ;返回命令 交换机VLAN创建,删除,端口属性的设置,配置trunk端口,将某端口加入vlan中,配置VTP:switch#vlan database ;进入VLAN设置 switch(vlan)#vlan 2 ;建VLAN 2 switch(vlan)#vlan 3 name vlan3 ;建VLAN 3并命名为vlan3 switch(vlan)#no vlan 2 ;删vlan 2 switch(config)#int f0/1 ;进入端口1 switch(config)#speed ? 查看speed命令的子命令 switch(config)#speed 100 设置该端口速率为100mb/s (10/auto) switch(config)#duplex ? 查看duplex的子命令 switch(config)#duplex full 设置该端口为全双工(auto/half) switch(config)#description TO_PC1 这是该端口描述为TO_PC1 switch(config-if)#switchport access vlan 2 ;当前端口加入vlan 2 switch(config-if)#switchport mode trunk ;设置为trunk模式(access模式) switch(config-if)#switchport trunk allowed vlan 1,2 ;设置允许的vlan switch(config-if)#switchport trunk encap dot1q ;设置vlan 中继 switch(config)#vtp domain vtpserver ;设置vtp域名相同 switch(config)#vtp password ;设置发vtp密码 switch(config)#vtp server ;设置vtp服务器模式 switch(config)#vtp client ;设置vtp客户机模式 交换机设置IP地址,默认网关,域名,域名服务器,配置和查看MAC地址表: switch(config)#interface vlan 1 ;进入vlan 1 switch(config-if)#ip address 192.168.1.1 255.255.255.0 ;设置IP地址 switch(config)#ip default-gateway 192.168.1.6 ;设置默认网关 switch(config)#ip domain-name https://www.wendangku.net/doc/d913585042.html, 设置域名 switch(config)#ip name-server 192.168.1.18 设置域名服务器 switch(config)#mac-address-table? 查看mac-address-table的子命令 switch(config)#mac-address-table aging-time 100 设置超时时间为100ms switch(config)#mac-address-table permanent 0000.0c01.bbcc f0/3 加入永久地址在f0/3端口 switch(config)#mac-address-table restricted static 0000.0c02.bbcc f0/6 f0/7 加入静态地址目标端口f0/6源端口f0/7 switch(config)#end

cisco交换机密码遗忘解决法

思科交换机密码设置方法 一.设置console密码 >enable #configure trminal (confing)#line console 0←console口 ①(config-line)#password (cisco)←密码 (config-line)#login ←一定不能少的. console密码设置完成 exit 二:设置全局密码 enadle #configure terminal ②(config)#enable secret (class)←密码 (config)#login 全局密码设置完成 exit 三.设置远程登入(telnet)密码 enable #config terminal (config)#line vty 0 4(0 4是口) ③(config-line)#password (class)←密码 (config-lline)#login exit四.保存以上设置 >enadle #copy running-config strat-config 思科交换机密码的破解 ⒈连接交换机的console口到终端或PC仿真终端。用无Modem的直连线连接PC的串行口到交换机的console口。 ⒉首先得拔掉电源,因为思科交换机上没有开关所以我们只能拔掉电源接下来我们要做的就是按住MODE按钮接着插上电源等端口指示灯灭掉松开 ⒊初始化flash。 >flash_init

⒋更名含有password的配置文件。 >rename flash:config.text flash:config.old ⒌启动交换机。 >boot ⒍进入特权模式。 >enable ⒎此时开机是已忽略password。 #rename flash:config.old flash:config.text ⒏copy配置文件到当前系统中。 #copy flash:config.text system:running-config ⒐修改口令。 #configure terminal #enable secret ⒑保存配置。 #write

三层交换机cisco3560 ios 丢失解决笔记

周日公司电脑不能上网,经检查是三层交换机cisco3560 出问题,报错如下: ============================================= Base ethernet MAC Address: 00:19:56:d0:dd:80 Xmodem file system is available. The password-recovery mechanism is enabled. Initializing Flash... flashfs[0]: 0 files, 1 directories flashfs[0]: 0 orphaned files, 0 orphaned directories flashfs[0]: Total bytes: 32514048 flashfs[0]: Bytes used: 1024 flashfs[0]: Bytes available: 32513024 flashfs[0]: flashfs fsck took 12 seconds. ...done Initializing Flash. Boot Sector Filesystem (bs) installed, fsid: 3 done. Loading "flash:c3560-advipservicesk9-mz.122-25.SEE2.bin"...flash:c3560-advipservicesk9-mz.122-25.SEE2.bin: no such file or directory Error loading "flash:c3560-advipservicesk9-mz.122-25.SEE2.bin" Interrupt within 5 seconds to abort boot process. Boot process failed... The system is unable to boot automatically. The BOOT environment variable needs to be set to a bootable image. switch:

思科交换机密码配置命令

思科交换机密码配置 一.设置console 密码 >enable #configure trminal (confing)#line console 0 J console ①(config- line)#password (cisco) <密码 (config- line)#login 一定不能少的. console密码设置完成 exit 二:设置全局密码 enadle #configure terminal ②(config)#enable secret (class) 密码 (config)#login 全局密码设置完成 exit 三.设置远程登入(telnet)密码 enable #config terminal (config)#line vty 0 4(0 4 是口) ③(config- line)#password (class) <密码 (config-lline)#login exit 四.保存以上设置 >enadle #copy running-config strat-config 思科交换机密码的破解 1. 连接交换机的console 口到终端或PC仿真终端。用无Modem的直连线连接PC的串行口到交换机的console 口。 2. 首先得拔掉电源,因为思科交换机上没有开关所以我们只能拔掉电源接下来我们要做的就是按住 MODE按钮接着插上电源等端口指示灯灭掉松开 3. 初始化flash。 >flash_init 4. 更名含有password的配置文件。 >rename flash:config.text flash:config.old 5. 启动交换机。 >boot 6. 进入特权模式。 >enable 7. 此时开机是已忽略password 。

血压的评估及测量方法

血压的评估及测量方法 一、血压的评估 ?(一)血压的概念 ?1、血压:是指在血管内流动的血液对血管壁的侧压 ?力。一般临床上所谓的血压是动脉血压 ?2、收缩压:当心室收缩时,血液对动脉管壁的侧压 ?力最高,称为收缩压。 ?3、舒张压:当心室舒张时,动脉管壁弹性回缩,血液对动脉管?壁的侧压力降至最低,称为舒张压。 ?4、脉压收缩压与舒张压之差称为脉压。 ? ?(二)正常血压的观察及生理性变化 ?1、血压正常值:血压一般以肱动脉血压为标准。在安静状态下,?正常人收缩压为90~139mmHg(12~18.5kPa),?舒张压力为60~89mmHg(8~11.8kPa),脉压为?30~40mmHg(4~5.3kPa)。 ?2、生理性变化 ?(1)年龄:动脉血压随年龄的增长而逐渐增高,新生儿血压最?低,儿童血压比成人低。 ?(2)性别:同龄女性血压比男性偏低,但更年期后,女性血压?逐渐增高,与男性差别较少。

(3)昼夜与睡眠:一天中,清晨血压一般最低,傍晚血压最高,夜 间睡眠血压降低,如过度劳累或睡眠不佳,血压 稍有升高。 (4)环境:在寒冷刺激下,血压可略升高;在高温环境中,血压可略下降。 (5)部位:因左右肱动脉解剖位置的关系,一般右上肢血压高于左上肢,因股动脉的管径较肱动脉粗,血流量多,故下肢血 压比上肢高。 (6)其他:紧张、恐惧、害怕、兴奋及疼痛等精神状态的改变,均可致血压升高。此外,吸烟、饮酒、盐摄入过多及药物 等也会影响血压值。 二、异常血压 ?(一)异常血压的观察 1、高血压:成人收缩压≥140mmHg和(或)舒张压≥90mmHg, 称为高血压。 2、低血压:成人血压低于90/60~50mmHg(12/8~6.65kPa)称为低血 压。常见于大量失血、休克、急性心力衰竭病人。 3、脉压的变化脉压增大:见于主动脉瓣关闭不全、主动脉硬 化等病人;脉压减小:见于心包积液、缩窄性心包炎、 主动脉瓣狭窄等病人。 ?(二)异常血压的护理 1、发现血压异常时,应保持镇静,与病人基础血压对照后,给予

三层交换机划分个vlan实现其互相通迅

综合实验 一台思科三层交换机划分3个vlanvlan2:ip网段vlan3:ipvlan4ip各vlan之间能互相通迅.现在增加1台cisco路由想实现共享 我们的PC0、PC1处在VLAN2中,PC2、PC3处在VLAN3中,Server0处在VLAN4中。现在要使我们内网能够正常访问我们的Server0服务器,然后同时还要能够访问我们的ISP外网的WWW服务器。 三层交换机的配置 Switch#configt Switch(config)#vlan2创建VLAN2 Switch(config-vlan)#exi Switch(config)#vlan3创建VLAN3 Switch(config-vlan)#exi Switch(config)#vlan4创建VLAN4 Switch(config-vlan)#exit Switch(config)#intfa0/2将我们的fa0/2添加到VLAN2中 Switch(config-if)#swmoac

Switch(config-if)#swacvlan2 Switch(config-if)#exit Switch(config)#intfa0/3将我们的FA0/3添加到VLAN3中 Switch(config-if)#swmoac Switch(config-if)#swacvlan3 Switch(config-if)#exit Switch(config)#intfa0/4将我们的FA0/4添加到VLAN4中 Switch(config-if)#swmoac Switch(config-if)#swacvlan4 Switch(config-if)#exit Switch(config)#intvlan2给我们的VLAN2添加一个IP地址,用于不同网段之间互相访问 Switch(config-if)#ipadd Switch(config-if)#exit Switch(config)#intvlan3给我们的VLAN3添加一个IP地址 Switch(config-if)#ipadd

Cisco交换机常见问题及解答

Cisco交换机常见问题及解答 本文是对Cisco代理商培训资料的收集整理,涉及路由器、交换机、IP/TV、防火墙、VPN、网络管理、HFC、VOIP及设备采购等方面的售前疑问解答,也可以用来作为入门资料。12 问题:目前Cisco有哪些交换机可支持三层交换功能? 答案:Catalyst 2948G-L3、 Catalyst 4908G-L3、 Catalyst 4003、 Catalyst 4006、Catalyst 5000系列、 Catalyst 6000系列、 Catalyst 8500系列。 13 问题:Catalyst 2948G是否可以与Catalyst 3500XL 用GigaStack GBIC堆叠? 答案:不可以。 Catalyst 2948G 与 Catalyst 3500XL 的结构不同,而且 Catalyst 2948G 不支持GigaStack GBIC模块,故不能进行堆叠 14 问题:Catalyst 2948G-L3、4000、6000的三层包转发速率各是多少? 答案:Catalyst 2948G-L3: 11Mpps; Catalyst 4000: 6Mpps; Catalyst 6000/6500: 15Mpps到 150Mpps. 15 问题:Catalyst 交换机的最大连接的最大直径 ? 答案:是的,通常交换机的最大连接直径为7,如果超过此数就会在生成树的计算时产生不稳定状态。所以在连接直径接近或等于7的时候应该尽量使用星行网络拓扑结构 16 问题:catalyst 4000 是否支持ISL ? 答案:catalyst 4000 不支持ISL,支持802.1q 17 问题:如何判断你的交换机引擎型号? 答案:使用命令 SHOW VERSION 你将看到线卡的型号: WS-X5xxx = SupI(一代) WS-X55xx = SupII(二代) WS-X553x = SupIII(三代) 从物理外观看: 一代引擎 - 只有复位键没有PCMCIA 槽。二代引擎- 复位键 , 活动状态灯, 没有PCMCIA。三代引擎- 有PCMCIA 槽和向上级连端口。 19 问题:交换机中什么是MSM,NFFC,MSFC 及PFC,它们的功能? 答案:MSM(Multilayer switch module)是6000上使用的三层路由卡,6Mpps的三层转发能力 NFFC是5000系列超级引擎3.x增加了功能如IP MLS,IGMP,三层过滤等功能。 MSFC 6000上超级引擎3层路由子卡,提供15Mpps L3 转发IP,IPX包转发能力,与PFC卡配合可以提供IP组播的能力。 PFC卡用来提供一些三层功能给交换机如VLAN访问列表控制,QOS访问列表。并且安装PFC卡不需要MSFC,但安装MSFC必须安装PFC。 Explanation of MSM, NFFC, MSFC, and PFC 问题: Can you explain the functionality of the following and differentiate between them - MSM, NFFC, MSFC, PFC? 20 问题:Catalyst 5000上引擎III的上连模块WS-U5534-GESX/WS-U5536-GELX是否需要GBIC ? 答案:不需要。这两种模块不是GBIC的千兆模块,只需连接光纤跳线即可。 21 问题:在Configuration Tool 中, Catalyst 5000的上连模块怎么出现? 答案:需要先选择相应的引擎并完成 Update 或 Check后,才会有相应的上连模块出现。 22 问题:Catalyst 4003/4006上的WS-X4232-RJ-XX模块与WS-U4504-FX-MT模块是如何使用的? 答案:WS-U4504-FX-MT是WS-X4232-RJ-XX上的子卡。 23 问题:在Catalyst 6000系列产品中PFC和MSFC有什么区别? 是否两者都需要? 答案:PFC子卡不需三层路由引擎就可支持智能L3/4交换服务( delivers intelligent Layer 3/4 switching services),例如QoS和安全性。 PFC通过专有的基于ASIC的包检测机制提供流量的访问控制、分类、划分优先级。另外, PFC可与高级的包排序、冲突避免技术结合,使流量得到预定的速率,从而明显地提高性能及获得网络操作的可预测性。

血压的测量标准方法2012年最新标准

血压的测量标准方法 2012年最新标准 测量血压的适用范围 一、体格检查。 二、高血压:原发高血压、继发高血压。 三、低血压:休克、急性心肌梗塞、心力衰竭、心包填塞、肾上腺皮质功能减退。 四、两上肢血压不对称,大动脉炎,先天性动脉畸形血栓闭塞性脉管炎等。 用物准备 血压计、听诊器、记录本笔、酒精纱布 检查血压计和袖带是否完好。 操作程序 一、护士核对病人后,向患者做好解释工作,评估患者的病情、体位、基础血压及治疗用药。评估患者自理和合作程度。测量前患者应排空膀胱。 二、协助患者摆好体位,坐位或平卧位。伸直肘部,手掌向上,露出手臂、伸直。打开水银开关,去尽袖带内空气,将袖带平整舒适地绑在右上臂上,压紧锁扣避免滑脱。袖带不能太松或太紧,松紧以能放入1指尖为宜。袖带下缘放置在肘关节前肘窝上方约2--3cm处,便充气的气囊中心正好位于肱动脉部位。 三、戴好听诊器,把听诊器膜式听头放在袖带下方肱动脉动

搏动最强处(一般在肘窝略偏内侧,即能找到肱动脉),但不要与袖带或皮管接触。 四、关闭充气皮球的阀门,挤压皮球,向气囊冲气,至动脉搏动间消失,再加压20--30 mmHg。眼睛应保持在血压计的玻璃刻度终端的水平。 五、缓慢放气,保持放气速度恒定,使水银柱以2—6mmHg/s 的速度下降。当听到第一声搏动时,汞柱所指刻度为收缩压,至搏动音突然减弱或消失,汞柱所指刻度为舒张压,开放气囊,取下袖带,排尽空气。间隔2分钟,重复测量,取2次读数的平均值。 六、倾斜45度,关闭水银开关,整理血压计,协助患者取安全、舒适体位。告知患者血压测量值及注意事项。擦拭血压计,放置固定位置备用。 七、记录血压值。 测血压注意事项 一、测成人血压时,血压计袖带内囊长24㎝,宽12㎝。 二、对需要长期密切观察血压者要注意四定:定时间、定体位、定血压计、定部位、以保证测得血压值的准确性与可比性。 三、患者运动后,或饮刺激性饮料后,间隔30分钟再测量血压。 四、测量时,水银柱“0”刻度、肱动脉与心脏在同一水平。 五、充气进速度不宜过猛、过高,防止水银外溢;放气时不可过快,以2—6mmHg/s的速度为宜,以免读值有误差。 六、注意监听,收缩压以第一次搏动为准,舒张压以搏动音

思科设备三层交换机的vlan间通信配置

本次主要讲解三层交换实现vlan间的相互通信: 本例配置模型图 命令行: swA配置命令: Switch>enable Switch#vlandatabase//进入vlan配置模式 % Warning: It is recommended to configure VLAN from config mode, as VLAN database mode is being deprecated. Please consult user documentation for configuring VTP/VLAN in config mode. Switch(vlan)#vlan 2 name TztA//在swA上创建vlan 2 名为TztA VLAN 2 added: Name: TztA Switch(vlan)#vlan 3 name TztB//在swA上创建vlan 3 名为TztB VLAN 3 added: Name: TztB Switch(vlan)#exit APPLY completed. Exiting.... Switch#conf t Enter configuration commands, one per line. End with CNTL/Z. Switch(config)#int f0/2 Switch(config-if)#switchport mode access

Switch(config-if)#switchport access vlan 2 //将f0/2划分给vlan 2 Switch(config-if)#exit Switch(config)#int f0/3 Switch(config-if)#switchport mode access Switch(config-if)#switchport access vlan 3 //将f0/3划分给vlan 3 Switch(config-if)#exit Switch(config)#int f0/1 Switch(config-if)#switchport mode trunk//配置与三层设备连接的f0/1为trunk模式 %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to down %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up Switch(config-if)#switchport trunk allowed vlan all //允许所有vlan通过f0/1端口Switch(config-if)#exit Switch(config)#exit Switch# %SYS-5-CONFIG_I: Configured from console by console Switch#wr Building configuration... [OK] Switch# (三层交换机)M sw命令配置: Switch> Switch>enable Switch#vlandatabase//进入vlan配置模式 % Warning: It is recommended to configure VLAN from config mode, as VLAN database mode is being deprecated. Please consult user documentation for configuring VTP/VLAN in config mode. Switch(vlan)#vlan 2 name TztA//在Msw上创建vlan 2 名为TztA VLAN 2 added: Name: TztA

交换机指示灯说明

(2)Full Duplex端口的LED指示灯亮,则说明处于全双工工作状态模式;LED指示灯不亮则说明处于半双工工作状态模式。 (3)网络利用率指示灯,用来反应网络的利用率,即网络的拥挤状况。网络利用率一般不大于35%,如果超过35%说明该网络十分拥挤,传输速率会急速下降。 此外,交换机和集线器的端口数量应保留10%左右的冗余,以确保在增加少量计算机时不必重新购置设备,或者因某个端口损坏时仍能继续正常运行和使用。 级联端口和普通端口的区别是由它们自身的工作原理所决定的。一般情况下,级联端口优先于普通端口,而且在速率、工效等方面比普通端口要高一些。 端口上最常见的LED 灯是绿色的,有的还有黄色或其他颜色的。首先要明白,不同颜色的LED 灯,每个厂商的定义其功能可能是不同的。而绿色LED 灯是最常见的,它表示什么含义呢?绿色LED 灯不亮,肯定是有问题的,这是最直观也是正确的判断。但是绿色LED 灯亮了,是否就说明没有问题了呢?不论网卡还是交换机(HUB)端口都有收发两个功能。绿色LED 灯亮表示有信号进来,但是并不表示可以正常的发送信号。也就是说不能仅通过一端绿色的LED 灯就判断收发是正常的。那末要判断收发正常就要看两端的绿色LED 灯。通常交换机(HUB)和PC 都不在一起,一个在办公室,另一个在机房,所以迅速地检查两端的LED 灯有时并不方便。特别是对那些没有良好的布线标识的情况下,在机房的交换机上寻找对应的端口有时并不是一个简单的事。 至于黄色的LED 灯,有的厂商的定义是表示发送信号,有的表示是双工或半双工的工作方式。所以对黄色LED 灯的判断取决于用户对网卡或交换机(HUB)的了解。如果在没有了解网卡和交换机的黄色LED灯的含义时,不要就此作出判断。否则可能会在错误的方向上浪费很多时间。而统计的数据表明,交换机端口和网卡的工作方式(全双工和半双工)不匹配的情况占了故障的相当大的部分。 综上所述,只是简单地看一下网卡或交换机上的绿色或黄色LED 灯就对电缆,网卡或交换机端口作出判断是不可取的。否则,出于简单的现象而而得出了错误的判断,会使故障诊断进入歧途而浪费大量的时间。此外,还有一些问题,例如串绕(Split Pair)的电缆,

思科三层交换机基于环形网络的配置方案(初学者的宝典)

Cisco三层交换机网络配置方案 二vlan设置 此处的实验划分了3个vlan,一个服务器组,一个子站的主环形通道,一个子站的备环形通道。如果有多个环形通道,按照文章中的主备环形通道的配置方法增加配置即可。本片文章是以Cisco 3560编写的,配置3750与3560不一样的地方会在每一部分的开头标出,如果没有标出就是两种交换机的配置方法是一样的。如果配置的是3750(或者其他型号的可堆叠Cisco交换机),请先参阅4.6。 2.1 进入配置模式 2.1.1 进入特权模式 Switch>en 如图6所示。 图 6 2.1.2 进入配置模式 Switch#configure terminal 如图7所示。 hou 图7 进入配置模式后就可以开始划分vlan了(关于“模式”的解释请查阅4.2)。

2.2 划分vlan 2.2.1 配置交换机的名称 Switch(config)#hostname switch1 如图8所示。 图8 2.2.2 划分3个vlan switch1(config)#vlan 10 !全局配置模式下进入vlan模式并创建vlan10 switch1(config-vlan)#name commmaster !把vlan10命名为commmaster switch1(config-vlan)#vlan 20 !vlan模式下创建vlan20 switch1(config-vlan)#name commbak !把vlan20命名为commbak switch1(config-vlan)#vlan 30 !vlan模式下创建vlan30 switch1(config-vlan)# name server !把vlan30命名为server switch1na switch1(config)# 如图9所示。 图9 2.2.3 分配端口 3560端口1的名称是g0/1,3750堆叠后交换机1的端口1名称是Gi1/0/1。交换机端口的名字是什么可在特权模式(即switch1#)下用sh vlan brief查看。 2.2.3中的命令是在3560下做的测试。gi1/0/21-22 switch1(config)#interface range g0/1-2 !进入一组端口g0/1-2 switch1(config-if-range)#switchport mode access !配置这组端口的模式为接入模式(可省略) switch1(config-if-range)#switchport access vlan 10 !把该组端口接入到vlan10 switch1(config-if-range)#interface range g0/23-24 !同上 switch1(config-if-range)#switchport mode access switch1(config-if-range)#switchport access vlan 20

基本公共卫生服务规范测试题高血压(2017年)

基本公共卫生服务规测试题 (高血压患者健康管理部分) 一、判断题(25题) 1、管理人群血压控制率采用年度平均血压值计算。() 2、基本公共卫生服务规要求高血压患者管理率不低于40%。() 3、常住居民是指在本辖区连续居住1年及以上的居民。() 4、高血压患者管理级别可以根据每次随访评估结果随时调整。() 5、35岁及以上门诊首诊病人测血压中首诊概念是指每年因不同疾病首次至该医疗服务机构就诊。() 6、高血压患者健康管理服务对象是辖区35岁及以上所有高血压患者。() 7、各种途径发现的收缩压≥140mmHg和(或)舒压≥

90mmHg者可诊断为高血压。() 8、高血压按照血压水平分为1、2、3级,若收缩压与舒压分属不同级别,则以较高的分级为准。() 9、高血压患者危险分层仅依据诊断时血压值。() 10、高血压患者清晨6~10点是心血管事件的高发时段,最好选择下午或傍晚进行锻炼。() 11、高血压患者可以选择短跑、举重等短时间进行的无氧运动,以降低血压。() 12、高血压患者出现血压控制不满意,责任医生应建议立即转诊。() 13、除高血压急症和继发性高血压外,非药物治疗应在开始药物治疗前首先应用或与药物治疗同时应用。() 14、既往有高血压病史,近二周在服降压药,血压控制在正常围者可不纳入高血压患者健康管理。() 15、高血压患者应减少膳食脂肪摄入,总脂肪供能不超过总热量30%。() 16、高血压患者进行高强度锻炼在降血压方面更有效。() 17、高血压患者每年均应进行1次较全面的健康检查。

() 18、体重指数(BMI)=体重(斤)/身高(米)2。() 19、腰围的测量应在肚脐以上1cm的水平面上进行。() 20、肥胖的高血压患者可采取极度饥饿的方法达到快速减重的目的。() 21、根据《中国高血压防治指南(2010年版)》,65岁以上老年高血压患者,如耐受良好可以将血压降至140/90mmHg以下。() 22、临床上通常采用直接方法在上臂肱动脉部位测量血压。() 23、测量血压时,如果袖带太松,测得血压值偏低。() 24、测量血压时,听诊器膜式听头应放在袖带肱动脉部位。() 25、采用水银血压计测量血压,血压读数必须以水银柱液面顶端最接近的下方刻度为准。() 二、单选题(50题) 1、高血压诊断须至少非同日次反复测量血压,次血压均高于正常值的可诊断为高血压患者。()

cisco三层交换机vlan间路由配置实例

cisco三层交换机vlan间路由配置实例 下面以cisco3560实例说明如何在一个典型的快速以太局域网中实现VLAN。所谓典型局域网就是指由一台具备三层交换功能的核心交换机接几台分支交换机(不一定具备三层交换能力)。我们假设核心交换机名称为:COM;分支交换机分别为:PAR1、PAR2、PAR3,分别通过Port 1的光线模块与核心交换机相连;并且假设VLAN名称分别为COUNTER、MARKET、MANAGING…… 需要做的工作: 1、设置VTP DOMAIN(核心、分支交换机上都设置) 2、配置中继(核心、分支交换机上都设置) 3、创建VLAN(在server上设置) 4、将交换机端口划入VLAN 5、配置三层交换 1、设置VTP DOMAIN。 VTP DOMAIN 称为管理域。 交换VTP更新信息的所有交换机必须配置为相同的管理域。如果所有的交换机都以中继线相连,那么只要在核心交换机上设置一个管理域,网络上所有的交换机都加入该域,这样管理域里所有的交换机就能够了解彼此的VLAN列表。 COM#vlan database 进入VLAN配置模式 COM(vlan)#vtp domain COM 设置VTP管理域名称 COM COM(vlan)#vtp server 设置交换机为服务器模式 PAR1#vlan database 进入VLAN配置模式 PAR1(vlan)#vtp domain COM 设置VTP管理域名称COM PAR1(vlan)#vtp Client 设置交换机为客户端模式 PAR2#vlan database 进入VLAN配置模式 PAR2(vlan)#vtp domain COM 设置VTP管理域名称COM PAR2(vlan)#vtp Client 设置交换机为客户端模式 PAR3#vlan database 进入VLAN配置模式 PAR3(vlan)#vtp domain COM 设置VTP管理域名称COM PAR3(vlan)#vtp Client 设置交换机为客户端模式 注意:这里设置核心交换机为Server模式是指允许在该交换机上创建、修改、删除VLAN 及其他一些对整个VTP域的配置参数,同步本VTP域中其他交换机传递来的最新的VLAN 信息;Client模式是指本交换机不能创建、删除、修改VLAN配置,也不能在NVRAM中存储VLAN配置,但可同步由本 VTP域中其他交换机传递来的VLAN信息。 2、配置中继为了保证管理域能够覆盖所有的分支交换机,必须配置中继。Cisco交换机能够支持任何介质作为中继线,为了实现中继可使用其特有的ISL标签。ISL (Inter-Switch Link)是一个在交换机之间、交换机与路由器之间及交换机与服务器之间传递多个VLAN信息及VLAN数据流的协议,通过在交换机直接相连的端口配置 ISL封装,即可跨越交换机进行整个网络的VLAN分配和进行配置。 在核心交换机端配置如下: COM(config)#interface gigabitEthernet 2/1 COM(config-if)#switchport COM(config-if)#switchport trunk encapsulation isl 配置中继协议 COM(config-if)#switchport mode trunk COM(config)#interface gigabitEthernet 2/2 COM(config-if)#switchport COM(config-if)#switchport trunk encapsulation isl 配置中继协议 COM(config-if)#switchport mode trunk COM(config)#interface gigabitEthernet 2/3 COM(config-if)#switchport COM(config-if)#switchport trunk encapsulation isl 配置中继协议 COM(config-if)#switchport mode trunk 在分支交换机端配置如下: PAR1(config)#interface gigabitEthernet 0/1

相关文档