文档库 最新最全的文档下载
当前位置:文档库 › 某些四次多项式微分系统的定性研究

某些四次多项式微分系统的定性研究

某些四次多项式微分系统的定性研究
某些四次多项式微分系统的定性研究

第17卷第4期数学研究与评论

V o l

.17N o .41997年11月

JOU RNAL O F M A TH E M A T I CAL R ESEA RCH AND EXPO S IT I ON

N ov .1997

某些四次多项式微分系统的定性研究

Ξ

王 树 禾

(中国科学技术大学数学系,合肥230026)

摘 要 本文研究从化学反应动力学中提出的四次微分系统,得出其有限奇点的全

局渐近稳定性和极限环的存在性与不存在性,用PB 规范形方法讨论了Hopf 分叉.

关键词 全局渐近稳定,PB 规范形,Hopf 分叉,细焦点,极限环,旋转向量场.分类号 AM S (1991)92H 10 CCL O 29

1 问 题

六十年代末,化学家发现化学振荡现象,1977年,化学家I .P rigogine 提出耗散结构理论[1]

,化学与生物化学中的振荡现象越来越受到科学家的关注,一些数学家也介入了这一研究,建立了非平衡态化学反应动力学的若干数学模型[2,3]

;核心问题是稳定极限环的有无,它与

反应能否持续以及新陈代谢、呼吸、血液循环以及生物钟等生命现象有实质性关联.已经证明[6]

,只有两种中间产物的反应系统,每个基元反应只有单分子或双分子参与,则无围绕初等奇点的稳定极限环,本文只讨论3分子以上的多分子反应.

1) 广义B ru ssel 振子模型化学反应机理为A →k 1

X ,B +X →k 2

Y +D ,nX +m Y →k 3

(m +n )X ,X →k 4

E ,

其中初始物质A ,B 和最终产物D ,E 的浓度a λ,b λ,d θ,e

γ是可控常数,中间产物X ,Y 的浓度为x θ(t γ),y θ(t γ),t γ为时间,于是其数学模型为

d x θd t γ=k 1a λ-(k 2b λ+k 4)x θ+k 3x θn y θm

,d Y ?d t

γ=k 2b λx

θ-k 3x θn y θm , m ,n ∈N .上述方程组可化成

d x d t

=a -(b +1)x +x n y m ,dy d t

=bx -x n y m

. (a ,b ;n ,m )

2) 多分子生化反应模型

Ξ1994年9月14日收到.1997年4月30日收到修改稿.

化学反应机理为

A →k 1

X ,nX +m Y →k 2

(n +m )Y ,Y →k 3

P (输出).

其数学模型如下:

d x d t

=1-x n y m

,dy d t

=Αy (x n y

m -1

), (Α;n ,m )

[2]研究了(a ,b ;2,1),[3]研究了(Α;1,2),本文研究(a ,b ;3,1),(a ,b ;1,3),(Α;1,3),(Α;3,1).

2 (a ,b ;3,1)的奇点

1) 有限奇点

Πa ∈(0,+∞),b 为参变量,x ,y ≥0;在第一象限内有唯一的有限奇点(x 0,y 0)=(a ,b

a

2).

令x =Ν+a ,y =Γ+

b

a

2,则(a ,b ;3,1)变成

d Νd t =(2b -1)Ν+a 3Γ+(3b a Ν2+3a 2ΝΓ+b a 2Ν3+3a Ν2Γ+Ν3

Γ),(1)d Γd t

=-2b Ν-a 3Γ-(

3b

a

Ν2+3a 2ΝΓ+

b a

2Ν3+3a Ν2Γ+Ν3

Γ),(2)

(1),(2)的线性近似部分的特征根为

Κ1,2=

1

2

[2b -(1+a 3)±[2b -(1+a 3)]2-4a 3,

(i ) b =

1

2

(1+a 3)时,(x 0,y 0)是中心还是焦点需要进一步判定;(ii ) b ∈(0,12

(1+a 3

-2a 3

2)]时,(x 0,y 0)是稳定结点;

(iii ) b ∈(12(1+a 3

-2a 3

2),12

(1+a 3))时,(x 0,y 0)是稳定粗焦点;

(iv ) b ∈(12(1+a 3),1

2

(1+a 3+2a 3

2))时,(x 0,y 0)是不稳定粗焦点;

(v ) b ∈[12

(1+a 3

+2a 3

2),+∞)时,(x 0,y 0)是不稳定结点.

2) 无穷远奇点

用Po incare 变换x =1z

,y =

u

z

(z ≠0)得

d u

d Σ=-auz 4+(b +1)uz 3-

u 2+bz 3

-

u ,(3)d z

d Σ

=-az 5+(b +1)z 4-

uz ,

(4)

其中

d t

z

3=d Σ;(3),(4)线性近似系统的特征根是0和-1,所以(u ,z )=(0,0)是Лияпунов型奇

点.由(4)知,z =0,即u 轴是轨线,且由(3)知,在u 轴上(z =0时)d u

d Σ

在原点附近与u 反号,故在u 轴上,轨的方向是趋于(0,0)的.

设u =u (z )是下面函数方程的解:

-auz 4+(b +1)uz 3-u 2+bz 3-u =0,

(5)u (0)=0,

(6)

于是对(5),求

d d z ,d 2d z 2,d 3

d z

3得 -4auz 3-au ′z 4+(b +1)u ′z 3+3(b +1)uz 2

-2uu ′+3bz 2-u ′=0,(7) -8au ′z 3-12auz 2-au ″z 4+(b +1)u ″z 3+6(b +1)u ′z

2+6(b +1)uz -2u ′2

-2uu ″+6bz -u ″=0,

(8)

 -12au ″z 3-36au ′z 2-24auz -au z 4+(b +1)u z 3+9(b +1)u ″z 2

+18(b +1)u ′z

+6(b +1)u -6u ′u ″

-2uu +6b -u =0.(9)由(6),(7)知,u ′

(0)=0;由u (0)=u ′(0)=0及(8)知,u "(0)=0;由u (0)=u ′(0)=u "(0)=0及(9)知,u (0)=6b ;于是,u =u (z )的M aclau rin 级数为

u =u (z )=bz 3+(z 4

),

(10)其中(z m )表示次数不低于m 的各项之和.把(10)代入(4)的右端得

-az 5+(b +1)z 4-uz =z 4+(z 5),

(11)

由[7]ch .4定理2.1或[5]ch .2定理7.1,(u ,z )=(0,0)是鞍结点.

下面分析y =+∞处的性态.令x =v z

,y =

1

z

(z ≠0),

d v

d Σ=az 4-(b +1)vz 3+v 3-bv 2z 2+v 4,

(12)d z

d Σ

=-bvz 4

+v 3

z ,

(13)

其中d t z

3=d Σ,求得(引用[6]中记号)

((Η)=-sin Ηco s 3

Η

,R (Η)=co s 4Η,Η=0是((Η)=0的一重根,且在Η=0处(′R =-1,所以沿Η

=0方向趋于(0,0)的轨线是唯一的,由(13),z ≡0即v 轴是轨,故此唯一轨线即v 轴,由(12),v 轴正半轴做为轨,其走向向右

(与轴向一致);又Η∈(0,Π2)时,((Η)≠0,这些方向上(Η∈(0,Π2))无轨线趋于(0,0);而Η=Π2

时,由(13),

d z d Σ=0,由(12),d v

d Σ

>0,所以在正半z 轴上,方向场方向向右,指向第一象限内部.综上所述,无穷远点处没有“汇”.

3 (a ,b ;3,1)的Hopf 分叉

下面用Po incare 2B irkhoff 的PB 规范形分法判别b =1

2

(1+a 3)时(a ,b ;3,1)在第一象限的奇点是中心还是细焦点,为此,令

X=22bΝ+2(2b-1)Γ,

Y=2a 3 2Γ,

Ν=m X+nY,

Γ=lY,

其中

m=

1

2(1+a3)

,n=

-a3 2

2(1+a3)

,l=

1

2a3 2

.

仍用x,y记X,Y

x

α=Βy+2Υ(x,y),

y

α=-Βy-2a32Υ(x,y),

其中Β=a 3 2,

Υ(x,y)=(m x+ny)[3b m

a x+(

3bn

a

+3a2l)y+b m

2

a2

x2+(

2b m n

a2

+3am l)xy

 +(bn 2

a2

+3an l)y2+…],

“…”表示高于2次的项,令

f(x,y)=-2Β(m x+ny)[3b m a x+(3bn a+3a2l)y+b m2

a2

x2

 +(2b m n

a2+3am l)xy+(bn

2

a2

+3an l)y2],

g(x,y)=-a 3

2f(x,y).

于是可以算出:

g x x(0,0)=26b m 2

a

,

g x x y(0,0)=2(6b m 2n

a2

+6am2l),

g x y y(0,0)=2(6b m n 2

a2

+12am n l),

g y y y(0,0)=2(6bn 3

a2+18an2l).

g x x x(0,0)=26b m

3

a2

,

g x x y(0,0)=0,

g y y(0,0)=2(6bn

2

a

+6a2n l),

Α=[f x x x+f x y y+g x x y+g y y y+f x y(f x x+f y y)-g x y(g x x+g y y)-f x x g x x+f y y g y y](x,y)=(0,0),

(14)由PB规范形理论知,Α>0时,(0,0)是稳定细焦点,Α<0时,(0,0)是不稳定细焦点;把上述g x x (0,0)等数据代入(14)得

Α=1

a3 2(1+a3)2

(3a-2+6a+3a4)>0,

故(a,b;3,1)的奇点是稳定细焦点.

由Hop f分叉定理,在奇点附近,当b∈(1

2(1+a3),1

2

(1+a3)+Ε)时,Ε>0适当小,有稳定

极限环生出,且当b →

1

2

(1+a 3)+0时,这种极限环直径趋于零.4 (a ,b ;3,1)的旋转向量场和极限环的存在性与不存在性

令x =Ν+a ,y =Γ+

b a

2,Νλ

=Ν,Γλ=Ν+Γ,则

Νλ

=a -(b +1)(Ν+a )+(Ν+a )3(Γ+

b

a

2),(15)Γλ

=-Ν,

(16)

a -(

b 1+1)(Ν+a )+(Ν+a )3

(Γ+

b 1

a

2)-Ν

a -(

b 2+1)(Ν+a )+(Ν+a )3

(Γ+b 2a

2)

=Ν2a

2

(b 2-b 1)(Ν

+a )(Ν+2a ),而Ν+a =x ≥0,故上式b 2>b 1时常正,在ΝλΓλ平面与xy 平面第一象限对应的区域D 上是关于

参数b 的旋转向量场.而ΝλΓλ平面上(15),(16)的轨线与(a ,b ;3,1)的轨线拓扑同胚.

由于b >1

2

(1+a 3)时,有限奇点是不稳定结点或焦点,而xy 平面第一象限无穷远点无汇,由Po incare 环域定理,对于Πa ∈(0,+∞),b >1

2

(1+a 3)时,多项式系统(a ,b ;3,1)存在稳定的极限环.不难看出极限环是负向(顺时针)的,所以在旋转向量场中,b 由1

2

(1+a 3)增大时,稳

定负向极限环直径由零单调扩大,又由旋转向量场中闭轨不相交定理,知b ∈(0,1

2

(1+a 3)]

时,(a ,b ;3,1)无闭轨,进而可知,当b ∈(0,1

2

(1+a 3)]时,有限奇点是全局渐近稳定的.

总结2—4各节得出下面的定理:

定理1 Πa ∈(0,+∞),b ∈(0,12(1+a 3)]时,(a ,b ;3,1)无闭轨,奇点(a ,b

a

2)在第一象限

是全局渐近稳定的;Πa ∈(0,+∞),b ∈(1

2

(1+a 3),+∞)时,(a ,b ;3,1)存在负向的稳定极限

环,此极限环当b 增大时,其直径由零单调扩大.

5 (a ,b ;1,3),(Α;3,1)和(Α;1,3)

现对(a ,b ;1,3)、(Α;3,1)和(Α;1,3)的奇点与无穷远奇点、Hop f 分叉、

旋转向量场、中心与细焦点的判定等进行了与2—4节相似的研究,得出下面的结论:

定理2 (a ,b ;1,3)无闭轨,在第一象限,唯一的有限奇点(a ,3

b )是全局渐近稳定的结

点.

定理3 (Α;3,1)无闭轨,在第一象限,唯一的有限奇点(1,1)是全局渐近稳定的,Α∈(0,34]时,(1,1)是稳定结点,Α∈(34

,+∞)时,(1,1)是稳定焦点.

定理4 ΠΑ∈(0,1

],(Α;1,3)无闭轨;?Α3∈(12,5),Α∈[Α3,+∞)时,(Α;1,3)无闭

2

轨;Α∈(1

,Α3)时,(Α;1,3)有正向稳定极限环,此极限环当Α增大时,其直径由零单调增大.

2

参 考 文 献

[1] G.N ico lis and I.P rigogine,S elf2org an iz a tion in N oneequ ilibrium S y ste m s,John W iley,1977.

[2] 秦元勋、曾宪武,生物化学中布鲁塞尔振子方程的定性研究,科学通报,25(1980),337-339.

[3] 周建莹、张锦炎、曾宪武,生化反应中一类非线性方程的定性研究,应用数学学报,V o l.5,N o.3,

1982.

[4] J.H iggin s,O scillato ry reacti on Ind and Engchem,5a(1967).

[5] 张芷芬、丁同仁等,微分方程定性理论,科学出版社,1985.

[6] 陆启韶,常微分方程的定义方法和分叉,北京航天航空大学出版社,1989.

[7] 秦元勋,微分方程所定义的积分曲线,上册,科学出版社,1959.

A Qualitative Analysis of Som e Polynom i al D ifferen ti al

System s of D egree4

W ang S huhe

(D ep t.of M ath.,U STC)

Abstract

In th is p ap er,w e study som e po lynom ial differen tial system s of degree4,discu ss

(i) the asym p to tic stab ility in the large of fin ite singu lar po in ts;

(ii) the Hop f b ifu rcati on s;

(iii) the ex istence and nonex istence of li m it cycles.

Keywords the asym p to tic stab lity of the large,PB2no rm al fo rm,Hop f b ifu rcati on,w eak focu s,li m it cycle.

(完整版)常微分方程发展简史——解析理论与定性理论阶段3常微分

第三讲 常微分方程发展简史——解析理论 与定性理论阶段 3、常微分方程解析理论阶段:19世纪 19世纪为常微分方程发展的解析理论阶段. 作为微分方程向复数域的推广, 微分方程解析理论是由Cauchy 开创的. 在Cauchy 之后,重点转向大范围的研究。 级数解和特殊函数 这一阶段的主要结果之一是运用幂级数和广义幂级数解法, 求出一些重要的二阶线性方程的级数解, 并得到极其重要的一些特殊函数. 常微分方程是17、18世纪在直接回答物理问题中兴起的. 在着手处理更为复杂的物理现象, 特别是在弦振动的研究中, 数学家们得到了偏微分方程. 用变量分离法解偏微分方程的努力导致求解常微分方程的问题. 此外, 因为偏微分方程都是以各种不同的坐标系表出的, 所以得到的常微分方程是陌生的, 并且不能用封闭形式解出. 为了求解应用分离变量法与偏微分方程后得到的常微分方程, 数学家们没有过分忧虑解的存在性和解应具有的形式, 而转向无穷级数的方法. 应用分离变量法解偏微分方程而得到的常微分方程中最重要的是Bessel 方程. 222 ()0x y xy x n y '''++-= 其中参数n 和x 都可以是复的. 对Bessel 来说, n 和x 都是实的. 此方程的特殊情形早在1703年Bernoulli Jacobi 给Leibnitz 的信中就已提到, 后来Bernoulli Daniel 、Euler 、Fourier 、Poisson 等都讨论过此问题. 对此方程的解的最早的系统研究是由Bessel 在研究行星运动时作出的. 对每个n , 此方程存在两个独立的基本解, 记作()n J x 和()n Y x , 分别称为第一类Bessel 函数和第二类Bessel 函数, 它们都是特殊函数或广义函数(初等函数之外的函数). Bessel 自1816年开始研究此方程, 首先给出了积分关系式 20 ()cos(sin ).2n q J x nu x u du ππ=-? 1818年Bessel 证明了()n J x 有无穷多个零点. 1824年, Bessel 对整数n 给出了递推关系式 11()2()()0n n n xJ x nJ x xJ x +--+= 和其他的关于第一类Bessel 函数的关系式. 后来又有众多的数学家(研究天体力学的数学家)独立地得到了Bessel 函数及其表达式和关系式. Bessel 为微分方程解析理论作出了巨大贡献。 解析理论中另一重要内容是Legendre 方程的级数解和Legendre 多项式方面的结果. 1784年, Legendre 研究了Legendre 方程2 (1)20x y xy y λ'''-++=, 给出了幂级数形式的解, 得到

常微分方程习题及答案

第十二章 常微分方程 (A) 一、是非题 1.任意微分方程都有通解。( ) 2.微分方程的通解中包含了它所有的解。( ) 3.函数x x y cos 4sin 3-=是微分方程0=+''y y 的解。( ) 4.函数x e x y ?=2是微分方程02=+'-''y y y 的解。( ) 5.微分方程0ln =-'x y x 的通解是()C x y += 2ln 2 1 (C 为任意常数)。( ) 6.y y sin ='是一阶线性微分方程。( ) 7.xy y x y +='33不是一阶线性微分方程。( ) 8.052=+'-''y y y 的特征方程为0522=+-r r 。( ) 9. 221xy y x dx dy +++=是可分离变量的微分方程。( ) 二、填空题 1.在横线上填上方程的名称 ①()0ln 3=-?-xdy xdx y 是 。 ②()()022=-++dy y x y dx x xy 是 。 ③x y y dx dy x ln ?=是 。 ④x x y y x sin 2+='是 。 ⑤02=-'+''y y y 是 。 2.x x y x y cos sin =-'+'''的通解中应含 个独立常数。 3.x e y 2-=''的通解是 。 4.x x y cos 2sin -=''的通解是 。 5.124322+=+'+'''x y x y x y x 是 阶微分方程。 6.微分方程()06 ='-''?y y y 是 阶微分方程。 7.y 1 = 所满足的微分方程是 。

8.x y y 2='的通解为 。 9. 0=+x dy y dx 的通解为 。 10.()2511 2+=+-x x y dx dy ,其对应的齐次方程的通解为 。 11.方程()012=+-'y x y x 的通解为 。 12.3阶微分方程3x y ='''的通解为 。 三、选择题 1.微分方程()043 ='-'+''y y y x y xy 的阶数是( )。 A .3 B .4 C .5 D . 2 2.微分方程152=-''-'''x y x y 的通解中应含的独立常数的个数为( )。 A .3 B .5 C .4 D . 2 3.下列函数中,哪个是微分方程02=-xdx dy 的解( )。 A .x y 2= B .2x y = C .x y 2-= D . x y -= 4.微分方程3 23y y ='的一个特解是( )。 A .13+=x y B .()3 2+=x y C .()2 C x y += D . ()3 1x C y += 5.函数x y cos =是下列哪个微分方程的解( )。 A .0=+'y y B .02=+'y y C .0=+y y n D . x y y cos =+'' 6.x x e C e C y -+=21是方程0=-''y y 的( ),其中1C ,2C 为任意常数。 A .通解 B .特解 C .是方程所有的解 D . 上述都不对 7.y y ='满足2|0==x y 的特解是( )。 A .1+=x e y B .x e y 2= C .2 2x e y ?= D . x e y ?=3 8.微分方程x y y sin =+''的一个特解具有形式( )。 A .x a y sin *= B .x a y cos *?= C .()x b x a x y cos sin *+= D . x b x a y sin cos *+= 9.下列微分方程中,( )是二阶常系数齐次线性微分方程。

偏微分方程理论的归纳与总结

偏微分方程基本理论的归纳与总结 偏微分方程是储存自然信息的载体,自然现象的深层次性质可以通过数学手段从方程中推导出来.最为一种语言,微分方程在表达自然定律方面比文字具有更强的优越性.微分方程是一个庞大的体系,它的基本问题就是解的存在性和唯一性.该学科的主要特征是不存在一种可以统一处理大多数偏微分方程的适定性问题的普适的方法和理论.这是与常微分方程有显著差异的地方.这种特性使得我们将方程分为许多种不同类型,这种分类的依据主要来自数学与自然现象这两个方面.从数学的角度,方程的类型一般总是对应于一些普遍的理论和工具.换句话讲,如果能建立一个普遍性的方法统一处理一大类方程问题,那么这个类型就被划分出来.而从自然现象的角度,我们又可以根据不同的运动类型以及性质将方程进行分类.当然这两种方式常常不能截然区分,通常它们是相互关联的,这就造成方程的概念有许多重叠现象. 根据数学的特征,偏微分方程主要被分为五大类,它们是: (1)线性与拟微分方程,研究这类方程的主要工具是Fourier分析方法; (2)椭圆型方程,它的方法是先验估计+泛函分析手段; (3)抛物型方程,主要是Galerkin方法,算子半群,及正则性估计; (4)双曲型方程,对应于Galerkin方法; (5)一阶偏微分方程,主要工具是数学分析方法. 从自然界的运动类型出发,偏微分方程可分为如下几大类: (1)稳态方程(非时间演化方程); (2)耗散型演化方程,这类方程描述了时间演化过程中伴有能量损耗与补充的自然运动.相变与混沌是它们的主要内容; (3)保守系统,如具有势能的波方程.该系统控制的运动是与外界隔离的,及无能量输入,也无能量损耗.行波现象与周期运动是它们的主要特征; (4)守恒律系统,这类方程是一阶偏微分方程组,它们与保守系统具有类似的性质,可视为物质流的守恒.激波行为是由守恒律系统来控制. 下面具体来介绍三类经典方程: 三类典型方程:椭圆型方程,抛物型方程,双曲型方程,即偏微分方程模型的建立,解问题的解法以及三类典型方程的基本理论. 关于三类典型方程定解问题的解题方法,它们主要是分离变量法、积分变换法、特征线法、球面平均法、降维法和Green 函数方法. 关于三类典型方程的基本理论——极值原理和能量估计,并由此给出了解的唯一性和稳定性的相关结论. 具体来说,关于二阶线性椭圆形方程,我们研究它的古典解和弱解.前者主要介绍了基本解、调和函数的基本性质、Green 函数、极值原理、最大模估计、能量方法和变分原理;而后者的研究则需要知道Sobolev空间的相关知识再加以研究;关于二阶线性抛物型方程,主要研究它的Fourier 变换、特殊的求解方法、基本解、方程式和方程组的最大值原理以及最大模估计、带有非经典边界条件和非局部项的方程式的最大值原理及能量方法;关于二阶线性双曲型方程,主要研究初值问题的求解方法、初值问题的能量不等式与解的适定性、以及混合问题的能量模估计与解的适定性. 椭圆、抛物和双曲这三类线性偏微分方程解的适定性问题,它们分别以拉普拉斯方程、热传导方程和波动方程作为代表.具体地说,对于某些规则的求解区域试图求出满足特定线性偏微分方程和定解条件的具体解,这就决定了存在性问题;再利用方程本身所具有的特殊性质,将证明所求解是唯一的,也就解决了唯一性问题;关于连续依赖性问题,需要在不同函数空

常微分方程知识点总结

常微分方程知识点总结 常微分方程知识点你学得怎么样呢?下面是的常微分方程知识 点总结,欢迎大家阅读! 微分方程的概念 方程对于学过中学数学的人来说是比较熟悉的;在初等数学中 就有各种各样的方程,比如线性方程、二次方程、高次方程、指数方程、对数方程、三角方程和方程组等等。这些方程都是要把研究的问题中的已知数和数之间的关系找出来,列出包含一个数或几个数的一个或者多个方程式,然后取求方程的解。 但是在实际工作中,常常出现一些特点和以上方程完全不同的 问题。比如:物质在一定条件下的运动变化,要寻求它的运动、变化的规律;某个物体在重力作用下自由下落,要寻求下落距离随时间变化的规律;火箭在发动机推动下在空间飞行,要寻求它飞行的轨道,等等。 物质运动和它的变化规律在数学上是用函数关系来描述的,因此,这类问题就是要去寻求满足某些条件的一个或者几个函数。也就是说,凡是这类问题都不是简单地去求一个或者几个固定不变的数值,而是要求一个或者几个的函数。 解这类问题的基本思想和初等数学解方程的基本思想很相似, 也是要把研究的问题中已知函数和函数之间的关系找出来,从列出的包含函数的一个或几个方程中去求得函数的表达式。但是无论在方程

的形式、求解的具体方法、求出解的性质等方面,都和初等数学中的解方程有许多不同的地方。 在数学上,解这类方程,要用到微分和导数的知识。因此,凡是表示函数的导数以及自变量之间的关系的方程,就叫做微分方程。 微分方程差不多是和微积分同时先后产生的,苏格兰数学家耐普尔创立对数的时候,就讨论过微分方程的近似解。牛顿在建立微积分的同时,对简单的微分方程用级数来求解。后来瑞士数学家雅各布?贝努利、欧拉、法国数学家克雷洛、达朗贝尔、拉格朗日等人又不断地研究和丰富了微分方程的理论。 常微分方程的形成与发展是和力学、天文学、物理学,以及其他科学技术的发展密切相关的。数学的其他分支的新发展,如复变函数、李群、组合拓扑学等,都对常微分方程的发展产生了深刻的影响,当前计算机的发展更是为常微分方程的应用及理论研究提供了非常 有力的工具。 牛顿研究天体力学和机械力学的时候,利用了微分方程这个工具,从理论上得到了行星运动规律。后来,法国天文学家勒维烈和英国天文学家亚当斯使用微分方程各自计算出那时尚未发现的海王星 的位置。这些都使数学家更加深信微分方程在认识自然、改造自然方面的巨大力量。 微分方程的理论逐步完善的时候,利用它就可以精确地表述事物变化所遵循的基本规律,只要列出相应的微分方程,有了解方程的方法。微分方程也就成了最有生命力的数学分支。

高等数学微分方程练习题

(一)微分方程的基本概念 微分方程:含未知函数的导数或微分的方程,称为微分方程、 微分方程的阶:微分方程所含未知函数的最高阶导数或微分的阶数称为微分方程的阶数、 1、不就是一阶微分方程. A、正确 B、不正确 2、不就是一阶微分方程. A、正确 B、不正确 一阶线性微分方程:未知函数及其导数都就是一次的微分方程d ()() d y P x y Q x x +=称为一阶 线性微分方程、 微分方程的解:如果一个函数代入微分方程后,方程两边恒等,则称此函数为微分方程的解、通解:如果微分方程的解中所含独立任意常数C的个数等于微分方程的阶数,则此解称为微分方程的通解、 特解:在通解中根据附加条件确定任意常数C的值而得到的解,称为特解、 1、就是微分方程的解. A、正确 B、不正确 2、就是微分方程的解. A、正确 B、不正确 3、就是微分方程的通解. A、正确 B、不正确 4、微分方程的通解就是( ). A、 B、 C、 D、

(二)变量可分离的微分方程:()()dy f x g y dx = 一阶变量可分离的微分方程的解法就是: (1)分离变量:1221()()()()g y f x dy dx g y f x =;(2)两边积分:1221()()()()g y f x dy dx g y f x =?? 左边对y 积分,右边对x 积分,即可得微分方程通解、 1、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 2、微分方程的通解就是( ). A 、 B 、 C 、 D 、 3、微分方程的通解就是( ). A 、 B 、 C 、 D 、 4、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 5、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 6、微分方程的通解( ). A 、 B 、 C 、 D 、 7、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 8、 x y dy e dx -=就是可分离变量的微分方程. A 、正确 B 、不正确

随机微分方程的适定性及微分方程参数的贝叶斯估计方法

随机微分方程的适定性及微分方程参数的贝叶斯估计方法 本论文主要研究了以下两个方面的内容。一是讨论了随机薛定谔方程解的适定性,包括解的爆破性质和整体解的存在性和唯一性;二是用贝叶斯惩罚B样条方法给出了几类常微分方程模型中参数(常值参数以及时变参数)的估计.关于这些问题的研究背景和动机我们在第一章中给予介绍。微分方程的数学理论研究在物理学,医学,生物学,金融学等应用科学中发挥着重要作用。薛定谔方程是一类特殊的微分方程,其在原子、分子、固体物理、核物理、化学等领域中被广泛应用.然而,在现实生活中,很多事情都是不确定的,是受随机因素干扰的,本文在第一部分考虑了在噪声影响下的薛定谔方程即随机薛定谔方程的解的动力学性质。 具体来说,在第二章,我们讨论了在可加噪声和二次位势双重作用下,随机薛定谔方程解的爆破性质,我们得到了不管位势是排斥型还是吸引型,任意有限能量的初值均可能产生爆破解,并且爆破时间可以任意小.这与确定型薛定谔方程不同,对确定性方程来说,排斥型位势具有阻止解爆破的效应。因此,这部分结果表明,噪声对薛定谔方程解的动力学行为的影响比位势的影响要强。与爆破性质对应的,我们在第三章讨论了在Stratonovich型乘积噪声影响下的薛定谔-泊松方程组整体解的适定性。与确定型薛定谔-泊松方程组不同的是,我们建立了随机意义下的交换子估计,进而得到了薛定谔-泊松方程组整体解的存在性和唯一性。 在研究随机薛定谔方程适定性的过程中我们发现,方程中的参数对解的动力学性质产生了重要影响,甚至不同参数会导致方程具有完全不同的动力学行为。这就提示我们在应用微分方程的数学理论之前,应当首先确定微分方程中的参数.为此,本文第二部分提出了一种非参数统计方法——贝叶斯惩罚B样条法,根据观测数据去估计微分方程模型中的参数,这其中包括估计常值参数和时变参数两种情形。我们在第四章中介绍了贝叶斯惩罚B样条法的一般理论,并且考虑了对于2×2的线性方程组及非线性方程组(Lotka-Volterra模型),在所有状态变量的观测数据均已知的情形下,用贝叶斯惩罚B样条法,对模型中含有的参数进行估计,模拟结果表明该方法对模型中的参数估计有效。流行病模型是微分方程中应用较多且与现实生活关系较为密切的一类模型,在本文的第五章我们考虑了流行病模型中参数的估计问题。 估计此类模型中的参数与第四章中参数的估计最大的不同是:对于流行病模

分数阶微分方程-课件

分数阶微分方程 第三讲分数阶微分方程基本理论 一、分数阶微分方程的出现背景及研究现状 1、出现背景 分数阶微积分是关于任意阶微分和积分的理论,它与整数阶微积分是统一的,是整数阶微积分的推广。 整数阶微积分作为描述经典物理及相关学科理论的解析数学工具已为人们普遍接受,很多问题的数学模型最终都可以归结为整数阶微分方程的定解问题,其无论在理论分析还是数值求解方面都已有较完善的理论。但当人们进入到复杂系统和复杂现象的研究时,经典整数阶微积分方程对这些系统的描述将遇到以下问题: (1)需要构造非线性方程,并引入一些人为的经验参数和与实际不符的假设条件; (2)因材料或外界条件的微小改变就需要构造新的模型; (3)这些非线性模型无论是理论求解还是数值求解都非常繁琐。 基于以上原因,人们迫切期待着有一种可用的数学工具和可依据的基本原理来对这些复杂系统进行建模。分数阶微积分方程非常适合于刻画具有记忆和遗传性质的材料和过程,其对复杂系统的描述具有建模简单、参数物理意义清楚、描述准确等优势,因而成为复杂力学与物理过程数学建模的重要工具之一。 2、研究现状 在近三个世纪里,对分数阶微积分理论的研究主要在数学的纯理论领域里进行,似乎它只对数学家们有用。然而在近几十年来,分数阶微分方程越来越多的被用来描述光学和热学系统、流变学及材料和力学系统、信号处理和系统识别、控制和机器人及其他应用领域中的问题。分数阶微积分理论也受到越来越多的国内外学者的广泛关注,特别是从实际问题抽象出来的分数阶微分方程成为很多数学工作者的研究热点。随着分数阶微分方程在越来越多的科学领域里出现,无论对分数阶微分方程的理论分析还是数值计算的研究都显得尤为迫切。然而由于分数阶微分是拟微分算子,它的保记忆性(非局部性)对现实问题进行了优美刻画的同时,也给我们的分析和计算造成很大困难。 在理论研究方面,几乎所有结果全都假定了满足李氏条件,而且证明方法也和经典微积分方程一样,换句话说,这些工作基本上可以说只是经典微积分方程理论的一个延拓。对分数阶微分方程的定性分析很少有系统性的结果,大多只是给出了一些非常特殊的方程的求解,且常用的求解方法都是具有局限性的。 在数值求解方面,现有分数阶方程数值算法还很不成熟,主要表现为: (1)在数值计算中一些挑战性难题仍未得到彻底解决,如长时间历程的计算和大空间域的计算等; (2)成熟的数值算法比较少,现在研究较多的算法主要集中在有限差分方法与有限单元法; (3)未形成成熟的数值计算软件,严重滞后于应用的需要。

第七章 微分方程经典例题

第七章 微分方程 例7 有高为1米的半球形容器,水从它的底部小孔流出,小孔横截面积为1平方厘米. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面的高度h (水面与孔口中心间的距离)随时间t 的变化规律. 解 由力学知识得,水从孔口流出的流量为 62.0dt dV Q ?== 孔口截面面积 重力加速度 ,12cm S = .262.0dt gh dV =∴ ① 设在微小的时间间隔],,[t t t ?+水面的高度由h 降至,h h ?+则,2dh r dV π-= ,200)100(100222h h h r -=--= .)200(2dh h h dV --=∴π ② 比较①和②得: ,262.0)200(2dt gh dh h h =--π 即为未知函数得微分方程. ,)200(262.03dh h h g dt --- =π ,1000==t h ,1015 14 262.05?? = ∴g C π 所求规律为 ).310107(265.45335h h g t +-?= π 例10 求解微分方程 .2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=222 2y xy x xy y dx dy ,1222 ? ?? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得? ? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1 )2ln(23)1ln(C x u u u +=----

微分方程练习题基础篇答案

常微分方程基础练习题答案 求下列方程的通解 1.dy xy dx = 分离变量 dy xdx y =,2 2x y Ce =,C 为任意常数 2.0xydx = 分离变量 dy y = ,y =C 任意常数 3.ln 0xy y y '-= 分离变量 1 ln dy dx y y x =,x y Ce = 224.()()0xy x dx x y y dy ++-= 分离变量 22 11ydy xdx y x =+-,22 (1)(1)y x C +-= 2 5.(25)dy x y dx =++ 令25u x y =++则2du dy dx dx =+,22du dx u =+ 1x C =+ 6.dy x y dx x y +=-,原方程变为11y dy x y dx x + =-,令y u x =,dy du u x dx dx =+,代入得22111u du dx u x -=+ 2arctan ln u u x C -=+ , y u x = 回代得通解 2arctan ln y y x C x x =++ 7.0xy y '-= 方程变形为0dy y dx x =+=,令y u x = dx x = arctan ln u x C =+, y u x = 回代得通解arctan ln y y x C x x =++ 8.ln dy y x y dx x =,方程变形为ln dy y y dx x x =,令y u x =,(ln 1)du dx u u x =-,1 Cx u e +=,1Cx y xe +=

9.24dy xy x dx +=,一阶线性公式法222(4)2xdx xdx x y e xe dx C Ce --??=+=+? 210.2dy y x dx x -=,一阶线性公式法112 3(2)dx dx x x y e x e dx C x Cx -??=+=+? 2211.(1)24x y xy x '++=,方程变形为2 222411x x y y x x '+=++一阶线性公式法3 2 14()13 y x C x =++ 212.(6) 20dy y x y dx -+=,方程变形为312dx x y dy y -=-一阶线性公式法2312y y Cy =+ 2 13.3y xy xy '-=,方程变形为2113dy x x y dx y -=伯努利方程,令12,dz dy z y y dx dx --==-代入方程得 3dz xz x dx +=-一阶线性公式法再将z 回代得23 2 113x Ce y -=- 411 14. (12)33 dy y x y dx +=-,方程变形为4 3 1111(12)33dy x y dx y +=-伯努利方程,令 34, 3dz dy z y y dx dx --==-代入方程得21dz z x dx -=-,一阶线性公式法再将z 回代得3121x Ce x y =-- 15.560y y y '''++=,特征方程为2560r r ++=,特征根为122,3r r =-=-,通解 2312x x y C e C e --=+ 16.162490y y y '''-+=,特征方程为2 162490r r -+=,特征根为1,23 4 r =,通解 34 12()x y C C x e =+

常微分方程考研讲义第三章一阶微分方程解的存在定理

第三章一阶微分方程解的存在定理 [教学目标] 1.理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解 的误差估计式。 2.了解解的延拓定理及延拓条件。 3.理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。 例如方程

2dy y dx = 过点(0,0)的解就是不唯一,易知0y =是方程过(0,0)的解,此外,容易验证,2y x =或更一般地,函数 2 0 0() c<1 x c y x c x ≤≤?=?-≤? 都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足01c <<的任一数。 解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性和唯一性。另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。而解的存在唯一性定理保证了所求解的存在性和唯一性。 1.存在性与唯一性定理: (1)显式一阶微分方程 ),(y x f dx dy = (3.1) 这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2) 上连续。 定理1:如果函数),(y x f 满足以下条件:1)在R 上连续:2)在R 上关于变量y 满足李普希兹(Lipschitz )条件,即存在常数0L >,使对于R 上任何一对点1(,)x y , 2(,)x y 均有不等式1212(,)(,)f x y f x y L y y -≤-成立,则方程(3.1)存在唯一的解()y x ?=,在区间0||x x h -≤上连续,而且满足初始条件 00()x y ?= (3.3)

一阶微分方程解的存在定理

第三章 一阶微分方程解的存在定理 [教学目标] 1. 理解解的存在唯一性定理的条件、结论及证明思路,掌握逐次逼近法,熟练近似解的误差估计式。 2. 了解解的延拓定理及延拓条件。 3. 理解解对初值的连续性、可微性定理的条件和结论。 [教学重难点] 解的存在唯一性定理的证明,解对初值的连续性、可微性定理的证明。 [教学方法] 讲授,实践。 [教学时间] 12学时 [教学内容] 解的存在唯一性定理的条件、结论及证明思路,解的延拓概念及延拓条件,解对初值的连续性、可微性定理及其证明。 [考核目标] 1.理解解的存在唯一性定理的条件、结论,能用逐次逼近法解简单的问题。 2.熟练近似解的误差估计式,解对初值的连续性及可微性公式。 3.利用解的存在唯一性定理、解的延拓定理及延拓条件能证明有关方程的某些性质。 §1 解的存在性唯一性定理和逐步逼近法 微分方程来源于生产实践际,研究微分方程的目的就在于掌握它所反映的客观规律,能动解释所出现的各种现象并预测未来的可能情况。在第二章介绍了一阶微分方程初等解法的几种类型,但是,大量的一阶方程一般是不能用初等解法求出其通解。而实际问题中所需要的往往是要求满足某种初始条件的解。因此初值问题的研究就显得十分重要,从前面我们也了解到初值问题的解不一定是唯一的。他必须满足一定的条件才能保证初值问题解的存在性与唯一性,而讨论初值问题解的存在性与唯一性在常微分方程占有很重要的地位,是近代常微分方程定性理论,稳定性理论以及其他理论的基础。 例如方程 dy dx =过点(0,0)的解就是不唯一,易知0y =是方程过(0,0)的解,此外,容易验证,2 y x =或更一般地,函数 2 0 0() c<1x c y x c x ≤≤?=?-≤? 都是方程过点(0,0)而且定义在区间01x ≤≤上的解,其中c 是满足01c <<的任一数。 解的存在唯一性定理能够很好地解释上述问题,它明确地肯定了方程的解在一定条件下的存在性 和唯一性。另外,由于能得到精确解的微分方程为数不多,微分方程的近似解法具有重要的意义,而解的存在唯一性是进行近似计算的前提,如果解本身不存在,而近似求解就失去意义;如果存在不唯一,不能确定所求的是哪个解。而解的存在唯一性定理保证了所求解的存在性和唯一性。 1.存在性与唯一性定理: (1)显式一阶微分方程 ),(y x f dx dy = (3.1) 这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2)

《常微分方程》课程大纲

《常微分方程》课程大纲 一、课程简介 课程名称:常微分方程学时/学分:3/54 先修课程:数学分析,高等代数,空间解析几何,或线性代数(行列式,矩阵与线性方程组,线性空间F n,欧氏空间R n,特征值与矩阵的对角化), 高等数学(多元微积分,无穷级数)。 面向对象:本科二年级或以上学生 教学目标:围绕基本概念与基本理论、具体求解和实际应用三条主线开展教学活动,通过该课程的教学,希望学生正确理解常微分方程的基本概念,掌握基本理论和主要方法,具有一定的解题能力和处理相关应用问题的思维方式,如定性分析解的性态和定量近似求解等思想,并希望学生初步了解常微分方程的近代发展,为学习动力系统学科的近代内容和后续课程打下基础。 二、教学内容和要求 常微分方程的教学内容分为七部分,对不同的内容提出不同的教学要求。(数字表示供参考的相应的学时数,第一个数为课堂教学时数,第二个数为习题课时数) 第一章基本概念(2,0) (一)本章教学目的与要求: 要求学生正确掌握微分方程,通解,线性与非线性,积分曲线,线素场(方

向场),定解问题等基本概念。本章教学重点解释常微分方程解的几何意义。 (二)教学内容: 1.由实际问题:质点运动即距离与时间关系(牛顿第二运动定律),放射性元素衰变过程,人口总数发展趋势估计等,通过建立数学模型,导出微分方程。 2.基本概念(常微分方程,偏微分方程,阶,线性,非线性,解,定解问题,特解,通解等)。 3.一阶微分方程组的几何定义,线素场(方向场),积分曲线。 4.常微分方程所讨论的基本问题。 第二章初等积分法(4,2) (一)本章教学目的与要求: 要求学生熟练掌握分离变量法,常数变易法,初等变换法,积分因子法等初等解法。 本章教学重点对经典的几类方程介绍基本解法,勾通初等积分法与微积分学基本定理的关系。并通过习题课进行初步解题训练,提高解题技巧。 (二)教学内容: 1. 恰当方程(积分因子法); 2. 分离变量法 3. 一阶线性微分方程(常数变易法) 4. 初等变换法(齐次方程,伯努利方程,黎卡提方程)

微分方程例题选解

微分方程例题选解 1. 求解微分方程3ln (ln )0,|2 x e x xdy y x dx y =+-==。 解:原方程化为 x y x x dx dy 1ln 1=+, 通解为 ?+? ?=-]1[ln 1ln 1C dx e x e y dx x x dx x x ?+=]ln [ln 1C dx x x x ]ln 21[ln 12C x x += 由e x =,23=y ,得1=C ,所求特解为 11 ln ln 2 y x x = +。 2. 求解微分方程22'0x y xy y -+=。 解:令ux y =,u x u y '+=',原方程化为 2 u u u x u -='+, 分离变量得 dx x u du 1 2 =-, 积分得 C x u +=ln 1 , 原方程的通解为 ln x y x C = +。 3. 求解微分方程dy y y x dx xy x )()(3223+=-。 解:此题为全微分方程。下面利用“凑微分”的方法求解。 原方程化为 03 2 2 3 =---dy y ydy x dx xy dx x , 由 dy y ydy x dx xy dx x 3 2 2 3 --- 42222441 )(2141dy dy x dx y dx -+-= )2(41 4224y y x x d --=, 得 0)2(4 224=--y y x x d , 原方程的通解为 C y y x x =--4 2 2 4 2。 注:此题也为齐次方程。 4. 求解微分方程2''1(')y y =+。 解:设y p '=,则dx dp y ='',原方程化为 21p dx dp +=, 分离变量得 dx p dp =+2 1,积分得 1arctan C x p +=, 于是 )tan(1C x p y +==', 积分得通解为 12ln cos()y x C C =-++。 5. 求解微分方程''2'20y y y -+=。 解:特征方程为 0222 =--r r ,特征根为 i r ±=1, 通解为12(cos sin )x y e C x C x =+。

第5章 定性和稳定性理论简介(常微分方程)

第5章定性和稳定性理论简介 在十九世纪中叶,通过Liouville等人的工作,人们已经知道绝大多数微分方程不能用初等积分法求解.这个结果对微分方程理论的发展产生了极大的影响,使微分方程的研究发生了一个转折.既然初等积分法有着不可克服的局限性,那么是否可以不求微分方程的解,而从微分方程本身来推断其性质呢?定性理论和稳定性理论正是在这种背景下发展起来的.前者由法国数学家Poincare(1854-1912)在19世纪80年代所创立,后者由俄国数学家Liapunov(1857-1918)在同年代所创立.它们共同的特点就是在不求出方程解的情况下,直接根据微分方程本身的结构与特点,来研究其解的性质.由于这种方法的有效性,近一百多年以来它们已经成为常微分方程发展的主流.本章对定性理论和稳定性理论的一些基本概念和基本方法作一简单介绍. 第一讲§5.1 稳定性(Stability)概念(5课时) 一、教学目的:理解稳定、渐近稳定和不稳定的概念;掌握零解的稳 定、渐近稳定的概念;学会判定一些简单微分方程零 解的稳定和渐近稳定性。 二、教学要求:理解稳定、渐近稳定和不稳定的概念;掌握简单微分 方程零解的稳定和渐近稳定性的判定。 三、教学重点:简单微分方程零解的稳定和渐近稳定性的判定。 四、教学难点:如何把一般解的稳定性转化为零解的稳定性。 五、教学方法:讲练结合教学法、提问式与启发式相结合教学法。 六、教学手段:传统板书与多媒体课件辅助教学相结合。 七、教学过程:

1.稳定性的定义 考虑微分方程组 (,)dx f t x dt = (5.1) 其中函数(,)f t x 对n x D R ∈?和(,)t ∈-∞+∞连续,对x 满足局部Lipschitz 条件。 设方程(5.1)对初值01(,)t x 存在唯一解01(,,)x t t x ?=,而其它解记作00(,,)x x t t x = 。 现在的问题是:当01x x -很小是,差 0001(,,)(,,) x t t x t t x ?-的变化是否也很小?本章向量1 2 (,,,)T n x x x x = 的范数取 1 221n i i x x =?? = ? ?? ∑。 如果所考虑的解的存在区间是有限区间,那么这是解对初值的连续依赖性,在第二章的定理2.7已有结论。现在要考虑的是解的存在区间是无穷区间,那么解对初值不一定有连续依赖性,这就产生了Liapunov 意义下的稳定性概念。 定义 5.1 如果对于任意给定的0 ε>和00t ≥都存在0(,)0 t δδε=>, 使得只要 01x x δ -<,就有 0001(,,)(,,)x t t x t t x ?ε -< 对一切0t t ≥成立,则 称(5.1)的解01(,,)x t t x ?=是稳定的。否则是不稳定的。 定义5.2 假定01(,,)x t t x ?=是稳定的,而且存在11(0)δδδ<≤,使得只要 011x x δ-< ,就有 0001l i m ((,,) (,,))0t x t t x t t x ?→∞ -= ,则称 (5.1)的解01(,,)x t t x ?=是渐近稳定的。 为了简化讨论,通常把解01(,,)x t t x ?=的稳定性化成零解的稳定性问题.下面记00()(,,) x t x t t x =01()(,,)t t t x ??=作如下变量代换. 作如下变量代 换.

常微分方程基本概念习题附解答

§1.2 常微分方程基本概念习题及解答 1.dx dy =2xy,并满足初始条件:x=0,y=1的特解。 解:y dy =2xdx 两边积分有:ln|y|=x 2+c y=e 2x +e c =cex 2另外y=0也是原方程的解,c=0时,y=0 原方程的通解为y= cex 2,x=0 y=1时 c=1 特解为y= e 2 x . 2. y 2dx+(x+1)dy=0 并求满足初始条件:x=0,y=1的特解。 解:y 2dx=-(x+1)dy 2y dy dy=-11+x dx 两边积分: -y 1=-ln|x+1|+ln|c| y=|)1(|ln 1+x c 另外y=0,x=-1也是原方程的解 x=0,y=1时 c=e 特解:y=| )1(|ln 1+x c 3.dx dy =y x xy y 32 1++ 解:原方程为:dx dy =y y 21+31x x + y y 21+dy=3 1x x +dx 两边积分:x(1+x 2)(1+y 2)=cx 2 4. (1+x)ydx+(1-y)xdy=0 解:原方程为: y y -1dy=-x x 1+dx 两边积分:ln|xy|+x-y=c

另外 x=0,y=0也是原方程的解。 5.(y+x )dy+(x-y)dx=0 解:原方程为: dx dy =-y x y x +- 令 x y =u 则dx dy =u+x dx du 代入有: -112++u u du=x 1dx ln(u 2+1)x 2=c-2arctgu 即 ln(y 2+x 2)=c-2arctg 2x y . 6. x dx dy -y+22y x -=0 解:原方程为: dx dy =x y +x x ||-2)(1x y - 则令 x y =u dx dy =u+ x dx du 211 u - du=sgnx x 1dx arcsin x y =sgnx ln|x|+c 7. tgydx-ctgxdy=0 解:原方程为:tgy dy =ctgx dx 两边积分:ln|siny|=-ln|cosx|-ln|c| siny=x c cos 1=x c cos 另外y=0也是原方程的解,而c=0时,y=0. 所以原方程的通解为sinycosx=c. 8 dx dy +y e x y 32 +=0 解:原方程为:dx dy =y e y 2e x 3

常微分方程习题集

《常微分方程》测试题1 一、填空题30% 1、形如的方程,称为变量分离方程, 这里.分别为x.y的连续函数。 2、形如-的方程,称为伯努利方 程,这里的连续函 数.n 3、如果存在常数-对于所 有函数称为在R 上关于满足利普希兹条件。 4、形如-的方程,称为 欧拉方程,这里 5、设的某一解,则它的 任一解- 。 二、计算题40% 1、求方程 2、求方程的通解。 3、求方程的隐式解。 4、求方程 三、证明题30% 1.试验证=是方程组x=x,x=,在任何不包含原点

的区间a上的基解矩阵。 2.设为方程x=Ax(A为n n常数矩阵)的标准基解矩阵(即(0)=E),证 明: (t)=(t- t)其中t为某一值.<%建设目标%> 《常微分方程》测试题 2 一、填空题:(30%) 1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的 微分方程是. 2、方程的通解中含有任意常数的个数为. 3、方程有积分因子的充要条件为. 4、连续是保证对满足李普希兹条件的条件. 5、方程满足解的存在唯一性定理条件的区域是. 6、若是二阶线性齐次微分方程的基本解组,则它 们(有或无)共同零点. 7、设是方程的通解,则 . 8、已知是二阶齐次线性微分方程的一个非零解,则与 线性无关的另一解 . 9、设是阶常系数齐次线性方程特征方程的K重根,则该方程相应于的K个线 性无关解是 .

10、线性微分方程组的解是的基本解组的充要条件是 . 二、求下列微分方程的通解:(40%) 1、 2、 3、 4、 5、求解方程. 三、求初值问题的解的存在区间,并求第二次近似解,给 出在解的存在区间的误差估计.(10分) 四、求解微分方程组 满足初始条件的解.(10%)五、证明题:(10%) 设,是方程

微分方程例题

1. 求下列微分方程的通解: (1)x e y dx dy -=+; 解 )()()(C x e C dx e e e C dx e e e y x x x x dx x dx +=+?=+???=-----??. (2)xy '+y =x 2+3x +2; 解 原方程变为x x y x y 231++=+'. ])23([1 1C dx e x x e y dx x dx x +??++?=?- ])23([1])23([12C dx x x x C xdx x x x +++=+++=?? x C x x C x x x x +++=+++=22331)22331(1223. (3)y '+y cos x =e -sin x ; 解 )(cos sin cos C dx e e e y xdx x dx +???=?-- )()(sin sin sin sin C x e C dx e e e x x x x +=+?=---?. (4)y '+y tan x =sin 2x ; 解 )2sin (tan tan C dx e x e y xdx xdx +???=?- )2sin (cos ln cos ln C dx e x e x x +?=?- ?+?=)cos 1cos sin 2(cos C dx x x x x =cos x (-2cos x +C )=C cos x -2cos 2x . (5)(x 2-1)y '+2xy -cos x =0; 解 原方程变形为1 cos 12 22-=-+'x x y x x y . )1cos (12212 22C dx e x x e y dx x x dx x x +??-?=?--- )(sin 1 1])1(1cos [112222C x x C dx x x x x +-=+-?--=?. (6)23=+ρθ ρd d ; 解 )2(33C d e e d d +???=?-θρθθ )2(33C d e e +=?-θθθ θθθ3333 2)32(--+=+=Ce C e e .

相关文档
相关文档 最新文档