文档库 最新最全的文档下载
当前位置:文档库 › 等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告
等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报

Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

等厚干涉——牛顿环等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。

一. 实验目的

(1)用牛顿环观察和分析等厚干涉现象;

(2)学习利用干涉现象测量透镜的曲率半径;

二. 实验仪器

读数显微镜钠光灯牛顿环仪

三. 实验原理

牛顿环装置是由一块曲率半径较大的平凸面放在一块光学玻

璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻璃平板之

间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇

后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。

图2 图3

由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为

由于r R >>,可以略去d 2得

R

r d 22

= (1)

光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为

2

+

=?d (2)

所以暗环的条件是

2

)

12(λ

+=?k (3)

其中 3,2,1,

0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为

λkR r k =2 (4)

由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环半径r m 和r n 的平方差来计算曲率半径R 。因为

两式相减可得

所以有 λ

)(2

2n m r r R n m --=

或 λ

)(422n m D D R n

m --=

由上式可知,只要测出m D 与n D (分别为第m 与第n 条暗纹的直径)的值,就能算出R 或λ。这样就可避免实验中条纹级数难以确定的困难,利用后以计算式还可克服确定条纹中心位置的困难。

四. 实验内容

1. 调整牛顿环

借助日光灯灯光,用眼睛直接观察,均匀调节仪器的3个螺丝直至干涉条纹为圆环形且位于透镜的中心。然后将干涉条纹放在显微镜镜筒的正下方。 2.观察牛顿环

(1)接通汞灯电源。

(2)将牛顿环装置放置在读数显微镜镜筒下,镜筒置于读数标尺中央月5cm 处。

(3)待汞灯正常发光后,调节读数显微镜下底座平台高度(底座可升降),使

45°玻璃片正对汞灯窗口,并且同高。

(4)在目镜中观察从空气层反射回来的光,整个视场应较亮,颜色呈汞光的兰紫色,如果看不到光斑,可适当调节45°玻璃片的倾斜度(一般实验室事先已调节好,不可随意调节)及平台高度,直至看到反射光斑,并均匀照亮视场。 (5)调节目镜,在目镜中看到清晰的十字准线的像。

(6)转动物镜调节手轮,调节显微镜镜筒与牛顿环装置之间的距离。先将镜筒下降,使45°玻璃片接近牛顿环装置但不能碰上,然后缓慢上升,直至在目镜中看到清晰的十字准线和牛顿环像。

3.测量21~30环的直径

(1)粗调仪器,移动牛顿环装置,使十字准线的交点与牛顿环中心重合。(2)放松目镜紧固螺丝(该螺丝应始终对准槽口),转动目镜使十字准线中的一条线与标尺平行,即与镜筒移动方向平行。

(3)转动读数显微镜读数鼓轮,镜筒将沿着标尺平行移动,检查十字准线中竖线与干涉环的切点是否与十字准线交点重合,若不重合,再按步骤(1)(2)仔细调节(检查左右两侧测量区域)。

(4)把十字准线移到测量区域中央(25环左右),仔细调节目镜及镜筒的焦距,使十字准线像与牛顿环像无视差。

(5)转动读数鼓轮,观察十字准线从中央缓慢向左(或向右)移至37环,然后反方向自37环向右移动,当十字准线竖线与30环外侧相切时,记录读数显微镜上的位置读数X30。然后继续转动鼓轮,使竖线依次与

29,28,27,26,25,24,23,22,21环外侧相切,并记录读数。过了21环后继续转动鼓轮,并注意读出环的顺序,直到十字准线回到牛顿环中心,核对该中心是否为k=0。

(6)继续按原方向转动鼓轮,越过干涉圆环中心,记录十字准线与右边第21,22,23,24,25,26,27,28,29,30环内外切时的读数。注意:从37环移到另一侧30环的过程中鼓轮不能倒转。然后反向转动鼓轮,并读出反向移动时各暗环次序,并核对十字准线回到牛顿环中心时k是否为0。

(7)按上述步骤重复测量三次,将牛顿环暗环位置的读数填入自拟表中。

五. 数据处理

1.用逐差法处理数据。

2.由公式计算平凸透镜的半径R。

3.根据实验室给出的R的标准值计算出百分误差。

理论值R'=1m,实验值R=

误差分析:

1、观察暗斑时,肉眼不能达到准确读数,产生读数误差;

2、鼓轮倒转导致回程差;

3、在实验操作中,由于中心不可能达到点接触,在重力和螺钉压力下,透镜会变形,中心会形成暗斑,造成测量结果偏差;

4、平凸透镜与平面玻璃接触点有灰尘,引起附加光程差;

5、读数带来的误差

六. 注意事项

1.为保护实验仪器,聚焦前,应先使物镜接近被测物,然后使镜筒慢慢向上

移,直至聚焦。

2.测量读数时,目镜中十字叉丝的横丝应与读数标尺相平行,纵丝应与各暗环

相切。

3.测量读数时,为避免转动部件螺纹间隙产生的空程误差,测微鼓轮只能向一

个方向旋转。

七. 思考题

牛顿环干涉条纹一定会成为圆环形状吗其形成的干涉条纹定域在何处

答:牛顿环是一各薄膜干涉现象。光的一种干涉图样,是一些明暗相间的同心圆环。

从牛顿环仪透射出的环底的光能形成干涉条纹吗如果能形成干涉条纹,则与反射光形成的条纹有何不同

答:可以的,透射光干涉条纹与反射光干涉条纹,正好相反。

夹层内折射率不是介于透镜和玻璃板折射率之间,在透镜凸表面和玻璃的接触点上,空气层厚度为0,两反射光的光程差为λ/2,因此反射光方向上牛顿

环中心为暗点。透射光方向与反射光条纹相反,因此透射光牛顿环中心是一亮点。

如果夹层内折射率正好介于透镜和玻璃板折射率之间,反射光牛顿环中心为亮点,透射光牛顿环为暗点。

实验中为什么要测牛顿环直径,而不测其半径

答:因为半径R只与测定各环的环数差有关,无须确定各环级数。显微镜是用来读环数的,在计算中可将零误差消去。

实验中为什么要测量多组数据且采用多项逐差法处理数据

答:避免系统误差对实验的影响。

牛顿环干涉汇总

实验六、牛顿环干涉 光的干涉现象是光波动性的基本特征之一。牛顿环干涉是属于用分振幅的方法产生的定域干涉现象,亦是典型的等厚干涉条纹。“牛顿环”是牛顿在1675年制做天文望远镜时,偶然将一个望远镜的物镜放在平板玻璃上发现的。在实际工作中,利用牛顿环干涉来测定光波的波长、透镜的曲率半径或检查光学元件表面的光洁度、平整度和加工精度等。 实验目的 1. 观察等厚现象,考察其特点; 2. 掌握一种测量透镜曲率半径的方法; 3. 学习使用读数显微镜。 实验仪器 JXD3型读数显微镜(一套),钠光灯,牛顿环 实验原理 把一块曲率半径相当大的平凸透镜A的凸面放在一块很平的平玻璃B上, 那么在两者之间就形成类似劈尖形的空气薄层。如图(a) 。如果将一束单色光垂直地投射上去,则入射光

在空气层上下两表面反射且在上表面相遇将产生干涉。在反射光中形成一系列以接触点O 为中心的明暗相间的光环叫牛顿圈。各明圈(或暗圈)处空气薄层的厚度相等,故称为等厚干涉。 明、暗环的干涉条件分别是: λλ δk e =+=2 2 ??????=,3,2,1k (1) 2 ) 12(2 2λ λ δ+=+ =k e ??????=,2,1,0k (2) 其中 2 λ 一项是由于二束相干光线中,其中一束光从光疏媒质(空气)到光密媒质(玻璃)交界面上反射时,发生“半波损失”引起的。 由图(b )可得环半径r 与厚度e 的关系:2 22)(e R r R -== 即: 2 2 2e eR r -= R 系透镜A 的曲率半径。由于e R ??,所以上式近似为: R r e 22 = (3) 将(3)带入(1)、(2)明、暗环公式分别有 2 )12(2 λ R k r +=(明环) ??????=,3,2,1k (4) R k r λ=2 (暗环) ??????=,2,1,0k (5) 由(4)、(5)式可看出:以一定波长λ的光入射到牛顿环上形成干涉条纹后,只要测出某一级明环或暗环的半径,即可测出透镜的曲率半径。但在实际测量中,暗环较易对准,故以测量暗环为宜。还有一个要注意的问题是,在实验中利用暗环公式(5),来测定透镜曲率半径R 时是认为接触点O 处(r=0)是点接触,且接触处无脏东西或灰尘存在,但是,实际上由于存在脏物或灰尘及玻璃的弹性形变,接触点是很小的面接触,看到的是一个暗斑。在

等厚干涉实验报告(2)

大学物理实验报告(等厚干涉) 、实验目的: 1?、观察牛顿环和劈尖的干涉现象。 2、了解形成等厚干涉现象的条件极其特点。 3、用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。 二、实验原理: 1.牛顿环 牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。 当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空 气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。由牛顿最早发现)。由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。牛顿环实验装置的光路图如下图所示: 设射入单色光的波长为入,在距接触点r k处将产生第k级牛顿环,此处对应的空气膜厚度为d k,则空 气膜上下两界面依次反射的两束光线的光程差为 - 扎 =2nd k 亠— 2 式中,n为空气的折射率(一般取1),入/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。 下界面上的两束反射光的光程差存在两种情况: 根据干涉条件,当光程差为波长的整数倍时干涉相长, 反之为半波长奇数倍时干涉相消, 故薄膜上 2k K=1,2,3,….,明环

(2k 1) 2K=0,1,2,….,暗环

2 2 2 由上页图可得干涉环半径r k,膜的厚度d k与平凸透镜的曲率半径R之间的关系R =(R-d k) - r k o o 由于dk远小于R,故可以将其平方项忽略而得到2Rd k二r k o结合以上的两种情况公式,得到: *5 r k =2Rd k二kR,, k= 0,1,2…,暗环 由以上公式课件,r k与d k成二次幕的关系,故牛顿环之间并不是等距的,且为了避免背光因素干扰, 般选取暗环作为观测对象。 而在实际中由于压力形变等原因,凸透镜与平板玻璃的接触不是一个理想的点而是一个圆面;另外镜 要作图求出斜率4R,,代入已知的单色光波长,即可求出凸透镜的曲率半径R o 2.劈尖 将两块光学平玻璃叠合在一起,并在其另一端插入待测的薄片或细丝(尽可能使其与玻璃的搭接线平行) 则在两块玻璃之间形成以空气劈尖,如下图所示: 当单色光垂直射入时,在空气薄膜上下两界面反射的两束光发生干涉;由于空气劈尖厚度相等之处是平行于两玻璃交线的平行直线,因此干涉条纹是一组明暗相间的等距平行条纹,属于等厚干涉。干涉条件如下: k =2d k - =(2k 1) 2 k=0, 1,2,… 可知,第k级暗条纹对应的空气劈尖厚度为 面沾染回程会导致环中心成为一个光斑, 这些都致使干涉环的级数和半径无法准确测量。而使用差值法消去附加的光程差,用测量暗环的直径来代替半径, 都可以减少以上类型的误差出现。由上可得: 2 2 d m — d n R 二--------- 4(m - n) ■ 式中,D m、D n分别是第m级与第n级的暗环直径,由上式即可计算出曲率半径由于式中使用环数差m-n代替了级数k,避免了圆环中心及暗环级数无法确定的问题。 凸透镜的曲率半径也可以由作图法得出。测得多组不同的D m和m,根据公式D2m = 4R m , 可知只 Hi

牛顿环思考题及答案

(1)牛顿环的中心在什么情况下是暗的,在什么情况下是亮的? 中心处是暗斑,这是因为中心接触处的空气厚度,而光在平面玻璃面上反射时有半波损失,所以形成牛顿环中心处为暗斑(用反射光观察时)。当没有半波损失时则为亮斑。 当有半波损失时为暗纹,没有半波损失时为亮纹。 (2)实验中为什么用测量式 λ )(42 2 n m D D R n m --= ,而不用更简单的λ K r R k 2 = 函数关系式求出 R 值? 因为用后面个关系式时往往误差较大,原因在于凸面和平面不可能是理想的点接触,接触压力会引起局部形变,使接触点成为一个圆面,干涉环中心为一暗斑,所以无法确定环的几何中心。所以比较准确的方法是测量干涉环的直径。测出个对应k 环环直径Dk ,由rk 2 =k λR 可知Dk 2=4R λk,又由于灰尘等存在,是接触点的dk ≠0,其级数也是未知的,则是任意暗环的级数和直径Dk 难以确定,故取任意两个不相邻的暗环,记其直径分别为Dm 和Dn(m>n),求其平方差即为 Dm 2-Dn 2=4(m-n)R λ,则R=(Dm 2-Dn 2)/4(m-n) λ (3) 在本实验中若遇到下列情况,对实验结果是否有影响?为什么? ①牛顿环中心是亮斑而非暗斑。 ②测各个D m 时,叉丝交点未通过圆环的中心,因而测量的是弦长而非真正的直径。 1. 环中心出现亮斑是因为球面和平面之间没有紧密接触(接触处有尘埃,或有破损或磨毛),从而产生了附加光程差。这对测量结果并无影响(可作数学证明)。 2.( 提示:从左图A ,看能否证 明:2 2 2 2 n m n m D D d d -=-) 没有影响.可能的附加光程差会导致中心不是暗点而是亮斑,但在整个测量过程中附加光程差是恒定的,因此可以采用不同暗环逐差的方式消除 (4)在测量过程中,读数显微镜为什么只准单方向前进,而不准后退? 会产生回程误差,即测量器具对同一 个尺寸进行正向和反向测量时,由于 结构上的原因,其指示值不可能完全相同,从而产生误差. d d m Dn Dm h r n r m n 图A R d n =1 H 图B

等厚干涉--牛顿环实验报告

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪

三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 2222222)(r d Rd R r d R R ++-=+-= 由于r R >>,可以略去d 2得

R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1,0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环半径r m 和r n 的平方差来计算曲率半径R 。因为 λMR r m =2 λnR r n =2 两式相减可得 λ)(22n m R r r n m -=-

课程设计:牛顿环干涉实验

探究外部因素对牛顿环干涉的影响 10级物本:周晨、陈杨华、许英磊 指导老师:尹真 摘要:本实验利用移测显微镜对牛顿环仪在不同条件下显示出的牛顿环进行观察,求出各种条件下所测得透镜的曲率半径,并分析这些条件对牛顿环测定透镜曲率半径的影响情况。关键词:牛顿环、曲率半径、牛顿环仪、移测显微镜 1 引言: 运用钠灯发出的光线作为实验的入射光线,光线经过牛顿环仪后,在牛顿环仪表面发生干涉现象,形成了一系列同心圆圈,运用移测显微镜进行测量,可以求得牛顿环仪中透镜的曲率半径。 2实验仪器及用具:移测显微镜、牛顿环仪、钠灯等 3实验原理: 牛顿环仪是由待测平凸透镜L和磨光的平玻璃板P叠合安装在金属框架F中构成的(图1).框架边上有三个螺旋H,用以调节L和P之间的接触,以改变干涉环纹的形状和位置.调节H时,不可旋得过紧,以免接触压力过大引起透镜 弹性形变,甚至损坏透镜。

当一曲率半径很大的平凸透镜的凸面与一平玻璃板相接触时,在透镜的凸面与平玻璃板之间形成一空气薄膜.薄膜中心处的厚度为零,愈向边缘愈厚,离接触点等距离的地方,空气膜的厚度相同,如图2所示,若以波长为λ的单色平行光投射到这种装置上,则由空气膜上下表面反射的光波将在空气膜附近互相干涉,两束光的光程差将随空气膜厚度的变化而变化,空气膜厚度相同处反射的两束光具有相同的光程差,形成的干涉条纹为膜的等厚各点的轨迹,这种干涉是一种等厚干涉。 在反射方向观察时,将看到一组以接触点为中心的亮暗相间的圆环形干涉条纹,而且中心是一暗斑[图3(a)];如果在透射方向观察,则看到的干涉环纹与反射光的干涉环纹的光强分布恰成互补,中心是亮斑,原来的亮环处变为暗环,暗环处变为亮环[图3(b) ],这种干涉现象最早为牛顿所发现,故称为牛顿环。

牛顿环实验报告

北京师范大学珠海分校大学物理实验报告 实验名称:牛顿环实验测量 学院工程技术学院 专业测控技术与仪器 学号 1218060075 姓名钟建洲 同组实验者 1218060067余浪威 1218010100杨孟雄 2013 年 1 月 17日

实验名称 牛顿环实验测量 一、实验目的 1.观察牛顿环干涉现象条纹特征; 2.学习用光的干涉做微小长度的测量; 3.利用牛顿环干涉测量平凸透镜的曲率半径; 4.通过实验掌握移测显微镜的使用方法 二、实验原理 在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点 o 附近就形成一层空 气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和下表面反射的光束在膜上表面相遇相干,形成以 o 为圆心的明暗相间的环状干涉图样,称为牛顿环。如果已知入射光波长,并测得第 k 级 暗环的半径 r k ,则可求得透镜的曲率半径 R 。但 实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。第m 环与第n 环 用直径 D m 、 D n 。 () λ n m n D m D R +-= 42 2此为计算 R 用的公式,它与附加厚度、

圆心位置、绝对级次无关,克服了由这些因素带来的系统误差,并且D m 、 D n 可以是弦长。 三、实验内容与步骤 用牛顿环测量透镜曲率半径 (1).按图布置好实验器材,使用单色扩展光源,将牛顿环装置放在读数显微镜工作台毛玻璃中央,并使显微镜筒正对牛顿环装置中心。 (2).调节读数显微镜。 1.调节目镜,使分划板上的十字刻度线清晰可见,并转动目镜,使十字刻度线的横线与显微镜筒的移动方向平行。 2.调节45度反射镜,使显微镜视觉中亮度最大,这时基本上满足入射光垂直于待测量透镜的要求。 1.转动手轮A,使显微镜平移到标尺中部,并调节调焦手轮B,使物镜接近牛顿环装置表面。 2.对显微镜调焦。缓慢地转动调焦手轮B,使显微镜筒由下而上移动进行调焦,直到从目镜中清楚地看到牛顿环干涉条纹且无视差为止;然后移动牛顿环装置,使目镜中十字刻度线交点与牛顿环中心重合 (1).观察条纹的特征。 观察各级条纹的粗细是否一致,其间距有无差异,并做出解释。观察牛顿环中心是亮斑还是暗斑? (2).测量暗环的直径 转动读数显微镜的读数鼓轮,同时在目镜中观察,使十字刻度线由牛顿环中心缓慢地向一侧移动到43环;然后再回到第42环。自42环起,单方向移动十字刻度,每移3环读数一——直到测量完成另一侧的第42环。并将所测量的第42环到第15环各直径的左右两边的读数记录在表格内。 四、数据处理与结果 1.求透镜的曲率半径。 测出第15环到第42环暗环的直径,取m-n=15,用逐差法求出暗环的直径平方 差的平均值,按算出透镜的曲率半径的平均值R。 R1=(d422-d272)/[4(42-27]λ= 895.85 mm R2=(d392-d242)/[4(39-24]λ= 896.97 mm R3=(d362-d212)/(4(36-21)λ= 887.94mm R4=(d332-d182)/(4(33-18)λ= 893.30mm

实验名称:牛顿环实验

实验五牛顿环实验 实验性质:综合性实验 教学目的和要求: 1.理解牛顿环的形成原因与等厚干涉的含义。 2.学习用牛顿环测量平凸透镜曲率半径,并熟练运用逐差法处理数据。 3.熟练使用读数显微镜。 教学重点与难点:1.理解牛顿环的成因与等厚干涉的含义 2.测定牛顿环的直径与用逐差法来处理数据 3. 各仪器的正确使用。 一.检查学生的预习情况 检查学生预习报告:内容是否完整,表格是否正确。 二.实验仪器和用具:牛顿环仪、钠灯、读数显微镜 三.讲解实验原理 1.牛顿环 把一块曲率半径相当大的平凸透镜A的凸面放在一块很平的平玻璃B上,那么在两者之间就形成类似劈尖形的空气薄层。如图1(a)。如果将一束单色光垂直地投射上去,则入射光在空气层上下两表面反射且在上表面相遇将产生干涉。在反射光中形成一系列以接触点O为中心的明暗相间的光环叫牛顿环。各明环(或暗环)处空气薄层的厚度相等,故称为等厚干涉。

图1 明、暗环的干涉条件分别是:λλδk e =+ =22 ??????=,3,2,1k 2)12(22λλδ+=+ =k e ??????=,2,1,0k 其中2 λ一项是由于二束相干光线中,其中一束光从光疏媒质(空气)到光密媒质(玻璃)交界面上反射时,发生“半波损失”引起的。 环半径r 与厚度e 的关系见图31-1(b ) 因为 222)(e R r R -+= 即 222e eR r -= R 系透镜A 的曲率半径。由于e R ?? 所以上式近似为 R r e 22 = 带入明、暗环公式分别有 2)12(2λ R k r +=(明环) (1) R k r λ=2 (暗环) (2) 实验中利用暗环公式(2),由单色光λ所形成的暗环来测定透镜曲率半径R 时应注意公式(2)是认为接触点O 处(r =0)是点接触,且接触处无脏东西或

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 Final revision on November 26, 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在 一块光学玻璃平板(平镜)上构成的,如图。平凸透 镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两

光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 This manuscript was revised on November 28, 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光 学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻 璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的

一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环

等厚干涉实验报告记录

等厚干涉实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

大学物理实验报告(等厚干涉) 一、实验目的: 1.、观察牛顿环和劈尖的干涉现象。 2、了解形成等厚干涉现象的条件极其特点。 3、用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。 二、实验原理: 1.牛顿环 牛顿环器件由一块曲率半径很大的平凸透镜叠放在一块光学平板玻璃上构成,结构如图所示。 当平行单色光垂直照射到牛顿环器件上时,由于平凸透镜和玻璃之间存在一层从中心向外厚度递增的空气膜,经空气膜和玻璃之间的上下界面反射的两束光存在光程差,它们在平凸透镜的凸面(底面)相遇后将发生干涉,干涉图样是以接触点为中心的一组明暗相间、内疏外密的同心圆,称为牛顿环(如图所示。由牛顿最早发现)。由于同一干涉圆环各处的空气薄膜厚度相等,故称为等厚干涉。牛顿环实验装置的光路图如下图所示: 设射入单色光的波长为λ,在距接触点r k处将产生第k级牛顿环,此处对应的空气膜厚度为d k,则空气膜上下两界面依次反射的两束光线的光程差为 2 2 λ δ+ = k k nd 式中,n为空气的折射率(一般取1),λ/2是光从光疏介质(空气)射到光密介质(玻璃)的交界面上反射时产生的半波损失。 根据干涉条件,当光程差为波长的整数倍时干涉相长,反之为半波长奇数倍时干涉相消,故薄膜上下界面上的两束反射光的光程差存在两种情况: 2 )1 2( 2 2 2 2 λ λ λ δ + = + = k k d k k K=1,2,3,… K=0,1,2,…

迈克尔逊干涉仪实验报告

迈克尔逊干涉仪实验报告 一、实验题目:迈克尔逊干涉仪 二、实验目的: 1. 了解迈克尔逊干涉仪的结构、原理和调节方法; 2. 观察等倾干涉、等厚干涉现象; 3. 利用迈克尔逊干涉仪测量He-Ne激光器的波长; 三、实验仪器: 迈克尔逊干涉仪、He-Ne激光器、扩束镜、观察屏、小孔光阑四、实验原理(原理图、公式推导和文字说明): 在图M 2′是镜子M 2 经A面反射所成的虚像。调整好的迈克尔逊干涉仪,在 标准状态下M 1、M 2 ′互相平行,设其间距为d.。用凸透镜会聚后的点光源S是 一个很强的单色光源,其光线经M 1、M 2 反射后的光束等效于两个虚光源S 1 、S 2 ′ 发出的相干光束,而S 1、S 2 ′的间距为M 1 、M 2 ′的间距的两倍,即2d。虚光源 S 1、S 2 ′发出的球面波将在它们相遇的空间处处相干,呈现非定域干涉现象,其 干涉花纹在空间不同的位置将可能是圆形环纹、椭圆形环纹或弧形的干涉条纹。 通常将观察屏F安放在垂直于S 1、S 2 ′的连线方位,屏至S 2 ′的距离为R,屏上 干涉花纹为一组同心的圆环,圆心为O。 设S 1、S 2 ′至观察屏上一点P的光程差为δ,则 )1 /) (4 1 ( ) 2 ( 2 2 2 2 2 2 2 2 2 - + + + ? + = + - + + = r R d Rd r R r R r d R δ (1) 一般情况下d R>>,则利用二项式定理并忽略d的高次项,于是有

??? ? ??+++=? ??? ??+-++?+=)(12)(816)(2)(4222 22222222222 2 r R R dr r R dR r R d R r R d Rd r R δ (2) 所以 )sin 1(cos 22θθδR d d + = (3) 由式(3)可知: 1. 0=θ,此时光程差最大,d 2=δ,即圆心所对应的干涉级最高。旋转微调鼓轮使M 1移动,若使d 增加时,可以看到圆环一个个地从中心冒出,而后往外扩张;若使d 减小时,圆环逐渐收缩,最后消失在中心处。每“冒出”(或“消失”)一个圆环,相当于S 1、S 2′的距离变化了一个波长λ大小。如若“冒出”(或“消失”)的圆环数目为N ,则相应的M 1镜将移动Δd ,显然: N d /2?=λ (4) 从仪器上读出Δd 并数出相应的N ,光波波长即能通过式(4)计算出来。 2. 对于较大的d 值,光程差δ每改变一个波长所需的θ的改变量将减小,即两相邻的环纹之间的间隔变小,所以,增大d 时,干涉环纹将变密变细。 五、实验步骤 六、实验数据处理(整理表格、计算过程、结论、误差分析): m m 105-5?=?仪 N=30

牛顿环-等厚干涉标准实验报告

实验报告 学生姓名: 学 号: 指导教师: 实验地点: 一、实验室名称: 、实验项目名称:牛顿环测曲面半径和劈尖干涉 三、实验学时: 四、实验原理: 1等厚干涉 如图1所示,在C 点产生干涉,光线11'和22'的光程差为 △ =2d+入 12 式中入/2是因为光由光疏媒质入射到光密媒质上反射时, 有一相位突 当光程差 △ =2d+入/2=(2k+1)入12, 即d=k 入/2时 产生暗条纹; 当光程差 △ =2d+入/2=2k 入/2, 即d=(k — 1/2)入/2时 产生明条纹 因此,在空气薄膜厚度相同处产生同一级的干涉条纹 ,叫等厚干涉条 2、用牛顿环测透镜的曲率半径 将一个曲率半径较大的平凸透镜的凸面置于一块光学平板玻璃上则 实验时间: 变引起的附加光程差

可组成牛顿环装置。如图2所示。 这两束反射光在AOB 表面上的某一点E 相遇,从而产生E 点的干涉。由于AOB 表面是球面,所产生的条纹是明暗相间 的圆环,所以称为牛顿环,如图3所示。 将两块光学平玻璃重叠在一起,在一端插入一薄纸 片,则在两玻璃板 间形成一空气劈尖,如图4所示。K 级干涉暗条纹对应的薄膜厚度为 d=k 入/2 k=0时,d=0, 即在两玻璃板接触处为零级暗条纹;若在 薄纸处呈现k=N 级条纹,则薄纸片厚度为 d ' =N 入12 若劈尖总长为L,再测出相邻两条纹之间的距离为△ x,则暗条纹总数 为N =L/A x , 即 d ' =L 入 12 △ x 。 五、实验目的: 深入理解光的等厚干涉及其应用,学会使用移测显微镜 六、实验内容: 1、 用牛顿环测透镜的曲率半径 2、 用劈尖干涉法测薄纸片的厚度 七、实验器材(设备、元器件): 牛顿环装置,移测显微镜,两块光学平玻璃板,薄纸片,钠光灯及电 八、实验步骤: 1.用牛顿环测透镜的曲率半径 O 牛顿环 图2 ---- L

海南大学牛顿环实验自测试题

牛顿环 不定项选择题 试题1 在测量10-17级暗纹直径对应的左右位置时,某同学找到中心暗环后,先左旋读数鼓轮到第10级时依次读出10-17级条纹位置,然后反转鼓轮回到中心暗环后,继续前行,到第10级时依次读出另一侧10-17级条纹位置。这同学的操作是否正确? 正确 不正确 [参考答案] 不正确 [我的答案] 试题2 实验过程中因为读数鼓轮要求朝同一方向旋转,所以,在实验开始测量之前,读数显微镜的主尺位置(需要测量的最大条纹直径不超过15mm,最大主尺刻度50mm),合适的是() 25mm附近 5mm附近 45mm附近 0mm位置 [参考答案] 25mm附近 试题3 牛顿环实验将测量式用,而不取R= (D k×D k)/kλ的原因是 消除干涉级次K的不确定性引起的系统误差 干涉环纹的几何中心难以精确确定 减小测量的偶然误差

减小测量的系统误差 [参考答案] 消除干涉级次K的不确定性引起的系统误差 干涉环纹的几何中心难以精确确定 减小测量的系统误差 试题4 牛顿环是典型的() 等厚干涉 等倾干涉 夫琅禾费衍射 [参考答案] 等厚干涉 试题5 读数显微镜的空程误差,是属于() 随机误差 系统误差 [参考答案] 系统误差 试题6 读数显微镜的读数正确读法是 先从主尺读出整毫米数值,再读出游标的整数值乘以0.01,然后相加得出读数 先从主尺读出整毫米数值,再读出游标估读一位小数后的读数值乘以0.01,然后相加得出读数 先从主尺读出估读一位小数的数值,再读出游标的整数值乘以0.01,然后相加得出读数 先从主尺读出估读一位小数的数值,再读出游标估读一位小数后的读数值乘以0.01,然后相加得出读数 [参考答案] 先从主尺读出整毫米数值,再读出游标估读一位小数后的读数值乘以0.01,然后相加得出读数 试题7 用读数显微镜测量待测物体长度时,如图所示,左边游标和主尺位置对应十字叉丝和物体左端对齐,右端游标和主尺位置表示十字叉丝和物体右端对齐,则左右读数,及物体长度为()

等厚干涉 物理实验报告

入射光 ' 图1 华南师范大学实验报告 学生姓名 学 号 专 业 化学 年级、班级 课程名称 物理实验 实验项目 等厚干涉 实验类型 □验证 □设计 □综合 实验时间 2012 年 3 月 14 实验指导老师 实验评分 一、实验目的: 观察牛顿环产生的等厚干涉条纹,加深对等厚干涉现象的认识。 二、实验原理: 牛顿环 在平面玻璃板BB '上放置一曲率半径为R 的平凸透镜AOA ',两者之间便形成一层空气薄层。当用单色光垂直照射下来时,从空气上下两个表面反射的光束1和光束2在空气表面层附近相遇产生干涉,空气层厚度相等处形成同一级的干涉条纹,这种干涉现象称为等厚干涉。在干涉条纹上,光程差相等处,是以接触点O 为中心,半径为r 的明暗相间的同心圆,其暗环的条件为:λkR r =2 (1) 其中k 为暗环级数,λ为单色光的波长。可见,测出条纹的半径r ,依(1)式便可计算出平凸透镜的半径R 。 三、实验仪器: 读数显微镜,牛顿环仪,汞光灯。 四、实验内容: 观察牛顿环 (1)接通钠光灯电源使灯管预热。 (2)将牛顿环装置放置在读数显微镜镜筒下,并将下面的反射镜置于背光位置。 (3)待钠光灯正常发光后,调节光源的位置,使450半反射镜正对钠灯窗口,并且同高。 (4)在目镜中观察从空气层反射回来的光,整个视场应较亮,颜色呈钠光的黄色,如果看不到光斑, 可适当调节45度半反射镜的角度及钠灯的高度和位置,直至看到反射光斑,并均匀照亮视场。 (5)调节目镜,在目镜中看到清晰的十字叉丝线的像。 (6)放松目镜紧固螺丝,转动目镜使十字叉丝线中的一条线与标尺平行,即与镜筒移动方向平行。 (7)转动物镜调节手轮(注意:要两个手轮一起转动)调节显微镜镜筒与牛顿环装置之间的距离。 先将镜筒下降,使45度半反射镜接近牛顿环装置但不能碰上,然后缓慢上升,直至在目镜中看到清晰的牛顿环像。 测量暗环的直径 (1)移动牛顿环装置,使十字叉丝线的交点与牛顿环中心重合。 (2)转动读数鼓轮,使十字准线从中央缓慢向左移至第31暗环(边移边数,十字叉丝竖线对准一环 数一环,不易数错),然后反方向自31暗环向右移动,使叉丝竖线依次对准30、29、28、27、

牛顿环干涉实验的相关问题及研究

牛顿环干涉实验的相关问题及研究 第一作者:王梓兆 学号:14051134 院系:航空科学与工程学院 第二作者:左冉东 学号:14051132 院系:航空科学与工程学院

牛顿环干涉实验的相关问题及研究 【摘要】 在判断透镜表面凸凹、精确检验光学元件表面质量、测量透镜表面曲率半径和液体折射率等方面,牛顿环干涉是一种非常常用的方法。通过观察牛顿环并进行计算,可以较为准确地得出结果,但同时,现实中是无法达到完美的理想效果的,所以实验中一定会出现一系列问题,本文对牛顿环干涉实验中出现的若干问题进行了研究。 【关键词】 牛顿环、光的干涉、一元线性回归 【实验原理】 牛顿环是一种光的干涉图样。是牛顿在1675年首先观察到的。将一块曲率半径较大的平凸透镜放在一块玻璃平板上,用单色光照射透镜与玻璃板,就可以观察到一些明暗相间的同心圆环。圆环分布是中间疏、边缘密,圆心在接触点O。从反射光看到的牛顿环中心是暗的,从透射光看到的牛顿环中心是明的。若用白光入射.将观察到彩色圆环。牛顿环是典型的等厚薄膜干涉。凸透镜的凸球面和玻璃平板之间形成一个厚度均匀变化的圆尖劈形空气簿膜,当平行光垂直射向平凸透镜时,从尖劈形空气膜上、下表面反射的两束光相互叠加而产生干涉。同一半径的圆环处空气膜厚度相同,上、下表面反射光程差

相同,因此使干涉图样呈圆环状。这种由同一厚度薄膜产生同一干涉条纹的干涉称作等厚干涉。 分析光路:将一大曲率半径的平凸玻璃透镜 A放在平板玻璃上即构成牛顿环仪。光源S 通过透镜L产生平行光束,再经倾角为450的 平板玻璃M反射后,垂直照射到平凸透镜上。 入射光分别在空气层的两表面反射后,穿过 M进入读数显微镜下,在显微镜中可以观察 到以接触点为中心的圆环形干涉条纹——牛顿环。 推导公式:根据光的干涉条件,在空气厚度为d的地方,有 2d+λ 2 =kλ(k=1,2,3...)明条纹 2d+λ 2=(2k+1)λ 2 (k=1,2,3...)暗条纹 式中左端的λ 2 为“半波损失”。令r为条纹半径,由右图可知: R2=r2+(R?d)2 化简后得r2=2Re?d2 当R>>d时,上式中的d2可以略去,因此 d=r2 将此式代入上述干涉条件,并化简,得r2=2k?1Rλ 2 k=1,2,3…明环 r2=kλR(k=1,2,3…)暗环 由上式可以看出,若测出了明纹或暗

牛顿环实验思考题

实验十五用牛顿环测量球面的曲率半径课后思考题 一.等厚干涉的特征 等厚干涉:是由平行光入射到厚度变化均匀、折射率均匀的薄膜上、下表面而形成的干涉条纹.薄膜厚度相同的地方形成同条干涉条纹,故称等厚干涉.牛顿环和楔形平板干涉都属等厚干涉. 光路图: 特征: 1.干涉条纹的级数序列:薄膜越厚,级数越高。 2.相邻条纹的间距:正比于波长,并且入射光的入射角愈大则条纹的间隔愈大。越靠近接触点,相邻条纹的间隔愈大比如劈尖干涉为明暗条纹均匀分布的直条纹;牛顿环为明暗相间内疏外密的圆环纹。 3.干涉条纹的移动规律:增加薄膜厚度,条纹向楞点方向移动。 4.白色光投射到牛顿环上时u,可见中心为暗斑,而外围有彩色的几个环状条纹。二.测波长的方法 (1)牛顿环测量法; 在牛顿环试验中,透镜的曲率半径设为R,则对于第k 级条纹,根据光的干涉条件,它应该满足一个等式,也就是λ。其中D就是第k 级条纹的直径。只要用牛顿环仪器测出条纹直径,就可以通过这个公式求出波长。 (2)单色仪测量法; 器材:单色仪定标的仪器和单色光源。 原理:主光线在棱镜上的入射和出射总是满足最小偏向条件。从而单色仪可出设单色光,且出射的单色光波长与鼓轮示数対应。完成单色仪定标后,令待测光源入射,找到出射时的鼓轮读数即可通过定标曲线确定其波长。 (3)小型棱镜射谱仪法; 器材:射谱仪、低压汞灯、电弧电源、底片、显影液、定影液、应谱仪。 原理:利用哈德曼光阑把已知铁谱线和待测谱线拍摄在同一底片上,然后于标准铁谱线对照,利用内插法便可计算出光波长。说明:这种方法基于色散是线性的,存在系统误差。实验时应选尽量接近的铁谱线进行估算。 (4)杨氏双缝干涉法; 器材:光具座、底片夹、单缝、双缝、测微观察屏、测量显微镜、待测光源。 原理:杨氏双缝干涉原理:双缝干涉的两个相邻亮(暗)条纹的距离△x与波长λ、双缝的间距d及双缝到屏的距离L满足Δx=λz/d。

等厚干涉牛顿环实验报告

等厚干涉——牛顿环 等厚干涉就是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角就是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环就是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于她主张微粒子学说而并未能对她做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度与角度,检验物体表面的光洁度、平整度等。 一.实验目的 (1)用牛顿环观察与分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二.实验仪器 读数显微镜钠光灯牛顿环仪

三. 实验原理 牛顿环装置就是由一块曲率半径较大的平凸面放在一块光学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,她们在平凸透镜的凸面相遇后,将发生干涉。从透镜上瞧到的干涉花样就是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度就是相同的,因此她属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R,与接触点O 相距为r 处空气层的厚度为d,其几何关系式为 2222222)(r d Rd R r d R R ++-=+-= 由于r R >>,可以略去d 2得

R r d 22 = (1) 光线应就是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为 22λ +=?d (2) 所以暗环的条件就是 2)12(λ +=?k (3) 其中 3,2,1,0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可 得出平图透镜的曲率半径R;反之,如果R 已知,测出r m 后,就可计算出入射单色光 波的波长λ。但就是用此测量关系式往往误差很大,原因在于凸面与平面不可能就是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环半径r m 与r n 的平方差来计算曲率半径R 。因为 λMR r m =2 λnR r n =2 两式相减可得 λ)(22n m R r r n m -=-

等厚干涉实验报告

南昌大学物理实验报告 课程名称:大学物理实验(下)_____________实验名称:等厚干涉____________ 学院:信息工程学院专业班级: 学生姓名:学号:_ 实验地点:基础实验大楼B313 座位号:___ 实验时间:第6周星期三下午三点四十五分_______

3. 用干涉法测量透镜的曲率半径以及测量物体的微小直径或厚度。 二、实验原理: 1.等厚干涉 光的等厚干渉,是利用透明薄膜的上下两表面对入射光依次反射,反射光相遇时发生的物理现象,干涉条件取决于光程差,光程差又取决于产生反射光的薄膜厚度,同一干涉条纹所对应的薄膜厚度相等,所以叫做等厚干渉。 当光源照到一块由透明介质做的薄膜上时,光在薄膜的上表面被分割成反射和折射两束光(分振幅),折射光在薄膜的下表面反射后,又经上表面折射,最后回到原来的媒质中,在这里与反射光交迭,发生相干。只要光源发出的光束足够宽,相干光束的交迭区可以从薄膜表面一直延伸到无穷远。薄膜厚度相同处产生同一级的干涉条纹,厚度不同处产生不同级的干涉条纹。这种干涉称为等厚干涉。如图1 图1 2. 牛顿环测定透镜的曲率半径

当一个曲率半径很大的平凸透镜的凸面放在一片平玻璃上时,两者之间就形成类似劈尖的劈形空气薄层,当平行光垂直地射向平凸透镜时,由于透镜下表面所反射的光和平玻璃片上表面所反射的光互相干涉,结果形成干涉条纹。如果光束是单色光,我们将观察到明暗相间的同心环形条纹;如是白色光,将观察到彩色条纹。这种同心的环形干涉条纹称为牛顿环。 图3 本实验用牛顿环来测定透镜的曲率半径。如图2。设在干涉条纹半径r处空气厚度为e,那么,在空气层下表面B处所反射的光线比在A处所反射的光线多经过一段距离2e。此外,由于两者反射情况不同:B处是从光疏媒质(空气)射向光密媒质(玻璃)时在界面上的反射,A处则从光密媒质射向光疏媒质时被反射,因B处产生半波损失,所以光程差还要增加半个波长,即: δ=2e+λ/2 (1) 根据干涉条件,当光程差为波长整数倍时互相加强,为半波长奇数倍时互相抵消,因此: ()()22/122/22/2? ?? -----------+=+---------------=+暗环明环λλλλk e k e 从上图中可知: r 2=R 2-(R-e)2=2Re-e 2 因R远大于e,故e2远小于2Re,e2可忽略不计,于是: e=r2/2R (3) 上式说明e与r的平方成正比,所以离开中心愈远,光程差增加愈快,所看到的圆环也变得愈来愈密。

等厚干涉示范实验报告

等厚干涉——牛顿环示范报告 【实验目的】 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; (3)学会使用读数显微镜测距。 【实验原理】 在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点附近就形成一层空气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和下表面反射的光束在膜上表面相遇相干,形成以接触点为圆心的明暗相间的环状干涉图样, 称为牛顿环,其光路示意图如图。 如果已知入射光波长,并测得第k 级暗环的半径 k r ,则可求得透镜 的曲率半径R 。但实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。用直径 m D 、n D ,有 λ)(422n m D D R n m --= 此为计算R 用的公式,它与附加厚光程差、圆心位置、绝对级次无 关,克服了由这些因素带来的系统误差,并且m D 、n D 可以是弦长。 【实验仪器】 JCD3型读数显微镜,牛顿环,钠光灯,凸透镜(包括三爪式透镜夹和固定滑座)。 【实验内容】 1、调整测量装置 按光学实验常用仪器的读数显微镜使用说明进行调整。调整时注意: (1)调节450玻片,使显微镜视场中亮度最大,这时,基本上满足入射光垂直于透镜的要求(下部反光镜不要让反射光到上面去)。 (2)因反射光干涉条纹产生在空气薄膜的上表面,显微镜应对上表面调焦才能找到清晰的干涉图像。 (3)调焦时,显微镜筒应自下而上缓慢地上升,直到看清楚干涉条纹时为止,往下移动显微镜筒时,眼睛一定要离开目镜侧视,防止镜筒压坏牛顿环。 (4)牛顿环三个压紧螺丝不能压得很紧,两个表面要用擦镜纸擦拭干净。 2、观察牛顿环的干涉图样 (1)调整牛顿环仪的三个调节螺丝,在自然光照射下能观察到牛顿环的干涉图样,并将干涉条纹的中心移到牛顿环仪的中心附近。调节螺丝不能太紧,以免中心暗斑太大,甚至损坏牛顿环仪。 (2)把牛顿环仪置于显微镜的正下方,使单色光源与读数显微镜上45?角的反射透明玻璃片等高,旋转反射透明玻璃 ,直至从目镜中能看到明亮均匀的光照。 (3)调节读数显微镜的目镜,使十字叉丝清晰;自下而上调节物镜直至观察到清晰的干涉图样。移动牛顿环仪,使中心暗斑(或亮斑)位于视域中心,调节目镜系统,使叉丝横

相关文档
相关文档 最新文档