文档库 最新最全的文档下载
当前位置:文档库 › 线性调频信号回波处理

线性调频信号回波处理

线性调频信号回波处理
线性调频信号回波处理

%程序:线性调频信号回波处理

%LFMEchoProc.m

clc; %清楚命令窗口信息

clear; %清除工作区的变量

close all; %清除绘图

%****************参数设置*************%

fr=3e9; %射频

f0=10e6; %中频

pw=256e-6; %脉宽

bw=2e6; %带宽

pri=1e-3; %脉冲重复周期

fs=70e6; %采样率

R=100e3; %距离

v=0; %速度

Pt=10*log10(1e6); %功率

lamda=10*log10(0.1);%波长

G=30; %天线增益dB

L=6; %损耗dB

Fn=3; %噪声系数dB

RCS=10*log10(2); %RCS

%***************信号参数计算*************%

Pr=Pt+2*G+2*lamda+RCS-3*10*log10(4*pi)-4*10*log10(R)-L; %回波功率计算A=sqrt(10^(Pr/10)); %回波信号幅度tou=2*R/3e8; %收发时间

fd=2*v*fr/3e8; %回波多普勒频率k=bw/pw; %调频带宽频率变化率

%************************发射信号产生*******************%

t=(0:1/fs:pri).'; %时间sampleTbegin=ceil(0*fs+1); %采样时间起始点sampleTEnd=ceil(pw*fs+1); %采样时间结束点sTrans=zeros(length(t),1); %产生发射信号sTrans(sampleTbegin:sampleTEnd,1)=...

sin(2*pi*(f0*t(sampleTbegin:sampleTEnd,1)+k*t(sampleTbegin:sampleTEnd ,1).^2/2));

%图像展示

figure;

plot(t*1e6,sTrans); %发射信号时域波形

xlabel('时间/us');

ylabel('幅度');

freTrans=fftshift(fft(sTrans)); %发射信号频域波形

f=linspace(-fs/2,fs/2,length(t));

figure;

plot(f/1e6,abs(freTrans));

xlabel('频率/MHz');

ylabel('幅度');

%***********************回波信号产生*******************%

beginsample=ceil(tou*fs); %采样起始点endsample=ceil((tou+pw)*fs); %采样结束点sEcho=zeros(length(t),1); %产生回波信号sEcho(beginsample:endsample,1)=...

A*sin(2*pi*((f0+fd)*(t(beginsample:endsample,1)-tou)+k*(t(beginsample :endsample,1)-tou).^2/2));

figure;

plot(t*1e6,sEcho); %回波信号时域波形

xlabel('时间/us');

ylabel('幅度');

freEcho=fftshift(fft(sEcho));

f=linspace(-fs/2,fs/2,length(t));

figure;

plot(f/1e6,abs(freEcho)); %回波信号频域波形

xlabel('频率/MHz');

ylabel('幅度');

%**********************叠加接收机噪声*******************%

kn=1.38e-23;

Bn=bw;

NoiseDev=kn*T*fs*10^(Fn/10); %噪声功率,因后续要通过滤波器,

%此处带宽用采样带宽,保证噪声功率密度

noise=sqrt(NoiseDev)*randn(length(sEcho),1);

sEcho=sEcho+noise; %信号混叠噪声

Wn=fir1(50,[(f0-bw)/(fs/2) (f0+2*bw)/(fs/2)]); %带通滤波器设计

sEcho=filter(Wn,1,sEcho); %带通滤波处理

figure;

plot(t*1e6,sEcho);

xlabel('时间/us');

ylabel('幅度');

freEcho=fftshift(fft(sEcho));

f=linspace(-fs/2,fs/2,length(t));

figure;

plot(f/1e6,abs(freEcho));

xlabel('频率/MHz');

ylabel('幅度');

%*******************正交鉴相****************%

LocalI=sin(2*pi*f0*t);

LocalQ=cos(2*pi*f0*t);

sI=sEcho.*LocalI;

sQ=sEcho.*LocalQ;

filtWn=fir1(50,0.2); %低通滤波器设计

filsI=filter(filtWn,1,sI); %低通滤波处理

filsQ=filter(filtWn,1,sQ); %低通滤波处理

fils=filsI+sqrt(-1).*filsQ; %组成复信号

figure;

plot(t*1e6,fils); %零中频信号

xlabel('时间/us');

ylabel('幅度');

frefilsI=fftshift(fft(fils));

f=linspace(-fs/2,fs/2,length(t));

figure;

plot(f,abs(frefilsI));

xlabel('频率/MHz');

ylabel('幅度');

%************匹配滤波**************%

tlocal=(0:1/fs:pw).';

slocal=exp(j*2*pi*(k*tlocal.^2/2));

%窗是对称的,因此窗长为奇数

if rem(length(slocal),2)==0

slocal=[slocal;0];

end

wrect=window(@rectwin,length(slocal));

srect=slocal.*wrect;

srectproc=ifft(conj(fft(srect,length(sEcho))).*fft(fils));

figure;

plot(t*3e8/2/1e3,20*log10(abs(srectproc))-max(20*log10(abs(srectproc) )),'b');

xlabel('距离/Km');

ylabel('幅度/dB');

%****************加窗处理***************%

wrect=window(@rectwin,length(slocal));

srect=slocal.*wrect;

srectproc=ifft(conj(fft(srect,length(sEcho))).*fft(fils));

whamming=window(@hamming,length(slocal));

shamming=slocal.*whamming;

shammingproc=ifft(conj(fft(shamming,length(sEcho))).*fft(fils)); wblackman=window(@blackman,length(slocal));

sblackman=slocal.*wblackman;

sblackmanproc=ifft(conj(fft(sblackman,length(sEcho))).*fft(fils));

figure;

plot(wrect,'b');

hold on;

plot(whamming,'r');

hold on;

plot(wblackman,'k');

xlabel('采样点');

ylabel('幅度');

figure;

plot(t*3e8/2/1e3,20*log10(abs(srectproc))-max(20*log10(abs(srectproc) )),'b');

hold on;

plot(t*3e8/2/1e3,20*log10(abs(shammingproc))-max(20*log10(abs(shammin gproc))),'r');

hold on;

plot(t*3e8/2/1e3,20*log10(abs(sblackmanproc))-max(20*log10(abs(sblack manproc))),'k');

xlabel('距离/Km');

ylabel('幅度/dB');

Figure1为发射信号时域波形

Figure2为发射信号幅频特性曲线

Figure3为回波信号时域波形图

Figure4为回波信号幅频特性曲线

Figure5为叠加高斯噪声后的回波信号时域波形

Figure6为叠加噪声后的回波信号幅频特性曲线

Figure7为接收信号下变频至零中频信号时的波形图

Figure8为零中频信号的幅频特性曲线

Figure9为回波信号在接收机处经匹配滤波并作归一化处理后的显示结果。

蓝、红、黑线分别为不加窗、汉明窗、布莱克曼窗的窗形。

蓝、红、黑线分别为匹配滤波后的信号不加窗、汉明窗、布莱克曼窗的结果。

二、思考题

因为在MATLAB软件仿真的过程当中,时间、频率、采样点是离散的,且函数ceil的特性是+1取整,因此影响到fd,进而影响到最后的距离,从而出现了仿真之后的距离比设定距离稍多的情况。

雷达线性调频信号(LFM)脉冲压缩

西南科技大学 课程设计报告 课程名称: 设计名称:雷达线性调频信号的脉冲压缩处理 姓名: 学号: 班级: 指导教师: 起止日期: 2010.12.25-----2011.1.5

课程设计任务书 学生班级:学生姓名:学号: 设计名称:雷达线性调频信号的脉冲压缩处理 起止日期:2010、12、25——2011、1、03 指导教师: 课程设计学生日志

课程设计考勤表 课程设计评语表

雷达线性调频信号的脉冲压缩处理 一、 设计目的和意义 掌握雷达测距的工作原理,掌握匹配滤波器的工作原理及其白噪声背景下的匹配滤波的设计,线性调频信号是大时宽频宽积信号;其突出特点是匹配滤波器对回波的多普勒频移不敏感以及更好的低截获概率特性。LFM 信号在脉冲压缩体制雷达中广泛应用;利用线性调频信号具有大带宽、长脉冲的特点,宽脉冲发射已提高发射的平均功率保证足够的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲已提高距离分辨率,较好的解决了雷达作用距离和距离分辨率之间的矛盾;。而利用脉冲压缩技术除了可以改善雷达系统的分辨力和检测能力,还增强了抗干扰能力、灵活性,能满足雷达多功能、多模式的需要。 二、 设计原理 1、匹配滤波器原理: 在输入为确知加白噪声的情况下,所得输出信噪比最大的线性滤波器就是匹配滤波器,设一线性滤波器的输入信号为)(t x : )()()(t n t s t x += 其中:)(t s 为确知信号,)(t n 为均值为零的平稳白噪声,其功率谱密度为2/No 。 设线性滤波器系统的冲击响应为)(t h ,其频率响应为)(ωH ,其输出响应: )()()(t n t s t y o o += 输入信号能量: ∞<=?∞ ∞-dt t s s E )()(2 输入、输出信号频谱函数: dt e t s S t j ?∞ ∞--=ωω)()( )()()(ωωωS H S o = ωωωπωωd e S H t s t j o ?∞ -=)()(21)( 输出噪声的平均功率: ωωωπ ωωπd P H d P t n E n n o o ??∞∞-∞∞-==)()(21)(21)]([22 ) ()()(2)()(21 2 2 ωωωπ ωωπ ωωd P H d e S H SNR n t j o o ? ? ∞ ∞ -∞ ∞-=

线性调频信号数字脉冲压缩技术分析_郑力文

2011年1月1日第34卷第1期 现代电子技术 M odern Electro nics T echnique Jan.2011V ol.34N o.1 线性调频信号数字脉冲压缩技术分析 郑力文,孙晓乐 (中国空空导弹研究院,河南洛阳 471009) 摘 要:在线性调频信号脉冲压缩原理的基础上,利用M atlab 对数字脉冲压缩算法进行仿真,得到了雷达目标回波信号经过脉冲压缩后的仿真结果。运用数字脉冲压缩处理中的中频采样技术与匹配滤波算法,对中频采样滤波器进行了优化,降低了实现复杂度,减少了运算量与存储量。最后总结了匹配滤波的时域与频域实现方法,得出在频域实现数字脉冲压缩方便,运算量小,更适合线性调频信号。 关键词:线性调频信号;脉冲压缩;中频采样;匹配滤波 中图分类号:T N911-34 文献标识码:A 文章编号:1004-373X(2011)01-0039-04 Digital Pulse C ompression Technology of Linear Frequency Modulation Signal ZH ENG L-i w en,SU N X iao -le (Chi na Airborne Missi le Academy,L uo yang 471009,China) Abstract :Based o n the pr inciple of pulse com pr essio n techno lo gy o f linear fr equency mo dulat ion signal,the simulatio n r e -sult of radar echo sig nal co mpressed by the pulse can be ga ined by using M atlab to simulate the dig ital pulse com pr essio n algo -r ithm.Co mbining the techno log y o f IF sampling with the matching filt er alg or ithm in the digit al pulse compression processing and optimazing the I F sampling filter,which can remarkably reduce the complex ity and decr ease t he mult iplier operation and the memo ry.Finally ,the implementation methods of matching filter algo rithm in time domain and fr equency doma in are summar ized,the dig ital pulse compression can be im plemented on frequency do main. Keywords :linear frequency modulatio n signal;pulse com pr essio n;IF sampling ;matching f ilter 收稿日期:2010-07-22 为了提高雷达系统的发现能力,以及测量精度和分 辨能力,要求雷达信号具有大的时宽带宽积[1-2]。但是,在系统的发射和馈电设备峰值功率受限制的情况下,大的信号能量只能通过加大信号的时宽来得到。然而单载频脉冲信号的时宽和带宽乘积接近1,故大的时宽和带宽不可兼得。因此,对这种信号来说,测距精度和距离分辨力同测速精度和速度分辨力以及作用距离之间存在着不可调和的矛盾。在匹配滤波器理论的指导下,提出了线性调频脉冲压缩的概念,即在宽脉冲内附加线性调频,以扩展信号的频带,提供了一类信号,其时宽带宽乘积大于1,称之为脉冲压缩信号或大时宽带宽积信号。线性调频信号是应用最广泛的脉冲压缩信号,因此线性调频信号的特性、脉冲压缩的原理及其实现技术都是比较受人关注的[3-5]。 1 线性调频信号脉冲压缩基本原理1.1 线性调频信号简介 线性调频信号是通过非线性相位调制或线性频率调制(LFM )来获得大的时宽带宽积[6-7],这种信号又称 为chirp 信号,它是研究得最早而且应用最广泛的一种脉冲压缩信号。线性调频信号的时域波形如图1所示, 其频谱如图2所示。 线性调频信号可以表示为: x (t)=A #r ect t S #exp j 2P f 0t +L t 2 2 (1) 式中:A 为信号幅度;rect (t/S )为矩形函数,即: rect (t/S )= 1, t/S \1/20, t/S <1/2 (2) 线性调频信号的瞬时角频率X i 为: X i =d U d t =2P f 0+L t (3) 图1 线性调频信号的时域波形 在脉冲宽度S 内,信号的角频率由2P f 0-L S /2变

线性调频脉冲压缩雷达仿真

一. 线性调频(LFM )信号 脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation )信号,接收时采用匹配滤波器(Matched Filter )压缩脉冲。 LFM 信号(也称Chirp 信号)的数学表达式为: 22() 2()()c K j f t t t s t rect T e π+= (2.1) 式中c f 为载波频率,()t rect T 为矩形信号, 11()0,t t rect T T elsewise ? , ≤? =?? ? (2.2) B K T = ,是调频斜率,于是,信号的瞬时频率为()22c T T f Kt t + -≤≤,如图 2.1 图2.1 典型的chirp 信号(a )up-chirp(K>0)(b )down-chirp(K<0) 将2.1式中的up-chirp 信号重写为: 2()()c j f t s t S t e π= (2.3) 式中, 2 ()( )j Kt t S t rect e T π= (2.4) 是信号s(t)的复包络。由傅立叶变换性质,S(t)与s(t)具有相同的幅频特性,只是中心频率不同而以,因此,Matlab 仿真时,只需考虑S(t)。以下Matlab 程序产生2.4式的chirp 信号,并作出其时域波形和幅频特性,如图2.2。

%%demo of chirp signal T=10e-6; %pulse duration10us B=30e6; %chirp frequency modulation bandwidth 30MHz K=B/T; %chirp slope Fs=2*B;Ts=1/Fs; %sampling frequency and sample spacing N=T/Ts; t=linspace(-T/2,T/2,N); St=exp(j*pi*K*t.^2); %generate chirp signal subplot(211) plot(t*1e6,real(St)); xlabel('Time in u sec'); title('Real part of chirp signal'); grid on;axis tight; subplot(212) freq=linspace(-Fs/2,Fs/2,N); plot(freq*1e-6,fftshift(abs(fft(St)))); xlabel('Frequency in MHz'); title('Magnitude spectrum of chirp signal'); grid on;axis tight; 仿真结果显示: 图2.2:LFM信号的时域波形和幅频特性

线性调频脉冲雷达信号matlab仿真

二〇一年十月 课题小论文 题 目:线性调频(LFM )脉冲压缩雷达仿真学院:专 业: 学生姓名:刘斌学号:年 级: 指导教师:

线性调频(LFM )脉冲压缩雷达仿真 一.雷达工作原理 雷达是Radar (RAdio Detection And Ranging )的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。雷达的应用越来越广泛。 图1.1:简单脉冲雷达系统框图 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 假设理想点目标与雷达的相对距离为R ,为了探测这个目标,雷达发射信号()s t ,电磁波以光速C 向四周传播,经过时间R 后电磁波到达目标,照射到目标上的电磁波可写成: ()R s t C - 。电磁波与目标相互作用,一部分电磁波被目标散射,被反射的电磁波为()R s t C σ?-,其中σ为目标的雷达散射截面(Radar Cross Section ,简称RCS ),反映目 标对电磁波的散射能力。再经过时间R 后,被雷达接收天线接收的信号为(2)R s t C σ?-。 如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一个LTI (线性时不变)系统。 图1.2:雷达等效于LTI 系统 等效LTI 系统的冲击响应可写成: 1 ()() M i i i h t t σδτ==-∑(1.1)

雷达线性调频脉冲压缩的原理及其MATLAB仿真

雷达线性调频脉冲压缩的原理及其MATLAB仿真

线性调频(LFM)脉冲压缩雷达仿真 一.雷达工作原理 雷达是Radar(RAdio Detection And Ranging)的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。雷达的应用越来越广泛。 图1.1:简单脉冲雷达系统框图 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform),然后经馈线和收发开关

由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 假设理想点目标与雷达的相对距离为R,为了探测这个目标,雷达发射信号()s t,电磁波以光速C向四周传播,经过时间R C后电磁波到达目 标,照射到目标上的电磁波可写成:()R -。电磁 s t C 波与目标相互作用,一部分电磁波被目标散射, 被反射的电磁波为()R σ?-,其中σ为目标的雷达 s t C 散射截面(Radar Cross Section ,简称RCS),反映目标对电磁波的散射能力。再经过时间R C后, 被雷达接收天线接收的信号为(2)R σ?-。 s t C 如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一个LTI(线性时不变)系统。 图 1.2:雷达等效于LTI系统

基于MATLAB的线性调频信号的仿真..

存档编号________ 基于MATLAB的线性调频信号的仿真 教学学院 届别 专业 学号 指导教师 完成日期

内容摘要:线性调频信号是一种大时宽带宽积信号。线性调频信号的相位谱具有平方律特性,在脉冲压缩过程中可以获得较大的压缩比,其最大优点是所用的匹配滤波器对回波信号的多普勒频移不敏感,即可以用一个匹配滤波器处理具有不同多普勒频移的回波信号,这些都将大大简化雷达信号处理系统,而且线性调频信号有着良好的距离分辨率和径向速度分辨率。因此线性调频信号是现代高性能雷达体制中经常采用的信号波形之一,并且与其它脉压信号相比,很容易用数字技术产生,且技术上比较成熟,因而可在工程中得到广泛的应用。 关键词:MATLAB;线性调频;脉冲压缩;系统仿真

Abstract:Linear frequency modulation signal is a big wide bandwidth signal which is studied and widely used. The phase of the linear frequency modulation signal spectra with square law characteristics, in pulse compression process can acquire larger compression, its biggest advantage is the use of the matched filter of the echo signal doppler frequency is not sensitive, namely can use a matched filter processing with different doppler frequency shift of the echo signal, these will greatly simplified radar signal processing system, and linear frequency modulation signal has a good range resolution and radial velocity resolution. So linear frequency modulation signal is the modern high performance radar system often used in one of the signal waveform, and compared with other pulse pressure signal, it is easy to use digital technologies to produce, and the technology of the more mature, so in engineering can be widely applied. Keywords:MATLAB, LFM, Pulse compression, System simulation

基于AD9910的线性调频信号发生技术(1)

科技信息2010年第17期 SCIENCE&TECHNOLOGY INFORMATION 基于AD9910的线性调频信号发生技术 时慧 (中国电子科技集团公司第四十一研究所山东青岛266555) 【摘要】本文主要介绍了DDS的工作原理以及专用芯片AD9910的功能特点,并重点论述了利用可编程逻辑器件控制DDS产生线性调频信号的设计方案。该设计实现了高度集成化,降低了成本且易于调试。 【关键词】直接数字频率合成;AD9910;线性调频信号 Generating Technology of LFM Signal Based on AD9910 【Abstract】This paper introduces the theory of DDS and the characteristics of AD9910,and particularly discuss a scheme using FPGA control DDS to generate LFM signal.The scheme realize integration,reduce the cost and easy to adjust. 【Key words】Direct digital synthesis;AD9910;L inear frequency modulation signal 0前言 线性调频信号(LFM,也称为Chirp信号),是一种最常用的雷达信号,因其具有良好的脉冲压缩特性和分辨能力,在合成孔径雷达以及相控阵雷达中得到了广泛的应用[1。数字频率合成技术(DDS)以其相对带宽较宽、频率转换时间短、相位连续性好以及集成化度高等优点成为线性调频信号发生技术的设计主流[2]。在某型号信号模拟系统中,要求产生中心频率250M,扫频带宽为200M的宽带扫频信号。根据设计要求,选用AD公司的DDS芯片AD9910,配以FPGA来实现宽带扫频信号的产生。 1DDS芯片AD9910简介 AD9910是Analog Device公司近年来推出的一款性价比很高的DDS芯片,它集成了14bit数模转换器(DAC)并且支持高达1GSPS 的采样率,理想频率分辨率可以达到0.23Hz,具有32位相位累加器,自带线性或任意频率、相位或幅度扫频电路。内部自带反sinc修正电路,8个频率和相偏备份用于快速调频或调相。1024×32位内部RAM 用于预先定义好的调制[3]。 AD9910主要有4种工作方式:单频模式、RAM调制模式、DRG 调制模式和并口调制模式。 在单频模式下,AD9910输出点频信号。AD9910共有8个64位单频信号寄存器,可以存储8个单一频率控制字,每个寄存器中包含了频率控制参数、相位控制参数和幅度控制参数。利用用芯片管脚PROFILE0~2可以选择使用哪个Profile寄存器。 在RAM调制模式下,用户可以任意改变DDS信号控制参数来产生各种信号,典型应用如FSK、PSK、ASK以及用户可自定义的非线性扫描信号。这种模式下的RAM寄存器和单点调制模式下的单频信号寄存器复用同一地址,通过芯片的功能控制寄存器CFR1~CFR2来控制选用哪种模式。 DRG调制模式与RAM调制模式实现功能相类似,不同点是该模式利用累加器对DDS所需的信号参数进行调制。在这种模式下,可以产生较好的线性调频信号。 并口调制模式主要应用于需要频率或者相位极快变化的场合,例如跳频合成器、高速波形发生器等。因为AD9910提供了更新速率可达250MHz的l6bit快速编程的并行接口,每隔8ns即可更新一次32 bit的频率控制字。 在各个工作模式下对芯片的操作只需要选择相应的模式,并写入相应的控制字即可。根据AD9910的功能特点及设计要求,在本文中选择使用的是线性调频模式即DRG调制模式。 2系统设计 系统主要由上位机,FPGA单元,DDS单元,参考时钟以及波形输出模块组成,如图1所示: 图1系统总体框图2.1时钟设计 由DDS的原理可知,整个DDS系统在一个统一的时钟信号即采样时钟下工作。该时钟的质量直接决定了最终输出波形频率的精度、稳定度以及输出信号的相噪,在本设计中采用了晶体振荡器。高稳定的10M晶振产生的时钟信号通过REF_CLK引脚输入到AD9910,经过AD9910内部的锁相环100倍频后生成1G的采样时钟。 2.2控制接口电路 上位机根据用户设定的线性调频信号带宽,扫描时间等参数,计算出AD9910相应的配置数据,送入FPGA,FPGA接受到上位机的控制数据后按照AD9910的时序送入到AD9910中,完成DDS模块的设置。AD9910是通过串行模式来接受各种配置数据,主要通过使用了nCS,SCLK,SDIO以及IO_UPDATA。在片选信号nCS为低的时候,AD9910在SCLK的上升沿采样SDIO信号,前八个SCLK周期为指令周期,后面跟着若干数据周期。指令周期由1位读写位(Bit7),2个无关位(Bit6,Bit5)和5个地址位(Bit4~Bit0)组成。根据不同的地址,数据周期的长度为16位,32位或64位不等。尽管AD9910的送数可以MSB优先或LSB优先,为了方便,在设计中,采用AD9910默认的MSB优先模式。 2.3波形输出电路 波形输出单元主要由电阻,变压器,放大器和低通滤波器组成,主要完成DDS输出信号的滤波、放大等功能。其电路如图2所示: 图2波形输出电路 AD9910输出的20mA电流信号经过R55,R56电阻转换成差分电压信号,再经过变压器(T1)转换成单端电压信号,150M~350M的带通滤波器滤除其带外杂散和镜像后再通过数控衰减器来控制信号输出功率,衰减器的输出经过隔直放大后输出。 图3软件流程图(下转第426页 )○百家论剑○ 423

雷达信号处理和数据处理

脉冲压缩雷达的仿真脉冲压缩雷达与匹配滤波的MATLAB仿真 姓名:-------- 学号:---------- 2014-10-28 - 0 - 西安电子科技大学

一、雷达工作原理 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,原意为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。利用电磁波探测目标的电子设备。发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 但是因为普通脉冲在雷达作用距离与距离分辨率上存在自我矛盾,为了解决这个矛盾,我们采用脉冲压缩技术,即使用线性调频信号。 二、线性调频(LFM)信号 脉冲压缩雷达能同时提高雷达的作用距离和距离分辨率。这种体制采用宽脉冲发射以提高发射的平均功率,保证足够大的作用距离;而接受时采用相应的脉冲压缩算法获得窄脉冲,以提高距离分辨率,较好的解决雷达作用距离与距离分辨率之间的矛盾。 脉冲压缩雷达最常见的调制信号是线性调频(Linear Frequency Modulation)信号,接收时采用匹配滤波器(Matched Filter)压缩脉冲。 LFM信号的数学表达式: - 1 -

- 2 - (2.1) 其中c f 为载波频率,()t rect T 为矩形信号: ( 2.2) 其中B K T =是调频斜率,信号的瞬时频率为()22c T T f Kt t + -≤≤,如图 (图2.1.典型的LFM 信号(a )up-LFM(K>0)(b )down-LFM(K<0)) 将式1改写为: (2.3) 其中

雷达线性调频信号的脉冲压缩处理

题目 : 雷达线性调频信号的脉冲压缩处理 线性调频脉冲信号,时宽 10us ,带宽 40MHz ,对该信号进行匹配滤波后,即脉压处理,脉压后 的脉冲宽度为多少?用图说明脉压后的脉冲宽度, 内差点看 4dB 带宽,以该带宽说明距离分辨 率与带宽的对应关系。 分析过程: 1、线性调频信号( LFM ) LFM 信号(也称 Chirp 对于一个理想的脉冲压缩系统, 要求发射信号具有非线性的相位谱, 并使其包络接近矩形; 其中 S(t) 就是信号 s(t) 的复包络。由傅立叶变换性质, S(t) 与 s(t) 具有相同的幅频特性,只 是中心频率不同而已。因此, Matlab 仿真时,只需考虑 S(t) 。以下 Matlab 程序产生 S(t) , 并作出其时域波形和幅频特性,程序如下: T=10e-6; % 脉冲时宽 10us B=40e6; % 带宽 40MHz K=B/T; Fs=2*B;Ts=1/Fs; N=T/Ts; t=linspace(-T/2,T/2,N); St=exp(j*pi*K*t.^2); subplot(211) plot(t*1e6,St); xlabel('t/s'); title(' 线性调频信号 '); grid on;axis tight; subplot(212) freq=linspace(-Fs/2,Fs/2,N); plot(freq*1e-6,fftshift(abs(fft(St)))); xlabel('f/ MHz'); 信号)的数学表达式为: 式中 f c 为载波频率, rect s(t) rect( t )e 为矩形信号 , j2 (f c t 2t ) rect(T t ) 0, t T el se 上式中的 up-chirp 信号可写为 : s(t) 当 TB>1时, LFM 信号特征表达式如下: S(t)e j2 fct S LFM ( f ) k 2rect ( f B f c ) LFM ( f ) (f f c ) 4 S(t) rect (T t )e j Kt

雷达线性调频信号的脉冲压缩处理

题目:雷达线性调频信号的脉冲压缩处理 线性调频脉冲信号,时宽10us ,带宽40MHz ,对该信号进行匹配滤波后,即脉压处理,脉压后的脉冲宽度为多少?用图说明脉压后的脉冲宽度,内差点看4dB 带宽,以该带宽说明距离分辨率与带宽的对应关系。 分析过程: 1、线性调频信号(LFM ) LFM 信号(也称Chirp 信号)的数学表达式为: )2(22)()(t k t f j c e T t rect t s +=π 式中c f 为载波频率,()t rect T 为矩形信号, 11()0,t t rect T T elsewise ? , ≤?=?? ? 上式中的up-chirp 信号可写为: 2()()c j f t s t S t e π= 当TB>1时,LFM 信号特征表达式如下: )(2)(B f f rect k S c f LFM -= 4 )()(πμπφ+-=c f LFM f f 2 ()()j Kt t S t rect e T π= 对于一个理想的脉冲压缩系统,要求发射信号具有非线性的相位谱,并使其包络接近矩形; 其中)(t S 就是信号s(t)的复包络。由傅立叶变换性质,S(t)与s(t)具有相同的幅频特性,只是中心频率不同而已。因此,Matlab 仿真时,只需考虑S(t)。以下Matlab 程序产生S(t),并作出其时域波形和幅频特性,程序如下: T=10e-6; %脉冲时宽 10us B=40e6; %带宽 40MHz K=B/T; Fs=2*B;Ts=1/Fs; N=T/Ts; t=linspace(-T/2,T/2,N);

St=exp(j*pi*K*t.^2); subplot(211) plot(t*1e6,St); xlabel('t/s'); title('线性调频信号'); grid on;axis tight; subplot(212) freq=linspace(-Fs/2,Fs/2,N); plot(freq*1e-6,fftshift(abs(fft(St)))); xlabel('f/ MHz'); title('线性调频信号的幅频特性'); grid on;axis tight; 仿真波形如下: 图2:LFM信号的时域波形和幅频特性 2、匹配滤波器: 在输入为确知加白噪声的情况下,所得输出信噪比最大的线性滤波器就是匹配滤波器,设一线性滤波器的输入信号为) x: (t t x+ = s n t )( )( )(t 其中:)(t s为确知信号,)(t No。 n为均值为零的平稳白噪声,其功率谱密度为2/

线性调频信号matlab仿真

实验一 雷达信号波形分析实验报告 一、 实验目的要求 1. 了解雷达常用信号的形式。 2. 学会用仿真软件分析信号的特性。 3了解雷达常用信号的频谱特点和模糊函数。 二、实验参数设置 信号参数范围如下: (1)简单脉冲调制信号: (2)载频:85MHz (3)脉冲重复周期:250us (4)脉冲宽度:8us (5)幅度:1V (2)线性调频信号 载频:85MHz 脉冲重复周期:250us 脉冲宽度:20us 信号带宽:15MHz 幅度:1V 三、 实验仿真波形 1.简单的脉冲调制信号 程序: Fs=10e6; t=0:1/Fs:300e-6; fr=4e3; f0=8.5e7; x1=square(2*pi*fr*t,3.2)./2+0.5; x2=exp(i*2*pi*f0*t); x3=x1.*x2; subplot(3,1,1);

plot(t,x1,'-'); axis([0,310e-6,-1.5,1.5]); xlabel('时间/s') ylabel('幅度/v') title('脉冲信号重复周期T=250US 脉冲宽度为8us') grid; subplot(3,1,2); plot(t,x2,'-'); axis([0,310e-6,-1.5,1.5]); xlabel('时间/s') ylabel('幅度/v') title('连续正弦波信号载波频率f0=85MHz') grid; subplot(3,1,3); plot(t,x3,'-'); axis([0,310e-6,-1.5,1.5]); xlabel('时间/s') ylabel('·幅度/v') title('脉冲调制信号') grid; 仿真波形: 0123x 10-4-101 时 间 /s 幅 度 / v 脉冲信号 重复周期T=250us 脉冲宽度为8us 1 2 3 x 10 -4 -1 1 时间/s幅度/v连续正弦波信号

雷达线性调频脉冲压缩的原理及其MATLAB仿真

线性调频(LFM )脉冲压缩雷达仿真 宋萌瑞 201421020302 一. 雷达工作原理 雷达是Radar (RAdio Detection And Ranging )的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。雷达的应用越来越广泛。 图1.1:简单脉冲雷达系统框图 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 假设理想点目标与雷达的相对距离为R ,为了探测这个目标,雷达发射信号()s t ,电磁波以光速C 向四周传播,经过时间R C 后电磁波到达目标,照射到目标上的电磁波可写成: ()R s t C - 。电磁波与目标相互作用,一部分电磁波被目标散射,被反射的电磁波为()R s t C σ?-,其中σ为目标的雷达散射截面(Radar Cross Section ,简称RCS ),反映目标对 电磁波的散射能力。再经过时间R C 后,被雷达接收天线接收的信号为(2)R s t C σ?-。 如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一个LTI (线性时不变)系统。 图1.2:雷达等效于LTI 系统 等效LTI 系统的冲击响应可写成:

线性调频Z变换及其应用

分类号TP3 编号2015060101 毕业论文 题目线性调频Z变换及其应用 学院电子信息与电气工程学院 姓名包亚飞 专业班级11级电信一班 学号20111060101 指导教师刘保童 提交日期2015.5.22

原创性声明 本人郑重声明:本人所呈交的论文是在指导教师的指导下独立进行研究所取得的成果。学位论文中凡是引用他人已经发表或未经发表的成果、数据、观点等均已明确注明出处。除文中已经注明引用的内容外,不包含任何其他个人或集体已经发表或撰写过的科研成果。 本声明的法律责任由本人承担。 论文作者签名:年月日 论文指导教师签名:

目录 1引言 (1) 2 傅立叶变换的应用 (1) 2.1离散傅立叶变换(DFT) (2) 2.2快速傅里叶变换(FFT) (3) 3 CZT变换 (3) 3.1 CZT变换理论分析 (3) 3.2 CZT变换的实际应用 (5) 3.3 CZT变换的运算结果仿真 (6) 4 结语 (7) 参考文献 (8) 致谢 (9)

线性调频Z变换及其应用 包亚飞 (天水师范学院,电子信息与电气工程学院,甘肃天水 741000) 摘要:在频谱分析领域,有多种运算方法,主要有离散傅立叶变换(DFT)算法、快速傅里叶变换(Fast Fourier Transform ,FFT)算法、线性调频Z变换等。但是,由于FFT算法反映不出精确的信号的频谱特性,对此,在这里我们主要讨论一种建立在DSP上的,采用FFT算法的变换方法对实序列进行离散傅里叶变换(DFT)计算的方法,即线性调频Z变换(CZT)。对于一样的数据序列,使用CZT运算的效率是FFT变换运算的2~3倍,其运算结果和FFT、DFT的一样。线性调频Z变换(CZT)可以用任意长度的采样序列,并非一定要求基-2FFT的长度,从而,可以使得系统得到最有效的采样率和频谱分辨率。 关键词:线性调频Z变换;傅立叶变换;频谱分辨率;数据处理

雷达线性调频脉冲压缩的原理及其MATLAB仿真

线性调频(LFM )脉冲压缩雷达仿真 一. 雷达工作原理 雷达是Radar (RAdio Detection And Ranging )的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。典型的雷达系统如图1.1,它主要由发射机,天线,接收机,数据处理,定时控制,显示等设备组成。利用雷达可以获知目标的有无,目标斜距,目标角位置,目标相对速度等。现代高分辨雷达扩展了原始雷达概念,使它具有对运动目标(飞机,导弹等)和区域目标(地面等)成像和识别的能力。雷达的应用越来越广泛。 图1.1:简单脉冲雷达系统框图 雷达发射机的任务是产生符合要求的雷达波形(Radar Waveform ),然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由接收机接收,对雷达回波信号做适当的处理就可以获知目标的相关信息。 假设理想点目标与雷达的相对距离为R ,为了探测这个目标,雷达发射信号()s t ,电磁波以光速C 向四周传播,经过时间R C 后电磁波到达目标,照射到目标上的电磁波可写成: ()R s t C - 。电磁波与目标相互作用,一部分电磁波被目标散射,被反射的电磁波为()R s t C σ?-,其中σ为目标的雷达散射截面(Radar Cross Section ,简称RCS ) ,反映目标对电磁波的散射能力。再经过时间R C 后,被雷达接收天线接收的信号为(2)R s t C σ?-。 如果将雷达天线和目标看作一个系统,便得到如图1.2的等效,而且这是一个LTI (线性时不变)系统。 图1.2:雷达等效于LTI 系统 等效LTI 系统的冲击响应可写成: 1 ()()M i i i h t t σδτ== -∑ (1.1)

线性调频信号产生方法

线性调频信号产生方法研究 摘要:本文利用fpga与dac5686完成了线性调频信号产生电路的设计与实现,该方法降低了系统软硬件设计的难度,缩短了开发周期,并提高了设计的可靠性,具有较高的实用价值和良好的应用前景。文章分析了线性调频信号,给出了信号产生电路硬件设计和控制电路软件设计方案,并通过功能实现验证文中方法的有效性。abstract: a generation module of lfm signal based on fpga and dac5686 is designed and realized in this paper. this technique decreases the difficulty of hardware and software design of the system, reduces development cycle and improves design reliability, has higher practical value and good application prospect. lfm signal is analyzed, based on which signal generation circuit and software of control circuit design project is put forward, and the effectiveness of this method is verified through the function realization. 关键词:线性调频;信号产生;fpga;dac5686 key words: lfm;signal generation;fpga;dac5686 0 引言 为了能够探测远距离目标,同时又具备较高的距离分辨力,脉冲压缩雷达通常发射较宽脉冲的线性调频(lfm)信号,而在接收时进行脉冲压缩。因而,如何产生良好的线性调频信号,对于脉冲压

第七章 线性调频通信技术

第七章 线性调频通信技术 线性调频(LFM)是一种不需要伪随机编码序列的扩展频谱调制技术。由于线性调频信号占用的频带宽度远大于信息带宽,所以也可以获得很大的系统处理增益。线性调频信号又称鸟声(Chirp)信号,因为其频谱带宽落于可听范围,则听若鸟声,所以又称Chirp 扩展频谱(CSS)技术。LFM 技术在雷达、声纳技术中有广泛应用,如在雷达定位技术中,它可在增大射频脉冲宽度、提高平均发射功率、加大通信距离同时又保持足够的信号频谱宽度,不降低雷达的距离分辨率。1962年,M.R.Wiorkler 将CSS 技术用于通信中,它以同一码元周期内不同的Chirp 速率表达符号信息。研究表明,这种以Chirp 速率调制的恒包络数字调制技术抗干扰能力强,能显著减少多径干扰的影响,有效地降低移动通信带来的快衰落影响,非常适合无线接入的应用。进入21世纪以来,将CSS 技术用于扩频通信的研究发展日益活跃,尤其随着超宽带(UWB)技术的发展,将CSS 技术与UWB 的宽带低功率谱相结合形成的Chirp-UWB 通信,它利用Chirp 技术产生超宽带宽,具备二者优势,增强了抗干扰与抗噪声的能力。目前CSS 技术已成为传感网络通信标准IEEE802.15中物理层候选标准。 7.1 LFM 信号的表征与特性 7.1.1 信号表征 线性调频(LFM)信号是指瞬时频率随时间成线性变化的信号。假设在一个信码持续时间T 内,信号的瞬时频率变化如图7-1所示。也就是说,假设信号的瞬时角频率i ω为: 02T T ,T 22 i F t t πωω=+ - ≤≤ (7-1) 式中,00=2f ωπ,0f 为中心频率,F 为瞬时频率变化范围,即围绕0f 的两倍频率偏移。 由于信号的瞬时角频率与瞬时相位()t φ之间为微分关系,即 ()i d t dt ωφ= (7-2) 所以,LFM 信号的时域表达式可以写为(设振幅归一化,初始相位为零): 20T T ()cos{()}cos(),T 22 F f t t t t t πφω==+-≤≤ (7-3) 从而有对应图7-1的时域波形()f t 如图7-2所示。

第七章-线性调频通信技术

第七章线性调频通信技术 线性调频(LFM)是一种不需要伪随机编码序列的扩展频谱调制技术。由于线性调频信号占用的频带宽度远大于信息带宽,所以也可以获得很大的系统处理增益。线性调频信号又称鸟声(Chirp)信号,因为其频谱带宽落于可听范围,则听若鸟声,所以又称Chirp扩展频谱(CSS)技术。LFM技术在雷达、声纳技术中有广泛应用,如在雷达定位技术中,它可在增大射频脉冲宽度、提高平均发射功率、加大通信距离同时又保持足够的信号频谱宽度,不降低雷达的距离分辨率。1962年,M.R.Wiorkler将CSS技术用于通信中,它以同一码元周期内不同的Chirp 速率表达符号信息。研究表明,这种以Chirp速率调制的恒包络数字调制技术抗干扰能力强,能显著减少多径干扰的影响,有效地降低移动通信带来的快衰落影响,非常适合无线接入的应用。进入21世纪以来,将CSS技术用于扩频通信的研究发展日益活跃,尤其随着超宽带(UWB)技术的发展,将CSS技术与UWB 的宽带低功率谱相结合形成的Chirp-UWB通信,它利用Chirp技术产生超宽带宽,具备二者优势,增强了抗干扰与抗噪声的能力。目前CSS技术已成为传感网络通信标准IEEE802.15中物理层候选标准。 7.1 LFM信号的表征与特性 7.1.1 信号表征 线性调频(LFM)信号是指瞬时频率随时间成线性变化的信号。假设在一个信码持续时间T内,信号的瞬时频率变化如图7-1所示。也就是说,假设信号的瞬时角频率 i ω为: 02T T , T22 i F t t π ωω =+-≤≤(7-1)

式中,00=2f ωπ,0f 为中心频率,F 为瞬时频率变化范围,即围绕0f 的两倍频率偏移。 由于信号的瞬时角频率与瞬时相位()t φ之间为微分关系,即 ()i d t dt ωφ= (7-2) 所以,LFM 信号的时域表达式可以写为(设振幅归一化,初始相位为零): 20T T ()cos{()}cos(),T 22F f t t t t t πφω==+-≤≤ (7-3) 从而有对应图7-1的时域波形()f t 如图7-2所示。 2-2i w 0f 2 F 图7-1 LFM 信号的瞬时频率图7-2 LFM 信号的时域波形 按照处理增益的定义,现在信号的高频带宽近似等于F ,信息带宽为1/T ,故频谱扩展带来的处理增益等于F /1/T=F T ,此即时间带宽积,通常选用F T>>1。在信号匹配滤波检测的分析中可以看到,F T 就是匹配滤波器输出的最大峰值。 7.1.2 信号频谱特性 现在来分析(7-3)式表示的LFM 信号()f t 的频谱特性。为便于推导与计算,常采用复信号表示形式。众所周知,一个时间波形是时间的实函数,而复函数的实部就表示了这个时间波形,例如00cos()Re{}j t t e ωω=。用复函数来表示实函数的目的在于方便傅里叶变换的处理运算,例如: 000[][cos()sin()]j t e t j t ωωω=+F F , 000[cos()][()()]t ωπδωωδωω=-++F ,

相关文档