文档库 最新最全的文档下载
当前位置:文档库 › 中考压轴题专题:与圆有关的最值问题(附答案)

中考压轴题专题:与圆有关的最值问题(附答案)

中考压轴题专题:与圆有关的最值问题(附答案)
中考压轴题专题:与圆有关的最值问题(附答案)

与圆有关的最值(取值范围)问题

引例1:在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________.

引例2:如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧AB上的一个动点(不与A、B两点重合),射线AC交⊙O于点E,BC=a,AC=b,求a b

的最大值.

引例3:如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE

长度的最大值为( ).

A

.3 B.6 C

D.

一、题目分析:

此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接

1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C与两个定点O、A构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用;

2.引例2:通过圆的基本性质,寻找动点C与两个定点A、B构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用;

3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D、E与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE、直径所在的直角三角形,从而转化为弦DE与半径AP之间的数量关系,其实质是高中“正弦定理”的直接运用;

综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透.

二、解题策略

1.直观感觉,画出图形;

2.特殊位置,比较结果;

3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.

三、中考展望与题型训练

例一、斜率运用

1.如图,A 点的坐标为(﹣2,1),以A 为圆心的⊙A 切x 轴于点B ,P (m ,

n )为⊙A 上的一个动点,请探索n+m 的最大值.

例二、圆外一点与圆的最近点、最远点

1.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面内的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是 .

2.如图,⊙O 的直径为4,C 为⊙O 上一个定点,∠ABC=30°,动点P 从A 点出发沿半圆弧AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.

(1)在点P 的运动过程中,线段CD 长度的取值范围为 ;

(2)在点P 的运动过程中,线段AD 长度的最大值为 .

例三、正弦定理 1

.如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=D 是线段BC 上的一个动点,以AD 为直径作⊙O 分别交AB ,AC 于E ,F 两点,连接EF ,则线段EF 长度的最小值

为 .

2. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,则PM 长度的最大值是 .

A

例四、柯西不等式、配方法

1.如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为x (2<x <4),则当x= 时,PD?CD 的值最大,且最大值是为 .

2.如图,线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE ,则⊙O

半径的最小值为( ).

D. 2

3.在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 上一动点,且P 在第一象限内,过点P 作⊙O 的切线与x 轴相交于点A ,与y 轴相交于点B ,线段AB 长度的最小值是 .

例四、相切的应用(有公共点、最大或最小夹角)

1.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,D 为AB 边上一点,过点D 作CD 的垂线交直线BC 于点E ,则线段CE 长度的最小值是 .

2.如图,Rt△ABC 中,∠C=90°,∠A=30°,AB=4,以AC 上的一点O 为圆心OA 为半径作⊙O ,若⊙O 与边BC 始终有交点(包括B 、C 两点),则线段AO 的取值范围是 .

3.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A.B.C.3 D.2

例五、其他知识的综合运用

1.(2015?济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.

(1)求抛物线的函数表达式;

(2)如图1,连接CB,以CB为边作?CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且?CBPQ的面积为30,求点P的坐标;

(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E 重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.

2.(2013秋?相城区校级期末)如图,已知A、B是⊙O与x轴的两个交点,⊙O的半径为1,P是该圆上第一象限内的一个动点,直线PA、PB分别交直线x=2于C、D两点,E为线段CD的中点.

(1)判断直线PE与⊙O的位置关系并说明理由;

(2)求线段CD长的最小值;

(3)若E点的纵坐标为m,则m的范围为.

B

【题型训练】

1.如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C,若在⊙O上存在点

Q,使△

QAC是以AC为底边的等腰三角形,则⊙O的半径r的取值范围为 .

2.已知:如图,RtΔABC中,∠B=90o,∠A=30o,

BC=6cm,点O从A点出发,沿AB以每秒的速度向B点方向运动,当点O运动了t秒(t>0)时,以O点为圆心的圆与边AC相切于点D,与边AB相交于E、F两点,过E作EG⊥DE交射线BC于G.

(1)若点G在线段BC上,则t的取值范围是;

(2)若点G在线段BC的延长线上,则t的取值范围是 .

3.如图,⊙M,⊙N的半径分别为2cm,4cm,圆心距MN=10cm.P为⊙M上的任意一点,Q 为⊙N上的任意一点,直线PQ与连心线l所夹的锐角度数为α,当P、Q

在两圆上任意运动时,tanα

∠的最大值为

(B)

4

3

;; (D)

3

4

4.如图,在矩形ABCD中,AB=3,BC=4,O 为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为( ).

(A)4 (B)

21

5

(C)

35

8

(D)

17

4 5.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB 分别相交于点P、Q,则线段PQ长度的最小值是( ).

A.

19

4

B.

24

5

C.5 D.

6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E在AB边上运动(点E不与点A重合),过A、D、E三点作⊙O,⊙O交AC于另一点F,在此运动变化的过程中,线段EF长度的最小值为.

7.如图,A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心的坐标为(-1,0),半径为1,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE

面积的最小值是( ).

A.2 B.

1 C.2- D.2

8.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1,D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是( ).

A.3 B.

11

3

C.

10

3

D.4

9.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=4,⊙C的半径为1,点P在斜边AB上,PQ 切⊙O于点Q,则切线长PQ

长度的最小值为( ).

10.如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的范围为 .

11.在直角坐标系中,点A的坐标为(3,0),点P(m n

,)是第一象限内一点,且AB=2,则m n

-的范围为 .

12.在坐标系中,点A的坐标为(3,0),点P是y轴右侧一点,且AP=2,点B上直线y=x+1上一动点,且PB⊥AP于点P,则tan ABP m

∠=,则m的取值范围是 .

13.在平面直角坐标系中,M(3,4),P是以M为圆心,2为半径的⊙M上一动点,A(-1,0)、B(1,0),连接PA、PB,则PA2+PB2最大值是 .

蔡老师点评:与圆有关的最值问题,看着无从下手,但只要仔细观察,分析图形,寻找动点与定点之间不变的维系条件,构建关系,将研究的问题转化为变量与常量之间的关系,就能找到解决问题的突破口!几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.

几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:

1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.

注:几何中的定值与最值近年广泛出现于中考试题中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.

参考答案:

引例1.解:C在以A为圆心,以2为半径作圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,AC=2,OA=3,由勾股定理得:OC=,∵∠BOA=∠ACO=90°,

∴∠BOC+∠AOC=90°,∠CAO+∠AOC=90°,∴∠BOC=∠OAC,tan∠BOC=tan∠

OAC==,

随着C的移动,∠BOC越来越大,∵C在第一象限,∴C不到x轴点,即∠BOC<90°,

∴tan∠BOC≥,故答案为:m≥.

引例1图引例2图

+≤

引例2.a b

原题:(2013?武汉模拟)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O 为圆心OA长为半径作圆O,C为半圆AB上不与A、B重合的一动点,射线AC交⊙O于点E,BC=a,AC=b.

(1)求证:AE=b+a;

(2)求a+b的最大值;

(3)若m是关于x的方程:x2+ax=b2+ab的一个根,求m的取值范围.

【考点】圆的综合题.

【分析】(1)首先连接BE,由△OAB为等边三角形,可得∠AOB=60°,又由圆周角定理,可求得∠E的度数,又由AB为⊙D的直径,可求得CE的长,继而求得AE=b+a;(2)首先过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1,可得(a+b)2= a2+b2+2ab=1+2ab=1+2CH?AB=1+2CH≤1+2AD=1+AB=2,即可求得答案;

(3)由x2+ax=b2+ab,可得(x﹣b)(x+b+a)=0,则可求得x的值,继而可求得m的取值范围.

【解答】解:(1)连接BE,∵△OAB为等边三角形,∴∠AOB=60°,∴∠AEB=30°,

∵AB为直径,∴∠ACB=∠BCE=90°,∵BC=a,∴BE=2a,CE=a,∵AC=b,∴AE=b+a;

(2)过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1,∴a2+b2=1,

∵S△ABC=AC?BC=AB?CH,∴AC?BC=AB?CH,

∴(a+b)2=a2+b2+2ab=1+2ab=1+2CH?AB=1+2CH≤1+2AD=1+AB=2,∴a+b≤,

故a+b的最大值为,

(3)∵x2+ax=b2+ab,∴x2﹣b2+ax﹣ab=0,∴(x+b)(x﹣b)+a(x﹣b)=0,

∴(x﹣b)(x+b+a)=0,∴x=b或x=﹣(b+a),

当m=b时,m=b=AC<AB=1,∴0<m<1,

当m=﹣(b+a)时,由(1)知AE=﹣m,又∵AB<AE≤2AO=2,∴1<﹣m≤2,

∴﹣2≤m<﹣1,∴m的取值范围为0<m<1或﹣2≤m<﹣1.

【点评】此题考查了圆周角定理、等边三角形的性质、完全平方公式的应用以及一元二次方程的解法.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.

引例3.解:连接EP,DP,过P点作PM垂直DE于点M,过O做OF⊥AC与F,连接AO,如图,∵∠BAC=60°,∴∠DPE=120°.∵PE=PD,PM⊥DE,∴∠EPM=60°,

∴ED=2EM=2EP?sin60°=EP=PA.当P与A、O共线时,且在O点右侧时,⊙P直径最大.

∵⊙O与∠BAC两边均相切,且∠BAC=60°,∴∠OAF=30°,OF=1,

∴AO==2,AP=2+1=3,∴DE=PA=3.故答案为:D。

【点评】本题考查了切线的性质中的解决极值问题,解题的关键是找出DE与AP之间的关系,再解决切线的性质来解决问题.本题属于中等难度题,难点在于找到DE与半径AP之间的关系,只有找到DE与AP之间的关系,才能说明当A、O、P三点共线时DE最大.

引例3图

例一、斜率运用

【考点】切线的性质;坐标与图形性质.【专题】探究型.

【分析】设m+n=k,则点P(m,n)在直线x+y=k上,易得直线y=﹣x+k与y轴的交点坐标为(0,k),于是可判断当直线y=﹣x+k与⊙A在上方相切时,k的值最大;直线y=﹣x+k 与x轴交于点C,切⊙A于P,作PD⊥x轴于D,AE⊥PD于E,连接AB,如图,则C(k,0),利用直线y=﹣x+k的性质易得∠PCD=45°,则△PCD为等腰直角三角形,接着根据切线长定理和切线的性质得AB⊥OB,AP⊥PC,AP=AB=1,CP=CB=k+2,所以四边形ABDE

为矩形,∠APE=45°,则DE=AB=1,PE=AP=,所以PD=PE+DE=+1,然后在Rt△PCD 中,利用PC=PD得到2+k=(+1),解得k=﹣1,从而得到n+m的最大值为

﹣1.

【解答】解:设m+n=k,则点P(m,n)在直线x+y=k上,当x=0时,y=k,即直线y=﹣x+k与y轴的交点坐标为(0,k),所以当直线y=﹣x+k与⊙A在上方相切时,k的值最大,

直线y=﹣x+k与x轴交于点C,切⊙A于P,作PD⊥x轴于D,AE⊥PD于E,连接AB,如图,

当y=0时,﹣x+k=0,解得x=k,则C(k,0),∵直线y=﹣x+k为直线y=﹣x向上平移k

个单位得到,∴∠PCD=45°,∴△PCD为等腰直角三角形,∵CP和OB为⊙A的切线,

∴AB⊥OB,AP⊥PC,AP=AB=1,CP=CB=k+2,∴四边形ABDE为矩形,∠APE=45°,

∴DE=AB=1,

∵△APE为等腰直角三角形,∴PE=AP=,∴PD=PE+DE=+1,在Rt△PCD中,

∵PC=PD,∴2+k=(+1),解得k=﹣1,∴n+m的最大值为﹣1.

【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.解决本题的关键是确定直线y=﹣x+k与⊙A相切时n+m的最大值.

例二、圆外一点与圆的最近点、最远点

1.解:作AB的中点E,连接EM、CE.在直角△ABC中,AB===5,∵E是直角△ABC斜边AB上的中点,∴CE=AB=.∵M是BD的中点,E是AB的中点,∴ME=AD=1.∴在△CEM中,﹣1≤CM≤+1,即≤CM≤.故答案是:≤CM≤.

<≤(2)2+

2.(1)CD

变式题:(2011?邯郸一模)如图是某种圆形装置的示意图,圆形装置中,⊙O的直径AB=5,AB的不同侧有定点C和动点P,tan∠CAB=.其运动过程是:点P在弧AB上滑动,过点C作CP的垂线,与PB的延长线交于点Q.

(1)当PC=时,CQ与⊙O相切;此时CQ=.

(2)当点P运动到与点C关于AB对称时,求CQ的长;

(3)当点P运动到弧AB的中点时,求CQ的长.

【考点】切线的性质;圆周角定理;解直角三角形.

【专题】计算题.

【分析】(1)当CQ为圆O的切线时,CQ为圆O的切线,此时CP为圆的直径,由CQ垂直于直径CP,得到CQ为切线,即可得到CP的长;由同弧所对的圆周角相等得到一对角相等,由已知角的正切值,在直角三角形CPQ中,利用锐角三角函数定义即可求出CQ的长;

(2)当点P运动到与点C关于AB对称时,如图1所示,此时CP⊥AB于D,由AB为圆O的直径,得到∠ACB为直角,在直角三角形ACB中,由tan∠CAB与AB的长,利用锐角三角函数定义求出AC与BC的长,再由三角形ABC的面积由两直角边乘积的一半来求,也利用由斜边乘以斜边上的高CD的一半来求,求出CD的长,得到CP的长,同弧所对的圆周角相等得到一对角相等,由已知角的正切值,得到tan∠CPB的值,由CP的长即可求出CQ;

(3)当点P运动到弧AB的中点时,如图2所示,过点B作BE⊥PC于点E,由P是弧AB 的中点,得到∠PCB=45°,得到三角形EBC为等腰直角三角形,由CB的长,求出CE与BE的长,在直角三角形EBP中,由∠CPB=∠CAB,得到tan∠CPB=tan∠CAB,利用三角函数定义求出PE的长,由CP+PE求出CP的长,即可求出CQ的长.

【解答】解:(1)当CP过圆心O,即CP为圆O的直径时,CQ与⊙O相切,理由为:

∵PC⊥CQ,PC为圆O的直径,∴CQ为圆O的切线,此时PC=5;∵∠CAB=∠CPQ,

∴tan∠CAB=tan∠CPQ=,∴tan∠CPQ===,则CQ=;故答案为:5;;(2)当点P运动到与点C关于AB对称时,如图1所示,此时CP⊥AB于D,

图1图2

又∵AB为⊙O的直径,∴∠ACB=90°,∵AB=5,tan∠CAB=,∴BC=4,AC=3,

又∵S△ABC=AC?BC=AB?CD,∴AC?BC=AB?CD,即3×4=5CD,∴CD=,

∴PC=2CD=,

在Rt△PCQ中,∠PCQ=90°,∠CPQ=∠CAB,∴CQ=PCtan∠CPQ=PC,∴CQ=×=;

(3)当点P运动到弧AB的中点时,如图2所示,过点B作BE⊥PC于点E,

∵P是弧AB的中点,∠PCB=45°,∴CE=BE=2,又∠CPB=∠CAB,

∴tan∠CPB=tan∠CAB==,∴PE==BE=,

∴PC=CE+PE=2+=,

由(2)得,CQ=PC=.

【点评】此题考查了切线的性质,圆周角定理,锐角三角函数定义,勾股定理,以及等腰直角三角形的判定与性质,熟练掌握切线的性质是解本题的关键.

再变式:如图3时,CQ最长。

图3

例三、正弦定理

1.解:由垂线段的性质可知,当AD为△ABC的边BC上的高时,直径AD最短,

如图,连接OE,OF,过O点作OH⊥EF,垂足为H,∵在Rt△ADB中,∠ABC=45°,AB=2

∴AD=BD=2,即此时圆的半径为1,由圆周角定理可知∠EOH=∠EOF=∠BAC=60°,∴在Rt△EOH中,EH=OE?sin∠EOH=1×=,由垂径定理可知EF=2EH=,故答案为:.

例三1答图例三2答图

2.【考点】垂径定理;三角形中位线定理.

【分析】当CD∥AB时,PM长最大,连接OM,OC,得出矩形CPOM,推出PM=OC,求出OC长即可.

【解答】解:法①:如图:当CD∥AB时,PM长最大,连接OM,OC,

∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M为CD中点,OM过O,∴OM⊥CD,

∴∠OMC=∠PCD=∠CPO=90°,∴四边形CPOM是矩形,∴PM=OC,

∵⊙O直径AB=8,∴半径OC=4,即PM=4,故答案为:4.

法②:连接CO,MO,根据∠CPO=∠CM0=90°,所以C,M,O,P,四点共圆,且CO为直径.连接PM,则PM为⊙E的一条弦,当PM为直径时PM最大,所以PM=CO=4时PM 最大.即PM max=4

【点评】本题考查了矩形的判定和性质,垂径定理,平行线的性质的应用,关键是找出符合条件的CD的位置,题目比较好,但是有一定的难度.

例四、柯西不等式、配方法

1.过O作OE⊥PD,垂足为E,∵PD是⊙O的弦,OE⊥PD,∴PE=ED,

又∵∠CEO=∠ECA=∠OAC=90°,∴四边形OACE为矩形,∴CE=OA=2,又PC=x,

∴PE=ED=PC﹣CE=x﹣2,∴PD=2(x﹣2),∴CD=PC﹣PD=x﹣2(x﹣2)=x﹣2x+4=4﹣x,∴PD?CD=2(x﹣2)?(4﹣x)=﹣2x2+12x﹣16=﹣2(x﹣3)2+2,∵2<x<4,∴当x=3时,PD?CD的值最大,最大值是2.

第1题答图第2题答图

2.解:如图,分别作∠A与∠B角平分线,交点为P.

∵△ACD和△BCE都是等边三角形,∴AP与BP为CD、CE垂直平分线.

又∵圆心O在CD、CE垂直平分线上,则交点P与圆心O重合,即圆心O是一个定点.

连接OC.若半径OC最短,则OC⊥AB.又∵∠OAC=∠OBC=30°,AB=4,∴OA=OB,

∴AC=BC=2,∴在直角△AOC中,OC=AC?tan∠OAC=2×tan30°=.故选:B.

3. 解:(1)线段AB长度的最小值为4,理由如下:连接OP,

∵AB切⊙O于P,∴OP⊥AB,取AB的中点C,∴AB=2OC;当OC=OP时,OC最短,即AB最短,此时AB=4.故答案为:4.

(3题答图)

例四、相切的应用(有公共点、最大或最小夹角)

1.求CE最小值,就是求半径OD的最小值。

≤≤;

OA

3.【考点】切线的性质.【专题】压轴题.

【分析】因为PQ为切线,所以△OPQ是Rt△.又OQ为定值,所以当OP最小时,PQ最小.根据垂线段最短,知OP=3时PQ最小.根据勾股定理得出结论即可.

【解答】解:∵PQ切⊙O于点Q,∴∠OQP=90°,∴PQ2=OP2﹣OQ2,而OQ=2,∴PQ2=OP2﹣4,即PQ=,当OP最小时,PQ最小,∵点O到直线l的距离为3,∴OP的最

小值为3,∴PQ的最小值为=.故选B.

【点评】此题综合考查了切线的性质及垂线段最短等知识点,如何确定PQ最小时点P的位置是解题的关键,难度中等偏上.

例五、其他几何知识的运用

1.解:(1)将点A、B的坐标代入抛物线的解析式得:,解得:.

∴抛物线得解析式为y=x2﹣6x+4.

(2)如图所示:

设点P的坐标为P(m,m2﹣6m+4),∵平行四边形的面积为30,

∴S△CBP=15,即:S△CBP=S梯形CEDP﹣S△CEB﹣S△PBD.

∴m(5+m2﹣6m+4+1)﹣×5×5﹣(m﹣5)(m2﹣6m+5)=15.

化简得:m2﹣5m﹣6=0,解得:m=6,或m=﹣1.∵m>0,∴点P的坐标为(6,4).(3)连接AB、EB.∵AE是圆的直径,∴∠ABE=90°.∴∠ABE=∠MBN.

又∵∠EAB=∠EMB,∴△EAB∽△NMB.∵A(1,﹣1),B(5,﹣1),∴点O1的横坐标为3,

将x=0代入抛物线的解析式得:y=4,∴点C的坐标为(0,4).设点O1的坐标为(3,m),

∵O1C=O1A,∴,解得:m=2,∴点O1的坐标为(3,2),

∴O1A=,在Rt△ABE中,由勾股定理得:

BE===6,∴点E的坐标为(5,5).∴AB=4,BE=6.

∵△EAB∽△NMB,∴.∴.∴NB=.

∴当MB为直径时,MB最大,此时NB最大.∴MB=AE=2,∴NB==3.

2.【考点】圆的综合题.【专题】综合题.

【分析】(1)连接OP,设CD与x轴交于点F.要证PE与⊙O相切,只需证∠OPE=90°,只需证∠OPB+∠EPD=90°,由OP=OB可得∠OPB=∠OBP=∠FBD,只需证∠EPD=∠EDP,只需证EP=ED,只需利用直角三角形斜边上的中线等于斜边的一半就可解决问题.

(2)连接OE,由于PE=CD,要求线段CD长的最小值,只需求PE长的最小值,在Rt△OPE

中,OP已知,只需求出OE的最小值就可.

(3)设⊙O与y轴的正半轴的交点为Q,由图可知:点P从点Q向点B运动的过程中,点E的纵坐标越来越小,而点P在点Q时,点E的纵坐标为1,由此就可得到m的范围.【解答】解:(1)直线PE与⊙O相切.

证明:连接OP,设CD与x轴交于点F.∵AB是⊙O的直径,∴∠APB=∠CPD=90°.

∵E为CD的中点,∴PE=CE=DE=CD,∴∠EPD=∠EDP.∵OP=OB,

∴∠OPB=∠OBP=∠DBF.

∵∠DBF+∠EDB=90°,∴∠OPB+∠EPD=∠OPE=90°,∴EP⊥OP.∵OP为⊙O的半径,∴PE是⊙O的切线.

(2)连接OE,∵∠OPE=90°,OP=1,∴PE2=OE2﹣OP2=OE2﹣1.∵当OE⊥CD时,OE=OF=2,

此时OE最短,∴PE2最小值为3,即PE最小值为,∵PE=CD,∴线段CD长的最小

值为2.

(3)设⊙O与y轴的正半轴的交点为Q,

由图可知:点P从点Q向点B运动的过程中,点E的纵坐标越来越小,当点P在点Q时,由PE⊥OP可得点E的纵坐标为1.∵点P是圆上第一象限内的一个动点,∴m的范围为m <1.

【点评】本题考查了切线的判定、圆周角定理、直角三角形斜边上的中线等于斜边的一半、勾股定理等知识,利用勾股定理将求PE的最小值转化为求OE的最小值是解决第(2)小题的关键.

【题型训练】

1.解:连接OB.如图1,∵AB切⊙O于B,OA⊥AC,∴∠OBA=∠OAC=90°,

∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,∵OP=OB,∴∠OBP=∠OPB,

∵∠OPB=∠APC,∴∠ACP=∠ABC,∴AB=AC,作出线段AC的垂直平分线MN,作OE

⊥MN,如图2,∴OE=AC=AB=,又∵圆O与直线MN有交点,∴

OE=≤r,∴≤2r,即:100﹣r2≤4r2,∴r2≥20,∴r≥2.∵OA=10,

直线l与⊙O相离,

∴r<10,∴2≤r<10.故答案为:2≤r<10.

【点评】本题考查了等腰三角形的性质和判定,相似三角形的性质和判定,切线的性质,勾股定理,直线与圆的位置关系等知识点的应用,主要培养学生运用性质进行推理和计算的能力.本题综合性比较强,有一定的难度.

2.原题:(2004?无锡)已知:如图,Rt△ABC中,∠B=90°,∠A=30°,BC=6cm.点O从A 点出发,沿AB以每秒cm的速度向B点方向运动,当点O运动了t秒(t>0)时,以O 点为圆心的圆与边AC相切于点D,与边AB相交于E、F两点.过E作EG⊥DE交射线BC于G.

(1)若E与B不重合,问t为何值时,△BEG与△DEG相似?

(2)问:当t在什么范围内时,点G在线段BC上?当t在什么范围内时,点G在线段BC 的延长线上?

(3)当点G在线段BC上(不包括端点B、C)时,求四边形CDEG的面积S(cm2)关于时间t(秒)的函数关系式,并问点O运动了几秒钟时,S取得最大值最大值为多少?

【考点】切线的性质;二次函数综合题;相似三角形的判定.

【专题】综合题;压轴题;分类讨论.

【分析】(1)连接OD,DF.那么OD⊥AC,则∠AOD=60°,∠AED=30°.由于∠DEG=90°,因此∠BEG=60°,因此本题可分两种情况进行讨论:

①当∠EDG=60°,∠DGE=30°时,∠BGD=∠BGE+∠EGD=60°.这样∠BGD和∠ACB相等,那么G和C重合.

②当∠DGE=60°时,可在直角△AOD中,根据∠A的度数和AO的长表示出AD的长,也就能表示出CD的长,由于∠A=∠AED=30°,那么AD=DE,可在直角△DEG中,用AD的长表示出DG,进而根据DG∥AB得出的关于CD,AD,DG,AB的比例关系式即可求出此时t的值.

(2)本题可先求出BG的表达式,然后令BG>BC,即可得出G在BC延长线上时t的取值范围.

(3)由于四边形CGED不是规则的四边形,因此其面积可用△ABC的面积﹣△ADE的面积﹣△BEG的面积来求得.在前两问中已经求得AD,AE,BE,BG的表达式,那么就不难得

出这三个三角形的面积.据此可求出S,t的函数关系式.根据函数的性质和自变量的取值范围即可求出S的最大值及对应的t的值.

【解答】解:(1)连接OD,DF.∵AC切⊙O于点D,∴OD⊥AC.在Rt△OAD中,∠A=30°,

OA=t,∴OD=OF=t,AD=OA?cosA=.又∵∠FOD=90°﹣30°=60°,∴∠AED=30°,∴AD=ED=.∵DE⊥EG,∴∠BEG=60°,△BEG与△DEG相似.∵∠B=∠GED=90°,①当∠EGD=30°,CE=2BE=2(6﹣t)则∠BGD=60°=∠ACB,此时G与C重合,DE==AD,CD=12﹣,BE=6﹣t,∵△BEG∽△DEC,∴=,

∴=,t=;

②当∠EGD=60°.∴DG⊥BC,DG∥AB.在Rt△DEG中,∠DEG=90°,DE=,∴DG=t.在Rt△ABC中,∠A=30°,BC=6,∴AC=12,AB=6,∴CD=12﹣.∵DG∥AB,

∴解得t=.答:当t为或时,△BEG与△EGD相似;

(2)∵AC切⊙O于点D,∴OD⊥AC.在Rt△OAD中,∠A=30°,OA=t,∴∠AED=30°,∴DE⊥EG,∴∠BEG=60°.在Rt△ABC中,∠B=90°,∠A=30°,BC=6,∴AB=6,

BE=6﹣t.Rt△BEG中,∠BEG=60°,∴BG=BE?tan60°=18﹣t.当0≤18﹣t≤6,即≤t≤4时,点G在线段BC上;当18﹣t>6,即0<t<时,点G在线段BC的延长线上;

(3)过点D作DM⊥AB于M.在Rt△ADM中,∠A=30°,∴DM=AD=t.

∴S=S△ABC﹣S△AED﹣S△BEG=36﹣t2﹣27t=﹣(t﹣)2+(<t<4).

所以当t=时,s取得最大值,最大值为.

【点评】本题主要考查了直角三角形的性质、切线的性质、相似三角形的判定、图形面积的求法以及二次函数的综合应用等知识点.

3.D;

4.解:当P点移动到平行于OA且与⊙D相切时,△AOP面积的最大,如图,

∵P是⊙D的切线,∴DP垂直与切线,延长PD交AC于M,则DM⊥AC,

∵在矩形ABCD中,AB=3,BC=4,∴AC==5,∴OA=,

∵∠AMD=∠ADC=90°,∠DAM=∠CAD,∴△ADM∽△ACD,∴=,∵AD=4,CD=3,AC=5,∴DM=,∴PM=PD+DM=1+=,∴△AOP的最大面积

=OA?PM=××=,

故选D.

(4题答图)(5题答图)

【点评】本题考查了圆的切线的性质,矩形的性质,平行线的性质,勾股定理的应用以及三角形相似的判定和性质,本题的关键是判断出P处于什么位置时面积最大;

5.解:如图,设QP的中点为F,圆F与AB的切点为D,连接FD、CF、CD,则FD⊥AB.∵∠ACB=90°,AC=8,BC=6,∴AB=10,FC+FD=PQ,∴FC+FD>CD,∵当点F在直角三角形ABC的斜边AB的高CD上时,PQ=CD有最小值,∴CD=BC?AC÷AB=4.8.故选:B.

6.

7.解:若△ABE的面积最小,则AD与⊙C相切,连接CD,则CD⊥AD;

Rt△ACD中,CD=1,AC=OC+OA=3;由勾股定理,得:AD=2;

∴S△ACD=AD?CD=;易证得△AOE∽△ADC,∴=()2=()2=,

即S△AOE=S△ADC=;∴S△ABE=S△AOB﹣S△AOE=×2×2﹣=2﹣;

另解:利用相似三角形的对应边的比相等更简单!故选:C.

(7题答图)(8题答图)

8.解:当射线AD与⊙C相切时,△ABE面积的最大.连接AC,

∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,

连接CD,设EF=x,∴DE2=EF?OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故选:B.

【点评】本题是一个动点问题,考查了切线的性质和三角形面积的计算,解题的关键是确定当射线AD 与⊙C 相切时,△ABE 面积的最大.

9. 解:当PC ⊥AB 时,PQ 的长最短.在直角△ABC 中,AB===4, PC=AB=2

.∵PQ 是⊙C 的切线,∴CQ ⊥PQ ,即∠CQP=90°, ∴PQ===.故选A .

【点评】本题考查了切线的性质以及勾股定理的运用;注意掌握辅助线的作法,注意当PC ⊥AB 时,线段PQ 最短是关键.

(9题答图)(10题答图)

10. 解:连接AO 并延长,与ED 交于F 点,与圆O 交于P 点,此时线段ED 最大,

连接OM ,PD ,可得F 为ED 的中点,∵∠BAC=60°,AE=AD ,∴△AED 为等边三角形, ∴AF 为角平分线,即∠FAD=30°,在Rt △AOM 中,OM=1,∠OAM=30°,∴OA=2, ∴PD=PA=AO+OP=3,在Rt △PDF 中,∠FDP=30°,PD=3,∴PF=,根据勾股定理得:

FD==,则DE=2FD=3.同理可得:DE 23323333DE ≤≤ 11.15m n ≤-≤;12.01m <≤;13. 解:设P (x ,y ),∵PA 2=(x+1)2+y 2,PB 2=(x ﹣1)2+y 2

∴PA 2+PB 2=2x 2+2y 2+2=2(x 2+y 2)+2,∵OP 2=x 2+y 2,∴PA 2+PB 2=2OP 2+2,当点P 处于OM 与圆的交点上时,OP 取得最值,∴OP 的最大值为OM+PM=5+2=7,∴PA 2+PB 2最大值为100.

【点评】本题考查了圆的综合,解答本题的关键是设出点P 坐标,将所求代数式的值转化

为求解OP 的最大值,难度较大.

附:1.如图,直线分别与x、y轴交于点A、B,以OB为直径作⊙M,⊙M与

直线AB的另一个交点为D.

(1)求∠BAO的大小;(2)求点D的坐标;(3)过O、D、A三点作抛物线,点Q是抛物线的对称轴l上的动点,探求:|QO﹣QD|的最大值.

【考点】一次函数综合题.【专题】压轴题.

【分析】(1)根据直线解析式求出点A、B的坐标,从而得到OA、OB的长度,再求出∠BAO 的正切值,然后根据特殊角的三角函数值求解即可;

(2)连接OD,过D作DE⊥OA于点E,根据直径所对的圆周角是直角可得∠BDO=90°,再根据直角三角形30°角所对的直角边等于斜边的一半求出OD,直角三角形两锐角互余求出∠DOE=60°,然后解直角三角形求出OE、DE,再写出点D的坐标即可;

(3)根据二次函数的对称性可得抛物线的对称轴为OA的垂直平分线,再根据三角形的任意两边之差小于第三边判断出点Q为OD与对称轴的交点时|QO﹣QD|=OD的值最大,然后求解即可.

【解答】解:(1)∵直线y=﹣x+4分别与x、y轴交于点A、B,

∴当y=0时,﹣x+4=0,解得x=4;当x=0时,y=4,∴A(4,0),B(0,4).

∴OA=4,OB=4,在Rt△AOB中,∵tan∠BAO===,∴∠BAO=30°;

(2)连接OD,过D作DE⊥OA于点E,∵OB是⊙M的直径,∴∠BDO=∠ADO=90°,在Rt△AOD中,∵∠BAO=30°,∴OD=OA=×4=2,∠DOE=60°,在Rt△DOE中,

OE=OD?cos∠DOE=2×=,DE=OD?sin∠DOE=2×=3,∴点D的坐标为(,3);

(3)易知对称轴l是OA的垂直平分线,延长OD交对称轴l于点Q,此时|QO﹣QD|=OD 的值最大,理由:设Q′为对称轴l上另一点,连接OQ′,DQ′,则在△ODQ′中,|Q′O﹣Q′D|<OD,

∴|QO﹣QD|的最大值=OD=2.

【点评】本题是一次函数综合题型,主要利用了一次函数与坐标轴的交点的求解,直径所对的圆周角是直角,锐角三角函数定义,解直角三角形,二次函数的对称性,三角形的三边关系,(3)判断出点Q为直线OD与对称轴的交点是解题的关键.

2.如图,已知A,B两点的坐标分别为(﹣3,0),(0,3),⊙C的圆心坐标为(3,0),并与x轴交于坐标原点O.若E是⊙C上的一个动点,线段AE与y轴交于点D.

(1)线段AE长度的最小值是,最大值是;

(2)当点E运动到点E1和点E2时,线段AE所在的直线与⊙C相切,求由AE1、AE2、弧E1OE2所围成的图形的面积;

(3)求出△ABD的最大值和最小值.

(题图)(答图)

【考点】圆的综合题.【专题】几何综合题.

【分析】(1)根据动点E在x轴上时,AE取得最小值与最大值解答;

(2)连接CE1、CE2,根据圆的切线的定义可得CE1⊥AE1,CE2⊥AE2,解直角三角形求出∠ACE1=60°,过点E1作E1F⊥x轴于F,利用∠ACE1的正弦求出E1F,然后利用三角形的面积求出△ACE1的面积,同理可得△ACE2的面积,再根据由AE1、AE2、弧E1OE2所围成的图形的面积=四边形AE1CE2的面积﹣扇形CE1E2的面积,然后列式计算即可得解;(3)根据直角三角形两锐角互余求出∠DAO=30°,利用∠DAO的正切值求出OD的长度,根据三角形的面积,点D在y轴负半轴时,△ABD的面积取得最大值,在y轴正半轴时,△ABD的面积取得最小值,然后进行计算即可得解,

【解答】解:(1)∵A(﹣3,0),∴OA=3,∵⊙C的圆心坐标为(3,0),并与x轴交于坐标原点O,∴⊙C的半径为3,∴AE长度的最小值为3,最大值为3+3×2=9;故答案为:3,9;

(2)如图,连接CE1、CE2,∵点E运动到点E1和点E2时,线段AE所在的直线与⊙C相切,

∴CE1⊥AE1,CE2⊥AE2,∵cos∠ACE1===,∴∠ACE1=60°,过点E1作E1F⊥x

轴于F,则E1F=CE1?sin60°=3×sin60°=3×=,∴△ACE1的面积

=AC?E1F=×6×=,

同理可得,△ACE2的面积=,∴四边形AE1CE2的面积=△ACE1的面积+△ACE2的面

积=+=9,由AE1、AE2、弧E1OE2所围成的图形的面积=四边形AE1CE2的面积﹣扇形CE1E2的面积,=9﹣,=9﹣3π;

(3)∵∠ACE1=60°,∴∠DAO=90°﹣ACE1=90°﹣60°=30°,

∴OD=AO?tan∠DAO=3tan30°=3×=,∵点A到BD的距离为OA的长度,不变,

∴点D在y轴负半轴时,△ABD的面积取得最大值,此时BD=OB+OD=3+,最大面积为:

×(3+)×3=,在y轴正半轴时,△ABD的面积取得最小值,

此时BD=OB﹣OD=3﹣,最小面积为:×(3﹣)×3=.

【点评】本题是圆的综合题型,主要考查了圆外一点与圆上各点的距离的最值问题,圆的切线问题,解直角三角形,以及三角形的面积,综合题,但难度不大,(1)(3)确定出最大值

中考数学圆的综合-经典压轴题及答案

中考数学圆的综合-经典压轴题及答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC. (1)若∠G=48°,求∠ACB的度数; (2)若AB=AE,求证:∠BAD=∠COF; (3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若 tan∠CAF= 1 2,求1 2 S S的值. 【答案】(1)48°(2)证明见解析(3)3 4

备战中考数学圆的综合-经典压轴题及答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,△ABC的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD于E,交AB于F,交⊙O于G. (1)判断直线PA与⊙O的位置关系,并说明理由; (2)求证:AG2=AF·AB; (3)若⊙O的直径为10,AC=25,AB=45,求△AFG的面积. 【答案】(1)PA与⊙O相切,理由见解析;(2)证明见解析;(3)3. 【解析】 试题分析:(1)连接CD,由AD为⊙O的直径,可得∠ACD=90°,由圆周角定理,证得∠B=∠D,由已知∠PAC=∠B,可证得DA⊥PA,继而可证得PA与⊙O相切. (2)连接BG,易证得△AFG∽△AGB,由相似三角形的对应边成比例,证得结论. (3)连接BD,由AG2=AF?AB,可求得AF的长,易证得△AEF∽△ABD,即可求得AE的长,继而可求得EF与EG的长,则可求得答案. 试题解析:解:(1)PA与⊙O相切.理由如下: 如答图1,连接CD, ∵AD为⊙O的直径,∴∠ACD=90°. ∴∠D+∠CAD=90°. ∵∠B=∠D,∠PAC=∠B,∴∠PAC=∠D. ∴∠PAC+∠CAD=90°,即DA⊥PA. ∵点A在圆上, ∴PA与⊙O相切.

(2)证明:如答图2,连接BG , ∵AD 为⊙O 的直径,CG ⊥AD ,∴AC AD =.∴∠AGF=∠ABG. ∵∠GAF=∠BAG ,∴△AGF ∽△ABG. ∴AG :AB=AF :AG. ∴AG 2=AF?AB. (3)如答图3,连接BD , ∵AD 是直径,∴∠ABD=90°. ∵AG 2=AF?AB ,55∴5 ∵CG ⊥AD ,∴∠AEF=∠ABD=90°. ∵∠EAF=∠BAD ,∴△AEF ∽△ABD. ∴ AE AF AB AD =545=,解得:AE=2. ∴221EF AF AE = -=. ∵224EG AG AE = -=,∴413FG EG EF =-=-=. ∴1132322 AFG S FG AE ?=??=??=.

中考圆压轴题

学生: 科目: 数 学 教师: 知识框架 一、圆的概念 集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为 半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平 分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 A

1、点在圆内?d r ?点A在圆外; 三、直线与圆的位置关系 1、直线与圆相离?d r >?无交点; 2、直线与圆相切?d r =?有一个交点; 3、直线与圆相交?d r +; 外切(图2)?有一个交点?d R r =+; 相交(图3)?有两个交点?R r d R r -<<+; 内切(图4)?有一个交点?d R r =-; 内含(图5)?无交点?d R r <-; 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB是直径②AB CD =④弧BC=弧BD⑤弧AC=弧 ⊥③CE DE

广州中考圆压轴题专题#(精选.)

1.如图甲,分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA 所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴 上),抛物线y=1 4 x2+bx+c经过A、C两点,与x轴的另一交点为G,M是FG的中点,正方形 CDEF的面积为1. (1)求B点坐标; (2)求证:ME是⊙P的切线; 2.如图,△ABC内接于⊙O,AD⊥BC,OE⊥BC,OE=1 2 BC. (1)求∠BAC的度数; (2)将△ACD沿AC折叠为△ACF,将△ABD沿AB折叠为△ABG,延长FC和GB相交于点H;求证:四边形AFHG是正方形; (3)若BD=6,CD=4,求AD的长.

3.如图1所示,以点M(-1,O)为圆心的圆与y轴、x轴分别交于点A,B,C,D,直线y= 3 -x- 53 与⊙M相切于点H,交x轴于点E,交y轴于点F. (1)请直接写出OE、⊙M的半径r、CH的长; (2)如图2所示,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值; (3)如图3所示,点K为线段EC上一动点(不与E,C重合),连接BK交⊙M于点T,弦A T交x轴于点N.是否存在一个常数a,始终满足MN?MK=a,如果存在,请求出a的值;如果不存在,请说明 理由. 4.如图,E点为x轴正半轴上一点,⊙E交x轴于A、B两点,交y轴于C、D两点,P点 为劣弧?BC上一个动点,且A(-1,0),E(1,0). (1)求点C的坐标; (2)连接PA,PC.若CQ平分∠PCD交PA于Q点,当P点在运动时,线段AQ的长度是否发生变化; 若不变求出其值,若发生变化,求出变化的范围; (3)连接PD,当P点在运动时(不与B、C两点重合),求证:PC PD PA 的值不变

2016年中考压轴题专题与圆有关的最值问题附答案

B y C x A O D B O C A 与圆有关的最值(取值范围)问题 引例1:在坐标系中,点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限 内一点,且AC=2.设tan ∠BOC=m ,则m 的取值范围是_________. 引例2:如图,在边长为1的等边△OAB 中,以边AB 为直径作⊙D ,以O 为圆心OA 长为半径 作⊙O ,C 为半圆弧?AB 上的一个动点(不与A 、B 两点重合) ,射线AC 交⊙O 于点E ,BC=a ,AC=b ,求a b 的最大值. 引例3:如图,∠BAC=60°,半径长为1的圆O 与∠BAC 的两边相切,P 为圆O 上一动点, 以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( ). A .3 B .6 C .332 D .33 一、题目分析: 此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接 1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C 与两个定点O 、A 构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用; 2.引例2:通过圆的基本性质,寻找动点C 与两个定点A 、B 构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用; 3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D 、E 与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE 、直径所在的直角三角形,从而转化为弦DE 与半径AP 之间的数量关系,其实质是高中“正弦定理”的直接运用; 综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透. 二、解题策略 1.直观感觉,画出图形; 2.特殊位置,比较结果; 3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.

中考圆压轴题训练精选

成都中考圆压轴题训练 一.选择题(共15小题) 1.如图1,⊙O的直径为AB,过半径OA的中点G作弦CE⊥AB,在上取一点D,分别作直线CD,ED,交直线AB于点F、M. (1)求∠COA和∠FDM的度数; (2)求证:△FDM∽△COM; (3)如图2,若将垂足G改取为半径OB上任意一点,点D改取在上,仍作直线CD、ED,分别交直线AB于点F、M.试判断:此时是否仍有△FDM∽△COM?证明你的结论. 2.已知:如图,BC为半圆的直径,O为圆心,D是弧AC的中点,四边形ABCD 的对角线AC、BD交于点E. (1)求证:△ABE∽△DBC; (2)已知BC=,CD=,求sin∠AEB的值; (3)在(2)的条件下,求弦AB的长. 3.如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E. (1)当BC=1时,求线段OD的长; (2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,

如果不存在,请说明理由; (3)设BD=x ,△DOE 的面积为y ,求y 关于x 的函数关系式,并写出它的定义域. 4.如图,⊙M 交x 轴于B 、C 两点,交y 轴于A ,点M 的纵坐标为2.B (﹣3, O ),C (,O ). (1)求⊙M 的半径; (2)若CE ⊥AB 于H ,交y 轴于F ,求证:EH=FH . (3)在(2)的条件下求AF 的长. 5.已知:如图,△ABC 内接于⊙O ,BC 为直径,AD ⊥BC 于点D ,点E 为DA 延长线上一点,连接BE ,交⊙O 于点F ,连接CF ,交AB 、AD 于M 、N 两点. (1)若线段AM 、AN 的长是关于x 的一元二次方程x 2﹣2mx +n 2﹣mn +m 2=0的两个实数根,求证:AM=AN ; (2)若AN=,DN=,求DE 的长; (3)若在(1)的条件下,S △AMN :S △ABE =9:64,且线段BF 与EF 的长是关于y 的一元二次方程5y 2﹣16ky +10k 2+5=0的两个实数根,求直径BC 的长.

与圆有关的中考数学压轴题精选

与 圆 有关的中考数学压轴题精选 1.在直角坐标平面内,O 为原点,点A 的坐标为(1,0),点C 的坐标为(0,4),直线CM ∥x 轴(如图所示).点B 与点A 关于原点对称,直线y =x +b (b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD . (1)求b 的值和点D 的坐标; (2)设点P 在x 轴的正半轴上,若△POD 是等腰三角形,求点P 的坐标; (3)在(2)的条件下,如果以PD 为半径的圆P 与圆O 外切,求圆O 的半径. 2.如图,已知射线DE 与x 轴和y 轴分别交于点D (3,0)和点E (0,4),动点C 从点M (5,0)出发,以1个单位长度/秒的速度沿x 轴向左作匀速运动,与此同时,动点P 从点D 出发,也以1个单位长度/秒的速度沿射线DE 的方向作匀速运动.设运动时间为t 秒. (1)请用含t 的代数式分别表示出点C 与点P 的坐标; (2)以点C 为圆心、 2 1 t 个单位长度为半径的⊙C 与x 轴交于A 、B 两点(点A 在点B 的左侧),连接P A 、PB . ① 当⊙C 与射线DE 有公共点时,求t ② 当△P AB 为等腰三角形时,求t 的值.

3.如图,射线OA ⊥射线OB ,半径r =2cm 的动圆M 与OB 相切于点Q (圆M 与OA ?没有公共点),P 是OA 上的动点,且PM =3cm ,设OP =x cm ,OQ =y cm . (1)求x 、y 所满足的关系式,并写出x 的取值范围. (2)当△MOP 为等腰三角形时,求相应的x 的值. (3)是否存在大于2的实数x ,使△MQO ∽△OMP ?若存在,求相应x 的值,若不存在, 请说明理由. 4.如图所示,在直角坐标系中,⊙P 经过原点O ,且与x 轴、y 轴分别相交于A (-6,0)、B (0,-8)两点,两点. (1)求直线AB 的函数表达式; (2)有一开口向下的抛物线过B 点,它的对称轴平行于y 轴且经过点P ,顶点C 在⊙P 上,求该抛物线的函数表达式; (3)设(2)中的抛物线交x 轴于D ,E 两点,在抛物线上是否存在点Q ,使得S △QDE = 15 1S △ABC ?若存在,求出点Q 的坐标;若不存在,请说明理由.

圆中考数学压轴题

1 如图,将△AOB置于平面直角坐标系中,其中点O为坐标原点,点A的坐标为(3,0),∠ABO=60°. (1)若△AOB的外接圆与y轴交于点D,求D点坐标. (2)若点C的坐标为(-1,0),试猜想过D、C的直线与△AOB的外接圆的位置关系,并加以说明. (3)二次函数的图象经过点O和A且顶点在圆上,求此函数的解析式. 2 如图(4),正方形111 OA B C的边长为1,以O为圆心、 1 OA为半径作扇形 1111 OAC AC ,与 1 OB相交于点 2 B,设正方形 111 OA B C 与扇形 11 OA C之间的阴影部分的面积为 1 S;然后以 2 OB为对角线作正方形 222 OA B C,又以O为圆心,、 2 OA为半径作扇形 22 OA C,22 A C与 1 OB相交于点 3 B,设正方形 222 OA B C与扇形 22 OA C之间的阴影部分面积为 2 S;按此规律继续作下去,设正方形 n n n OA B C 与扇形 n n OA C之间的阴影部分面积为 n S. (1)求 123 S S S ,,; (2)写出 2008 S; (3)试猜想 n S(用含n的代数式表示,n为正整数). 3 (10分)如图,点I是△ABC的内心,线段A I的延长线交△ABC的外接圆于点D,交BC边于点E. (1)求证:I D=BD; (2)设△ABC的外接圆的半径为5,I D=6,AD x =,DE y =,当点A在优弧上运动时,求y与x的函数关系式,并指出自变量x的取值范围. 4 如图,点A,B,C,D是直径为AB的⊙O上四个点,C是劣弧BD的中点,AC交BD于点E,AE=2,EC=1. (1)求证:DEC △∽ADC △;(3分) (2)试探究四边形ABCD是否是梯形?若是,请你给予 证明并求出它的面积;若不是,请说明理由.(4分) (3)延长AB到H,使BH=OB. 1 B2 B3 A1 A2 A3 O C C C 图4 S2 S1 S3

中考数学圆经典压轴题带答案

1.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE?CA. (1)求证:BC=CD; (2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长. 2.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为 G,连接AG交CD于K. (1)求证:KE=GE; (2)若=KD·GE,试判断AC与EF的位置关系,并说明理由; (3)在(2)的条件下,若sinE=,AK=,求FG的长. 4.

5.已知:如图,在半径为4的⊙O中,AB,CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且E M>MC,连结DE,DE=。 (1)求证:AM·MB=EM·MC;(2)求EM的长;(3)求sin∠EOB的值。 6.如图,AE切⊙O于点E,AT交⊙O于点M,N,线段OE交AT于点C,OB⊥AT于点B,已知 ∠EAT=30°,AE=3,MN=2. (1)求∠COB的度数; (2)求⊙O的半径R; (3)点F在⊙O上(是劣弧),且EF=5,把△OBC经过平移、旋转和相似变换后,使它的两个顶点分别与点E,F重合.在EF的同一侧,这样的三角形共有多少个你能在其中找出另一个顶点在⊙O上的三角形吗请在图中画出这个三角形,并求出这个三角形与△OBC的周长之比. 7.如图,AB是半径O的直径,AB=2.射线AM、BN为半圆O的切线.在AM上取一点D,连接BD交半圆于点C,连接AC.过O点作BC的垂线OE,垂足为点E,与BN相交于点F.过D点作半圆O的切线DP,切点为P,与BN相交于点Q. (1)求证:△ABC∽△OFB; (2)当△ABD与△BFO的面枳相等时,求BQ的长; (3)求证:当D在AM上移动时(A点除外),点Q始终是线段BF的中点

中考数学与圆的综合有关的压轴题附答案解析

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.如图,AB 为⊙O 的直径,点E 在⊙O 上,过点E 的切线与AB 的延长线交于点D ,连接BE ,过点O 作BE 的平行线,交⊙O 于点F ,交切线于点C ,连接AC (1)求证:AC 是⊙O 的切线; (2)连接EF ,当∠D= °时,四边形FOBE 是菱形. 【答案】(1)见解析;(2)30. 【解析】 【分析】 (1)由等角的转换证明出OCA OCE ??≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ?为等边三角形,而得出60BOE ∠=?,根据三角形内角和即可求出答案. 【详解】 (1)证明:∵CD 与⊙O 相切于点E , ∴OE CD ⊥, ∴90CEO ∠=?, 又∵OC BE , ∴COE OEB ∠=∠,∠OBE=∠COA ∵OE=OB , ∴OEB OBE ∠=∠, ∴COE COA ∠=∠, 又∵OC=OC ,OA=OE , ∴OCA OCE SAS ??≌() , ∴90CAO CEO ∠=∠=?, 又∵AB 为⊙O 的直径, ∴AC 为⊙O 的切线; (2)解:∵四边形FOBE 是菱形, ∴OF=OB=BF=EF , ∴OE=OB=BE , ∴OBE ?为等边三角形, ∴60BOE ∠=?,

而OE CD ⊥, ∴30D ∠=?. 故答案为30. 【点睛】 本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键. 2.如图1O ,的直径12AB P =,是弦BC 上一动点(与点B C ,不重合)30ABC ,∠=,过点P 作PD OP ⊥交O 于点D . ()1如图2,当//PD AB 时,求PD 的长; ()2如图3,当DC AC =时,延长AB 至点E ,使12BE AB =,连接DE . ①求证:DE 是O 的切线; ②求PC 的长. 【答案】(1)26;(2)333-①见解析,②. 【解析】 分析:()1根据题意首先得出半径长,再利用锐角三角函数关系得出OP PD ,的长; ()2①首先得出 OBD 是等边三角形,进而得出ODE OFB 90∠∠==,求出答案即 可; ②首先求出CF 的长,进而利用直角三角形的性质得出PF 的长,进而得出答案. 详解:()1如图2,连接OD , //OP PD PD AB ⊥,, 90POB ∴∠=, O 的直径12AB =, 6OB OD ∴==,

中考数学圆的综合-经典压轴题附答案解析

中考数学圆的综合-经典压轴题附答案解析 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD 是直径, ∴∠DBC=90°, ∵CD=4,B 为弧CD 中点, ∴BD=BC= , ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB , ∵∠DBE=∠DBA , ∴△DBE ∽△ABD , ∴ , ∴BE?AB=BD?BD= . 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,△ABC 是⊙O 的内接三角形,点D 在BC uuu r 上,点E 在弦AB 上(E 不与A 重 合),且四边形BDCE 为菱形. (1)求证:AC=CE ; (2)求证:BC 2﹣AC 2=AB?AC ; (3)已知⊙O 的半径为3. ①若AB AC =5 3 ,求BC 的长; ②当 AB AC 为何值时,AB?AC 的值最大? 【答案】(1)证明见解析;(2)证明见解析;(3)2;② 32

与圆有关的中考数学压轴题图文稿

与圆有关的中考数学压 轴题 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

与 圆 有关的中考数学压轴题精选 1.在直角坐标平面内,O 为原点,点A 的坐标为(1,0),点C 的坐标为(0,4),直线CM ∥x 轴(如图所示).点B 与点A 关于原点对称,直线y =x +b (b 为常数)经过点B ,且与直线CM 相交于点D ,联结OD . (1)求b 的值和点D 的坐标; (2)设点P 在x 轴的正半轴上,若△POD 是等腰三角形,求点P 的坐标; (3)在(2)的条件下,如果以PD 为半径的圆P 与圆O 外切,求圆O 的半径. 2.如图,已知射线DE 与x 轴和y 4 ),动点C 从点M (5,0)出发,以1作匀速运动,与此同时,动点P 从点D 度沿射线DE (1)请用含t 的代数式分别表示出点C 与点P 的坐标; (2)以点C 为圆心、2 1 t 个单位长度为半径的⊙C 与x 轴交于A 、B 两 点(点A 在点B 的左侧),连接PA 、PB . ① 当⊙C 与射线DE 有公共点时,求t ② 当△PAB 为等腰三角形时,求t 的值. 3.如图,射线OA ⊥射线OB ,半径r =2cm 的动圆M 与M 与OA ?没有公共点),P 是OA 上的动点,且PM =3cm =y cm . (1)求x 、y 所满足的关系式,并写出x

(2)当△MOP 为等腰三角形时,求相应的x 的值. (3)是否存在大于2的实数x ,使△MQO ∽△OMP 值,若不存在,请说明理由. 4.如图所示,在直角坐标系中,⊙P 经过原点O 交于A (-6,0)、B (0,-8)两点,两点. (1)求直线AB 的函数表达式; (2)有一开口向下的抛物线过B 点,它的对称轴平行于y 轴且经过点 P ,顶点C 在⊙P 上,求该抛物线的函数表达式; (3)设(2)中的抛物线交x 轴于D ,E 两点,在抛物线上是否存在点 Q ,使得S △QDE = 15 1 S △ABC 若存在,求出点Q 的坐标;若不存在,请说明理 由. 5.如图,在平面直角坐标系中,抛物线经过A(-C(0,-4),⊙M 是△ABC 的外接圆,M 为圆心. (1)求抛物线的解析式; (2)求阴影部分的面积; (3)在x 轴的正半轴上有一点P ,作PQ ⊥x 轴交BC 于Q ,设PQ =k ,△CPQ 的面积为S ,求S 关于k 的函数关系式,并求出S 的最大值. 6.如图,在平面直角坐标系中,半圆M 的圆心轴于A (-1,0)、B (4,0)两点,交y 交y 轴于点D ,连接AD 并延长交半圆M 于点E (1)求经过A 、B 、C O P A Q B

中考数学圆的综合提高练习题压轴题训练附详细答案

中考数学圆的综合提高练习题压轴题训练附详细答案 一、圆的综合 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,?? BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵?? BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

中考数学与圆的综合有关的压轴题附答案

中考数学与圆的综合有关的压轴题附答案 一、圆的综合 1.已知AB ,CD 都是O e 的直径,连接DB ,过点C 的切线交DB 的延长线于点E . ()1如图1,求证:AOD 2E 180∠∠+=o ; ()2如图2,过点A 作AF EC ⊥交EC 的延长线于点F ,过点D 作DG AB ⊥,垂足为点 G ,求证:DG CF =; ()3如图3,在()2的条件下,当DG 3CE 4 =时,在O e 外取一点H ,连接CH 、DH 分别交 O e 于点M 、N ,且HDE HCE ∠∠=,点P 在HD 的延长线上,连接PO 并延长交CM 于 点Q ,若PD 11=,DN 14=,MQ OB =,求线段HM 的长. 【答案】(1)证明见解析(2)证明见解析(3)837+ 【解析】 【分析】 (1)由∠D +∠E =90°,可得2∠D +2∠E =180°,只要证明∠AOD =2∠D 即可; (2)如图2中,作OR ⊥AF 于R .只要证明△AOR ≌△ODG 即可; (3)如图3中,连接BC 、OM 、ON 、CN ,作BT ⊥CL 于T ,作NK ⊥CH 于K ,设CH 交DE 于W .解直角三角形分别求出KM ,KH 即可; 【详解】 ()1证明:如图1中, O Q e 与CE 相切于点C , OC CE ∴⊥, OCE 90∠∴=o , D E 90∠∠∴+=o ,

2D 2E 180∠∠∴+=o , AOD COB ∠∠=Q ,BOC 2D ∠∠=,AOD 2D ∠∠=, AOD 2E 180∠∠∴+=o . ()2证明:如图2中,作OR AF ⊥于R . OCF F ORF 90∠∠∠===o Q , ∴四边形OCFR 是矩形, AF//CD ∴,CF OR =, A AOD ∠∠∴=, 在AOR V 和ODG V 中, A AOD ∠∠=Q ,ARO OGD 90∠∠==o ,OA DO =, AOR ∴V ≌ODG V , OR DG ∴=, DG CF ∴=, ()3解:如图3中,连接BC 、OM 、ON 、CN ,作BT CL ⊥于T ,作NK CH ⊥于K ,设CH 交DE 于W . 设DG 3m =,则CF 3m =,CE 4m =, OCF F BTE 90∠∠∠===o Q , AF//OC//BT ∴, OA OB =Q , CT CF 3m ∴==, ET m ∴=, CD Q 为直径, CBD CND 90CBE ∠∠∠∴===o ,

2020-2021备战中考数学圆与相似-经典压轴题附详细答案

2020-2021备战中考数学圆与相似-经典压轴题附详细答案 一、相似 1.如图,在等腰Rt△ABC中,O为斜边AC的中点,连接BO,以AB为斜边向三角内部作Rt△ABE,且∠AEB=90°,连接EO.求证: (1)∠OAE=∠OBE; (2)AE=BE+ OE. 【答案】(1)证明:在等腰Rt△ABC中,O为斜边AC的中点, ∴OB⊥AC, ∴∠AOB=90°, ∵∠AEB=90°, ∴A,B,E,O四点共圆, ∴∠OAE=∠OBE (2)证明:在AE上截取EF=BE, 则△EFB是等腰直角三角形, ∴,∠FBE=45°, ∵在等腰Rt△ABC中,O为斜边AC的中点, ∴∠ABO=45°, ∴∠ABF=∠OBE, ∵, ∴, ∴△ABF∽△BOE,

∴ = , ∴AF= OE, ∵AE=AF+EF, ∴AE=BE+ OE. 【解析】【分析】(1)利用等腰直角三角形的性质,可证得∠AOB=∠AEB=90°,可得出A,B,E,O四点共圆,再利用同弧所对的圆周角相等,可证得结论。 (2)在AE上截取EF=BE,易证△EFB是等腰直角三角形,可得出BF与BE的比值为,再证明∠ABF=∠OBE,AB与BO的比值为,就可证得AB、BO、BF、BE四条线段成比例,然后利用两组对应边成比例且夹角相等的两三角形相似,可证得△ABF∽△BOE,可证得AF= OE,由AE=AF+EF,可证得结论。 2.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B 运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒. (1)求抛物线的解析式和对称轴; (2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由; (3)设四边形DECO的面积为s,求s关于t的函数表达式. 【答案】(1)解:把A(﹣4,0),B(1,0),点C(0,2)代入 得:,解得:, ∴抛物线的解析式为:, 对称轴为:直线x=﹣; (2)解:存在,∵AD=2t,

中考数学圆压轴题

1推理运算如图,AB 为O e 直径,CD 为弦,且CD AB ⊥,垂足为H . (1)OCD ∠的平分线CE 交O e 于E ,连结OE .求证:E 为? ADB 的中点; (2)如果O e 的半径为1,CD =,①求O 到弦AC 的距离; ②填空:此时圆周上存在 个点到直线AC 的距离为 12 . 2 如图6,在Rt △ABC 中,∠ABC =90°,D 是AC 的中点,⊙O 经过A 、B 、D 三点, CB 的延长线交⊙O 于点E . (1) 求证AE =CE ; (2) EF 与⊙O 相切于点E ,交AC 的延长线于点F ,若CD =CF =2cm ,求⊙O 的直径; (3)若n CD CF = (n >0),求sin ∠CAB . 3 已知:如图,在半径为4的⊙O 中,AB ,CD 是两条直径,M 为OB 的中点, CM 的延长线交⊙O 于点E ,且EM >MC .连结DE ,DE = (1) 求证:AM MB EM MC ?=?; (2) 求EM 的长; (3)求sin ∠EOB 的值. 4 如图,已知⊙O 的直径AB =2,直线m 与⊙O 相切于点A ,P 为⊙O 上一动点 (与点A 、点B 不重合),PO 的延长线与⊙O 相交于点C ,过点C 的切线与直线 m 相交于点D . (1)求证:△APC∽△COD. (2)设AP =x ,OD =y ,试用含x 的代数式表示y . (3)试探索x 为何值时,△ACD 是一个等边三角形. 5 如图,在以O 为圆心的两个同心圆中,AB 经过圆心O ,且与小圆相交于点A 、 与大圆相交于点B .小圆的切线AC 与大圆相交于点D ,且CO 平分∠ACB . (1)试判断BC 所在直线与小圆的位置关系,并说明理由; (2)试判断线段AC 、AD 、BC 之间的数量关系,并说明理由; (3)若8cm 10cm AB BC ==,,求大圆与小圆围成的圆环的面积.(结果保留π) 6 在Rt △ABC 中,BC =9, CA =12,∠ABC 的平分线BD 交AC 与点D , DE ⊥DB 交AB 于点E . (1)设⊙O 是△BDE 的外接圆,求证:AC 是⊙O 的切线; (2)设⊙O 交BC 于点F ,连结EF ,求 EF AC 的值. 7 如图,点A ,B 在直线MN 上,AB =11厘米,⊙A ,⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r =1+t (t ≥0). (1)试写出点A ,B 之间的距离d (厘米) 与时间t (秒)之间的函数表达式; A B D E O C H A B N M

2016年中考压轴题专题:与圆有关的最值问题(附答案)

与圆有关的最值(取值范围)问题 引例1:在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________. 引例2:如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧上的一个动点(不与A、B两点重合),射线AC交⊙O于点E, ?AB BC=,AC=,求的最大值. a b a b 引例3:如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE 长度的最大值为( ). A.3 B.6 C D. 一、题目分析: 此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接 1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C与两个定点O、A构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用; 2.引例2:通过圆的基本性质,寻找动点C与两个定点A、B构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用; 3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D、E与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE、直径所在的直角三角形,从而转化为弦DE与半径AP之间的数量关系,其实质是高中“正弦定理”的直接运用; 综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透. 二、解题策略 1.直观感觉,画出图形; 2.特殊位置,比较结果; 3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.

中考数学—圆与相似的综合压轴题专题复习及答案.doc

中考数学—圆与相似的综合压轴题专题复习及答案一、相似 1.如图的中点 1,过等边三角形 M, N,连接 MN . ABC 边AB 上一点 D 作交边AC 于点E,分别取BC, DE (1)发现:在图 1 中,________; (2)应用:如图2,将绕点 A 旋转,请求出的值; (3)拓展:如图3,和是等腰三角形,且, M , N 分别是底边 BC, DE 的中点,若,请直接写出的值. 【答案】(1) (2)解:如图 2 中,连接AM、 AN, , , 都是等边三角形, , ,,,, , , , ∽,

(3)解:如图 3 中,连接AM、 AN,延长 AD 交 CE于 H,交 AC 于 O, ,,,, ,, , , , , ,, , , ∽, , , , ,, ≌, , , , , , , , , ,

【解析】【解答】解:(1)如图 1 中,作于H,连接AM, ,, , 时等边三角形, , , , , 平分线段DE, , 、 N、 M 共线, , 四边形 MNDH 时矩形, , , 故答案为:; 【分析】( 1)作DH ⊥ BC 于 H,连接AM.证四边形MNDH 时矩形,所以MN=DH,则MN : BD=DH:BD=sin60 ,°即可求解; (2)利用△ ABC ,△ ADE 都是等边三角形可得AM : AB=AN: AD,易得∠BAD = ∠MAN ,从而得△ BAD ∽ △ MAN,则 NM: BD=AM:AB=sin60 ,°从而求解; (3)连接 AM、 AN,延长 AD 交 CE 于 H,交 AC 于 O.先证明△BAD∽△ MAN可得 NM : BD=AM:AB=sin∠ ABC;再证明△ BAD ≌ △ CAE,则∠ ABD = ∠ ACE ,进而可得∠ABC = 45 ,可求出°答案 . 2.如图, Rt△ AOB 在平面直角坐标系中,已知:B(0,),点OA=3,∠BAD=30°,将△ AOB 沿 AB 翻折,点O 到点 C 的位置,连接A 在 x 轴的正半轴上,CB 并延长交 x 轴于点

2020年九年级中考数学压轴题专项训练:圆的综合卷(附答案)

2020年九年级中考数学压轴题专项训练:圆的综合卷(含答案) 1.如图,点O为Rt△ABC斜边AB上的一点,∠C=90°,以OA为半径的⊙O与BC交于点D,与AC交于点E,连接AD且AD平分∠BAC. (1)求证:BC是⊙O的切线; (2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π) (1)证明:连接OD, ∵AD平分∠BAC, ∴∠BAD=∠DAC, ∵AO=DO, ∴∠BAD=∠ADO, ∴∠CAD=∠ADO, ∴AC∥OD, ∵∠ACD=90°, ∴OD⊥BC, ∴BC与⊙O相切; (2)解:连接OE,ED,

∵∠BAC=60°,OE=OA, ∴△OAE为等边三角形, ∴∠AOE=60°, ∴∠ADE=30°, 又∵∠OAD=∠BAC=30°, ∴∠ADE=∠OAD, ∴ED∥AO, ∴四边形OAED是菱形, ∴OE⊥AD,且AM=DM,EM=OM, ∴S △AED =S △AOD , ∴阴影部分的面积=S扇形ODE==π. 2.如图,已知AB是⊙O的直径,AC是⊙O的弦,点E在⊙O外,连接CE,∠ACB的平分线交⊙O于点D. (1)若∠BCE=∠BAC,求证:CE是⊙O的切线; (2)若AD=4,BC=3,求弦AC的长. (1)证明:连接OC, ∵AB是⊙O的直径, ∴∠ACB=90°,

∴∠ACO+∠BCO=90°, ∵OA=OC, ∴∠OAC=∠OCA, ∵∠BAC=∠BCE, ∴∠ACO=∠BCE, ∴∠BCE+∠BCO=90°, ∴∠OCE=90°, ∴CE是⊙O的切线; (2)解:连接BD, ∵∠ACB的平分线交⊙O于点D, ∴∠ACD=∠BCD, ∴=, ∴AD=BD, ∵AB是⊙O的直径, ∴∠ADB=90°, ∴△ADB是等腰直角三角形, ∴AB=AD=4, ∵BC=3, ∴AC===. 3.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C. (1)求证:CD是⊙O的切线; (2)∠C=45°,⊙O的半径为2,求阴影部分面积.

圆和旋转压轴题解题技巧与近几年中考试题汇总

圆和旋转压轴题解题技巧与近几年中考试题汇 总 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

如何短时间突破数学压轴题 还有不到一个月的时间就要进行期中考试了,期中考试的重要性不必多说。各区期中考试的范围相信学生们都已经非常清楚。 个人觉得现在大部分学生的困难在于旋转、圆,由于时间比较紧张,给大家一些复习资料和学习方法,希望能够帮到大家。 一、旋转: 纵观几年的数学试卷,最难的几何题几乎都是旋转,在此给出旋转中最常见的几何模型和一些解题技巧。 旋转模型: 1、三垂直全等模型 三垂直全等构造方法:从等腰直角三角形的两个锐角顶点出发向过直角顶点的直线作垂线。 2、手拉手全等模型 手拉手全等基本构图: 3、等线段、共端点 (1) 中点旋转(旋转180°) (2) 等腰直角三角形(旋转90°) (3) 等边三角形旋转(旋转60°) (4) 正方形旋转(旋转90°) 4、半角模型 半角模型所有结论:在正方形ABCD中,已知E、F分别是边BC、CD上的点,且满足∠EAF=45°,AE、AF分别与对角线BD交于点M、N.求证:

M E D C B A (1) BE +DF =EF ; (2) S △ABE +S △ADF =S △AEF ; (3) AH =AB ; (4) C △ECF =2AB ; (5) BM 2+DN 2=MN 2; (6) △DNF ∽△ANM ∽△AEF ∽△BEM ;相似比为1:2(由△AMN 与△AEF 的高之比AO : AH =AO :AB =1:2而得到); (7) S △AMN =S 四边形MNFE ; (8) △AOM ∽△ADF ,△AON ∽△ABE ; (9) ∠AEN 为等腰直角三角形,∠AEN =45°.(1. ∠EAF =45°;:AN =1:2) 解题技巧: 1.遇中点,旋180°,构造中心对称 例:如图,在等腰ABC △中,AB AC =,ABC α∠=,在四边形BDEC 中,DB DE =,2BDE α∠=,M 为CE 的中点,连接AM ,DM . ⑴ 在图中画出DEM △关于点M 成中心对称的图形; ⑵ 求证:AM DM ⊥; ⑶ 当α=___________时,AM DM =. [解析]⑴ 如图所示; ⑵ 在⑴的基础上,连接AD AF , 由⑴中的中心对称可知,DEM FCM △≌△, ∴DE FC BD ==,DM FM =,DEM FCM ∠=∠, ∵360ABD ABC CBD BDE DEM BCE α∠=∠+∠=+?-∠-∠-∠ 360DEM BCE α=?--∠-∠, 360360ACF ACE FCM BCE FCM α∠=?-∠-∠=?--∠-∠, ∴ABD ACF ∠=∠, ∴ABD ACF △≌△,∴AD AF =, ∵DM FM =,∴AM DM ⊥. ⑶ 45α=?. 2.遇90°。旋90°,造垂直; F B

相关文档
相关文档 最新文档