文档库 最新最全的文档下载
当前位置:文档库 › 变步长梯形求积法计算定积分

变步长梯形求积法计算定积分

变步长梯形求积法计算定积分
变步长梯形求积法计算定积分

变步长梯形求积法计算定积分

1.原理:

变步长求积法的思想是利用若干小梯形的面积代替原方程的积分,当精度达不到要求时,可以通过增加点数对已有的区间再次划分,达到所需精度时即可;其中由于新的式子中有原来n点中的部分项主要公式:T2n=T n/2+(h/2)*Σf(x k+0.5);

2.源程序如下:

#include"math.h"

#include"iostream.h"

double f(double x)

{

double s;

s=log(x*x);

return(s);

}

double ffts(double a,double b,double eps)

{

int n,k;

double fa,fb,h,t1,p,s,x,t;

fa=f(a);

fb=f(b);

n=1;

h=b-a;

t1=h*(fa+fb)/2;

p=eps+1;

while(p>=eps)

{

s=0;

for(k=0;k<=n-1;k++)

{

x=a+(k+0.5)*h;

s=s+f(x);

}

t=t1/2+h*s/2;

p=fabs(t1-t);

cout<<"步长n为:"<

"<<"Tn="<

t1=t;

n=n*2;

h=h/2;

}

return(t);

}

void main()

{

double result,a,b,eps;

cout<<"需要求解的积分式为f(x)=log(x^2)"<

cout<<"输入边界值a="<<'\t';

cin>>a;

cout<<"输入边界值b="<<'\t';

cin>>b;

cout<<"输入误差限"<<'\t';

cin>>eps;

result=ffts(a,b,eps);

cout<<"经过变步长梯形求积法得方程结果为:"<

}

3.运行结果:

根据程序提示依次输入积分上限和积分下限,然后输入误差限;本程序需要预先在程序中输入需要积分方程的表达式。程序运行的结果如下图所示:

定积分的方法总结

定积分的方法总结 定积分是新课标的新增内容,其中定积分的计算是重点考查的考点之一,下面例析定积分计算的几种常用方法. 一、定义法 例1、求 s i n b a x d x ? , (b a <) 解:因为函数s i n x 在],[b a 上连续,所以函数sin x 在],[b a 上可积,采用特殊的 方法作积分和.取h = n a b -,将],[b a 等分成n 个小区间, 分点坐标依次为 ?=+<<+<+

复化积分法(复化梯形求积-复化Simpson公式-变步长求积法)MATLAB编程实验报告 (1)

复化积分法(复化梯形求积,复化Simpson 公式,变步长求积法) MATLAB 编程实验报告 一、 问题描述: 编写函数实现复化积分法。 二、 实验步骤(过程): (一)复化求积法 (1)复化梯形求积:用复化梯形求积公式求解 dx x x ?10sin function [f]=Tn(a,b,n,y) syms t; h=(b-a)/n; f=0; for k=1:n+1 x(k)=a+(k-1)*h z(k)=subs(y,t,x(k)); end for i=2:n f=f+z(i); end q=subs(y,t,a); if y=='sin(t)/t'&&a==0 q=1; end p=subs(y,t,b); T=h/2*(q+p+2*f); T=vpa(T,7) clc,clear; syms t; a=0;b=1; y=sin(t)/t; n=8; Tn(a,b,n,y); (2)复化Simpson 公式:用复化Simpson 公式求解?211dx e x function [f]=simpson(a,b,n,y)

syms t; h=(b-a)/n; f=0;l=0; for k=1:n+1 x(k)=a+(k-1)*h w(k)=0.5*h+x(k) z(k)=subs(y,t,x(k)); end for i=2:n f=f+z(i); end for i=1:n l=l+w(i); end q=subs(y,t,a); if y=='sin(t)/t'&&a==0 q=1; end p=subs(y,t,b); T=h/2*(q+p+2*f); T=vpa(T,7) clc,clear; syms t; a=1;b=2; y=exp(1/t); n=5; simpson(a,b,n,y); (3)变步长求积法:以书本例4.5为例function [f]=TN(a,b,y,R0) syms t; T=[]; f=0; q=subs(y,t,a); if y=='sin(t)/t'&&a==0 q=1; end p=subs(y,t,b); T(1)=(b-a)/2*(q+p); i=2; n=i-1; h=(b-a)/n; z1=a+h/2; z2=subs(y,t,z1);

七大积分总结

七大积分总结 一. 定积分 1. 定积分的定义:设函数f(x)在[a,b]上有界,在区间[a,b]中任意插入n -1个分点: a=x 0

? ??==b a b a b a du u f dt t f dx x f )()()(。 (2) 定义中区间的分法与ξi 的取法是任意的。 (3) 定义中涉及的极限过程中要求λ→0,表示对区间[a,b]无限细分的过程,随λ →0必有n →∞,反之n →∞并不能保证λ→0,定积分的实质是求某种特殊合式的极限: 例:∑?=∞→=n i n n i f dx x f 1 1 0n 1 )()(lim (此特殊合式在计算中可以作为公式使用) 2. 定积分的存在定理 定理一 若函数f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。 定理二 若函数f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间上可积。 3. 定积分的几何意义 对于定义在区间[a,b]上连续函数f(x),当f(x)≥0时,定积分 ? b a dx x f )(在几何上表示由曲线y=f(x),x=a,x=b 及x 轴所围成的曲边梯形的面积;当f(x) 小于0时,围成的曲边梯形位于x 轴下方,定积分?b a dx x f )(在几何意义上表示曲边梯形面积的负值。若f(x)在区间上既取得正值又取得负值时,定积分的几何意义是:它是介于x 轴,曲线y=f(x),x=a,x=b 之间的各部分曲边梯形的代数和。 4.定积分的性质 线性性质(性质一、性质二)

2016年专项练习题集-定积分的计算

2016年专项练习题集-定积分的计算 一、选择题 1.dx x )5(1 22-?=( ) A.233 B. 31 C.3 4 D .83 【分值】5分 【答案】D 【易错点】求被积函数的原函数是求解关键。 【考查方向】求定积分 【解题思路】求出被积函数的原函数,应用微积分基本定理求解。 【解析】dx x )5(122-?=123153x x -=83 . 2.直线9y x =与曲线3 y x =在第一象限内围成的封闭图形的面积为( ) A 、 B 、 C 、2 D 、4 【分值】5分 【答案】D 【易错点】求曲线围成的图形的面积,可转化为函数在某个区间内的定积分来解决,被积函

数一般表示为曲边梯形上边界的函数减去下边界的函数. 【考查方向】定积分求曲线围成的图形的面积 【解题思路】先求出直线与曲线在第一象限的交点,再利用牛顿-莱布尼茨公式求出封闭图形的面积. 【解析】由? ??==39x y x y ,得交点为()()()27,3,27,3,0,0--, 所以()4 81034129942303 =??? ??-=-=?x x dx x x S ,故选D. 3.2 2-?2412x x -+dx =( ) A.π 4 B.π 2 C.π D.π3 【分值】5分 【答案】A 【易错点】利用定积分的几何意义,一般根据面积求定积分,这样可以避免求原函数,注意理解所涉及的几何曲线类型. 【考查方向】求定积分 【解题思路】利用定积分的几何意义,转化为圆的面积问题。 【解析】设y =2412x x -+,即(x -2)2+y 2=16(y ≥0).∵2 2-?2412x x -+dx 表示以4为半径的圆的四分之一面积.∴2 2-?2412x x -+dx =π4. 4.F4遥控赛车组织年度嘉年华活动,为了测试一款新赛车的性能,将新款赛车A 设定v =3t 2+1(m/s)的速度在一直线赛道上行驶,老款赛车B 设定在A 的正前方5 m 处,同时以v

定积分总结

定积分讲义总结 内容一 定积分概念 一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ?(b a x n -?= ),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:1 1 ()()n n n i i i i b a S f x f n ξξ==-=?=∑∑ 如果x ?无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。记为:()b a S f x dx = ? 其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。 说明:(1)定积分 ()b a f x dx ? 是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b a f x dx ?,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ;②近似代替:取点[]1,i i i x x ξ-∈;③求和: 1()n i i b a f n ξ=-∑;④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑? 例1.弹簧在拉伸的过程中,力与伸长量成正比,即力()F x kx =(k 为常数,x 是伸长量),求弹簧从平衡位置拉长b 所作的功. 分析:利用“以不变代变”的思想,采用分割、近似代替、求和、取极限的方法求解. 解: 将物体用常力F 沿力的方向移动距离x ,则所作的功为W F x =?. 1.分割 在区间[]0,b 上等间隔地插入1n -个点,将区间[]0,1等分成n 个小区间: 0,b n ??????,2,b b n n ?? ????,…,()1,n b b n -?????? 记第i 个区间为()1,(1,2,,)i b i b i n n n -???=? ? ??L ,其长度为()1i b i b b x n n n -??=-= 把在分段0, b n ? ???? ?,2,b b n n ?? ????,…,()1,n b b n -?????? 上所作的功分别记作:1W ?,2W ?,…,n W ? (2)近似代替 有条件知:()()11i i b i b b W F x k n n n --???=??=?? ? ?? (1,2,,)i n =L (3)求和 ()1 1 1n n n i i i i b b W W k n n ==-=?=??∑∑ =()()22222 110121122n n kb kb kb n n n n -?? ++++-==-?? ?? ??? L

设计采用梯形法和辛普生法求定积分的程序

河北工业大学计算机软件技术基础(VC)课程设计报告 学院信息工程学院院班级通信101 姓名崔羽飞学号 102117 成绩 __ ____ 一、题目: 设计采用梯形法和辛普生法求定积分的程序 二、设计思路 1、总体设计 1)分析程序的功能 本题目的功能是对梯形法和辛普森法,在不同区间数下计算所得的定积分的值,进行精度比较。 2)系统总体结构: 设计程序的组成模块,简述各模块功能。 该程序共分为以下几个模块 模块一:各函数原型的声明。 模块二:主函数。 模块三:各函数的定义。 包括两个数学函数y1=1+x*x、y2=1+x+x*x+x*x*x的定义和两个函数指针double integralt(double ,double ,int ,double(*f)(double)) double integrals(double ,double ,int ,double(*f)(double)) 的定义。 2、各功能模块的设计:说明各功能模块的实现方法 模块一:对各种函数进行声明。 模块二:求梯形法和辛普森法,在不同区间数下计算所得的定积分的值。 模块三:将各函数写出来。 3、设计中的主要困难及解决方案 在这部分论述设计中遇到的主要困难及解决方案。 1)困难1:函数指针的应用。解决方案:仔细阅读课本,以及与同学之间的讨论,和向老师求助。 2)困难2:将程序分成不同的.cpp文件。解决方案:与同学讨论。 4、你所设计的程序最终完成的功能 1)说明你编制的程序能完成的功能 在数学上求一个函数与x轴在一定范围内所围的面积即求定积分,对梯形法和辛普森法求定积分的比较。 2)准备的测试数据及运行结果

定积分典型例题11198

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π . 例18 计算2 1 ||x dx -?. 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1||x dx -?=0 2 10()x dx xdx --+??=220210[][]22x x --+=5 2 . 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3 322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算2 20 max{,}x x dx ?. 分析 被积函数在积分区间上实际是分段函数 212()01x x f x x x ?<≤=?≤≤? . 解 232 12 2 2 12010 1 1717max{,}[][]23236 x x x x dx xdx x dx =+=+=+=? ?? 例20 设()f x 是连续函数,且10 ()3()f x x f t dt =+?,则()________f x =. 分析 本题只需要注意到定积分()b a f x dx ?是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而10 ()f t dt ?是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且11 (3)()x a dx f t dt a +==??.

第一题.矩阵法,梯形法积分

梯形法数值积分 A .算法说明: 梯形法数值积分采用的梯形公式是最简单的数值积分公式,函数()f x 在区间[a,b]上计算梯形法数值积分表达式为: ()[()()]2b a b a f x dx f a f b -≈+? 由于用梯形公式来求积分十分粗糙,误差也比较大,后来改进后提出了复合梯形公式:b a h n -=,其中,n 为积分区间划分的个数;h 为积分步长。 在MATLAB 中编程实现的复合梯形公式的函数为:Combine Traprl. 功能:复合梯形公式求函数的数值积分。 调用格式:[I,step]=CombineTraprl(f,a,b,eps). 其中,f 为函数名; a 为积分下限; b 为积分上限; eps 为积分精度; I 为积分值; Step 为积分划分的区间个数 B .流程图

C.复合梯形公式的原程序代码: function[I,step]=CombineTraprl(f,a,b,eps) % 复合梯形公式求函数f在区间[a,b]上的定积分 %函数名:f %积分下限:a %积分上限:b %积分精度:eps %积分值:I %积分划分的子区间个数:step if(nargin==3) eps=1.0e-4; %默认精度为0.0001 end n=1; h=(b-a)/2; I1=0; I2=(subs(sym(f),findsym(sym(f)),a)+subs(sym(f),findsym(sym(f)),b))/h; while abs(I2-I1)>eps n=n+1 h=(b-a)/n; I1=I2; I2=0; for i=0:n-1 %第年n次的复合梯形公式积分 x=a+h*i; %i=0 和n-1时,分别代表积分区间的左右端点 x1=x+h I2=I2+(h/2)*(subs(sym(f),findsym(sym(f)),x)+subs(sym(f),findsym(sym(f)),x1)); end end I=I2; step=n; D.应用举例 复合梯形法求数值积分应用举例,利用复合梯形法计算定积分 dx x ? - 4 221 1 流程图

定积分计算的总结论文

定积分计算的总结论文公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

定积分计算的总结 闫佳丽 摘 要:本文主要考虑定积分的计算,对一些常用的方法和技巧进行了归纳和总结.在定积分的计算中,常用的计算方法有四种:(1)定义法、(2)牛顿—莱布尼茨公式、(3)定积分的分部积分法、(4)定积分的换元积分法. 关键词:定义、牛顿—莱布尼茨公式、分部积分、换元. 1前言 17世纪后期,出现了一个崭新的数学分支—数学分析.它在数学领域中占据着主导地位.这种新数学思想的特点是非常成功地运用了无限过程的运算即极限运算.而其中的微分和积分这两个过程,则构成系统微积分的核心.并奠定了全部分析学的基础.而定积分是微积分学中的一个重要组成部分. 2正文 那么,究竟什么是定积分呢我们给定积分下一个定义:设函数()f x 在[],a b 有定义,任给[],a b 一个分法T 和一组{}k ξξ=,有积分和 1 (,)()n k k k T f x σξξ==?∑,若当()0l T →时,积分和(,)T σξ存在有限极限, 设()0()0 1 lim (,)lim ()n k k l T l T k T f x I σξξ→→==?=∑,且数I 与分法T 无关,也与k ξ在[]1,k k x x -的取法无关,即{}0,0,:(),k T l T εδδξξ?>?>?

定积分应用方法总结(经典题型归纳).docx

精品文档 定积分复习重点 定积分的考查频率不是很高,本讲复习主要掌握定积分的概念和几何意义,使 用微积分基本定理计算定积分,使用定积分求曲边图形的面积和解决一些简单的物 理问题等. 1. 定积分的运算性质 (1) b b kf (x)dx k f (x)dx(k 为常数 ). a a (2) b b f 1 ( x)dx b 2 ( x)dx. [ f 1 ( x) f 2 ( x)]dx f a a a b c b 其中 a

矩形、梯形法计算定积分的黎曼和

钦州学院数学与计算机科学学院 数 学 实 验 报 告 实验完成日期 2010 年 11 月 5 日 , 第 10 周 , 星期五 成绩等级(五级分制) 评阅教师 评阅日期 年 月 日 数学实验报告填写要求:思路清晰,中间结果和最终结果真实;字迹工整,报告完整。 [实验题目及内容] 实验题目:(1)通过矩形法、梯形法分别计算定积分? ++-= b a x x x f 32.0)(2 的黎曼和; (2)通过10=n ,50=n ,200=n 时黎曼和的值分析两种方法逼近定积分的 速度。 内容:黎曼和逼近定积分值的动态过程演示,可利用几何画板制作 [问题描述](用自己组织的相关数学语言重述现实问题;注意对约定的条件作说明) 将AB 边n 等分,过这些分点作E B '的垂线,将抛物线32.0)(2 ++-=x x x f 和以AB 为边形成的图形分割为n 个直角小梯形或小矩形,求这些小梯形或小矩形面积的和,即可求出定积分? ++-= b a x x x f 32.0)(2 黎曼和即面积。当n 充分大时,直角小梯形或小矩形的 面积之和可近似代替定积分? ++-=b a x x x f 32.0)(2 黎曼和。因此可通过计算梯形或矩形 面积求出定积分? ++-= b a x x x f 32.0)(2 的黎曼和。 定积分dx x f b a ?)(在数值上等于以曲线)(x f y =和三直线0=y 、a x =、b x =所围 成的曲边梯形的面积。解决的办法是分割后再求和:设想将区间],[b a 分为n 个小区间,以每个小区间左端点对应的函数值为高,以小区间的长度为宽,构作n 个梯形或矩形,并以这些小梯形或小矩形的面积的和(即黎曼和)近似代替定积分的面积。当改变参数n 的大小时,随着n 的逐渐增大(并且每个小区间的长度逐渐缩小),黎曼和的值逐渐趋近定积分的值。 [模型建立或思路分析](建立合理,可解释的数学模型,通过公式、表格或图形直观明确地描述模型的结构;无法通过建立模型解决的,给出解题的思路及办法。) 利用几何画板作图:

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

[全]高等数学之不定积分的计算方法总结[下载全]

高等数学之不定积分的计算方法总结不定积分中有关有理函数、三角函数有理式、简单无理函数的求法,是考研中重点考察的内容,也是考研中的难点。不定积分是计算定积分和求解一阶线性微分方程的基础,所以拿握不定积分的计算方法很重要。不定积分考查的函数特点是三角函数、简单无理函数、有理函数综合考查,考查方法是换元积分法、分部积分法的综合应用。不定积分的求法的理解和应用要多做习题,尤其是综合性的习题,才能真正掌握知识点,并应用于考研。 不定积分的计算方法主要有以下三种: (1)第一换元积分法,即不定积分的凑微分求积分法; (2)第二换元积分法 (3)分部积分法常见的几种典型类型的换元法:

樂,Q? o 金J犷- / .乍治阳必厶二如皿盒.「宀丄" 名% =a仏 找.』x二a沁沁r 年”十I '九久二严詈严妬5inx八ic5兄厶 整 I—炉 叶严 山二启虫? 常见的几种典型类型的换元法 题型一:利用第一换元积分法求不定积分

分析: 1-3 ? - IK )-忑.旦r x 二)祝成);网><可久切 二2氐化如(長)寸 a 花不直押、朱 J 、 解: 2少弋協“尤十C__

-辿迪牆H JS m 弟 R Eff 洱 ->1和弟r 直 - —7朮呻' g 丄 U P A J 齐—系卩£.§计 一 H a8~t ' J 乂 u D y " ?朮?

p o r t v 卩 J (r 4 5*〉J" 卩?对渎 t-k )+c p T + T d ? g T + c m -辿」

当积分j/O心(X)不好计算容易计算时[使用分部私jf(A-)Jg(.v)二f(x)g(x)- J g(x)df(x).常见能使用分部积分法的类型: ⑴卩"“dx J x n srn xdx J尢"cos皿等,方法是把。',sin-t, cosx 稽是降低X的次数 是化夫In 尢9 arcsine arctanx. 例11: J (1 + 6-r )arctanAz/.r :解:arctan f xdx等,方法是把疋; Jx" arcsm11xdx

数值分析与算法变步长梯形求积法计算定积分

变步长梯形求积法计算定积分 1.原理: 变步长求积法的主要思想是利用若干小梯形的面积代替原方程的积分,当精度达不到要求时,可以通过增加点数对已有的区间再次划分,达到所需精度时即可;其中由于新的式子中有原来n点中的部分项,故可以省略一些计算,符合了计算机计算存储的思想。 主要公式:T2n=T n/2+(h/2)*Σf(x k+; 2.C++语言实现方式: 通过每次的T n值和新增的函数值点计算T2n,再通过判断|T n-T2n|的大小来判断是否达到精度要求。 3.源程序如下: #include"" #include"" double f(double x)//预先输入的待积分函数 { double s; s=log(x*x); return(s); } double ffts(double a,double b,double eps) { int n,k; double fa,fb,h,t1,p,s,x,t; fa=f(a);

fb=f(b); n=1; h=b-a; t1=h*(fa+fb)/2; p=eps+1; while(p>=eps) { s=0; for(k=0;k<=n-1;k++) { x=a+(k+*h; s=s+f(x); } t=t1/2+h*s/2; p=fabs(t1-t); cout<<"步长n为:"<

大学微积分1方法总结

第一章 函数、极限、连续 注 “★”表示方法常用重要. 一、求函数极限的方法 ★1.极限的四则运算;★2.等价量替换;★3.变量代换;★4.洛比达法则;★5.重要极限;★6.初等函数的连续性;7.导数的定义;8. 利用带有佩亚诺余项的麦克劳林公式;9.夹逼定理;10利用带有拉格朗日余项的泰勒公式;11.拉格朗日定理;★12. 无穷小量乘以有界量仍是无穷小量等. ★二、已知函数极限且函数表达式中含有字母常数,确定字母常数数值的方法 运用无穷小量阶的比较、洛必达法则或带有佩亚诺余项的麦克劳林公式去分析问题,解决问题。 三、无穷小量阶的比较的方法 利用等价无穷小量替换或利用洛必达法则,无穷小量的等价代换或利用带有皮亚诺余项的佩亚诺余项公式展开 四、函数的连续与间断点的讨论的方法 如果是)(x f 初等函数,若)(x f 在0x x =处没有定义,但在0x 一侧或两侧有定义,则0x x =是间断点,再根据在0x x =处左右极限来确定是第几类间断点。如果)(x f 是分段函数,分界点是间断点的怀疑点和所给范围表达式没有定义的点是间断点。

五、求数列极限的方法 ★1.极限的四则运算;★2. 夹逼定理;★3. 单调有界定理; 4. )()(lim )()(lim ∞=?∞=∞ →+∞→A n f A x f n x ;5. 数列的重要极限;6.用定积分的定义求数列极限;7. 利用若∑∞ =1n n a 收敛,则0lim =∞→n n a ;8. 无穷小量乘以有界量 仍是无穷小量;9.等价量替换等. 【评注】1. 数列的项有多项相加或相乘式或∞→n 时,有无穷项相加或相乘,且不能化简,不能利用极限的四则运算, 2.如果数列的项用递推关系式给出的数列的收敛性或证明数列极限存在,并求极限.用单调有界定理 3.对数列极限的未定式不能用洛比达法则。因为数列作为函数不连续,更不可导,故对数列极限不能用洛比达法则. 4.由数列{}n a 中的通项是n 的表达式,即).(n f a n =而)(lim )(lim x f n f x n ∞ →∞→与是特殊与一般的关系,由归结原则知 ★5. 有lim 1011()()n n i i f f x dx n n →∞ ==?∑或1lim 1001()()n n i i f f x dx n n -→∞==?∑ 第二章 一元函数微分学 ★一、求一点导数或给处在一点可导推导某个结论的方法: 利用导数定义,经常用第三种形式 二、研究导函数的连续性的方法:

复化梯形法 复化矩形法 变步长梯形 变步长辛普森

陕西科技大学 机械教改班 用C++的积分 其实积分的思想就是,微分—>求和—>取极限,如果是用纯手工法那就是先对一个函数微分,再求出它的面积,在取极限,因为我们的计算速度和计算量有限,现在有了计算机这个速度很快的机器,我们可以把微分后的每个小的面积加起来,为了满足精度,我们可以加大分区,即使实现不了微分出无限小的极限情况,我们也至少可以用有限次去接近他,下面我分析了四种不同的积分方法,和一个综合通用程序。 一.积分的基本思想 1、思路:微分—>求和—>取极限。 2、Newton —Leibniz 公式 ?-=b a a F b F dx x f ) ()()( 其中,)(x F 被积函数)(x f 的原函数。 3、用计算机积分的思路 在积分区间内“微分—>求和—>控制精度”。因为计算机求和不可以取极限,也就是不可以无限次的加下去,所以要控制精度。 二.现有的理论 1、一阶求积公式---梯形公式 ?=+-=b a T b f a f a b dx x f )]()([2 )( 他只能精确计算被积函数为0、1次多项式时的积分。 2、二阶求积分公式——牛顿、科特斯公式 ?=+++-=b a S b f a b f a f a b dx x f )]()2(4)([6)( 他只能精确计算被积函数为0、1、2、3次多项式时的积分。 三.四种实现方法 1.复化矩形法 将积分区间[a,b]等分成n 个子区间: ],[],[],[],[],[112322110n n n n x x x x x x x x x x ---、、、 则h=(b-a)/n,区间端点值k x =a+kh

高中数学定积分计算习题

定积分的计算 班级 姓名 一、利用几何意义求下列定积分 (1)dx x ? 1 1 -2-1 (2)dx x ? 2 2-4 (3) dx x ? 2 2-2x (4) ()dx x x ? -2 4 二、定积分计算 (1)()dx ?1 7-2x (2)( ) d x ?+2 1 x 2x 32 (3)dx ?3 1 x 3 (4)dx x ?π π - sin (5)dx x ?e 1 ln (6)dx ? +1 x 112 (7)() dx x x ?+-10 2 32 (8)()dx 2 31 1-x ? (9)dx ?+1 1 -2x x 2)( (10)( ) d x x ?+21 2x 1x (11)() dx x x ?-+1 1 -352x (12)() dx e e x x ?+ln2 x -e (13)dx x ?+π π --cosx sin ) ( (14)dx ? e 1 x 2 (15)dx x ?2 1 -x sin -2e )( (16)dx ?++2 1-3x 1 x x 2 (17)dx ? 2 1x 13 (18)()dx 2 2 -1x ?+

三、定积分求面积、体积 1求由抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积。 2.求曲线y =x ,y =2-x ,y =-1 3 x 所围成图形的面积. 3.求由曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积 4.如图求由两条曲线y =-x 2 ,y =-14 x 2 及直线y =-1所围成的图形的面积. 5、求函数f(x)=???? ? x +1 (-1≤x<0)cosx (0≤x ≤π 2)的图象与x 轴所围成的封闭图形的面积。 6.将由曲线y =x 2,y =x 3所 围成平面图形绕x 周旋转一周,求所得旋转体的体积。 7.将由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形绕x 周旋转一周,求所得旋转体的体积。 8.由曲线y =x 与直线x =1,x =4及x 轴所围成的封闭图形绕x 周旋转一周,求所得旋转体的体积

C语言-用矩形法和梯形法求定积分

一.写一个用矩形法求定积分的函数,求sin(x)在(0,1)上的定积分。 #include #include float jifen(float a,float b) {int i,l; float n=0.001,s=0; //n表示划分的单位宽度,n越小结果越精确,n是矩形的宽 l=(b-a)/n; // l表示有多少个单位宽度 for(i=0;i #include float jifen(float a,float b) {int i,l; float n=0.001,s=0; l=(b-a)/n; for(i=0;i #include jifen(float a,float b,double (*fun)(double)) {int i,l;

变步长的梯形积分方法的应用

CENTRAL SOUTH UNIVERSITY 数值分析实验报告

变步长的梯形积分方法的应用 一、问题背景 实际问题当中常常需要计算积分,有些数值方法,如微分方程和积分方程的求解,也都和积分计算相关联。 依据人们所熟知的微积分基本定理,对于积分 ()dx x f I a ?=b , 只要找到被积分函数()x f 的原函数()x F ,便有下列牛顿-莱布尼茨(Newton-Leibniz )公式: ()()()a F b F dx x f b -=?a . 但实际使用这种求积分方法往往有困难,因为大量的被积函数,诸如 ()0sin ≠x x x ,2x e -等,其原函数不能用初等函数表达,故不能用上述公式计算。即使能求得原函数的积分,有时计算也十分困难。例如对于被积函数 ()6 11x x f +=,其原函数 ()C x x x x x x x x F ++-+++??? ??-+=1 313ln 3411arctan 61arctan 3122, 计算()a F ,()b F 仍然很困难,另外,当()x f 是由测量或数值计算给出的一张数据表时,牛顿-莱布尼茨公式也不能直接运用。因此有必要研究积分的数值计算问题。 二、数学模型 由于牛顿-科特斯积分公式在8≥n 时不具有稳定性,故不能通过提高阶数的方法来提高求积精度。为了提高精度通常可以把积分区间划分成若干的子区间(通常是等分),再在每个子区间上用低阶求积公式。这种方法称为复合求积法。 复合梯形法虽然方法简单,但是却不能估计积分精度,这有时候是很不方便的。要想控制积分精度,可以采用如下的方法,设积分区间已经划分为n 个子区间,这时再把区间划分更细,给出新的积分结果,如果前后两次积分的差比给定的误差容限小的话,则停止细华否则继续增加积分区间。这种方法原理很简单也 容易实现,但是实际计算中一般采用的比较少,因为这种方法比较机械效率不是太高,实际上采用比较多的通常是Romberg 方法。 三、算法及流程 给定义误差容限小量TOL ,对于()dx x f b a ?,有复合梯形公式

相关文档
相关文档 最新文档