文档库 最新最全的文档下载
当前位置:文档库 › 实验四(IIR数字滤波器设计及软件实现)

实验四(IIR数字滤波器设计及软件实现)

实验四(IIR数字滤波器设计及软件实现)
实验四(IIR数字滤波器设计及软件实现)

10.4 实验四IIR数字滤波器设计及软件实现

10.4.1 实验指导

1.实验目的

(1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法;

(2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。

(3)掌握IIR数字滤波器的MATLAB实现方法。

(4)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。

2.实验原理

设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。本实验要求读者调用如上函数直接设计IIR数字滤波器。

本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。

3. 实验内容及步骤

(1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线,如图10.4.1所示。由图可见,三路信号时域混叠无法在时域分离。但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。

图10.4.1 三路调幅信号st的时域波形和幅频特性曲线

(2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为

60dB 。

提示:抑制载波单频调幅信号的数学表示式为

0001()cos(2)cos(2)[cos(2())cos(2())]2

c c c s t f t f t f f t f f t ππππ==-++ 其中,cos(2)c f t π称为载波,f c 为载波频率,0cos(2)f t π称为单频调制信号,f 0为调制正弦波信号频率,且满足0c f f >。由上式可见,所谓抑制载波单频调幅信号,就是2个正弦信号相乘,它有2个频率成分:和频0c f f +和差频0c f f -,这2个频率成分关于载波频率f c 对称。所以,1路抑制载波单频调幅信号的频谱图是关于载波频率f c 对称的2根谱线,其中没有载频成分,故取名为抑制载波单频调幅信号。容易看出,图10.4.1中三路调幅信号的载波频率分别为250Hz 、500Hz 、1000Hz 。如果调制信号m(t)具有带限连续频谱,无直流成分,则()()cos(2)c s t m t f t π=就是一般的抑制载波调幅信号。其频谱图是关于载波频率f c 对称的2个边带(上下边带),在专业课通信原理中称为双边带抑制载波 (DSB-SC) 调幅信号,简称双边带 (DSB) 信号。如果调制信号m(t)有直流成分,则()()cos(2)c s t m t f t π=就是一般的双边带调幅信号。其频谱图是关于载波频率f c 对称的2个边带(上下边带),并包含载频成分。

(3)编程序调用MATLAB 滤波器设计函数ellipord 和ellip 分别设计这三个椭圆滤波器,并绘图显示其幅频响应特性曲线。

(4)调用滤波器实现函数filter ,用三个滤波器分别对信号产生函数mstg 产生的信号st 进行滤波,分离出st 中的三路不同载波频率的调幅信号y 1(n)、y 2(n)和y 3(n), 并绘图显示y1(n)、y2(n)和y3(n)的时域波形,观察分离效果。

4.信号产生函数mstg 清单

function st=mstg

%产生信号序列向量st,并显示st 的时域波形和频谱

%st=mstg 返回三路调幅信号相加形成的混合信号,长度N=1600

N=1600 %N 为信号st 的长度。

Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz ,Tp 为采样时间

t=0:T:(N-1)*T;k=0:N-1;f=k/Tp;

fc1=Fs/10; %第1路调幅信号的载波频率fc1=1000Hz,

fm1=fc1/10; %第1路调幅信号的调制信号频率fm1=100Hz

fc2=Fs/20; %第2路调幅信号的载波频率fc2=500Hz

fm2=fc2/10; %第2路调幅信号的调制信号频率fm2=50Hz

fc3=Fs/40; %第3路调幅信号的载波频率fc3=250Hz,

fm3=fc3/10; %第3路调幅信号的调制信号频率fm3=25Hz

xt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号

xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号

xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号

st=xt1+xt2+xt3; %三路调幅信号相加

fxt=fft(st,N); %计算信号st 的频谱

%====以下为绘图部分,绘制st 的时域波形和幅频特性曲线====================

subplot(3,1,1)

plot(t,st);grid;xlabel('t/s');ylabel('s(t)');

axis([0,Tp/8,min(st),max(st)]);title('(a) s(t)的波形')

subplot(3,1,2)

stem(f,abs(fxt)/max(abs(fxt)),'.');grid;title('(b) s(t)的频谱')

axis([0,Fs/5,0,1.2]);

xlabel('f/Hz');ylabel('幅度')

5.实验程序框图如图10.4.2所示,供读者参考。

图10.4.2 实验4程序框图

6.思考题

(1)请阅读信号产生函数mstg ,确定三路调幅信号的载波频率和调制信号频率。

(2)信号产生函数mstg 中采样点数N=800,对st 进行N 点FFT 可以得到6根理想谱线。如果取N=1000,可否得到6根理想谱线?为什么?N=2000呢?请改变函数mstg 中采样点数N 的值,观察频谱图验证您的判断是否正确。

(3)修改信号产生函数mstg ,给每路调幅信号加入载波成分,产生调幅(AM )信号,重复本实验,观察AM 信号与抑制载波调幅信号的时域波形及其频谱的差别。

提示:AM 信号表示式:0()[1cos(2)]cos(2)c s t f t f t ππ=+。

7.实验报告要求

(1)简述实验目的及原理。

(2)画出实验主程序框图,打印程序清单。

(3)绘制三个分离滤波器的损耗函数曲线。

(4)绘制经过滤波分理出的三路调幅信号的时域波形。

(5)简要回答思考题。 调用函数mstg 产生st ,自动绘图

显示st 的时域波形和幅频特性曲线

调用ellipord 和ellip 分别设计三个椭圆滤

波器,并绘图显示其幅频响应特性曲线。

调用filter ,用三个滤波器分别对信号st 进行滤波,分离

出三路不同载波频率的调幅信号y 1(n)、y 2(n)和y 3(n)

绘图显示y1(n)、y2(n)和y3(n)的时域波形和幅频特性曲线

End

10.4.2 滤波器参数及实验程序清单

1、滤波器参数选取

观察图10.4.1可知,三路调幅信号的载波频率分别为250Hz 、500Hz 、1000Hz 。带宽(也可以由信号产生函数mstg 清单看出)分别为50Hz 、100Hz 、200Hz 。所以,分离混合信号st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的指标参数选取如下:

对载波频率为250Hz 的条幅信号,可以用低通滤波器分离,其指标为

带截止频率280p f =Hz ,通带最大衰减0.1dB p α=dB ;

阻带截止频率450s

f =Hz ,阻带最小衰减60dB s α=dB , 对载波频率为500Hz 的条幅信号,可以用带通滤波器分离,其指标为

带截止频率440pl f =Hz ,560pu f =Hz ,通带最大衰减0.1dB p α=dB ;

阻带截止频率275sl

f =Hz ,900su f =Hz ,Hz ,阻带最小衰减60dB s α=dB , 对载波频率为1000Hz 的条幅信号,可以用高通滤波器分离,其指标为

带截止频率890p f =Hz ,通带最大衰减0.1dB p α=dB ;

阻带截止频率550s

f =Hz ,阻带最小衰减60dB s α=dB , 说明:(1)为了使滤波器阶数尽可能低,每个滤波器的边界频率选择原则是尽量使滤波器过渡带宽尽可能宽。

(2)与信号产生函数mstg 相同,采样频率Fs=10kHz 。

(3)为了滤波器阶数最低,选用椭圆滤波器。

按照图10.4.2 所示的程序框图编写的实验程序为exp4.m 。

2、实验程序清单

%实验4程序exp4.m

% IIR 数字滤波器设计及软件实现

clear all;close all

Fs=10000;T=1/Fs; %采样频率

%调用信号产生函数mstg 产生由三路抑制载波调幅信号相加构成的复合信号st

st=mstg;

%低通滤波器设计与实现=========================================

fp=280;fs=450;

wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF 指标(低通滤波器的通、阻带边界频)

[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord 计算椭圆DF 阶数N 和通带截止频率wp

[B,A]=ellip(N,rp,rs,wp); %调用ellip 计算椭圆带通DF 系统函数系数向量B 和A

y1t=filter(B,A,st); %滤波器软件实现

% 低通滤波器设计与实现绘图部分

figure(2);subplot(3,1,1);

myplot(B,A); %调用绘图函数myplot 绘制损耗函数曲线

yt='y_1(t)';

subplot(3,1,2);tplot(y1t,T,yt); %调用绘图函数tplot 绘制滤波器输出波形

%带通滤波器设计与实现====================================================

fpl=440;fpu=560;fsl=275;fsu=900;

wp=[2*fpl/Fs,2*fpu/Fs];ws=[2*fsl/Fs,2*fsu/Fs];rp=0.1;rs=60;

[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp

[B,A]=ellip(N,rp,rs,wp); %调用ellip计算椭圆带通DF系统函数系数向量B和A

y2t=filter(B,A,st); %滤波器软件实现

% 带通滤波器设计与实现绘图部分(省略)

%高通滤波器设计与实现================================================

fp=890;fs=600;

wp=2*fp/Fs;ws=2*fs/Fs;rp=0.1;rs=60; %DF指标(低通滤波器的通、阻带边界频)

[N,wp]=ellipord(wp,ws,rp,rs); %调用ellipord计算椭圆DF阶数N和通带截止频率wp

[B,A]=ellip(N,rp,rs,wp,'high'); %调用ellip计算椭圆带通DF系统函数系数向量B和A

y3t=filter(B,A,st); %滤波器软件实现

% 高低通滤波器设计与实现绘图部分(省略)

?%myplot;计算时域离散系统损耗函数并绘制曲线图。

?function myplot(B,A)

?%B为系统函数分子多项式系数向量

?%A为系统函数分母多项式系数向量

?[H,w]=freqz(B,A,1000);

?m=abs(H);

?plot(w/pi,20*log10(m/max(m)));grid on;

?title('低通滤波损耗函数曲线');

?xlabel('w');ylabel('幅度');

?axis([0,1,-80,5]);

?

?function tplot(y1t,T,yt)

?%时域序列连续曲线绘图函数

?%y1t:信号数据序列,yt:绘图信号的纵坐标名称(字符串)

?%T为采样间隔

?N=1600;

?t=0:T:(N-1)*T;

?plot(t,y1t);title('低通滤波后的波形');

?xlabel('t/s');ylabel(yt);

10.4.3 实验程序运行结果

实验4程序exp4.m运行结果如图104.2所示。由图可见,三个分离滤波器指标参数选取正确,算耗函数曲线达到所给指标。分离出的三路信号y1(n),y2(n)和y3(n)的波形是抑制载波的单频调幅波。

(a) 低通滤波器损耗函数及其分离出的调幅信号y1(t)

(b) 带通滤波器损耗函数及其分离出的调幅信号y2(t)

(c)高通滤波器损耗函数及其分离出的调幅信号y3(t)

图104. 实验4程序exp4.m运行结果

10.4.4 简要回答思考题

思考题(1)已经在10.4.2节解答。思考题(3)很简单,请读者按照该题的提示修改程序,运行观察。

思考题(3)因为信号st是周期序列,谱分析时要求观察时间为整数倍周期。所以,本题的一般解答方法是,先确定信号st的周期,在判断所给采样点数N对应的观察时间Tp=NT是否为st的整数个周期。但信号产生函数mstg产生的信号st共有6个频率成分,求其周期比较麻烦,故采用下面的方法解答。

分析发现,st的每个频率成分都是25Hz的整数倍。采样频率Fs=10kHz=25×400Hz,即在25Hz的正弦波的1个周期中采样400点。所以,当N为400的整数倍时一定为st的整数个周期。因此,采样点数N=800和N=2000时,对st进行N点FFT可以得到6根理想谱线。如果取N=1000,不是400的整数倍,不能得到6根理想谱线。

滤波器设计步骤及实现程序

数字滤波器的设计步骤及程序实现 湖南理工学院信息与通信工程学院 一、IIR 脉冲响应不变法设计步骤 1、已知实际数字指标as s ap p ,,,ωω 2、将数字指标化为原型模拟指标As s Ap p ,,,ΩΩ,可设T=pi, T /ω=Ω 3、求原型模拟滤波器的c N Ω,,其中:??? ???ΩΩ--=)/lg(2)]110/()110lg[(10/10/s p A A s p N N A p cp p 210 /1 10 -Ω= Ω N A s cs s 210 /1 10 -Ω= Ω ][cs cp c ΩΩ∈Ω, 4、根据N 写出归一化原型系统函数)(p G a 5、用c s p Ω=/代入得原型系统函数c s p a a p G s H Ω==/)()( 6、将)(s H a 化为部分分式展开形式∑-=k k a s s A s H )( 7、写出)(z H 的极点T s k k e z =,并写出)(z H 的部分分式展开形式∑--?= 11)(z z A T z H k k 8、将)(z H 化为分子分母形式,验证设计结果。 二、IIR 双线性变换法设计步骤 1、已知实际数字指标as s ap p ,,,ωω 2、将数字指标化为原型模拟指标As s Ap p ,,,ΩΩ,可设T=2, 2 tan 2ω?= ΩT 3、求原型模拟滤波器的c N Ω,,其中:?? ? ???ΩΩ--=)/lg(2)]110/()110lg[(10/10/s p A A s p N N A p cp p 210 /1 10 -Ω= Ω N A s cs s 210 /1 10 -Ω= Ω ][cs cp c ΩΩ∈Ω, 4、根据N 写出归一化原型系统函数)(p G a 5、用c s p Ω=/代入得原型系统函数c s p a a p G s H Ω==/) ()( 6、用11 112--+-?=Z Z T s 代入原型系统函数)(s H a 得1 1 112)()(--+-? ==Z Z T s a s H z H 8、将)(z H 整理成分子分母形式,验证设计结果。

实验五:FIR数字滤波器设计与软件实现

实验五:FIR数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。 (3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。 (4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord 和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○1MATLAB函数fir1的功能及其调用格式请查阅教材; ○2采样频率Fs=1000Hz,采样周期T=1/Fs; ○3根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截

至频率fs=150Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率s 20.3s f ωπ=T =π,阻带最小衰为60dB 。 ○ 4实验程序框图如图2所示,供读者参考。 图2 实验程序框图 4.思考题 (1)如果给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?请写出设计步骤. (2)如果要求用窗函数法设计带通滤波器,且给定通带上、下截止频率为pl ω和pu ω,阻带上、下截止频率为sl ω和su ω,试求理想带通滤波器的截止频率cl cu ωω和。 (3)解释为什么对同样的技术指标,用等波纹最佳逼近法设计的滤波器阶数低? 5.信号产生函数xtg 程序清单(见教材) 二、 滤波器参数及实验程序清单 1、滤波器参数选取 根据实验指导的提示③选择滤波器指标参数: 通带截止频率fp=120Hz ,阻带截至频率fs=150Hz 。代入采样频率Fs=1000Hz ,换算成数字频率,通带截止频率p 20.24p f ωπ=T =π,通带最大衰为0.1dB ,阻带截至频率

实验四 IIR数字滤波器设计

实验四IIR数字滤波器的设计与MATLAB实现 一、实验目的: 1、要求掌握IIR数字滤波器的设计原理、方法、步骤。 2、能够根据滤波器设计指标进行滤波器设计。 3、掌握数字巴特沃斯滤波器和数字切比雪夫滤波器的设计原理和步骤。 二、实验原理: IIR数字滤波器的设计方法:频率变换法、数字域直接设计以及计算机辅助等。这里只介绍频率变换法。由模拟低通滤波器到数字低通滤波器的转换,基本设计过程: 1、将数字滤波器的设计指标转换为模拟滤波器指标 2、设计模拟滤波器G(S) 3、将G(S)转换为数字滤波器H(Z) 在低通滤波器设计基础上,可以得到数字高通、带通、带阻滤波器的设计流程如下: 1、给定数字滤波器的设计要求(高通、带通、带阻) 2、转换为模拟(高通、带通、带阻)滤波器的技术指标 3、转换为模拟低通滤波器的指标 4、设计得到满足3步骤中要求的低通滤波器传递函数 5、通过频率转换得到模拟(高通、带通、带阻)滤波器 6、变换为数字(高通、带通、带阻)滤波器 三、标准数字滤波器设计函数 MATLAB提供了一组标准的数字滤波器设计函数,大大简化了滤波器设计过程。 1、butter 例题1 设计一个5阶Butterworth数字高通滤波器,阻带截止频率为250Hz ,设采样频率为1KHz. 图1 5阶Butterworth数字高通滤波器

2、cheby1和cheby2 例题2 设计一个7阶chebyshevII型数字低通滤波器,截止频率为3000Hz,Rs=30dB,采样频率为1KHz。 图2 7阶chebyshevII型数字低通滤波器 四、冲激响应不变法 一般来说,在要求时域冲激响应能模仿模拟滤波器的场合,一般使用该方法。冲激响应不变法一个重要的特点是频率坐标的变换时线性的,因此如果模拟滤波器的频响带限于折叠频率的话,则通过变换后滤波器的频率响应可不失真的反映原响应与频率的关系。 例题3 设计一个中心频率为500Hz,带宽为600 Hz的数字带通滤波器,采样频率为1K Hz。

IIR数字滤波器设计原理

IIR 数字滤波器设计原理 利用双线性变换设计IIR 滤波器(只介绍巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数)(s H a ,然后由)(s H a 通过双线性变换可得所要设计的IIR 滤波器的系统函数)(z H 。 如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率 s p w w 和的转换,对s p αα和指标不作变化。边界频率的转换关系为)21tan(2w T =Ω。接着,按照模拟低通滤波器的技术指标根据相应 设计公式求出滤波器的阶数N 和dB 3截止频率c Ω;根据阶数N 查巴特沃斯归一 化低通滤波器参数表,得到归一化传输函数 )(p H a ;最后,将c s p Ω=代入)(p H a 去归一,得到实际的模拟滤波器传输函数)(s H a 。之后,通过双线性变换法转换公式 11 112--+-=z z T s ,得到所要设计的IIR 滤波器的系统函数)(z H 。 步骤及内容 1) 用双线性变换法设计一个巴特沃斯IIR 低通数字滤波器。设计指标参数为: 在通带内频率低于π2.0时,最大衰减小于dB 1;在阻带内[]ππ,3.0频率区间上,最小衰减大于dB 15。 2) 以π02.0为采样间隔,绘制出数字滤波器在频率区间[]2/,0π上的幅频响应特 性曲线。 3) 程序及图形 程序及实验结果如下: %%%%%%%%%%%%%%%%%%

%iir_1.m %lskyp %%%%%%%%%%%%%%%%%% rp=1;rs=15; wp=.2*pi;ws=.3*pi; wap=tan(wp/2);was=tan(ws/2); [n,wn]=buttord(wap,was,rp,rs,'s'); [z,p,k]=buttap(n); [bp,ap]=zp2tf(z,p,k); [bs,as]=lp2lp(bp,ap,wap); [bz,az]=bilinear(bs,as,.5); [h,f]=freqz(bz,az,256,1); plot(f,abs(h)); title('双线性z 变换法获得数字低通滤波器,归一化频率轴'); xlabel('\omega/2\pi'); ylabel('低通滤波器的幅频相应');grid; figure; [h,f]=freqz(bz,az,256,100); ff=2*pi*f/100; absh=abs(h); plot(ff(1:128),absh(1:128)); title('双线性z 变换法获得数字低通滤波器,频率轴取[0,\pi/2]'); xlabel('\omega'); ylabel('低通滤波器的幅频相应');grid on; 运行结果: 00.050.10.150.20.25 0.30.350.40.450.500.1 0.2 0.3 0.40.50.60.70.8 0.9 1 双线性z 变换法获得数字低通滤波器,归一化频率轴 ω/2π低通滤波器的幅频相应

IIR数字滤波器的设计流程图讲课讲稿

目录 目录 0 前言 (1) 1.1数字滤波器简介 (1) 1.2使用数字滤波器的原因 (1) 1.3设计的原理和内容 (1) 工程概况 (2) 正文 (2) 3.1 设计的目的和意义 (2) 3.2 目标和总体方案 (2) 3.3 设计方法和内容 (3) 3.4 硬件环境 (3) 3.5软件环境 (3) 3.6IIR数字滤波器设计思路 (3) 3.7 IIR数字滤波器的设计流程图 (3) 3.8 IIR数字滤波器设计思路 (4) 3.9设计IIR数字滤波器的两种方法 (4) 3.10双线性变换法的基本原理 (5) 3.11用双线性变换法设计IIR数字滤波器的步骤 (6) 3.12程序源代码和运行结果 (6) 3.12.1低通滤波器 (6) 3.12.3带通滤波器 (10) 3.12.4带阻滤波器 (13) 3.13结论 (15) 3.13.1存在的问题 (15) 3.13.2解决方案 (16) 致谢 (16)

参考文献 (16) 前言 1.1数字滤波器简介 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。可以设计系统的频率响应,让它满足一定的要求,从而对通过该系统的信号的某些特定的频率成分进行过滤,这就是滤波器的基本原理。如果系统是一个连续系统,则滤波器称为模拟滤波器。如果系统是一个离散系统,则滤波器称为数字滤波器。 信号通过线性系统后,其输出信号就是输入信号和系统冲激响应的卷积。从频域分析来看,信号通过线性系统后,输出信号的频谱将是输入信号的频谱与系统传递函数的乘积。除非为常数,否则输出信号的频谱将不同于输入信号的频谱,某些频率成分较大的模,因此,中这些频率成分将得到加强,而另外一些频率成分的模很小甚至为零,中这部分频率分量将被削弱或消失。因此,系统的作用相当于对输入信号的频谱进行加权。 1.2使用数字滤波器的原因 数字滤波器具有比模拟滤波器更高的精度,甚至能够实现后者在理论上也无法达到的性能。数字滤波器相比模拟滤波器有更高的信噪比。数字滤波器还具有模拟滤波器不能比拟的可靠性。根据其冲击响应函数的时域特性可将数字滤波器分为IIR(有限长冲击响应)和FIR(无限长冲击响应)。 1.3设计的原理和内容 在windows环境下进行语言信号采集,通过IIR数字滤泼器的设计,数字带滤波器就是用软件来实现上面的滤波过程,可以很好的克服模拟滤波器的缺点,数字带滤波器的参数一旦确定,就不会发生变化。IIR型有较好的通带与阻带特性,所以,在一般的设计中选用IIR 型。IIR型又可以分成Butterworth型滤波器,ChebyshevII型滤波器和椭圆型滤波器等。 IIR数字滤波器的设计一般是利用目前已经很成熟的模拟滤波器的设计方法来进行设计,通常采用模拟滤波器原型有butterworth函数、chebyshev函数、bessel函数、椭圆滤波器函数等。 IIR数字滤波器的设计步骤: (1)按照一定规则把给定的滤波器技术指标转换为模拟低通滤波器的技术指标; (2)根据模拟滤波器技术指标设计为响应的模拟低通滤波器; (3)很据脉冲响应不变法和双线性不变法把模拟滤波器转换为数字滤波器;

IIR数字滤波器的设计实验报告

IIR数字滤波器的设计 一、实验目的: 掌握冲激相应不变法和双线性变换法设计IIR数字滤波器的原理和方法; 观察冲激相应不变法和双线性变换法设计IIR数字滤波器的频率特性; 了解冲激相应不变法和双线性变换法的特点和区别。 二、实验原理: 无限长单位冲激响应(IIR)数字滤波器的设计思想: a)设计一个合适的模拟滤波器 b)利用一定的变换方法将模拟滤波器转换成满足预定指 标的数字滤波器 切贝雪夫I型:通带中是等波纹的,阻带是单调的

切贝雪夫II型:通带中是单调的,阻带是等波纹的 1.用冲击响应不变法设计一个低通切贝雪夫I型数字滤波器通带上限截止频率为400Hz 阻带截止频率为600Hz 通带最大衰减为0.3分贝 阻带最小衰减为60分贝 抽样频率1000Hz 2.用双线性变换法设计切贝雪夫II型高通滤波器 通带截止频率2000Hz 阻带截止频率1500Hz 通带最大衰减0.3分贝 阻带最小衰减50分贝 抽样频率20000Hz 四、实验程序:

1) Wp=2*pi*400; Ws=2*pi*600; Rp=0.3; Rs=60; Fs=1000; [N,Wn]=cheb1ord(Wp,Ws,Rp,Rs,'s'); [Z,P,K]=cheb1ap(N,Rp); [A,B,C,D]=zp2ss(Z,P,K); [At,Bt,Ct,Dt]=lp2lp(A,B,C,D,Wn); [num1,den1]=ss2tf(At,Bt,Ct,Dt); [num2,den2]=impinvar(num1,den1,Fs); [H,W1]=freqs(num1,den1); figure(1) subplot(2,1,1); semilogx(W1/pi/2,20*log10(abs(H)));grid; xlabel(' 频率/ Hz'); ylabel(' 模拟滤波器幅值(db)'); [H,W2]=freqz(num2,den2,512,'whole',Fs); subplot(2,1,2); plot(W2,20*log10(abs(H)));grid; xlabel(' 频率/ Hz');

实验四IIR数字滤波器设计及软件实现

实验四IIR数字滤波器设计及软件实现 1.实验目的 (1)熟悉用双线性变换法设计IIR数字滤波器的原理与方法; (2)学会调用MATLAB信号处理工具箱中滤波器设计函数(或滤波器设计分析工具fdatool)设计各种IIR数字滤波器,学会根据滤波需求确定滤波器指标参数。 (3)掌握IIR数字滤波器的MATLAB实现方法。 (4)通过观察滤波器输入输出信号的时域波形及其频谱,建立数字滤波的概念。 2.实验原理 设计IIR数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法。基本设计过程是:①先将给定的数字滤波器的指标转换成过渡模拟滤波器的指标;②设计过渡模拟滤波器;③将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。MATLAB信号处理工具箱中的各种IIR数字滤波器设计函数都是采用双线性变换法。第六章介绍的滤波器设计函数butter、cheby1 、cheby2 和ellip可以分别被调用来直接设计巴特沃斯、切比雪夫1、切比雪夫2和椭圆模拟和数字滤波器。本实验要求读者调用如上函数直接设计IIR数字滤波器。 本实验的数字滤波器的MATLAB实现是指调用MATLAB信号处理工具箱函数filter对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n)。

3.实验内容及步骤 (1)调用信号产生函数mstg产生由三路抑制载波调幅信号相加构成的复合信号st,该函数还会自动绘图显示st的时域波形和幅频特性曲线。三路信号时域混叠无法在时域分离。但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。 (2)要求将st中三路调幅信号分离,通过观察st的幅频特性曲线,分别确定可以分离st中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB。 (3)编程序调用MATLAB滤波器设计函数ellipord和ellip分别设计这三个椭圆滤波器,并绘图显示其幅频响应特性曲线。

数字滤波器设计步骤

数字信号处理 数字滤波器的设计 学院计算机与电子信息学院 专业电子信息科学与技术班级电子15-2 班姓名学号 指导教师刘利民

数字滤波器的设计 一、模拟低通滤波器的设计方法 1、B utterw orth 滤波器设计步骤: ⑴。确定阶次N ① 已知Ωc 、Ωs 和As 求Bu tt er worth DF 阶数N ② 已知Ωc 、Ωs 和Ω=Ωp (3dB p Ω≠-)的衰减A p 求Bu tterwort h DF 阶数N ③ 已知Ωp、Ωs和Ω=Ωp 的衰减A p 和As 求B utte rwo rth DF 阶数N /10 /1022(/)101,(/)101p s A A N N p c s c ΩΩ=-ΩΩ=-则:

⑵.用阶次N 确定 ()a H s 根据公式: 1,2,2N ()()a a H s H s -在左半平面的极点即为()a H s 的极点,因而 2,,N 2、切比雪夫低通滤波器设计步骤: ⑴.确定技术指标p Ω p α s Ω s α 归一化: /1p p p λ=ΩΩ= /s s p λ=ΩΩ ⑵.根据技术指标求出滤波器阶数N 及ε: 0.12 10 1δε=- p δα= ⑶.求出归一化系统函数 其中极点由下式求出:

或者由N 和S直接查表得()a H p 二、数字低通滤波器的设计步骤: 1、 确定数字低通滤波器的技术指标:通带截止频率p ω、通带最大衰减系数 p α、 阻带截止频率ω、阻带最小衰减系数s α。 2、 将数字低通滤波器的技术指标转换成模拟低通滤波器的技术指标。 巴特沃斯: 切比雪夫:/s s p λ=ΩΩ 0.1210 1δ ε=- p δα=

实验四数字滤波器的设计实验报告

数字信号处理 实验报告 实验四 IIR数字滤波器的设计学生姓名张志翔 班级电子信息工程1203班 学号 指导教师 实验四 IIR数字滤波器的设计 一、实验目的: 1. 掌握双线性变换法及脉冲响应不变法设计IIR数字滤波器的具体设 计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR数字滤波器的MATLAB编程。 2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。 3.熟悉Butterworth滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。 二、实验原理: 1.脉冲响应不变法 用数字滤波器的单位脉冲响应序列模仿模拟滤波器的冲激响应 ,让正好等于的采样值,即,其中为采样间隔,如果以及分别表示的拉式变换及的Z变换,则 2.双线性变换法 S平面与z平面之间满足以下映射关系:

s平面的虚轴单值地映射于z平面的单位圆上,s平面的左半平面完全映射到z平面的单位圆内。 双线性变换不存在混叠问题。 双线性变换是一种非线性变换,这种非线性引起的幅频特性畸变可通过预畸而得到校正。 三、实验内容及步骤: 实验中有关变量的定义: fc 通带边界频率; fr阻带边界频率;δ通带波动;At 最小阻带衰减; fs采样频率; T采样周期 (1) =0.3KHz, δ=0.8Db, =0.2KHz, At =20Db,T=1ms; 设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。 MATLAB源程序: wp=2*1000*tan(2*pi*300/(2*1000)); ws=2*1000*tan(2*pi*200/(2*1000)); [N,wn]=cheb1ord(wp,ws,0.8,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动0.8,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn [B,A]=cheby1(N,0.5,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动 [num,den]=bilinear(B,A,1000); [h,w]=freqz(num,den); f=w/(2*pi)*1000; plot(f,20*log10(abs(h)));

FIR数字滤波器设计与软件实现(精)讲解学习

实验二:FIR 数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1掌握用窗函数法设计 FIR 数字滤波器的原理和方法。 (2掌握用等波纹最佳逼近法设计 FIR 数字滤波器的原理和方法。 (3掌握 FIR 滤波器的快速卷积实现原理。 (4学会调用 MA TLAB 函数设计与实现 FIR 滤波器。 2. 实验内容及步骤 (1认真复习第七章中用窗函数法和等波纹最佳逼近法设计 FIR 数字滤波器的原理; (2调用信号产生函数 xtg 产生具有加性噪声的信号 xt ,并自动显示 xt 及其频谱,如图 1所示;

图 1 具有加性噪声的信号 x(t及其频谱如图 (3请设计低通滤波器,从高频噪声中提取 xt 中的单频调幅信号,要求信号幅频失真小于 0.1dB ,将噪声频谱衰减 60dB 。先观察 xt 的频谱,确定滤波器指标参数。 (4根据滤波器指标选择合适的窗函数,计算窗函数的长度 N ,调用 MATLAB 函数 fir1设计一个 FIR 低通滤波器。并编写程序,调用 MATLAB 快速卷积函数 fftfilt 实现对 xt 的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。 (5 重复 (3 , 滤波器指标不变, 但改用等波纹最佳逼近法, 调用MA TLAB 函数 remezord 和 remez 设计 FIR 数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○ 1MA TLAB 函数 fir1的功能及其调用格式请查阅教材; ○ 2采样频率 Fs=1000Hz,采样周期 T=1/Fs;

○ 3根据图 1(b和实验要求,可选择滤波器指标参数:通带截止频率 fp=120Hz,阻带截 至频率 fs=150Hz, 换算成数字频率, 通带截止频率 p 20.24 p f ωπ =T=π, 通带最大衰为 0.1dB , 阻带截至频率 s 20.3 s f ωπ =T=π,阻带最小衰为 60dB 。 3、实验程序框图如图 2所示,供读者参考。 图 2 实验程序框图 4.信号产生函数 xtg 程序清单(见教材 二、滤波器参数及实验程序清单 1、滤波器参数选取 根据实验指导的提示③选择滤波器指标参数: 通带截止频率 fp=120Hz,阻带截至频率 fs=150Hz。代入采样频率 Fs=1000Hz,换算成 数字频率,通带截止频率 p 20.24 p f

实验五FIR数字滤波器的设计

实验六 FIR 数字滤波器的设计 一、实验目的 1.熟悉FIR 滤波器的设计基本方法 2.掌握用窗函数设计FIR 数字滤波器的原理与方法。 二、实验内容 1.FIR 数字滤波器的设计方法 FIR 滤波器的设计问题在于寻求一系统函数)(z H ,使其频率响应)(ωj e H 逼近滤波器要求的理想频率响应)(ωj d e H ,其对应的单位脉冲响应为)(n h d 。 (1)用窗函数设计FIR 滤波器的基本原理 设计思想:从时域从发,设计)(n h 逼近理想)(n h d 。设理想滤波器)(ωj d e H 的单位脉 冲响应为)(n h d 。以低通线性相位FIR 数字滤波器为例。 ?∑--∞-∞=== ππωωωωω πd e e H n h e n h e H jn j d d jn n d j d )(21)()()( (6-1) )(n h d 一般是无限长的,且是非因果的,不能直接作为FIR 滤波器的单位脉冲响应。要想得到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。按照线性相位滤波器的要求,h(n)必须是偶对称的。对称中心必须等于滤波器的延时常数,即 ???-==2 /)1()()()(N a n w n h n h d (6-2) 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,这个现象称为吉布斯(Gibbs )效应。为了消除吉布斯效应,一般采用其他类型的窗函数。 (2) 典型的窗函数 ① 矩形窗(Rectangle Window) )()(n R n w N = (6-3)

数字信号处理实验-IIR滤波器设计

实验四 IIR 数字滤波器的设计 (1)kHz f c 3.0=,dB 8.0=δ,kHz f r 2.0=,dB At 20=,ms T 1=;设计一切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。 解: 程序: clear; fc=300;fr=200;fs=1000;rp=0.8;rs=20; wc=2*fs*tan(2*pi*fc/(2*fs)); wt=2*fs*tan(2*pi*fr/(2*fs)); [N,wn]=cheb1ord(wc,wt,rp,rs,'s'); [B,A]=cheby1(N,rp,wn,'high','s'); [bz,az]=bilinear(B,A,fs); [h,w]=freqz(bz,az); f=w*fs/(2*pi); plot(f,20*log10(abs(h))); axis([0,fs/2,-80,10]); grid; xlabel('频率/Hz'); ylabel('幅度/dB'); 050100150200 250300350400450500 -80 -70-60-50-40-30-20 -10010频率/Hz 幅度/d B 分析:f=200Hz 时阻带衰减大于30dB ,通过修改axis([0,fs/2,-80,10])为axis([200,fs/2,-1,1]) 发现通带波动rs 满足<0.8。 bz =[0.0262 -0.1047 0.1570 -0.1047 0.0262]

az =[1.0000 1.5289 1.6537 0.9452 0.2796] 系统函数为: 43214 3212796.09452.06537.15289.110262.01047.01570.01047.0-0262.0)(H --------+++++-+= z z z z z z z z z (2)kHz f c 2.0=,dB 1=δ,kHz f r 3.0=,dB At 25=,ms T 1=;分别用脉冲响应不变法及双线性变换法设计一巴特沃思数字低通滤波器,观察所设计数字滤波器的幅频特性曲 线,记录带宽和衰减量,检查是否满足要求。比较这两种方法的优缺点。 解: 程序: clear; fs=1000;fc=200;fr=300;rp=1;rs=25; %脉冲响应不变法 wp=2*pi*fc; ws=2*pi*fr; [N, wn] = buttord(wp, ws, rp, rs, 's'); [b1 a1]=butter(N,wn,'s'); [bz1,az1]=impinvar(b1,a1,fs); [h1,w]=freqz(bz1,az1); %双线性变换法 wp=2*fs*tan(2*pi*fc/fs/2); ws=2*fs*tan(2*pi*fr/fs/2); [N, wn] = buttord(wp, ws, rp, rs, 's'); [b2 a2]=butter(N,wn,'s'); [bz2,az2]=bilinear(b2,a2,fs); [h2,w]=freqz(bz2,az2); f=w/(2*pi)*fs; figure; plot(f,abs(h1),'-.r',f,abs(h2),'-b'); grid; xlabel('频率/Hz'); ylabel('幅度'); legend('脉冲响应不变法','双线性变换法'); title('巴特沃思低通滤波器,线性幅度谱'); 50100150200 250300350400450500 00.20.40.60.8 1 1.2 1.4 频率/Hz 幅度 巴特沃思低通滤波器,线性幅度谱 bz1 =[0.0000 0.0002 0.0153 0.0995 0.1444 0.0611 0.0075 0.0002 0.0000 0]

实验四 IIR数字滤波器的设计(1) (2)

实验四 IIR 数字滤波器的设计及网络结构 一、实验目的 1.了解IIR 数字滤波器的网络结构。 2.掌握模拟滤波器、IIR 数字滤波器的设计原理和步骤。 3.学习编写数字滤波器的设计程序的方法。 二、实验内容 数字滤波器:是数字信号处理技术的重要内容。它的主要功能是对数字信号进行处理,保留数字信号中的有用成分,去除信号中的无用成分。 1.数字滤波器的分类 滤波器的种类很多,分类方法也不同。 (1)按处理的信号划分:模拟滤波器、数字滤波器 (2)按频域特性划分;低通、高通、带通、带阻。 (3)按时域特性划分:FIR 、IIR 2.IIR 数字滤波器的传递函数及特点 数字滤波器是具有一定传输特性的数字信号处理装置。它的输入和输出均为离散的数字信号,借助数字器件或一定的数值计算方法,对输入信号进行处理,改变输入信号的波形或频谱,达到保留信号中有用成分去除无用成分的目的。如果加上A/D 、D/A 转换,则可以用于处理模拟信号。 设IIR 滤波器的输入序列为x(n),则IIR 滤波器的输入序列x(n)与输出序列y(n)之间的关系可以用下面的方程式表示: 1 ()()() M N i j i j y n b x n i a y n j ===-+-∑∑ (5-1) 其中,j a 和i b 是滤波器的系数,其中j a 中至少有一个非零。与之相对应的差分方程为: 10111....()()()1....M M N N b b z b z Y z H Z X z a z a z ----++== ++ (5-2) 由传递函数可以发现无限长单位冲激响应滤波器有如下特点: (1) 单位冲激响应h(n)是无限长的。

实验11用MATLAB设计FIR数字滤波器综述

实验11 用MATLAB 设计FIR 数字滤波器 一、实验目的: 1、加深对窗函数法设计FIR 数字滤波器的基本原理的理解。 2、学习用MA TLAB 语言的窗函数法编写设计FIR 数字滤波器的程序。 3、了解MATLAB 语言有关窗函数法设计FIR 数字滤波器的常用函数用法。 二、实验内容及步骤 2、选择合适的窗函数设计FIR 数字低通滤波器,要求: w p =0.2π,R p =0.05dB ; w s =0.3π,A s =40dB 。描绘该滤波器的脉冲响应、窗函数及滤波器的幅频响应曲线和相频响应曲线。 分析:根据设计指标要求,并查表11-1,选择汉宁窗。程序清单如下: function hd=ideal_lp(wc,N) wp=0.2*pi;ws=0.3*pi;deltaw=ws-wp; tao=(N-1)/2; n=[0:(N-1)]; m=n-tao+eps; hd=sin(wc*m)./(pi*m); function[db,mag,pha,grd,w]=freqz_m(b,a); [H,w]=freqz(b,a,1000,'whole'); H=(H(1:501))';w=(w(1:501))'; mag=abs(H); db=20*log10((mag+eps)/max(mag)); pha=angle(H); grd=grpdelay(b,a,w); wp=0.2*pi;ws=0.3*pi;deltaw=ws-wp; wc=(ws+wp)/2; 课程名称:数字信号处理 实验成绩: 指导教师: 实 验 报 告 院系: 信息工程学院 班级: 电信二班 学号: 姓名: 日期:

实验五 IIR数字滤波器设计与滤波(附思考题程序)

实验五 IIR 数字滤波器设计与滤波 1.实验目的 (1)加深对信号采样的理解, (2)掌握滤波器设计的方法; (3)复习低通滤波器的设计。 2.实验原理 目前,设计IIR 数字滤波器的通用方法是先设计相应的低通滤波器,然后再通过双线性变换法和频率变换得到所需要的数字滤波器。模拟滤波器从功能上分有低通、高通、带通及带阻四种,从类型上分有巴特沃兹(Butterworth )滤波器、切比雪夫(Chebyshev )I 型滤波器、切比雪夫II 型滤波器、椭圆(Elliptic )滤波器以及贝塞尔(Bessel )滤波器等。 典型的模拟低通滤波器的指标如下:,P S ΩΩ分别为通带频率和阻带频率,,P S δδ分别为通带和阻带容限(峰波纹值)。在通带内要求1()1P a H J δ-≤Ω≤,有时指标由通带最大衰减p α和阻带最小衰减s α给出,定义如下:20lg(1)p p αδ=-- 和20lg()s s αδ=- 第二种常用指标是用参数ε和A 表示通带和阻带要求,如图所示: 二者之间的关系为:21/2[(1)1]p εδ-=--和1/s A δ=,根据这几个参数可导出另外两个参数d ,k ,分别称为判别因子和选择性因子。 21d A = - /p s k =ΩΩ

BUTTERWORTH 低通滤波器:幅度平方函数定义为221()1(/)a N c H J Ω=+ΩΩ,N 为滤波器阶数,c Ω为截止频率。当c Ω=Ω 时,有()1/a H J Ω=3DB 带宽。 BUTTERWORTH 低通滤波器系统函数有以下形式: 11111()...() N c a N N N N N k H s s a s a s a k s s --=Ω==++++∏- 由模拟滤波器设计IIR 数字滤波器,必须建立好s 平面和z 平面的映射关系。使模拟系统函数()a H s 变换成数字滤波器的系统函数()H z ,通常采用冲激相应不变法和双线性变换法。冲激相应不变法存在频谱混叠现象,双线性变换法消除了这一线象,在IIR 数字滤波器的设计中得到了更广泛的应用。 s 平面和Z 平面的映射关系为1 121()1s Z s f Z T Z ---==+,将s j =Ω和jw z e =待入数字频率和等效的模拟频率之间的映射关系:tan()2 w Ω=,由于二者不是线性关系,所以称为预畸变。 3.实验内容及其步骤 实验的步骤: (1)给定数字滤波器的幅度相应参数。 (2)用预畸变公式将数字滤波器参数变换为相应的等效模拟滤波器参数。 (3)采用模拟滤波器设计方法设计等效模拟滤波器()a H s (4)采用双线性变换公式把等效模拟滤波器映射为所期望的数字滤波器。 其中第三步中模拟滤波器设计步骤为: 首先,根据滤波器指标求选择因子k 和判别因子d 其次,确定满足技术所需的滤波器阶数N, log log d N k ≥ 再次,设3db 截止频率c Ω

FIR数字滤波器设计实验_完整版

班级: 姓名: 学号: FIR 数字滤波器设计实验报告 一、实验目的 1.掌握FIR 数字滤波器的设计方法; 2.熟悉MATLAB 信号处理工具箱的使用; 3.熟悉利用MATLAB 软件进行FIR 数字滤波器设计,以及对所设计的滤波器 进行分析; 4.了解FIR 滤波器可实现严格线性相位的条件和特点; 5.熟悉FIR 数字滤波器窗函数设计法的MATLAB 设计,并了解利用窗函数法 设计FIR 滤波器的优缺点; 6.熟悉FIR 数字滤波器频率采样设计法的MATLAB 设计,并了解利用频率采 样法设计FIR 滤波器的优缺点; 7.熟悉FIR 数字滤波器切比雪夫逼近设计法的MATLAB 设计,并了解利用切 比雪夫逼近法设计FIR 滤波器的优缺点。 二、实验设备及环境 1.硬件:PC 机一台; 2.软件:MATLAB (6.0版以上)软件环境。 三、实验内容及要求 1.实验内容:基于窗函数设计法、频率采样设计法和切比雪夫逼近设计法,利用MATLAB 软件设计满足各自设计要求的FIR 数字低通滤波器,并对采用不同设计法设计的低滤波器进行比较。 2.实验要求: (1)要求利用窗函数设计法和频率采样法分别设计FIR 数字低通滤波 器,滤波器参数要求均为:0.3c w π=。其中,窗函数设计法要求分别利用矩形窗、汉宁窗和布莱克曼窗来设计数字低通滤波器,且 21N ≥,同时要求给出滤波器的幅频特性和对数幅频特性; 频率

采样法要求分别利用采样点数21N =和63N =设计数字低通滤波器,同时要求给出滤波器采样前后的幅频特性,以及脉冲响应及对数幅频特性。 (2)要求利用窗函数设计法和切比雪夫逼近法分别设计FIR 数字低通 滤波器,滤波器参数要求均为: 0.2π, 0.25dB, 0.3π, 50dB p p s s ωαωα==== 其中,窗函数设计法要求利用汉明窗来设计数字低通滤波器,且 66N ≥,同时要求给出滤波器理想脉冲响应和实际脉冲响应,汉 名窗和对数幅频特性; 切比雪夫逼近法要求采用切比雪夫Ⅰ型,同时要求给出滤波器的脉冲响应、幅频特性和误差特性。 (3)将要求(1)和(2)中设计的具有相同参数要求,但采用不同设 计方法的滤波器进行比较,并以图的形式直观显示不同设计设计方法得到的数字低通滤波器的幅频特性的区别。 四、实验步骤 1.熟悉MATLAB 运行环境,命令窗口、工作变量窗口、命令历史记录窗口,FIR 常用基本函数; 2.熟悉MATLAB 文件格式,m 文件建立、编辑、调试; 3.根据要求(1)的内容,设计FIR 数字低通滤波器,建立M 文件,编写、调试、运行程序; 4.根据要求(2)的内容,设计FIR 数字低通滤波器,建立M 文件,编写、调试、运行程序; 5.将要求(1)和(2)中设计的具有相同参数要求,但采用不同设计方法的滤波器进行比较分析; 6.记录实验结果; 7.分析实验结果; 8.书写实验报告。 五、实验预习思考题 1.FIR 滤波器有几种常用设计方法?这些方法各有什么特点?

实验四iir数字滤波器的设计实验报告

数 字信号处理 实验报告 实验四 IIR数字滤波器的设计 学生姓名张志翔 班级电子信息工程1203班 学号 指导教师 实验四IIR数字滤波器的设计 一、实验目的:

1. 掌握双线性变换法及脉冲响应不变法设计IIR 数字滤波器的具体设计方法及其原理,熟悉用双线性变换法及脉冲响应不变法设计低通、高通和带通IIR 数字滤波器的MATLAB 编程。 2. 观察双线性变换及脉冲响应不变法设计的滤波器的频域特性,了解双线性变换法及脉冲响应不变法的特点。 3. 熟悉Butterworth 滤波器、切比雪夫滤波器和椭圆滤波器的频率特性。 二、实验原理: 1. 脉冲响应不变法 用数字滤波器的单位脉冲响应序列 模仿模拟滤波器的冲激响应 ,让 正好等于 的采样值,即 ,其中 为采样间隔,如果以 及 分别表示 的拉式变换及 的Z 变换,则 )2(1)(m T j s H T z H m a e z sT ∑∞-∞==+=π 2.双线性变换法 S 平面与z 平面之间满足以下映射关系: );(,2121,11211ωωσj re z j s s T s T z z z T s =+=-+ =+-?=-- s 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。 双线性变换不存在混叠问题。 双线性变换是一种非线性变换 ,这种非线性引起的幅频特性畸变可通过预畸而得到校正。

三、实验内容及步骤: 实验中有关变量的定义: fc 通带边界频率;fr阻带边界频率;δ通带波动;At 最小阻带衰减;fs采样频率;T采样周期 (1)=, δ=, =, At =20Db,T=1ms; 设计一个切比雪夫高通滤波器,观察其通带损耗和阻带衰减是否满足要求。 MATLAB源程序: wp=2*1000*tan(2*pi*300/(2*1000)); ws=2*1000*tan(2*pi*200/(2*1000)); [N,wn]=cheb1ord(wp,ws,,20,'s'); %给定通带(wp)和阻带(ws)边界角频率,通带波动波动,阻带最小衰减20dB,求出最低阶数和通带滤波器的通带边界频率Wn [B,A]=cheby1(N,,wn,'high','s');%给定通带(wp)和阻带(ws)边界角频率,通带波动 [num,den]=bilinear(B,A,1000); [h,w]=freqz(num,den); f=w/(2*pi)*1000; plot(f,20*log10(abs(h))); axis([0,500,-80,10]);

实验二-IIR数字滤波器的设计

实验二 IIR 数字滤波器的设计 1、 实验目的 (1) 掌握脉冲响应不变法和双线性变换法设计IIR 数字滤波器的具体方法和原理,熟悉双线性变换法和脉冲响应不变法设计低通、带通IIR 数字滤波器的计算机编程; (2) 观察双线性变换法和脉冲响应不变法设计的数字滤波器的频域特性,了解双线性变换法和脉冲响应不变法的特点和区别; (3) 熟悉Butterworth 滤波器、Chebyshev 滤波器和椭圆滤波器的频率特性。 2、实验原理与方法 IIR 数字滤波器的设计方法可以概括为如图所示,本实验主要掌握IIR 滤波器的第一种方法,即利用模拟滤波器设计IIR 数字滤波器,这是IIR 数字滤波器设计最常用的方法。利用模拟滤波器设计,需要将模拟域的H a (s)转换为数字域H(z),最常用的转换方法为脉冲响应不变法和双线性变换法。 (1)脉冲响应不变法 用数字滤波器的单位脉冲响应序列h(n)模仿模拟滤波器的冲激响应h a (t),让h(n)正好等于h a (t)的采样值,即 )()(nT h n h a = 其中T 为采样间隔。如果以H a (s)及H(z)分别表示h a (t)的拉氏变换及h(n)的Z 变换,则 ∑∞-∞==-=k a e z k T j s H T z H sT )2(1|)(π 在MATLAB 中,可用函数impinvar 实现从模拟滤波器到数字滤波器的脉冲响应不变映射。 (2)双线性变换法

S 平面与z 平面之间满足下列映射关系 11112- -+-=z z T s 或 s T s T z -+=22 S 平面的虚轴单值地映射于z 平面的单位圆上,s 平面的左半平面完全映射到z 平面的单位圆内。双线性变换不存在频率混叠问题。 在MATLAB 中,可用函数bilinear 实现从模拟滤波器到数字滤波器的双线性变换映射。 双线性变换是一种非线性变换,即2 tan 2ωT = Ω,这种非线性引起的幅频特性畸变可通过预畸变得到校正。 (3)设计步骤 IIR 数字滤波器的设计过程中,模拟滤波器的设计是关键。模拟滤波器的设计一般是采用分布设计的方式,这样设计原理非常清楚,具体步骤如前文所述。MATLAB 信号处理工具箱也提供了模拟滤波器设计的完全工具函数:butter 、cheby1、cheby2、ellip 、besself 。用户只需一次调用就可完成模拟滤波器的设计,这样虽简化了模拟滤波器的设计过程,但设计原理却被屏蔽了。 模拟滤波器设计完成之后,利用impinvar 或bilinear 函数将模拟滤波器映射为数字滤波器,即完成了所需数字滤波器的设计。 下图给出了实际低通、高通、带通和带阻滤波器的幅频特性和各截止频率的含义。另外,为了描述过渡带的形状,还引入了通带衰减和阻带衰减的概念。 图 实际滤波器的幅频特性和各截止频率的含义

相关文档
相关文档 最新文档