文档库 最新最全的文档下载
当前位置:文档库 › 大学物理(第四版)课后习题及答案 静电场

大学物理(第四版)课后习题及答案 静电场

大学物理(第四版)课后习题及答案 静电场
大学物理(第四版)课后习题及答案 静电场

题7.1:1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32

上夸克和两个带e 3

1

-下夸克构成,若将夸克作为经典粒子处理(夸克线度约为10-20 m ),中

子内的两个下夸克之间相距2.60?10-15 m 。求它们之间的斥力。 题7.1解:由于夸克可视为经典点电荷,由库仑定律

r r 2

2

0r 2210N 78.394141

e e e F ===r e r q q πεπε

F 与r e 方向相同表明它们之间为斥力。

题7.2:质量为m ,电荷为-e 的电子以圆轨道绕氢核旋转,其动能为E k 。证明电子的旋转频率满足

4

2k

202

32me E εν=

其中是0ε真空电容率,电子的运动可视为遵守经典力学规律。 题7.2分析:根据题意将电子作为经典粒子处理。电子、氢核的大小约为10-15 m ,轨道半径约为10-10 m ,故电子、氢核都可视作点电荷。点电荷间的库仑引力是维持电子沿圆轨道运动的向心力,故有

2

20241r e r v m πε= 由此出发命题可证。

证:由上述分析可得电子的动能为

r

e mv E 202

k 8121πε==

电子旋转角速度为

3

02

2

4mr e πεω=

由上述两式消去r ,得

4

3k 20

222

324me E επων=

= 题7.3:在氯化铯晶体中,一价氯离于Cl -与其最邻近的八个一价格离子Cs +构成如图所示的立方晶格结构。(1)求氯离子所受的库仑力;(2)假设图中箭头所指处缺少一个铯离子(称作品格缺陷),求此时氯离子所受的库仑力。

题7.3分析:铯离子和氯离子均可视作点电荷,可直接将晶格顶角铯离子与氯离子之间的库仑力进行矢量叠加。为方便计算可以利用晶格的对称性求氯离子所受的合力。 解:(l )由对称性,每条对角线上的一对铯离子与氯离子间的作用合力为零,故

01=F (2)除了有缺陷的那条对角线外,其它铯离

子与氯离子的作用合力为零,所以氯离子所受的合力2F 的值为

N 1092.13492

022

0212-?==

=

a

e r

q q F πεπε

2F 方向如图所示。

题7.4:若电荷Q 均匀地分布在长为L 的细棒上。求证:(1)在棒的延长线,且离棒中心为r 处的电场强度为

22041L r Q

E -=

πε (2)在棒的垂直平分线上,离棒为r 处的电场强度为

2

20421

L r r Q

E +=

πε

若棒为无限长(即∞→L ),试将结果与无限长均匀带电直线的电场强度相比较。

题7.4分析:这是计算连续分布电荷的电场强度。此时棒的长度不能忽略,因而不能将棒当作点电荷处理。但带电细棒上的电荷可看作均匀分布在一维的长直线上。如图所示,在长直线上任意取一线元,其电荷为d q = Q d x /L ,它在点P 的电场强度为

r r q

e E 20d 41d '=πε

整个带电体在点P 的电场强度 ?=E E d

接着针对具体问题来处理这个矢量积分。

(1) 若点P 在棒的延长线上,带电棒上各电

荷元在点P 的电场强度方向相同,

?=L

i E E d

(2) 若点P 在棒的垂直平分线上,则电场强度E 沿x 轴方向的分量因对称性叠加为

零,因此,点P 的电场强度就是 ??==L

L

j j E E E d sin d y α

证:(1)延长线上一点P 的电场强度?'=L r q

E 2

4d πε,利用几何关系x r r -='统一积分变量,

2

2

0022-0

4121

2141)(d 41

L r Q

L r L r L x r L x Q E L L P -=??????+--=-=?

πεπεπε 电场强度的方向沿x 轴。

(3) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为

?

'=L

r q

E 2

04d sin πεα

利用几何关系22,sin x r r r r +=''=α统一积分变量,则

2

2

02322

2

-0412)

(d 41r

L r Q

r x L x rQ E L L +=+=?

πεπε

当棒长∞→L 时,若棒单位长度所带电荷为λ常量,则

P 点电场强度

r

L r L

Q r E L 02

2024121lim

πελ

πε=

+=∞

此结果与无限长带电直线周围的电场强度分布相同。这说明只要满足122<

题7.5:一半径为R 的半圆细环上均匀分布电荷Q ,求环心处的电场强度

题7.5分析:在求环心处的电场强度时,不能将带电半圆环视作点电荷。现将其抽象为带电半圆弧线。在弧线上取线元d l ,其电荷此电荷元可视为点电荷l R

Q

q d d π=,它在点O 的电场强度r 2

0d 41

d e E r q

πε=

。因圆环上电荷对y 轴呈对称性分布,电场分布也是轴对称的,则有

?

=L

E 0d x ,点O 的合电场强度j E ?=L

E y d ,统一积分变量可求得E 。

解:由上述分析,点O 的电场强度

l R Q

R E L d sin 4120

O πθπε??-=?

由几何关系θd d R l =,统一积分变量后,有

2

020

O 2d sin 41R Q E επθθπεπ-

=-=?

方向沿y 轴负方向。

题7.6:用电场强度叠加原理求证:无限大均匀带电板外一点的电场强度大小为0

2εσ

=

E (提示:把无限大带电平板分解成一个个圆环或一条条细长线,然后进行积分叠加)

题7.6分析:求点P 的电场强度可采用两种方法处理,将无限大平板分别视为由无数同心的细圆环或无数平行细长线元组成,它们的电荷分别为

y r r q d d d 2d σλπσ==或 求出它们在轴线上一点P 的电场强度d E 后,再叠加积分,即可求得点P 的电场强度了。 证1:如图所示,在带电板上取同心细圆环为微元,由于带电平面上同心圆环在点P 激发的电场强度d E 的方向均相同,因而P 处的电场强度

i i i E E 02

32202

32202)(4d 2)(d 41d εσπεπσπε=+?=+==???x r r

xr x r q x

电场强度E 的方向为带电平板外法线方向。

证2:如图所示,取无限长带电细线为微元,各微元在点P 激发的电场强度d E 在Oxy 平面内且对x 轴对称,因此,电场在y 轴和z 轴方向上的分量之和,即E y 、E z 均为零,则点P 的电场强度应为

i i i E 220x d 2cos d x

y y x E E +===?

?∞

∞-πεσ

α 积分得i E 0

2εσ=

电场强度E 的方向为带电平板外法线方向。

上述讨论表明,虽然微元割取的方法不同,但结果是相同的。

题7.7:水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示。假设氧原子和氢原子等效电荷中心间距为r 0。试计算在分子的对称轴线上,距分子较远处的电场强度。

题7.7分析:水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er p =,而夹角为θ2。叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线。由于点O 到场点A 的距离x >>r 0,利用教材中电偶极子在延长线上的电场强度

30241x p

E πε=

可求得电场的分布。

也可由点电荷的电场强度叠加,求电场分布。 解1:水分子的电偶极矩

θθcos 2cos 200er p p == 在电偶极矩延长线上

3

0030030cos 1cos 44142x er x er x p E θ

πεθπεπε===

解2:在对称轴线上任取一点A ,则该点的电场强度

+-+=E E E

2

020424cos 2cos 2x e

r e E E E πεπεββ-

=

-=-+ 由于θcos 202022xr r x r -+= r

r x θ

βcos cos 0-=

代入得??

?

???--+-=

223020200

1)cos 2(cos 42x xr r x r x e E θθπε 测量分子的电场时,总有x >>r 0,因此, 式中2

302

2

)cos 2(θxr r x -+2

303

cos 21?

?

? ??-≈x r x θ??

?

???-≈x r x θcos 223103,将上式化简并略去

微小量后,得

3

00cos 1x e r E θ

πε=

题7.8:无两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ。(1)

求两导线构成的平面上任一点的电场强度(设该点到其中一线的垂直距离为x );(2)求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力。 题7.8分析:(1)在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加。

(2)由F = q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度来乘以单位长度导线所带电的量,即:F = λE 应该注意:式中的电场强度E 是除去自身电荷外其它电荷的合电场强度,电荷自身建立的电场不会对自身电荷产生作用力。 题7.8解:(1)设点P 在导线构成的平面上,+E 、-E 分别表示正、负带电导线在P 点的电场强度,则有

i

i E E E -)

(211200000x r x r x r x -=

???

? ??-+=+=+πελ

πελ

(2)设+F 、-F 分别表示正、负带电导线单位长度所受的电场力,则有

i F F 0

02

2r πελλ==-+

i F F 0

02

2r πελλ-=-=+-

显然有-+-=F F ,相互作用力大小相等,方向相反,两导线相互吸引。

题7.9:如图所示,电荷Q ±分别均匀分布在两个半径为R 的半细圆环上。求:(1)带电圆环偶极矩的大小和方向;(2)等效正、负电荷中心的位置。 题7.9分析:(1)电荷分布呈轴对称,将细环分割成长度均为d s 的线元,带正电荷的上半圆环线元与带负电荷的下半圆环对称位置上的线元构成一元电偶极子,细圆环总的偶极矩等于各元电偶极矩之和,有

?=j p p d

(2)由于正、负电荷分别对称分布在y 轴两侧,我们设想在y 轴上能找到一对假想点,如果该带电环对外激发的电场可以被这一对假想点上等量的点电荷所激发的电场代替,这对假想点就分别称作正、负等效电荷中心。等效正负电荷中心一定在y 轴上并对中心O 对称。由电偶极矩p 可求得正、负等效电荷中心的间距,并由对称性求得正、负电荷中心。 解:(1)将圆环沿y 轴方向分割为一组相互平行的元电偶极子,每一元电偶极子带电

θπ

πd d d Q

s R Q q ±=±

=± j j p θθπ

θd cos 2d cos 2d R Q

q R =

?=

则带电圆环的电偶极矩 j p p R Q

π

ππ4d 2

2

=

=?

-

(2)等效正、负电荷中心间距为 π

R

p l 4=

=

根据对称性正、负电荷中心在y 轴上,所以其坐标分别为??? ??πR 2,0和??? ?

?

-πR 2,0。

也可以借助几何中心的定义,得 0d sin 12

=?=

?-ππθπθR R R x π

θπππR

θR R R y 2d sin 12±=?±

=?-

即正、负电荷中心分别在y 轴上距中心 O 为

π

R

2处

题7.10:设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量。

题7.10分析方法1:由电场强度通量的定义,对半球面S 求积分,即??=S

S ΦS E d 。

方法2:作半径为R 的平面S '与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理

01

d 0

==

?∑?q S

εS E

这表明穿过闭合曲面的净通量为零,穿入平面S '的电场强度通量在数值上等于穿出半球面S 的电场强度通量。因而

?

?'

?-=?=S S

ΦS E S E d d

解1:取球坐标系,电场强度矢量和面元在球坐标系中可表示为

)sin sin (cos r E e e e E θ??θ?++= r R e S ?θθd d sin d 2=

E

R ER ER ΦS

S

20

222d sin d sin d d sin sin d π?

?θθ?

θ?θππ

===?=????S E

解2:由于闭合曲面内无电荷分布,根据高斯定理,有

?

?'

?-=?=S S

ΦS E S E d d

依照约定取闭合曲面的外法线方向为面元d S 的方向, E R R E Φ22cos πππ=??-=

题7.11:边长为a 的立方体如图所示,其表面分别平行于xy 、yz 和zx 平面,立方体的一个顶点为坐标原点。现将立方体置于电场强度j i E 21)(E kx E ++=的非均匀电场中,求电场对立方体各表面及整个立方体表面的电场强度通量。

题7.11解:参见图。由题意E 与Oxy 面平行,所以对任何与Oxy 面平行的立方体表面。电场强度的通量为零。即0DEFG OABC ==ΦΦ。而

2

221ABGF ]

d [])[(d a

E S E kx E Φ=?++=?=??j j i S E

考虑到面CDEO 与面ABGF 的外法线方向相反,且该两面的电场分布相同,故有

22ABGF CDEO a E ΦΦ-=-=

同理2121AOEF )d (][d a E S E E Φ-=-?+=?=??i j i S E 2121B C DG )()d (])[(d a ka E S E ka E Φ+=?++=?=??i j i S E

因此,整个立方体表面的电场强度通量 3ka ΦΦ==∑

题7.12:地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷。晴天大气电场平均电场强度约为120 V ?m -1,方向指向地面。试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示)。

题7.11分析:考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷。

解:在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(R E 为地球平均半径)。由高斯定理

∑?=-=?q R E S

2

E 1

4d επS E

地球表面电荷面密度

2902

E m C 1006.14--??-=-≈=∑E R q επσ

单位面积额外电子数

25cm 1063.6)(-?=-=e n σ

题7.13:设在半径为R 的球体内,其电荷为对称分布,电荷体密度为 R

r R

r kr >=≤≤=00ρρ

k 为一常量。试用高斯定理求电场强度E 与r 的函数关系。(你能用电场强度叠加原理求解这个问题吗?)

题7.13分析:通常有两种处理方法:(1)利用高斯定理求球内外的电场分布。由题意知电荷呈球对称分布,因而电场分布也是球对称,选择与带电球体同心的球面为高斯面,在球面上电场强度大小为常量,且方向垂直于球面,因而有

2

4d r

E S

π?=??S E

根据高斯定律??=

?V S d 1

d 0

ρεS E ,可解得电场强度的分布

(2)利用带电球壳电场叠加的方法求球内外的电场分布。将带电球分割成无数个同心带电球壳,球壳带电荷为r r q ''?=d 4d 2πρ,每个带电球壳在壳内激发的电场d E = 0,而在球

壳外激发的电场

r r V e E 2

04d d περ=

由电场叠加可解得带电球体内外的电场分布 R r r r

≤≤=?0d )(0E

E R r r R >=?0d )(E

E

解1:因电荷分布和电场分布均为球对称,球面上各点电场强度的大小为常量,由高斯定律

??=?V S

d 1

d 0

ρεS E 得球体内)0(R r ≤≤

4

20

2d 41

4)(r k r r kr r r E r εππεπ=

=

?

r kr r e E 0

2

4)(ε=

球体外(r >R ) 4

20

2d 41

4)(R k r r kr r r E R εππεπ=

=

??

r r kR r e E 2

04

4)(ε=

解2:将带电球分割成球壳,球壳带电 r r r k V q '''==d 4d d 2πρ 由上述分析,球体内)0(R r ≤≤

r r

r kr r r r r k r e e E 0

2

02204d 441

)(εππε=''?'=? 球体外(r >R )

r R r r kR r r r r k r e e E 204

2204d 441

)(εππε=''?'=?

题7.14:一无限大均匀带电薄平板,电荷面密度为σ,在平板中部有一半径为r 的小圆孔。

求圆孔中心轴线上与平板相距为x 的一点P 的电场强度。 题7.14分析:用补偿法求解

利用高斯定理求解电场强度只适用于几种非常特殊的对称性电场。本题的电场分布虽然不具有这样的对称性,但可以利用具有对称性的无限大带电平面和带电圆盘的电场叠加,求出电场的分布。

若把小圆孔看作由等量的正、负电荷重叠而成、挖去圆孔的带电平板等效于一个完整的带电平板和一个带相反电荷(电荷面密度σσ-=')的圆盘。这样中心轴线上的电场强度等效于平板和圆盘各自独立在该处激发的电场的矢量和。 解:在带电平面附近

n 0

12e E εσ=

n e 为沿平面外法线的单位矢量;圆盘激发的电场

n 220212e E ???

?

??+--

=r x x εσ 它们的合电场强度为

n 220212e E E E r x x

+=+=εσ。

在圆孔中心处x = 0,则 E = 0 在距离圆孔较远时x >>r ,则

n 0

n 2202112e e E εσ

εσ≈+=

x r

上述结果表明,在x >>r 时。带电平板上小圆孔对电场分布的影响可以忽略不计。

题7.15:一无限长、半径为R 的圆柱体上电荷均匀分布。圆柱体单位长度的电荷为λ,用高斯定理求圆柱体内距轴线距离为r 处的电场强度。

题7.15分析:无限长圆柱体的电荷具有轴对称分布,电场强度也为轴对称分布,且沿径矢方向。取同轴往面为高斯面,电场强度在圆柱侧面上大小相等,且与柱面正交。在圆柱的两个底面上,电场强度与底面平行,0d =?S E 对电场强度通量贡献为零。整个高斯面的电场强度通量为

rL E π2d ?=??S E

由于,圆柱体电荷均匀分布,电荷体密度2R πλρ=,处于高斯面内的总电荷

L r

q ∑?=2

πρ

由高斯定理0d ∑?=?q S E 可解得电场强度的分布, 解:取同轴柱面为高斯面,由上述分析得

L r R L r rL E 2

2

02012ελπρεπ=?=?

2

02R r E πελ=

题7.16:一个内外半径分别R 1为R 2和的均匀带电球壳,总电荷为Q 1,球壳外同心罩一个半径为 R 3的均匀带电球面,球面带电荷为Q 2。求电场分布。电场强度是否是场点与球心的距离r 的连续函数?试分析。

题7.16分析:以球心O 为原点,球心至场点的距离r 为半径,作同心球面为高斯面。由于电荷呈球对称分布,电场强度也为球对称分布,高斯面上电场强度沿径矢方向,且大小相等。因而24d r E π?=??S E ,在确定高斯面内的电荷∑q 后, 利用高斯定理

0d ε∑?=?q

S E

即可求的电场强度的分布

解:取半径为r 的同心球面为高斯面,由上述分析 024επ∑=?q r E

r < R 1,该高斯面内无电荷,0=∑q ,故 E 1 = 0

R 1 < r < R 2,高斯面内电荷313

23131)

(R R R r Q q --=∑,故 2

313

2031312)(4)

(r R R R r Q E --=πε R 2 < r < R 3,高斯面内电荷为Q 1,故

2

0134r Q E πε=

r > R 3,高斯面内电荷为Q 1+ Q 2,故

2

02144r Q Q E πε+=

电场强度的方向均沿径矢方向,各区域的电场强度分布曲线如图所示。

在带电球面的两侧,电场强度的左右极限不同,电场强度不连续,而在紧贴r = R 3的带电球面两侧,电场强度的跃变量

0302344εσ

πε==-=?R Q E E E

这一跃变是将带电球面的厚度抽象为零的必然结果,且具有普遍性。实际带电球面应是有一定厚度的球壳,壳层内外的电场强度也是连续变化的,如本题中带电球壳内外的电场,如球壳的厚度变小,E 的变化就变陡,最后当厚度趋于零时,E 的变化成为一跃变。

题7.17:两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1和R 2 (R 2 > R 1),单位长度上的电荷为λ。求离轴线为r 处的电场强度:(1)r < R 1,(2)R 1 < r < R 2,(3)r > R 2

题7.17分析:电荷分布在无限长同轴圆拄面上,电场强度也必定呈轴对称分布,沿径矢方向。取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且??=?rL E π2d S E ,求出不同半径高斯面内的电荷∑q 。利用高斯定理可解得各区域电场的分布。 解:作同轴圆柱面为高斯面。根据高斯定理

04επ∑=?q rL E

20

32022111==>=

=<<==<∑∑∑E q R r r

E L

q R r R E q R r ,

,πελλ 在带电面附近,电场强度大小不连续,电场强度有一跃变

0022εσ

πελπελ=

==?rL L r E

题7.18:如图所示,有三个点电荷Q 1、Q 2、Q 3沿一条直线等间距分布,已知其中任一点电荷所受合力均为零,且Q 1 = Q 2 = Q 3。求在固定Q 1、Q 3的情况下,将Q 2从点O 移到无穷远处外力所作的功。

题7.18分析:由库仑力的定义,根据Q 1、Q 3所受合力为零可求得Q 3

外力作功W '应等于电场力作功W 的负值,即W W -='。求电场力作功的方法有两种,(l )根据功的定义,电场力作的功为

?∞

?=0l E d 2Q W

其中E 是点电荷Q 1、Q 3产生的合电场强度。(2)根据电场力作功与电势能差的关系,有

0202)(V Q V V Q W =-=∞

其中V 0是Q 1、Q 3在点O 产生的电势(取无穷远处为零电势)。 解1:由题意Q 1所受的合力为零

0)2(442

0312

02

1

=+d Q Q d Q Q πεπε 解得Q Q Q 4

14132-=-=

由点电荷电场的叠加,Q 1、Q 3激发的电场在y 轴上任

意一点的电场强度为

2

32203y 1y )(2y d Qy

E E E +=

+=πε

将Q 2从点O 沿y 轴移到无穷远处(沿其他路径所作的功相同,请想一想为什么?),外力所作的功为

d Q y y d Qy Q Q W 022

322028d )

(241d πεπε=+????

??--=?-=?

?∞∞

0l E 解2:与解1相同,在任一点电荷所受合力均为零时Q Q 4

1

2-=。并由电势的叠加得Q 1、Q 3

在点O 电势

d

Q d

Q d

Q V 003010244πεπεπε=

+

=

将Q 2从点O 推到无穷远处的过程中,外力作功 d

Q V Q W 02028πε=

-='

比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁。这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多。

题7.19:已知均匀带电长直线附近的电场强度近似为

r r e E 02πελ=

λ为电荷线密度。(1)求在r = r 1和r = r 2两点间的电势差;(2)在点电荷的电场中,我们曾取∞→r 处的电势为零,求均匀带电长直线附近的电势时,能否这样取?试说明, 题7.19解:(1)由于电场力作功与路径无关,若取径矢为积分路径,则有

1

2012ln 2d 2r r U r πελ

=

?-=?1

r r E

(2)不能。严格地讲,电场强度r r

e E 02πελ

=

只适用于无限长的均匀带电直线,而此时电荷分布在无限空间。∞→r 处的电势应与直线上的电势相等。

题7.20:如图所示,有一薄金属环,其内外半径分别为R 1和R 2,圆环均匀带电,电荷面密度为σ(σ > 0)。(1)计算通过环中心垂直于环面的轴线上一点的电势;(2)若有一质子沿轴线从无限远处射向带正电的圆环,要使质子能穿过圆环,它的初速度至少应为多少? 题7.20分析:(1)如图所示,将薄金属环分割为一组不同半径的同心带电细圆环,利用细环轴线上一点的电势公式,根据电势叠加原理 ,将这些不同半径的带电圆环在轴线上一点的电势相加,即可得到轴线上的电势分布。

(2)由轴上电势分布的结果可知,在圆环中心处(x = 0)电势V 有极大值,当质子从无穷远处射向圆环时,电势能逐渐增加,而质子的动能随之减少。若要使质子穿过圆环,则质子在圆环中心处E k ≥ 0。根据能量守恒定律,可求出电子所需初速度的最小值。 解:(1)在环上割取半径为r 、宽度为 d r 的带电细回环,其所带电荷为

r r S q d 2d d πσσ==

它在轴线上产生的电势为

2

122021220)(2d )(4d d r x r

r r x q V +=

+=εσπε 薄金属环的电势等于这些同心轴圆环电势的叠加

][2)(2d 22122

2021220

21r R r R r x r r V R R +-+=+=?εσεσ (2)根据能量守恒定律,为使质子在圆环中心处的动能E k ≥0,开始时质子的初速率应满足

0)(2

102

0≥--∞V V e mv 即)(1200R R m

e v -≥

εσ

上式表明质子欲穿过环心,其速率不能小于

)(120R R m

e -εσ

题7.21:两个同心球面的半径分别为R 1和R 2,各自带有电荷Q 1和Q 2。求:(1)各区域电势分布,并画出分布曲线;(2)两球面间的电势差为多少?

题7.21分析:通常可采用两种方法(1)由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势。取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由?∞

?=P P V l E d 可求得电势分布。

(2)利用电势叠加原理求电势。一个均匀带电的球面,在球面外产生的电势为

r Q

V 04πε=

在球面内电场强度为零,电势处处相等,等于球面的电势

R

Q V 04πε=

其中R 是球面的半径。根据上述分析,利用电势在加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布。 解1:(l )由高斯定理可求得电场分布

2

2

02

13212

0121

1440

R r r Q Q R r R r Q R r r

r

>+=

<<=

<=e E e E E πεπε 由电势?∞

?=r V l E d 可求得各区域的电势分布。当1R r ≤时,有 202

101202121

132114441140d d d 2

21

1R Q R Q R

Q Q R R Q V R R R R r

πεπεπεπε+

=++???? ??-+

=?+?+?=?

??

∞l

E l E l E

当21R r R ≤≤时,有 2

020*******

1322444114d d 2

2R Q r Q R Q Q R r Q V R R r

πεπεπεπε+

=++???? ?

?-=

?+?=?

?∞l

E l E

当2R r ≥时,有 r R Q Q V r

2

021334d πε+=?=?

∞l

E (2)两个球面间的电势差

???? ??-=

?=?

21

1212114d 21

R R Q U R R πεl E

解2:(l )由各球面电势的叠加计算电势分布。若该点位于两个球面内,即1R r ≤,则

202101144R Q R Q V πεπε+

=

若该点位于两个球面之间,即21R r R ≤≤,则

2

0201244R Q r

Q V πεπε+

=

若该点位于两个球面之外,即2R r ≥,则

r R Q Q V 2

02

134πε+=

(2)两个球面间的电势差

2

011

012

112442

R Q R Q V V U R r πεπε-

=

-==

题7.22:一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ。现取棒表面为零电势,求空间电势分布并画出分布曲线

分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称。选取同轴柱面为高斯面,利用高斯定理

?

?=?V

V d 1

d 0

ρεS E

可求得电场分布E (r ),再根据电势差的定义

??=-b

a b a V V l E d 2

并取棒表面为零电势(V b = 0),即可得空间任意点的电势

解:取高度为l 、半径为r 且与带电律同轴的回柱面为高斯面,由高斯定理 当R r ≤时 022ερππl r rl E =? 得0

2)(ερr

r E =

当R r ≥时022ερππl R rl E =? 得r

R r E 02

2)(ερ=

取棒表面为零电势,空间电势的分布有

当R r ≤时,)(4d 2)(2200r R r r r V R r -==?ερ

ερ

当R r ≥时,r

R

R r r R r V R

r

ln 2d 2)(0202ερερ==? 图是电势V 随空间位置r 的分布曲线。

题7.23:两个很长的共轴圆柱面(R 1 = 3.0?10-2 m ,R 2 = 0.10 m ),带有等量异号的电荷,两者的电势差为450 V 。求:(1)圆柱面单位长度上带有多少电荷?(2)两圆柱面之间的电场强度。

题7.23:两圆柱面之间的电场

r

E 02πελ

=

根据电势差的定义有

1

2012ln 2d 21

R R U R R πελ

=?=?l E

解得181

2

120 C.m 101.2ln 2--?==R R U πελ V 1

1074.3220r

r E ?==

πελ 两圆柱面电场强度的大小与r 成反比。

题7.24:在一次典型的闪电中,两个放电点间的电势差约为109 V ,被迁移的电荷约为 30 °C ,如果释放出的能量都用来使0 °C 的冰融化为0 °C 的水,则可融化多少冰?(冰的融化热L =

3.34?105 J ?kg -1)

题7.24:闪电中释放出的能量为冰所吸收,故可融化冰的质量 kg 1098.84?==?=

L

qU

L E m 即可融化约90吨冰。

题7.25:在Oxy 面上倒扣着半径为R 的半球面,半球面上电荷均匀分布,电荷面密度为σ。A 点的坐标为(0, R /2),B 点的坐标为(R /2, 0),求电势差U AB 。

题7.25分析:电势的叠加是标量的叠加,根据对称性,带电半球面在Oxy 平面上各点产生的电势显然就等于带电球面在该点的电势的一半。据此,可先求出一个完整球面在A 、B 间的电势差U 'AB ,再求出半球面时的电势差U AB 。由于带电球面内等电势,球面内A 点电势等于球表面的电势,故

)(2

1

21B R AB AB V V U U '-'='= 其中R

V '是带电球表面的电势,B V '是带电球面在B 点的电势。 解:假设将半球面扩展为带有相同电荷面密度σ 的一个完整球面,此时在A 、B 两点的电势

分别为

R

00A 4V R R Q V '==='εσπε 0

020B 324εσεσπεR

r R r Q

V ===' 则半球面在A 、B 两点的电势差 0

B R AB

6)(21εσR

V V U ='-'= 题7.26:已知水分子的电偶极矩m C 1017.630??=-p 。这个水分子在电场强度

15m V 100.1-??=E 的电场中所受力矩的最大值是多少?

题7.26解:在均匀电场中,电偶极子所受的力矩为E p M ?=,故力矩的最大值为

m N 1017.625m ??==-pE M

题7.27:在玻尔的氢原子模型中,电子沿半径为m 1053.010-?的圆周绕原子核旋转。(1)若把电子从原子中拉出来需要克服电场力作多少功?(2)电子的电离能为多少? 题7.27解:(1)电子在玻尔轨道上作圆周运动时,它的电势能为

r

e E 2

0P 41

πε-=

因此,若把电子从原子中拉出来需要克服电场力作功

eV 2.27402P ==

='r

e E W πε

(2)电子在玻尔轨道上运动时,静电力提供电子作圆周运动所需的向心力, 即r mv r e 2202)4(=πε。此时,电子的动能为

r

e mv E 022

k 821πε==

其总能量

r

e E E E 02P k 8πε-

=+=

电子的电离能等于外界把电子从原子中拉出来需要的最低能量 eV 6.130==E E

由于电子围绕原子核高速旋转具有动能,使电子脱离原子核的束缚所需的电离能小于在

此过程中克服电场力所作的功。

大学物理静电场知识点总结

大学物理静电场知识点总结 1. 电荷的基本特征:(1)分类:正电荷(同质子所带电荷),负电荷(同电子所带电荷)(2)量子化特性(3)是相对论性不变量(4)微观粒子所带电荷总是存在一种对称性 2. 电荷守恒定律 :一个与外界没有电荷交换的孤立系统,无论发生什么变化,整个系统的电荷总量必定保持不变。 3.点电荷:点电荷是一个宏观范围的理想模型,在可忽略带电体自身的线度时才成立。 4.库仑定律: 表示了两个电荷之间的静电相互作用,是电磁学的基本定律之一,是表示真空中两个静止的点电荷之间相互作用的规律 12 12123 012 14q q F r r πε= 5. 电场强度 :是描述电场状况的最基本的物理量之一,反映了电 场的基 0 F E q = 6. 电场强度的计算: (1)单个点电荷产生的电场强度,可直接利用库仑定律和电场强度的定义来求得 (2)带电体产生的电场强度,可以根据电场的叠加原理来求解 πεπε== = ∑? n i i 3 3i 1 0i q 11 dq E r E r 44r r (3)具有一定对称性的带电体所产生的电场强度,可以根据高斯定

理来求解 (4)根据电荷的分布求电势,然后通过电势与电场强度的关系求得电场强度 7.电场线: 是一些虚构线,引入其目的是为了直观形象地表示电场强度的分布 (1)电场线是这样的线:a .曲线上每点的切线方向与该点的电场强度方向一致 b .曲线分布的疏密对应着电场强度的强弱,即越密越强,越疏越弱。 (2)电场线的性质:a .起于正电荷(或无穷远),止于负电荷(或无穷远)。b .不闭合,也不在没电荷的地方中断。c .两条电场线在没有电荷的地方不会相交 8. 电通量: φ= ??? e s E dS (1)电通量是一个抽象的概念,如果把它与电场线联系起来,可以把曲面S 的电通量理解为穿过曲面的电场线的条数。(2)电通量是标量,有正负之分。 9. 高斯定理: ε?= ∑ ?? s S 01 E dS i (里) q (1)定理中的E 是由空间所有的电荷(包括高斯面内和面外的电荷)共同产生。(2)任何闭合曲面S 的电通量只决定于该闭合曲面所包围的电荷,而与S 以外的电荷无关 10. 静电场属于保守力:静电场属于保守力的充分必要条件是,电荷在电场中移动,电场力所做的功只与该电荷的始末位置有关,而与

大学物理课后题答案

习 题 四 4-1 质量为m =的弹丸,其出口速率为300s m ,设弹丸在枪筒中前进所受到的合力 9800400x F -=。开抢时,子弹在x =0处,试求枪筒的长度。 [解] 设枪筒长度为L ,由动能定理知 2022121mv mv A -= 其中??-==L L dx x Fdx A 00)9 8000400( 9 40004002 L L - = 而00=v , 所以有: 22 300002.05.09 4000400??=-L L 化简可得: m 45.00 813604002==+-L L L 即枪筒长度为。 4-2 在光滑的水平桌面上平放有如图所示的固定的半圆形屏障。质量为m 的滑块以初速度0v 沿切线方向进入屏障内,滑块与屏障间的摩擦系数为μ,试证明:当滑块从屏障的另一端滑出时,摩擦力所作的功为() 12 1220-= -πμe mv W [证明] 物体受力:屏障对它的压力N ,方向指向圆心,摩擦力f 方向与运动方向相反,大小为 N f μ= (1) 另外,在竖直方向上受重力和水平桌面的支撑力,二者互相平衡与运动无关。 由牛顿运动定律 切向 t ma f =- (2) 法向 R v m N 2 = (3) 联立上述三式解得 R v a 2 t μ-= 又 s v v t s s v t v a d d d d d d d d t === 所以 R v s v v 2 d d μ -= 即 s R v v d d μ-=

两边积分,且利用初始条件s =0时,0v v =得 0ln ln v s R v +- =μ 即 s R e v v μ -=0 由动能定理 2 022 121mv mv W -= ,当滑块从另一端滑出即R s π=时,摩擦力所做的功为 () 12 1212122020220-=-=--πμ πμ e mv mv e mv W R R 4-3 质量为m 的质点开始处于静止状态,在外力F 的作用下沿直线运动。已知 T t F F π2sin 0=,方向与直线平行。求:(1)在0到T 的时间内,力F 的冲量的大小;(2)在0到2T 时间内,力F 冲量的大小;(3)在0到2T 时间内,力F 所作的总功;(4)讨论质点的运动情况。 [解]由冲量的定义?=1 2 d t t t F I ,在直线情况下,求冲量I 的大小可用代数量的积分,即 ?= 1 2 d t t t F I (1) 从t =0到 t=T ,冲量的大小为: ?= =T t F I 01d ?-=T T T t T F t T t F 0 00]2cos [2d 2sin πππ=0 (2) 从t =0到 t =T /2,冲量的大小为 π πππ0000 0022 2 2]2cos [2d 2sin d TF T t T F t T t F t F I T T T =-=== ?? (3) 初速度00=v ,由冲量定理 0mv mv I -= 当 t =T /2时,质点的速度m TF m I v π0== 又由动能定理,力F 所作的功 m F T m F mT mv mv mv A 22022 22022 20222212121ππ===-= (4) 质点的加速度)/2sin()/(0T t m F a π=,在t =0到t =T /2时间内,a >0,质点 作初速度为零的加速运动,t =T /2时,a =0,速度达到最大;在t =T /2到t =T 时间内,a <0,但v >0,故质点作减速运动,t =T 时 a =0,速度达到最小,等于零;此后,质点又进行下一

大学物理静电场

真空中的静电场 一、选择题 1.如图4—2所示,半径为 的半球面置于电场强度为 的 均匀电场中,选半球面的外法线为面法线正方向,则通过该半球面 的电场强度通量ΦE 为: A . B .0 C . D . E . () 2.如图所示,闭合面S 内有一点电荷Q ,P 为S 面上一点,在 S 面外A 点有一点电荷'Q ,若将电荷'Q 移至B 点,则; ()A S 面的总通量改变,P 点场强不变; ()B S 面的总通量不变,P 点场强改变; ()C S 面的总通量和P 点场强都不变; ()D S 面的总通量和P 点场强都改变。 3.两块平行平板,相距d ,板面积均为S ,分别均匀带电+q 和―q ,若两板的线度远大于d ,则它们的相互作用力的大小为: A . B . C . D . 4.真空中两块互相平行的无限大均匀带电平面。其电荷密度分别为σ+和2σ+,两板之间的距离为d ,两板间的电场强度大小为 A .0 B. 023εσ C.0 εσ D. 02εσ 5.两无限长的均匀带电直线相互平行,相距2a ,线电荷密度分别为λ+ 和λ- ,则每单位 长度的带电直线受的作用力的大小为 A.2202a λπε B.2204a λπε C.220a λπε D.2 2 08a λπε 6.某区域静电场的电场线分布情况如图4—5所示,一负电荷从M 点移到N 点,有人根据此图做出下列几点结论,其中哪点是正确的? A .电场强度E M >E N ,电场力做正功; B .电势U M <U N ,电场力做负功; C .电势能W M <W N ,电场力做负功; D .负电荷电势能增加,电场力做正功。 Q ’ A P S Q B

大学物理第7章静电场理解练习知识题

第7章 习题精选 (一)选择题 7-1、下列几种说法中哪一个是正确的? (A )电场中某点场强的方向,就是点电荷在该点所受电场力的方向. (B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同. (C )场强可由q F E / =计算,其中q 为试验电荷,q 可正、可负,F 为试验电荷所受电场力. (D )以上说法都不正确. [ ] 7-2、图中实线为某电场的电场线,虚线表示等势面,由图可看出: (A )C B A E E E >>,C B A V V V >>.(B )C B A E E E <<,C B A V V V <<. (C )C B A E E E >>,C B A V V V <<.(D )C B A E E E <<,C B A V V V >>. [ ] 7-3、关于电场强度定义式0/q F E =,下列说法中哪个是正确的? (A )场强E 的大小与试验电荷0q 的大小成反比. (B )对场中某点,试验电荷受力F 与0q 的比值不因0q 而变. (C )试验电荷受力F 的方向就是场强E 的方向. (D )若场中某点不放试验电荷0q ,则0=F ,从而0=E . [ ] 7-4、有一边长为a 的正方形平面,在其中垂线上距中心O 点垂直距离为a /2处,有一电量为q 的正点电荷,如图所示,则通过该平面的电场强度通量为 (A )03εq . (B )0 4επq (C )03επq . (D )06εq [ ] 7-5、已知一高斯面所包围的体积内电荷代数和0=∑q ,则可肯定: (A )高斯面上各点场强均为零. (B )穿过高斯面上每一面元的电场强度通量均为零. (C )穿过整个高斯面的电场强度通量为零. (D )以上说法都不对. [ ] q

大学物理(第四版)课后习题及答案 质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t = 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--=t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有 2002 1at t v x x + += 间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?

大学物理静电场总结

第七章、静 电 场 一、两个基本物理量(场强和电势) 1、电场强度 ⑴、 试验电荷在电场中不同点所受电场力的大小、方向都可能不同;而在 同一点,电场力的大小与试验电荷电量成正比,若试验电荷异号,则所 受电场力的方向相反。我们就用 q F 来表示电场中某点的电场强度,用 E 表示,即q F E = 对电场强度的理解: ①反映电场本身性质,与所放电荷无关。 ②E 的大小为单位电荷在该点所受电场力,E 的方向为正电荷所受电场力 的方向。 ③单位为N/C 或V/m ④电场中空间各点场强的大小和方向都相同称为匀强电场 ⑵、点电荷的电场强度 以点电荷Q 所在处为原点O,任取一点P(场点),点O 到点P 的位矢为r ,把试 验电荷q 放在P 点,有库仑定律可知,所受电场力为: r Q q F E 2 041επ== ⑶常见电场公式 无限大均匀带电板附近电场: εσ 02= E

2、电势 ⑴、电场中给定的电势能的大小除与电场本身的性质有关外,还与检验电荷 有关,而比值 q E pa 0 则与电荷的大小和正负无关,它反映了静电场中某给 定点的性质。为此我们用一个物理量-电势来反映这个性质。即q E p V 0 = ⑵、对电势的几点说明 ①单位为伏特V ②通常选取无穷远处或大地为电势零点,则有: ?∞ ?==p p dr E V q E 0 即P 点的电势等于场强沿任意路径从P 点到无穷远处的线积分。 ⑶常见电势公式 点电荷电势分布:r q V επ04= 半径为R 的均匀带点球面电势分布:R q V επ04= ()R r ≤≤0 r q V επ04= ()R r ≥ 二、四定理 1、场强叠加定理 点电荷系所激发的电场中某点处的电场强度等于各个点电荷单独存在时对 该点的电场强度的矢量和。即

大学物理静电场精彩试题库

真空中的静电场 一、选择题 1、下列关于高斯定理的说确的是(A ) A 如果高斯面上E 处处为零,则面未必无电荷。 B 如果高斯面上E 处处不为零,则面必有静电荷。 C 如果高斯面无电荷,则高斯面上E 处处为零。 D 如果高斯面有净电荷,则高斯面上 E 处处不为零。 2、以下说法哪一种是正确的(B ) A 电场中某点电场强度的方向,就是试验电荷在该点所受的电场力方向 B 电场中某点电场强度的方向可由0q F E 确定, 其中0q 为试验电荷的电荷量,0q 可正可 负,F 为试验电荷所受的电场力 C 在以点电荷为中心的球面上,由该点电荷所产生的电场强度处处相同 D 以上说法都不正确 3、如图所示,有两个电 2、 下列说确的是(D ) A 电场强度为零处,电势一定为零。电势为零处,电场强度一定为零。 B 电势较高处电场强度一定较大,电场强度较小处电势一定较低。 C 带正电的物体电势一定为正,带负电的物体电势一定为负。 D 静电场中任一导体上电势一定处处相等。 3、点电荷q 位于金属球壳中心,球壳外半径分别为 21,R R ,所带静电荷为零B A ,为球壳外两点,试判断下 列 说法的正误(C ) A 移去球壳, B 点电场强度变大 B 移去球壳,A 点电场强度变大 C 移去球壳,A 点电势升高 D 移去球壳,B 点电势升高 4、下列说确的是(D ) A 场强相等的区域,电势也处处相等 B 场强为零处,电势也一定为零 C 电势为零处,场强也一定为零 D 场强大处,电势不一定高

5、如图所示,一个点电荷q位于立方体一顶点A上,则通过abcd 面上的电通量为(C ) A 6 q ε B 12 q ε C 24 q ε D 36 q ε 6、如图所示,在电场强度E的均匀电场中,有一半径为R的半球面, 场强E的方向与半球面的对称抽平行,穿过此半球面的电通量为(C) A E R2 2π B E R2 2π C E R2 π D E R2 2 1 π 7、如图所示两块无限大的铅直平行平面A和B,均匀带电,其电荷密 度均为) (2 0- ? ?m C σ σ,在如图所示的c b a、 、三处的电场强度分别 为(D) A 0, ,0 0, ε σ B 0, 2 ,0 0, ε σ C , , 2ε σ ε σ ε σ D ,0, ε σ ε σ 8、如图所示为一具有球对称性分布的静电场的E~r关系曲线.请指出该静电场是由下列哪种带电体产生的.(B) A 半径为R的均匀带电球面. B半径为R的均匀带电球体. C半径为R的、电荷体密度为Ar = ρ(A为常数)的非均匀带电球体 D半径为R的、电荷体密度为r A/ = ρ(A为常数)的非均匀带电球体 9、设无穷远处电势为零,则半径为R的均匀带电球体产生的电场的电势分布规律为(图中 的 U和b皆为常量):(C) 10、如图所示,在半径为R的“无限长”均匀带电圆筒的静电场中,各点的电场强度E的大小与距轴线的距离r 关系曲线为(A) d a b c q A

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案 习 题1 1-1. 已知质点位矢随时间变化的函数形式为 )ωt sin ωt (cos j i +=R r 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。 解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω= 消去t 可得轨道方程 222R y x =+ 2) j r v t Rcos sin ωωt ωR ωdt d +-== i R ωt ωR ωt ωR ωv =+-=2 122 ])cos ()sin [( 1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求: (1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。 解:1)由j i r )t 23(t 42++=可知 2t 4x = t 23y += 消去t 得轨道方程为:2)3y (x -= 2)j i r v 2t 8dt d +== j i j i v r 24)dt 2t 8(dt 1 1 +=+==??Δ 3) j v 2(0)= j i v 28(1)+= 1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单

位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。 解:1)j i r v 2t 2dt d +== i v a 2dt d == 2)21 22 12)1t (2] 4)t 2[(v +=+= 1 t t 2dt dv a 2 t +== n a == 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。 解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为 2012 1 at t v y += (1) 图 1-4 2022 1 gt t v h y -+= (2) 21y y = (3) 解之 t = 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 2 1 h y -= 式(2) j i r )gt 2 1 -h (t v (t)20+= (2)联立式(1)、式(2)得 2 02 v 2gx h y -= (3) j i r gt -v t d d 0= 而 落地所用时间 g h 2t =

大学物理静电场考试题及答案

大学物理静电场考试题及答案 5 -1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A)放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B)中的( ) 分析与解 “无限大”均匀带电平板激发的电场强度为0 2εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B). 5 -2 下列说法正确的是( ) (A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷 (B)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零 (C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零 (D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B). 5 -3 下列说法正确的是( ) (A) 电场强度为零的点,电势也一定为零 (B) 电场强度不为零的点,电势也一定不为零 (C) 电势为零的点,电场强度也一定为零

(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零 分析与解 电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为 (D). *5 -4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( ) (A) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止 (B) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动 (C) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动 (D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动 分析与解 电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为 (B). 5 -5 精密实验表明,电子与质子电量差值的最大范围不会超过±10-21 e ,而中子电量与零差值的最大范围也不会超过±10-21e ,由最极端的情况考虑,一个有8 个电子,8 个质子和8 个中子构成的氧原子所带的最大可能净电荷是多少? 若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小. 分析 考虑到极限情况, 假设电子与质子电量差值的最大范围为2×10-21 e ,中子电量为10-21 e ,则由一个氧原子所包含的8 个电子、8 个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较. 解 一个氧原子所带的最大可能净电荷为 ()e q 21max 10821-??+= 二个氧原子间的库仑力与万有引力之比为 1108.2π46202max <

大学物理课后习题标准答案第六章

大学物理课后习题答案第六章

————————————————————————————————作者:————————————————————————————————日期:

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 2 00 200)1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为 l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的 电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3220)(41 cos R x xdq dE dE x += =πεθ R O λ1 λ2 l x y z

大学物理(下)考试题库分解

大学物理(下)试题库 第九章 静电场 知识点1:电场、电场强度的概念 1、、【 】下列说法不正确的是: A : 只要有电荷存在,电荷周围就一定存在电场; B :电场是一种物质; C :电荷间的相互作用是通过电场而产生的; D :电荷间的相互作用是一种超距作用。 2、【 】 电场中有一点P ,下列说法中正确的是: A : 若放在P 点的检验电荷的电量减半,则P 点的场强减半; B :若P 点没有试探电荷,则P 点场强为零; C : P 点的场强越大,则同一电荷在P 点受到的电场力越大; D : P 点的场强方向为就是放在该点的电荷受电场力的方向 3、【 】关于电场线的说法,不正确的是: A : 沿着电场线的方向电场强度越来越小; B : 在没有电荷的地方,电场线不会中止; C : 电场线是人们假设的,用以形象表示电场的强弱和方向,客观上并不存在: D :电场线是始于正电荷或无穷远,止于负电荷或无穷远。 4、【 】下列性质中不属于静电场的是: A :物质性; B :叠加性; C :涡旋性; D :对其中的电荷有力的作用。 5、【 】在坐标原点放一正电荷Q ,它在P 点(x=+1, y=0)产生的电场强度为E .现在,另外有一个负电荷-2Q ,试问应将它放在什么位置才能使 P 点的电场强度等于零? (A) x 轴上x>1. (B) x 轴上00 6、真空中一点电荷的场强分布函数为:E = ___________________。 7、半径为R ,电量为Q 的均匀带电圆环,其圆心O 点的电场强度E=_____ 。 8、【 】两个点电荷21q q 和固定在一条直线上。相距为d ,把第三个点电荷3q 放在2 1,q q 的延长线上,与2q 相距为d ,故使 3q 保持静止,则 (A )21 2q q = (B )212q q -= (C ) 214q q -= (D )2122q q -= 9、如图一半径为R 的带有一缺口的细圆环,缺口长度为d (d<

大学物理(上)课后习题标准答案

大学物理(上)课后习题答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2 m ⑵ 1 t s,2 t s 时,j i r 5.081 m ;2114r i j v v v m ∴ 213 4.5r r r i j v v v v v m ⑶0t s 时,054r i j v v v ;4t s 时,41716r i j v v v ∴ 140122035m s 404r r r i j i j t v v v v v v v v v ⑷ 1 d 3(3)m s d r i t j t v v v v v ,则:437i j v v v v 1s m (5) 0t s 时,033i j v v v v ;4t s 时,437i j v v v v 24041 m s 44 j a j t v v v v v v v v v (6) 2d 1 m s d a j t v v v v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x ,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x v v v v 得:2 d d (26)d a x x x v v 两边积分 210 d (26)d x x x v v v 得:2322250x x v ∴ 31225 m s x x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2 ⑴ s 2 t 时,2 s m 362181 R a 2 222s m 1296)29(1 R a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a 即: R R 2 ,亦即t t 18)9(2 2 ,解得:9 2 3 t 则角位移为:32 2323 2.67rad 9 t 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为 =0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2 t 时,4.02 2.0 t 1s rad 则0.40.40.16R v 1s m 064.0)4.0(4.022 R a n 2 s m 0.40.20.08a R 2 s m 22222s m 102.0)08.0()064.0( a a a n 与切向夹角arctan()0.0640.0843n a a

大学物理电场部分问题详解

2/εδE o x 02/εδE o x 2/εδ0 2/εδ-E o x 0 2/εδ0 2/εδ-o E x 第六章 电荷的电现象和磁现象 序号 学号 专业、班级 一 选择题 [ C ]1 .一带电体可作为点电荷处理的条件是 (A)电荷必须呈球形分布。 (B)带电体的线度很小。 (C)带电体的线度与其它有关长度相比可忽略不计。 (D)电量很小。 [ D ]2.真空中一“无限大”均匀带负电荷的平面如图所示,其电场的场强分布图线应是(设场强方向向右为正、向左为负) (A ) (B ) (C ) (D ) 二 填空题 1. 在点电荷系的电场中,任一点的电场强度等于 ________________________________略________________________________________________, 这称为场强叠加原理。 2.静电场中某点的电场强度,其数值和方向等于_________略____________________________ ___________________________________________________________________________。 3.两块“无限大”的带电平行电板,其电荷面密度分别为δ(δ> 0)及-2δ,如图所示, 试写出各区域的电场强度E 。 Ⅰ区E 的大小 0 2εσ , 方向 向右 。 Ⅱ区E 的大小 23εσ , 方向 向右 。 δ -x o I II III σ 2-σ 02/εσ0/εσ0 2/2ε0 22εσ

Ⅲ区E 的大小 0 2εσ, 方向 向左 。 4.A 、B 为真空中两个平行的“无限大”均匀带电平面,已知两平面间的电场强度大小都为E 0 , 两平面外侧电场强度大小都为 E 0 / 3 ,方向如图。则A 、B 两平面上的电荷面密度分别为 A δ= 3/E 200ε- , B δ = 3/E 400ε 。 三 计算题 1.一段半径为a 的细圆弧,对圆心的角为θ0,其上均匀分布有正电荷 q ,如图所示,试以 a , q , θ0表示出圆心O 处的电场强度。 解:建立如图坐标系,在细圆弧上取电荷元l a q q d d 0 ?=θ, 电荷元视为点电荷,它在圆心处产生的场强大小为: θθπεθπεπεd 4d 44d d 0 2003020a q l a q a q E === 方向如图所示。将E d 分解, θθcos d d ,sin d d E E E E y x -=-= 由对称性分析可知,? ==0d x x E E 2 sin 2d cos 4d 0 202 2 02 000 θθπεθ θθπεθθ a q a q E E y y - =-==??- 圆心O 处的电场强度j a q j E E y 2 sin 200 20θθπε- ==

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理电磁学综合复习试题1

电学 一、选择题: 1.图中所示曲线表示某种球对称性静电场的场强大小E 随径向距离r 变化的关系,请指出该电场是由下列哪一种带电体产生的: A .半径为R 的均匀带电球面; B .半径为R 的均匀带电球体; C .点电荷; D .外半径为R ,内半径为R /2的均匀带电球壳体。 ( ) 2.如图所示,在坐标( a ,0 )处放置一点电荷+q ,在坐标(a ,0)处放置另一点电荷-q 。P 点是x 轴上的一点,坐标为(x ,0)。当a x >>时,该点场强的大小为: A . x q 04πε ; B . 3 0x qa πε ; C . 3 02x qa πε ; D .2 04x q πε 。 ( ) 3.在静电场中,下列说法中哪一种是正确的? A .带正电的导体,其电势一定是正值; B .等势面上各点的场强一定相等; C .场强为零处,电势也一定为零; D .场强相等处,电势梯度矢量一定相等。 ( ) 4.如图所示为一沿轴放置的无限长分段均匀带电直线,电荷线密度分别为()0<+x λ和 ()0>-x λ,则o — xy 坐标平面上P 点(o ,a ) A .0; B .a i 02πελ?; C .a i 04πελ?; D .a j i 02) (πελ??+。 ( ) -a x -Q +q P

5.如图,两无限大平行平板,其电荷面密度均为+σ,则图中三处的电场强度的大小分别为: A . 0εσ,0,0εσ; B .0,0 εσ,0; C . 02εσ,0εσ,02εσ; D . 0,0 2εσ ,0。 ( ) 6.如图示,直线MN 长为l 2,弧OCD 是以N 点为中心,l 为半径的半圆弧,N 点有点电荷+q ,M 点有点电荷-q 。今将一实验电荷+q ,从O 点 出发沿路径OCDP 移到无穷远处,设无穷远处的电势为零, 则电场力作功: A .A <0,且为有限常量; B .A >0,且为有限常量; C .A =∞; D .A =0。 ( ) 7.关于静电场中某点电势值的正负,下列说法中正确的是: A .电势值的正负取决于置于该点的实验电荷的正负; B .电势值的正负取决于电场力对实验电荷作功的正负; C .电势值的正负取决于电势零点的选取; D .电势值的正负取决于产生电场的电荷的正负。 ( ) 8.一个未带电的空腔导体球壳,内半径为R ,在腔内离球心的距离为d 处(d

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理静电场总结

第七章、静 电 场 一、两个基本物理量(场强和电势) 1、电场强度 ⑴、 试验电荷在电场中不同点所受电场力的大小、方向都可能不同;而在 同一点,电场力的大小与试验电荷电量成正比,若试验电荷异号,则所 受电场力的方向相反。我们就用 q F 来表示电场中某点的电场强度,用 E 表示,即q F E = 对电场强度的理解: ①反映电场本身性质,与所放电荷无关。 ②E 的大小为单位电荷在该点所受电场力,E 的方向为正电荷所受电场力 的方向。 ③单位为N/C 或V/m ④电场中空间各点场强的大小和方向都相同称为匀强电场 ⑵、点电荷的电场强度 以点电荷Q 所在处为原点O,任取一点P(场点),点O 到点P 的位矢为r ,把试 验电荷q 放在P 点,有库仑定律可知,所受电场力为: r Q q F E 2 041επ== ⑶常见电场公式 无限大均匀带电板附近电场: εσ 02= E 2、电势 ⑴、电场中给定的电势能的大小除与电场本身的性质有关外,还与检验电荷 有关,而比值 q E pa 0 则与电荷的大小和正负无关,它反映了静电场中某给 定点的性质。为此我们用一个物理量-电势来反映这个性质。即q E p V 0 = ⑵、对电势的几点说明 ①单位为伏特V ②通常选取无穷远处或大地为电势零点,则有: ?∞ ?==p p dr E V q E 0

即P 点的电势等于场强沿任意路径从P 点到无穷远处的线积分。 ⑶常见电势公式 点电荷电势分布:r q V επ04= 半径为R 的均匀带点球面电势分布:R q V επ04= ()R r ≤≤0 r q V επ04= ()R r ≥ 二、四定理 1、场强叠加定理 点电荷系所激发的电场中某点处的电场强度等于各个点电荷单独存在时对 该点的电场强度的矢量和。即 E E E n E +++= (21) 2、电势叠加定理 V 1 、V 2 ...V n 分别为各点电荷单独存在时在P 点的电势点电荷系 的电场中,某点的电势等于各点电荷单独 存在时在该点电势的代数和。 3、高斯定理 在真空中的静电场内,通过任意封闭曲面的电通量等于该闭合曲面包围的所 有电荷的代数和除以 ε 说明: ①高斯定理是反映静电场性质的一条基本定理。 ②通过任意闭合曲面的电通量只取决于它所包围的电荷的代数和。 ③高斯定理中所说的闭合曲面,通常称为高斯面。 三、静电平衡 1、静电平衡 当一带电体系中的电荷静止不动,从而电场分布不随时间变化时,带电 体系即达到了静电平衡。 说明: ①导体的特点是体内存在自由电荷。在电场作用下,自由电荷可以移动, 从而改变电荷分布;而电荷分布的改变又影响到电场分布。 ②均匀导体的静电平衡条件:体内场强处处为零。 ③导体是个等势体,导体表面是个等势面。 ④导体外靠近其表面的地方场强处处与表面垂直。

相关文档
相关文档 最新文档