文档库 最新最全的文档下载
当前位置:文档库 › 基于传声器阵列的声定位系统研究与设计

基于传声器阵列的声定位系统研究与设计

基于传声器阵列的声定位系统研究与设计
基于传声器阵列的声定位系统研究与设计

基于传声器阵列的声定位系统研究与设计

摘要:对当前传声器阵列定位技术特点、关键技术等做了深入分析后,提出一种改进的广义互相关(GCC)时延估计算法,在元GCC算法基础上,加入了加窗分帧与静音检测(V AD)判断法,弥补了原算法针对室内回响混响干扰的不足。系统以LabVIEW结合MATLAB为仿真平台,讨论了五元十字阵列在不同条件下的定位精度,实验表明:系统能够比较准确的对半空间域的低空声源进行定位,并能够实现多个声源判决定位,具有一定现实意义。

关键字:传声器阵列;广义互相关;被动定位;五元十字阵

0 引言

声源定位技术是利用声学和电子装置接受并处理声场信号,以确定声源位置的一种技术。传声器阵列是指由若干个传声器按一定的几何结构排列而成的阵列,它具有很强的空间选择性,可以在一定的范围内实现声源的定位与跟踪[1]。目前,传声阵列主要有:一字阵、十字阵、圆形阵和球星阵。它们被广泛应用与军事和工业领域,此外,在视频会议、视频监控、故障诊断、声控机器人等民用项目中也风靡开来。

基于声传感器阵列的定位技术大体上分为三类:(1)基于可控波束形成的定位技术;(2)基于子空间的定位技术;(3)基于到达时延估计的定位技术[2]。本文采用基于时延估计的定位技术,与其他定位技术相比,它计算量小,有利于实时快速处理。为尽可能地降低室内混响和噪声的影响,提高声源定位系统精度,提出一种改进的广义互相关(GCC)时延估计算法,在元GCC算法基础上,加入了加窗分帧与静音检测(V AD)判断法,弥补了原算法针对室内回响混响干扰的不足。在定位阵列上,文中选择具有阵列冗余、分维特性小的平面五元十字阵,以达到测量误差最小的目的[3]。仿真结果表明设计的声阵列定位成像系统行之有效。

1 时延估计算法

时延估计(Time-delay estimation,TDE)即时间延时估计,就是利用声传感器阵列接受目标声源信号,不同位置位置传感器接受到的声源信号所需要的时间不同,然后根据这个时间差值来确定目标信号的空间位置[4]。

对于TDE算法,其中广义互相关(GCC)算法应用最为广泛[5]。通过求两信号之间的互功率谱,并在频域内给予接受信号一定的加权,来抑制噪声和反射的影响,再将加权后信号反变换到时域得到两信号之间的互相关函。其峰值位置即为两信号之间的相对时延。

3 时延估计算法的改进

基于麦克风阵列的语音增强方法

基于麦克风阵列的语音增强方法 概述:在日常生活和工作中,语音通信是人与人之间互相传递信息沟通不可缺少的方式。在语音通信中,语音信号不可避免地会受到来自周围环境和传输媒介的外部噪声、通信设备的内部噪声及其他讲话者的干扰。这些干扰共同作用,最终使听者获得的是被噪声污染过的带噪声语音,严重影响了双方之间的交流。应用阵列信号处理技术的麦克风阵列能够充分利用语音信号的空时信息,具有灵活的波束控制、较高的空间分辨率、高的信号增益与较强的抗干扰能力等特点,逐渐成为强噪声环境中语音增强的研究热点。本文将介绍各种麦克风阵列语音增强方法,并总结各个方法的优劣。最终得出更好的、能够去噪的基于麦克风阵列的语音增强方法。 1麦克风阵列 麦克风阵列是将两个麦克风的信号耦合为一个信号。在频率响应中也可以根据时域中波束形成与空间滤波器相仿的应用,分析出接收到语音信号音源的方向以及其变化。采用该技术,能利用两个麦克风接收到声波的相位之间的差异对声波进行过滤,能最大限度将环境背景声音滤掉,只剩下需要的声波。对于在嘈杂的环境下使用采用了这种配置的设备,在嘈杂的环境下能使听者听起来很清晰,没杂音。 2基于麦克风阵列的语音增强方法 2.1基于自适应波束形成器的麦克风阵列语音增强 自适应波束形成是现在广泛使用的一类麦克风阵列语音增强方法。最早出现的自适应波束形成算法,其基本思想是在某方向有用信号的增益一定的前提下,使阵列输出信号的功率最小。在线性约束最小方差自适应波束形成器的基础上,1982 年Griffiths 和Jim 提出了广义旁瓣消除器成为了许多算法的基本框架。 广义旁瓣消除器(GSC)的工作原理是带噪声的语音信号同时通过自适应通道和非自适应通道,自适应通道中的阻塞矩阵将有用信号滤除后产生仅包含多通道噪声参考信号,自适应滤波器根据这个参考信号得到噪声估计,最后由这个被估计的噪声抵消非自适应通道中的噪声分量,从而得到有用的纯净语音信号。 麦克风阵列的自适应算法通过迭代运算获取波束形成的最优权矢量时,噪声模型的估计是一个非常关键的因素。它的好坏直接影响着系统波束形成的性能。系统地分析了最小均方( LMS) 自适应语音增强算法,并针对阻塞矩阵在估计噪声时存在的缺陷,在该算法的基础上提出了一种利用最小值控制递归平均( MCRA) 来估计噪声的方法。将此方法应用于波束形成,MCRA 估计出的噪声使LMS 自适应语音增强的效果更好和抗噪性更强。 2.2基于固定波束形成的麦克风阵列语音增强 固定波束形成技术是最简单最成熟的一种波束形成技术。1985 年美国学者Flanagan 提出采用延时-相加波束形成方法进行麦克风阵列语音增强,该方法通过对各路麦克风接收到的信号添加合适的延时补偿,使得各路输出信号在某一方向上保持同步,并在该方向的入射信号获得最大增益。此方法易于实现,但要想获取较高的噪声抑制能力则需要增加麦克风数目,然而对非相干噪声没有抑制能力,环境适应性差,因此实际中很少单独使用。后来出现的微分麦克风阵列、超方向麦克风阵列和固定频率波束形成技术也属于固定波束形成。 采用可调波束形成器的GSC麦克风阵列语言增强算法,其实质在GSC结构中的固定波束形成器前端引入各通道可调时延补偿,构造可调波束形成器进行声源方位估计,从而在目标声源方位获取阶段即可利用阵列的空间增益来提高方位估计性能。延迟求和波束形成器主要目的是增强主瓣方向目标信号,而抑制其他方向的噪声信号。

麦克风阵列模组设计方案

麦克风阵列模组设计方案 一、麦克风阵列基本原理 二、麦克风阵列的应用 三、麦克风阵列模组的设计 一、麦克风阵列基本原理 阵列(Array): 数学定义--有限个相同资料形态之元素组成之集合 麦克风阵列是指按一定距离排列放置的一组麦克风,通过声波抵达阵列中每个麦克风之间的微小时差的相互作用,麦克风阵列可以得到比单个的麦克风更好地指向性。在麦克风阵列的设计中首要的改进是引入了波束成形、阵列指向性与波束宽度的概念。 波束的形成 通过对所有麦克风信号的综合处理,麦克风阵列可以组合成为所要求的强指向性麦克风,形成被称为“波束”的指向特性。麦克风阵列的波束可以经由特殊电路或程序算法软件控制使其指向声源方向而加强音频采集效果。 阵列算法处理后的指向性波束形成技术能精确的形成一个锥状窄波束,只接受说话人的声音同时抑制环境中的噪音与干扰。

图一使用单麦克风与采用波束形成技术麦克风阵列接收讲话者声音效果的对比

阵列指向性 由于麦克风阵列的输出信号中包含比单只麦克风更低的噪声和回声成份, 。麦克风阵列在1000Hz的典型指所以其固有噪声抑制能力要远高于单只麦克风。 所以其固有噪声抑制能力要远高于单只麦克风 向性波束图型如图二所示。其指向性图形要远好于任一款价格昂贵的高性能超心形麦克风。 图二麦克风阵列在1000Hz的典型指向性波束图型

指向性指数 另一个表证波束的参数是指向性指数。 波束轴线))检测到指向性指数D表征的是麦克风阵列主响应轴(波束轴线 的声源信号与需要屏蔽的各种噪声与回声信号的比值

二麦克风阵列的应用 正确的麦克风阵列几何排列(数量,类型及麦克风的位置)关系到最后的声学效果。为了保证成功的设计和用户满意度,双元件麦克风阵列适用于在较安静的办公场所及室内的条件使用。这种阵列形成的是水平方向压缩后的较窄波束,使用时应将两个麦克风连线中点指向讲话者。其几何排布如图三、图四所示 图三小型双麦克风阵列图四大型双麦克风阵列 四元件麦克风阵列适用于在一般的办公场或较嘈杂的环境使用,当讲话者到麦克风的距离达到3-5M距离时,仍有很好的录音效果,见图五、图六 图五4麦克风阵列图六L-形状的4麦克风阵列

线性麦克风阵列定向性能的研究

线性麦克风阵列定向性能的研究? 段进伟, 史元春, 陈孝杰 (清华大学计算机科学与技术系,北京市海淀区, 100084) Study on the Directing Performance of the Linear Microphone Array Duan Jin-wei, Shi Yuan-chun, Chen Xiao-jie (Department of Computer Science and Technology, Tsinghua University, Beijing, 100084, China) + Corresponding author: Phn: +86-010-********-805, E-mail: saundradjw945@https://www.wendangku.net/doc/d913954820.html, Received 2007-07-31; Accepted 2007-08-31 Abstract: Speech source localization technology, using microphone array, plays an important role in the area of human-computer interaction, especially that in smart space. The information of source position provided by the microphone array can be used in many place, such as dynamically adjust the parameters of the array in order to acquire high-quality speech audio, etc. Therefore, speech source localization has become a hot topic in both research and application areas. The objective of this paper is to analyze the affection on the symmetrical linear microphone array directing performance caused by the changes of microphone numbers, the spacing between microphones, the sampling frequency and so on. In order to accomplish this, we set up two linear microphone arrays with different hardware and designed comparative experiments. After the speech data was captured, an algorithm called SRP-PHAT was used to estimate the speech source direction. We analyzed the possible theoretic errors existed in the experiments carefully, and after the experiments, we analyzed the directing results, and compared the actual directing errors with the possible theoretic errors. At last, we summarized the performance of the two linear microphone arrays, and educed the configuration of the linear microphone array system when its integrative performance achieves the peak. Key words: linear microphone array; speech source directing; theoretic error; directing performance 摘 要: 麦克风阵列在人机交互中有着重要的研究和应用价值。而线性均匀麦克风阵列最简单,其基本功能是声源的定向。本文通过实验分析各种参数变化对线性麦克风阵列定向性能的影响。我们搭建了硬件参数不同的两套线性麦克风阵列并设计了对比实验。使用SRP-PHAT算法定向声源。我们分析了声源定向时各种可能的理论误差,对实验结果进行了误差分析,并与可能的理论误差做了对比。通过理论分析和对比实验,本文提出了线性麦克风阵列系统的性能评价指标,并给出了综合性能最优时的麦克风阵列系统参数配置。 关键词: 线性麦克风阵列; 声源定向; 理论误差; 定向性能 中图法分类号: ****文献标识码: A ?Supported by National High-Tech Research and Development Plan of China under Grant No. 2006AA01Z198; 作者简介: 段进伟(1985-),男,云南昆明人,大学本科,主要研究领域为人机交互与普适计算;

数字麦克风测试指南

RS TECH 数字麦克风测试指南 TrustSystem Gordon 2008‐12‐2

目录 1. 简介 (3) 2. 系统测试原理 (4) 3. 软件设置及功能介绍 (5) 3.1 硬件设置 (5) 3.2 信号源的选择 (5) 3.3 标准麦克风校准 (6) 3.4 人工嘴校准 (6) 3.5 对标准样品进行补偿 (7) 3.6 上下限的设定 (8) 3.7 数据保存 (10) 3.8 生成报告 (11) 4. 测试项目展示 (13) 4.1 频响及灵敏度 (13) 4.2 相位 (13) 4.3 失真 (14) 4.4 电流测试 (15) 4.5 动态范围(Dynamic Range) (15) 4.6 信噪比(S/N) (16) 4.7 本底噪声(self noise) (16) 附件1:RST3000测量放大器 (17) 附件 2:RST4000测量传声器 (20) 附件3:AM1000型人工嘴 (22)

1.简介 TrustSystem是功能强大、操作便捷的测试系统,充分降低初期成本的投入和维护费用。软件的不断升级,声卡和PC计算机的不断优化,使系统永远符合生产规格的新要求,充分体现其实用价值。 TrustSystem系统为客户提供宽广的平台,不同的模块组合可以应用不同的领域,满足了多项目,多任务于一体的测试要求。基于TrustSystem的数字麦克风测试,快捷方便,生产效率高。TrustSystem是全数字测试系统,无需经过D/A转换即可完成测试。 TrustSystem具有高效、强大的分析和处理能力,根据相应的标准要求能够同时一次完成数字麦克风各参数指标的测试: ″频率响应 ″灵敏度 ″相位及其极性 ″麦克风电流 ″信噪比 ″延时 ″总谐波失真 系统还可以根据客户的需求添加一些特定的模块,进而可以满足客户特殊的要求,系统的功能可以扩展和延伸。 TrustSystem测试结束后,简洁直观的显示出Pass/Fail,自动判断良品和不良品,极大的提高了测试效率。 TrustSystem可为产品提供分档,方便的进行灵敏度分档,相位匹配。并可同时测试两支麦克风,并显示其差异。

多通道语音增强方法简介

多通道语音增强方法简介 【摘要】由于多麦克风越来越多地部署到同一个设备上,基于双麦克风和麦克风阵列的多通道语音增强研究有了较大的应用价值。介绍了自适应噪声对消法、FDM等双通道语音增强方法和波束形成、独立分量分析等麦克风阵列语音增强方法,对各个方法的原理、发展和优缺点进行了详细分析和总结,对多通道语音增强深入研究有一定帮助。 【关键词】语音增强;双通道;麦克风阵列;波束形成 1.引言 语音是人们通讯交流的主要方式之一。我们生活的环境中不可避免地存在着噪声,混入噪声的语音会使人的听觉感受变得糟糕,甚至影响人对语音的理解。在语音编码、语音识别、说话人识别等系统中,噪声也会严重影响应用的效果。语音增强成为研究的一个问题,其模型如图1所示。 图1 语音增强模型 按照采集信号的麦克风数量分类,语音增强方法可被分为单通道(single channel)、双通道(dual-channel)、麦克风阵列(microphone array)三种类型。一般来说,麦克风越多,去噪的效果越好。早期,大部分通信/录音终端都只配有一个麦克风,因此单通道语音增强吸引了大量研究者的目光,方法较为成熟。但单通道方法的缺点是缺少参考信号,噪声估计难度大,增强效果受到限制。近年来随着麦克风设备的小型化和成本的降低,双麦克风和麦克风阵列越来越多地被部署。研究者的注意力也在从单通道语音增强向双通道和麦克风阵列语音增强转移,这里对已有的多通道语音增强算法作以简单介绍。 2.双通道语音增强方法 在语音增强中,一个关键的问题就是获得噪声。在单通道语音增强中,噪声是通过从带噪语音信号中估计得到的,估计算法较为复杂且估计噪声总是与真实噪声存在差异,这就限制了增强效果的提高。为了获得真实噪声,简单的做法就是增加一个麦克风来采集噪声。从带噪语音信号中减去采集噪声来得到语音信号,这种方法叫做自适应噪声对消法(ANC,adaptive noise canceling),是最原始的最简单的双通道语音增强算法。针对双麦克风开发的算法不多,主要有噪声对消法、一阶差分麦克风(FDM,first-order differential microphone)及基于FDM 改进得到的自适应零陷波束形成法(ANF,adaptive null-forming)。 2.1 自适应噪声对消法 噪声对消法采用两个麦克风,一个麦克风采集带噪语音,另一个采集噪声信号,用带噪信号减去噪声信号,得到语音信号。减操作一般在频域进行,如果采

基于麦克风阵列的语音增强算法概述

- 29 - 基于麦克风阵列的语音增强算法概述 丁 猛 (海军医学研究所,上海 200433) 【摘 要】麦克风阵列语音增强技术是将阵列信号处理与语音信号处理相结合,利用语音信号的空间相位信息对语音信号进行增强的一种技术。文章介绍了各种基于麦克风阵列的语音增强基本算法,概述了各算法的基本原理,并总结了各算法的特点及其所适用的声学环境特性。 【关键词】麦克风阵列;阵列信号处理;语音增强 【中图分类号】TN911.7 【文献标识码】A 【文章编号】1008-1151(2011)03-0029-02 (一)引言 在日常生活和工作中,语音通信是人与人之间互相传递信息沟通不可缺少的方式。近年来,虽然数据通信得到了迅速发展,但是语音通信仍然是现阶段的主流,并在通信行业中占主导地位。在语音通信中,语音信号不可避免地会受到来自周围环境和传输媒介的外部噪声、通信设备的内部噪声及其他讲话者的干扰。这些干扰共同作用,最终使听者获得的语音不是纯净的原始语音,而是被噪声污染过的带噪声语音,严重影响了双方之间的交流。 应用阵列信号处理技术的麦克风阵列能够充分利用语音信号的空时信息,具有灵活的波束控制、较高的空间分辨率、高的信号增益与较强的抗干扰能力等特点,逐渐成为强噪声环境中语音增强的研究热点。美国、德国、法国、意大利、日本、香港等国家和地区许多科学家都在开展这方面的研究工作,并且已经应用到一些实际的麦克风阵列系统中,这些应用包括视频会议、语音识别、车载声控系统、大型场所的记录会议和助听装置等。 文章将介绍各种麦克风阵列语音增强算法的基本原理,并总结各个算法的特点及存在的局限性。 (二)常见麦克风阵列语音增强方法 1.基于固定波束形成的麦克风阵列语音增强 固定波束形成技术是最简单最成熟的一种波束形成技术。1985年美国学者Flanagan 提出采用延时-相加(Delay-and-Sum)波束形成方法进行麦克风阵列语音增强,该方法通过对各路麦克风接收到的信号添加合适的延时补偿,使得各路输出信号在某一方向上保持同步,并在该方向的入射信号获得最大增益。此方法易于实现,但要想获取较高的噪声抑制能力则需要增加麦克风数目,然而对非相干噪声没有抑制能力,环境适应性差,因此实际中很少单独使用。后来出现的微分麦克风阵列(Differential Microphone Arrays)、超方向麦克风阵列(Superairective Microphone Arrays )和固定频率波束形成(Frequency-Invariant Beamformers) 技术也属于固定波束形成。 2.基于自适应波束形成器的麦克风阵列语音增强 自适应波束形成是现在广泛使用的一类麦克风阵列语音增强方法。最早出现的自适应波束形成算法是1972年由Frost 提出的线性约束最小方差(Linearly Constrained Minimum Variance,LCMV)自适应波束形成器。其基本思想是在某方向有用信号的增益一定的前提下,使阵列输出信号的功率最小。在线性约束最小方差自适应波束形成器的基础上,1982年Griffiths 和Jim 提出了广义旁瓣消除器(Generalized Sidelobe Canceller, GSC),成为了许多算法的基本框架(图1)。 图1 广义旁瓣消除器的基本结构 广义旁瓣消除器是麦克风阵列语音增强应用最广泛的技术,即带噪声的语音信号同时通过自适应通道和非自适应通道,自适应通道中的阻塞矩阵将有用信号滤除后产生仅包含多通道噪声参考信号,自适应滤波器根据这个参考信号得到噪声估计,最后由这个被估计的噪声抵消非自适应通道中的噪声分量,从而得到有用的纯净语音信号。 如果噪声源的数目比麦克风数目少,自适应波束法能得到很好的性能。但是随着干扰数目的增加和混响的增强,自适应滤波器的降噪性能会逐渐降低。 3.基于后置滤波的麦克风阵列语音增强 1988年Zelinski 将维纳滤波器应用在麦克风阵列延时—相加波束形成的输出端,进一步提高了语音信号的降噪效果,提出了基于后置滤波的麦克风阵列语音增强方法(图2)。基于后置滤波的方法在对非相干噪声抑制方面,不仅具有良好的效果,还能够在一定程度上适应时变的声学环境。它的基本原理是:假设各麦克风接收到的目标信号相同,接收到的噪声信号独立同分布,信号和噪声不相关,根据噪声特性, 【收稿日期】2010-12-30 【作者简介】丁猛(1983-),男,海军医学研究所研究实习员。

基于麦克风阵列的声源定位技术毕业设计

毕业设计说明书基于麦克风阵列的声源定位技术 学生姓名:学号: 学院: 专业: 指导教师: 2012年 6 月

基于麦克风阵列的声源定位技术 摘要 声源定位技术是利用麦克风拾取语音信号,并用数字信号处理技术对其进行分析和处理,继而确定和跟踪声源的空间位置。声源定位技术在视频会议、语音识别和说话人识别、目标定位和助听装置等领域有着重要的应用。传统的单个麦克风的拾音范围很有限,拾取信号的质量不高,继而提出了用麦克风阵列进行语音处理的方法,它可以以电子瞄准的方式对准声源而不需要人为的移动麦克风,弥补单个麦克风在噪声处理和声源定位等方面的不足,麦克风阵列还具有去噪、声源定位和跟踪等功能,从而大大提高语音信号处理质量。 本文主要对基于多麦克风阵列的声源定位技术领域中的基于时延的定位理论进行了研究,在此基础上研究了四元阵列、五元阵列以及多元阵列的定位算法,并且分别对其定位精度进行了分析,推导出了影响四元、五元阵列目标方位角、俯仰角及目标距离的定位精度的一些因素及相关定位方程,并通过matlab仿真软件对其定位精度进行了仿真;最后在四元、五元阵列的基础上,采用最小二乘法对多元阵列定位进行了计算;通过目标计算值和设定值对比,对多元阵列的定位精度进行了分析,并得出了多元阵列的目标定位的均方根误差。 关键词:麦克风阵列,声源定位,时延,定位精度,均方根误差

Based on Microphone Array for Sound Source Localization Research Abstract Sound source positioning technology is to use the microphone to pick up voice signals, and digital signal processing technology used for their analysis and processing , Then identify and track the spatial location of sound source. Acoustic source localization techniques have a variety of important uses in videoconferencing, speech recognition and speaker identification, targets’ direction finding, and biomedical devices for the hearing impaired. The pick up range of traditional single microphone is limited, the signal quality picked up is not high, then a voice processing methods with the microphone array has been proposed . It may be electronically aimed to provide a high-quality signal from desired source localization and doe s not require physical movement to alter these microphones’ direction of reception. Microphone array has the functions of de-noising, sound source localization and tracking functions, which greatly improved the quality of voice signal processing. The article discusses some issues of sound source localization based on microphone array, On the basis ,it studies a four element array,five element array and an multiple array positioning algorithm, then the positioning precision is analyzed. Derived some factors of the azimuth and elevation angle targets the target range of the estimation precision affected and positioning equation. And through MATLAB simulation software for its positioning accuracy of simulation. finally ,based on four yuan, five yuan of array, using the least square method ,the multiple array localization were calculated. Through the contrast of the target value and set value, multiple array positioning accuracy is analyzed, and the of diverse array target positioning. Keywords: Microphone Array, Sound Source Localization, Time Delay, Positioning precision, root mean square error

麦克风阵列结构设计建议和方案参考

麦克风阵列结构设计建议和方案参考 1. 目的 本文档主要用于指导麦克风阵列的在产品应用中的麦克结构设计参考和建议。 2. 麦克风结构总体设计要求 1) 麦克风阵列需要减震密封处理,为保证麦克风的声音采集效果,能够满足语音识别和算法要求,通常采用将麦克风固定于硅胶套内(硅胶软硬度可根据实际结构形式进行匹配验证),且麦克风和硅胶之间有腔体存在; 2) 麦克风阵列的数量、间距及安装位置要满足算法要求; 3) 根据产品结构型式和产品需求,通常麦克风阵列的结构设计有两种型式:面壳安装方式和非面壳安装方式,两种方式的结构设计要求和建议参照下述方案说明。 3. 不同结构型式麦克风阵列结构设计方案介绍和说明 3.1 面壳安装方式方案 该结构方案麦克风阵列和硅胶套装配后固定于面壳上,通过面壳上的拾音孔进行录音采集。 a) 3D 截面效果图 b) 设计说明 (1) 麦克风阵列的数量、间距和安装位置满足算法要求; (2) 麦克风固定于硅胶套内,且注意麦克风和硅胶套及硅胶套上端和面壳内表面一定不能 有空腔存在(避免腔体反射对麦克风录音效果影响); (3) 麦克风拾音端面和面壳拾音孔外表面之间距离越短越好,最长不要超过3mm ; (4) 根据应用场景情况,可在麦克风表面增加防风棉(类似车载空调风直吹场景) 和防尘

棉等零件。 3.2 非面壳安装方式: 该结构形式通常麦克风阵列固定于密封减震硅胶套内,然后整个麦克风单元固定于PCB 上。 a) 3D 效果图 b) 设计说明 (1) 设计说明麦克风阵列的数量、间距和安装位置满足算法要求 (2) 麦克风阵列之间应保证通透性,麦克风相互之间不能有隔板等障碍物阻挡 (3) 麦克风单元上部(例如图1中的上方主板外壳B )和麦克风拾音端面至少留5mm 的通透空间,如果是指向性麦克风,注意麦克风器件下方要留麦克风器件背面拾 音孔空间和距离。

一文带你全面熟悉智能语音之麦克风阵列技术的原理

一文带你全面熟悉智能语音之麦克风阵列技术的原理 麦克风阵列(Microphone Array),从字面上,指的是麦克风的排列。也就是说由一定数目的声学传感器(一般是麦克风)组成,用来对声场的空间特性进行采样并处理的系统。 早在20世纪70、80年代,麦克风阵列已经被应用于语音信号处理的研究中,进入90年代以来,基于麦克风阵列的语音信号处理算法逐渐成为一个新的研究热点。而到了“声控时代”,这项技术的重要性显得尤为突出。 麦克风阵列能干什么? 任何一项技术的发生发展都伴随着问题的提出及解决,麦克风阵列也是如此。那么它主要应用在哪些场景下呢?又有着怎样的功能! ◆【噪声环境怎么破?】——语音增强(Speech Enhancement) 语音增强是指当语音信号被各种各样的噪声(包括语音)干扰甚至淹没后,从含噪声的语音信号中提取出纯净语音的过程。所以DingDong在嘈杂环境下,也能准确识别语音指令。通过麦克风阵列波束形成进行语音增强示意图 从20世纪60年代开始,Boll等研究者先后提出了针对使用一个麦克风的语音增强技术,称为单通道语音增强。因为它使用的麦克风个数最少,并且充分考虑到了语音谱和噪声谱的特性,使得这些方法在某些场景下也具有较好的噪声抑制效果,并因其方法简单、易于实现的特点广泛应用于现有语音通信系统与消费电子系统中。 但是,在复杂的声学环境下,噪声总是来自于四面八方,且其与语音信号在时间和频谱上常常是相互交叠的,再加上回波和混响的影响,利用单麦克风捕捉相对纯净的语音是非常困难的。而麦克风阵列融合了语音信号的空时信息,可以同时提取声源并抑制噪声。 目前科大讯飞已经实现了基于线性阵列、平面阵列以及空间立体阵列的波束形成和降噪技术,效果均达到业界一流水平。 2013年科大讯飞车载降噪产品和国际竞争对手效果对比 ◆【说话人老是变幻位置怎么破?】——声源定位(Source Localization)

讯飞麦克风阵列声学测试方法

讯飞麦克风阵列声学测试 方法 This model paper was revised by the Standardization Office on December 10, 2020

讯飞麦克风阵列声学测试方法 测试准备 环境: 混响环境(模拟家庭客厅环境) 器材: 两个高保真音箱:1个用于播放语音,1个用于播放噪声; 音响支架2个:1个用于放置语音播放设备,1个用于放置噪音播放设备; 笔记本电脑2个:1个用于播放语音信号和噪声信号,1个用于抓取日志或录音; 分贝仪1个:用于噪声、语音信号强度测试,计算信噪比等; 卷尺1个:用于测试与设备的距离; 语料: 唤醒语料:用于测试唤醒率; 命令词语料:用于语音识别,测试识别率; 本机功放播放音频:回声消除测试使用; 家庭环境噪声音频:可播放中央台新闻节目,约30分钟; 硬件:

讯飞demo板1个 裸板1个 整机1个 软件: IPTV主板软件: 可抓日志,准备至少两个串口线。 可录音,可录15分钟以上。准备两个U盘。 可手动打开/关闭唤醒模式。可手动设置波束。 核心板固件:准备烧录工具。 唤醒词:跟唤醒词音频一致。 测试环境搭建 麦克风阵列测试示意图如下:

在安静环境下,放置阵列位于待测区域中间位置,唤醒源位于距阵列1m 处,噪声源位于距阵列处,唤醒源和阵列在一条直线上。 通过高保真音箱播放语料,通过分贝仪在阵列处测试信噪比,要求噪声源、唤醒源在阵列处的响度均为55dB 。安静环境下和噪声环境下分别测试唤醒率和识别率。 调整唤醒源的位置,距阵列的距离分别为3m 和5m 。要求唤醒源在阵列处的响度仍为55dB 。安静环境下和噪声环境下分别进行唤醒率和识别率测试。 测试说明: 测试环境因素影响非常大,唤醒源的位置角度调一调,响度校正时测试值的波动也很大。每次测试都要有对比物,只有同一时间同一环境对比测试的结果才有意义。 一、声学效果测试 1 分别对音箱6麦克整机与音箱裸麦、音箱裸麦与评估板裸麦进行唤醒、声源定位测试 测试步骤: 唤醒源 待测区域 麦克风阵

数字麦克风

数字麦克风潮流势不可当 摘编自“郑虎鸣等文稿” 由于今日的可携式装置普遍具备多模无线通讯功能,使得麦克风组件本身抵抗射频与电磁波干扰的能力更受重视。数字麦克风的崛起,遂成大势所趋。 随着信息技术的日益发展,各类电子系统中数字电路所占比重越来越大,尤其在个人计算机(PC)的多媒体影音应用及3G手机应用市场上,对声音讯号的输入质量及抗外界各种干扰的能力都带来了更高的要求。这些要求靠传统模拟麦克风本身声学性能的改进已经难以奏效,必须透过结合数组式麦克风架构与音讯数字讯号算法的处理后,才可以较理想地达到消除回声、噪声、增强波束指向性等效果。模拟数字转换是导入数字讯号处理技术的前提,因此数字麦克风的市场需求前景是毋庸置疑的。 数字模拟转换器助力麦克风数字化发展 数字麦克风,顾名思义就是直接输出数字脉冲讯号的麦克风电声组件。从应用角度来划分,可以分为两类:一种为USB接口的麦克风,其电声组件的输出格式仍为模拟讯号,经过模拟数字转换(A/D Convert)及通用序列总线(USB)接口芯片后,转换为个人计算机所能接受的数字讯号接口,此类麦克风多为个人计算机的接口设备,如USB接口手持麦克风、USB接口耳机麦克风等,严格说来此类麦克风应称为数字接口麦克风。另一类为真正的数字麦克风,则是指内建前置增益(Pre Amp)及A/D编码芯片的麦克风电声组件,其输出讯号格式是数字脉冲讯号,可以直接与相应的编译码芯片(CODEC)接口传输数字讯号,本文重点介绍此类数字麦克风原理及应用。 事实上,所有真实世界的讯号都是模拟讯号,例如温度、压力,以及目前在电话、无线电和电视广播中的声音和图像讯号。模拟电子讯号则是随时间连续变化的电磁波,利用电磁波的描述参数(如振幅、频率或相位等)来表示要传输的数据,其数值可以是无限多个。数字讯号则是一种离散讯号,透过电压脉冲表示要传输的数据,其数值是有限的。数字数据则是模拟数据经量化后得到的离散的值,例如在计算机中用二进制代码表示的字符、图形、音讯与视频数据。数字麦克风便是将采集到的声压这一连续变化的模拟物理量,直接转换为特定编码格式的数字脉冲讯号输出,供信息设备进行加工处理。 目前市场上芯片供货商所提供的内置式数字麦克风芯片普遍采用模拟数字转换编码格式,此编码格式亦与相关接口应用设备采用的数字讯号处理器(DSP)及编译码处理芯片的数字音讯输入格式相兼容。 转换采用过取样技术,将讯号按时间分割,保持振幅恒定,具有高取样率、噪声整形和位数长短的特点。转换的工作可以在低取样率、高分辨率的量化器或者高取样率、低分辨率的量化器中进行,在数字音讯中应用很广泛,如用于音讯讯号数字化的模拟数字转换器(ADC)及可将已经数字化处理后的音讯讯号还原为模拟声音讯号的数字模拟转换器(DAC)。根据其所采用的具体结构,转换还可分为1位或多位转换,目前数字麦克风普遍使用的 ADC采用1位转换技术,克服了采用较多比特数时所带来的量化非线性误差、纠错困难的缺点。 以灯泡的比喻来说明1位转换与多位转换(在此以16位为例)之间的差异,可方便读者掌握其差异。传统的转换器像十六个电灯泡,连接到各自的开关上,每个灯泡又有不同的开关状态,用各种组合方式可以得到216=65,536种不同的结果。 然而,不同灯泡间的亮度差会引入误差,也因为误差的缘故,即使亮灯的数目一样,某种组合所产生的亮度跟其它组合相比,可能会稍亮或稍暗些;1位转换技术则是完全不同的概念,不用那么多灯泡和开关,只用一个灯泡和一个开关。房间亮度的变化可以通过简单的改变开、关灯泡的次数来得到。如果灯泡开的次数增加,房间的亮度就会增加。因此,1位转换跟多位转换最明显的区别便是增加取样的频率。 转换是将讯号按时间分割,保持讯号振幅恒定。它用高电位或低电位的脉冲表示讯号,例如可以采用脉冲密度调变(PDM),产生出恒定振幅脉冲讯号,不论电位高低都能够重建输出讯号波形。数字麦克风与传统麦克风的最大区别,在于采用了ADC转换IC芯片取代了传统麦克风中的场效应晶体管(FET),从而实现了数字讯号的直接输出。

基于麦克风阵列的声源定位技术

目录 一、绪论 (1) 1.1 课题研究背景和意义 (1) 1.2 国内外研究现状和发展趋势 (2) 1.2.1研究历史和现状 (2) 1.2.2发展趋势 (2) 1.3本文所要研究的内容 (2) 二、麦克风阵列的处理模型和方法介绍 (4) 2.1麦克风阵列信号处理模型 (4) 2.1.1远场模型 (4) 2.1.2远场麦克风阵列均匀线阵模型 (5) 2.2基于时延估计声源定位方法的介绍 (6) 2.2.1广义互相关时延估计法 (6) 2.2.2互功率谱相位时延估计法 (7) 2.2.3基于基音加权的时延估计法 (7) 2.2.4基于声门脉冲激励的时延估计法 (7) 2.2.5 基于LMS 的自适应时延估计法[8] (8) 2.2.6 基于子空间分解的时延估计法 (9) 2.2.7基于声学传递函数比的时延估计法 (9) 三、麦克风声源定位的研究与设计 (11) 3.1广义互相关时延估计设计流程 (11) 3.2 时延估计定位算法实验研究 (12) 3.3互相关延时估计方法 (12) 3.4互相关延时估计加权函数性能分析 (15) 3.5声源定位的模型分析 (16) 3.6时延估计的测量与计算 (17) 四、总结 (20) 4.1 本文研究的问题与难点 (20) 4. 2课题研究总结 (20) 参考文献 (22) 致谢 (24) 摘要 随着科技的进步和发展,麦克风阵列的声源定位技术已经成为人们研究的重要课题之一。用麦克风阵列接受语音信号就是声源定位技术的一种,接受到的语音技术再输出到计算机,经过计算机技术的分析和处理,然后可以确定声源是从

哪个方位传过来的。声源定位技术的广泛应用在许多领域,如定位技术,在军事上的语音识别,视频会议的定位技术。麦克风阵列对于噪声、声源定位、跟踪这些方面都比单个麦克风要好,从而大大提高语音信号处理质量。 本文主要是用麦克风阵和时延估计声源定位方法对于声源的定位。首先介绍了几种常见的声源定位方法和各自的优缺点,在此基础上研究基于时延估计的声源定位方法(GCC),比较远场定位和近场定位的差别,确定本文研究的方法远场定位法。由于远场定位时,只需要测出声音信号到达各个麦克风阵列的时延(TDOA),剩下的就是简单的数学公式推导。由于该方法计算量小,易于实现的优点,实际应用比较广泛。 关键词:麦克风阵列,声源定位,时延估计,GCC

麦克风波束成形的基本原理

启拓专业手拉手会议,矩阵切换厂商-全球抗干扰专家 麦克风波束成形的基本原理 麦克风波束成形是一个丰富而复杂的课题。所有MEMS麦克风都具有全向拾音响应,也就是能够均等地响应来自四面八方的声音。多个麦克风可以配置成阵列,形成定向响应或波束场型。经过设计,波束成形麦克风阵列可以对来自一个或多个特定方向的声音更敏感。本应用笔记仅讨论基本概念和阵列配置,包括宽边求和阵列和差分端射阵列,内容涵盖设计考虑、空间和频率响应以及差分阵列配置的优缺点。 阵列和差分端射阵列,内容涵盖设计考虑、空间和频率响应以及差分阵列配置的优缺点。 空气中声波的频率与波长的关系 方向性和极坐标图 方向性描述麦克风或阵列的输出电平随消声空间中声源位置的改变而变化的模式。ADI 公司的所有MEMS麦克风都是全向麦克风,即它们对来自所有方向的声音都同样敏感,与麦克风所处的方位无关。图2所示为全向麦克风响应的2轴极坐标图。无论麦克风的收音孔位于

x-y平面、x-z平面还是y-z平面,此图看起来都相同。 全向麦克风响应图 本应用笔记中,阵列的“前方”称为轴上方向,指拾取目标音频的方向,在极坐标图上标为0°;“后方”为180°方向;“侧边”指前后方之间的空间,中心方向分别位于90°和270°。本应用笔记中的所有极坐标图均归一化到0°响应水平。 涉及声音频率和波长的所有公式都使用以下关系式:c = f ×λ,其中c为343 m/s,即声音在20℃的空气中的传播速度。图1显示了这些条件下声波的频率与波长的关系。本应用笔记末尾的“设计参数计算公式”列出了本文所用阵列设计参数的计算公式。 宽边阵列 宽边麦克风阵列是指一系列麦克风的排列方向与要拾取的声波方向垂直(见图3)。图中,d是阵列中两个麦克风元件的间距。来自阵列宽边的声音通常就是要拾取的声音。

麦克风波束成形的基本原理

麦克风波束成形的基本原理 2012/04/06 简介 所有MEMS麦克风都具有全向拾音响应,也就是能够均等地响应来自四面八方的声音。多个麦克风可以配置成阵列,形成定向响应或波束场型。经过设计,波束成形麦克风阵列可以对来自一个或多个特定方向的声音更敏感。 麦克风波束成形是一个丰富而复杂的课题。本应用笔记仅讨论基本概念和阵列配置,包括宽边求和阵列和差分端射阵列,内容涵盖设计考虑、空间和频率响应以及差分阵列配置的优缺点。 图1:空气中声波的频率与波长的关系 方向性和极坐标图 方向性描述麦克风或阵列的输出电平随消声空间中声源位置的改变而变化的模式。ADI公司的所有MEMS麦克风都是全向麦克风,即它们对来自所有方向的声音都同样敏感,与麦克风所处的方位无关。图2所示为全向麦克风响应的2轴极坐标图。无论麦克风的收音孔位于x-y平面、x-z平面还是y-z平面,此图看起来都相同。 图2:全向麦克风响应图本应用笔记中,阵列的"前方"称为轴上方向,指拾取目标音频的方向,在极坐标图上标为0°;"后方"为180°方向;"侧边"指前后方之间的空间,中心方向分别位于90°和270°。本应用笔记中的所有极坐标图均归一化到0°响应水平。 涉及声音频率和波长的所有公式都使用以下关系式:c = f × λ,其中c为343 m/s,即声音在20℃的空气中的传播速度。图1显示了这些条件下声波的频率与波长的关系。本应用笔记末尾的"设计参数计算公式"列出了本文所用阵列设计参数的计算公式。 宽边阵列 宽边麦克风阵列是指一系列麦克风的排列方向与要拾取的声波方向垂直(见图3)。图中,d是阵列中两个麦克风元件的间距。来自阵列宽边的声音通常就是要拾取的声音。

麦克风阵列模块XFM10211数据手册V0.3

科大讯飞麦克风阵列模块XFM10211 数据手册 科大讯飞股份有限公司 安徽省合肥市望江西路666号国家科技创新型试点市示范区科大讯飞语音产业基地

版本历史 声明 本手册由科大讯飞股份有限公司版权所有,未经许可,任何单位和个人都不得以电子的、机械的、磁性的、光学的、化学的、手工的等形式复制、传播、转录和保存该出版物,或翻译成其他语言版本。一经发现,将追究其法律责任。 科大讯飞保证本手册提供信息的准确性和可靠性,但并不对文本中可能出现的文字错误或疏漏负责。讯飞数码保留更改本手册的权利,如有修改,恕不相告。请在订购时联系我们以获得产品最新信息。对任何用户使用我们产品时侵犯第三方版权或其他权利的行为本公司概不负责。另外,在科大讯飞未明确表示产品有该项用途时,对于产品使用在极端条件下导致一些失灵或损毁而造成的损失概不负责。

目录 1产品概述 (1) 2订货信息 (1) 3功能描述 (1) 4系统连接方式参考 (2) 5模块尺寸图 (2) 6硬件接口定义 (2) 7电路设计参考 (3) 7.1音频输出信号与上位机连接方法 (3) 7.2参考信号接入方法 (4) 8参数列表 (4) 8.1电气特性参数 (4) 8.2极限值 (5) 8.3音频输出特性 (5) 9麦克风设计和型号参考 (5) 9.1设计方案参考 (5) 9.2麦克风选型参考 (6)

1产品概述 科大讯飞麦克风阵列模块XFM10211是一款基于2麦克风阵列的语音硬件方案。采用2麦克风录音,再经过麦克风阵列模块进行语音降噪、回声消除、语音唤醒后,输出数字音频信号、模拟音频信号、唤醒触发信号等。 产品特点主要表现在: ●2麦克风阵列 ●语音唤醒 ●回声消除 2订货信息 表格 1 订货信息 3 功能描述 ●2麦克风阵列 支持远场录音、去混响、降噪。 ●语音唤醒 模块预定的语音唤醒词是“打开语音助手”,唤醒后通过模块的W AKEUP接口输出高电平给用户上位机。 ●回声消除 模块可利用参考信号进行回声消除。回声是设备扬声器播放的声音又被麦克风拾取,形成对设备操控信号的干扰,一般在手机、音箱、电视机等产品中回声比较严重。

相关文档