文档库 最新最全的文档下载
当前位置:文档库 › 加热炉燃料燃烧计算方法

加热炉燃料燃烧计算方法

燃烧计算

煤气含湿量3

/9.182Nm g g O H =干

29.29

.1800124.019.1800124.000124.0100124.0222=?+?=

+=

湿

O

H O H O H g g V %

换算为湿成分 据公式:100

100%%2O

H -?=干成分湿成分

为,湿成分:

低位发热值(根据门捷列夫公式):

48.3586.1077.1272CH H CO Q ++=低

127.723.94107.6 2.69358.80.493522.39/kJ Nm =?+?+?=

燃料所需空气量计算

1. 空气消耗系数 据资料,选取05.1=n

2. 理论空气量

20℃时,查得空气的含湿量3

/9.182Nm g g O H =干

33

24

00.50.520.5 2.690.523.9420.49

0.68/21

21

S S S

g

H CO CH L Nm Nm

?+?+?+?+?=

=

=

3. 实际空气量

3

3

0 1.050.680.71/g

g

n L nL N m N m

==?=

单位燃烧产物的计算

1. 各成分体积计算

23

3

240.01()0.384/CO V CO CO CH Nm Nm =?++=

g

n O H O H L g CH O H H V 干2200124.0)2(01.0422+++?=

3

3

0.01(2.69 2.290.492)0.0012418.90.710.076/N m N m =?++?+??=

233

20.010.790.0156.620.790.71 1.127/g N n

V N L

Nm Nm

=?+=?+?=23

3

00.21(1)0.21(1.051)0.710.00745/g

O V n L Nm Nm =-=?-?=

总的烟气体积为

2222O N O H CO n V V V V V +++=

0.3480.076 1.1270.00746=+++

33

1.558/Nm Nm =

2. 各成分的百分比 220.348100%100%22.336%1.558

C O y V C O V =

?=

?=

220.076100%100% 4.878%1.558

H O y

V H O V =

?=

?=

22 1.127100%100%72.33%1.558

N y V N V =

?=

?=

220.00745100%100%0.478%1.558

O y

V O V =

?=

?=

3. 燃烧产物的密度

4

.22100322818442

222?+++=

O N O H CO ρ

3

4422.33618 4.8782872.33320.487

10022.4

1.39/kg N m

?+?+?+?=

?=

3.4 理论燃烧温度的计算 1. 3

3522.39/Q kJ Nm =低

2. 1000℃时,查得空气3

/421.1Nm kJ C k =

k k g

n t C L Q =空

0.71 1.4211000=??

3

1008.91/kJ Nm =

3. 1000℃时,查得煤气3

/597.1Nm kJ C r =

3

/159********.1Nm

kJ t C Q r r =?==燃

4. 估计理论燃烧温度达1800℃以上,不估计热分解时,取3

/72.1Nm kJ C y =,3

/51.1Nm kJ C k =

'3522.391008.911597

2286.91.558 1.72

L

n y

Q Q Q t V C ++++=

=

=?低空燃

在不估计热分解的条件下,温度为2286.9℃,则估计热分解时的温度约为2100℃,所以

可在2100℃下求热分解的热量。

已知产物中的CO 2和H 2O 的分压分别为(设炉内压力接近于105Pa ,炉内为微正压状态)

220.2233610132522631.90.048781013254942.63C O H O kPa kPa

?=?=和的分压分别是: 由手册查得,在2100℃下,它们的分解度分别为=2

CO f 11.57%,=O

H

f 2 6.75%

()2

0.1975co V

=未 (

)20.0445

H O

V =未

则分解热分别为:

2

2

3

1260011.570.34810

507.32/CO Q kJ Nm

-=???=分

22

3

10800 4.8780.067510

35.56/H

O

Q kJ Nm -=???=分

3

507.3235.56542.88/f Q kJ Nm =+=

所以:3522.391008.911597542.88

20841.558 1.72

L t ++-==?℃

误差为:

21002084

0.75%2100

-=,小于5%,故假设合理。

连续加热炉炉温系数一般可取0.70.75-;由于现在工艺的技术的成熟,取炉温系数为:

0.75 则

0.7521001575L L t t η==?=实炉℃.由此可见经过预热后的劣质煤气完全可以满足我们所需

要加热钢坯的温度。

加热炉燃烧控制系统设计与仿真

摘要 冶金工业消耗大量的能源,其中钢坯加热炉就占钢铁工业总能耗的四分之一。自70年代中期以来,各工业先进国对各种燃烧设备的节能控制进行了广泛、深入的研究,大大降低了能耗。 步进式加热炉不仅是轧线上最重要的设备之一,而且也是耗能大户。钢坯加热的技术直接影响带钢产品的质量、能源消耗和轧机寿命。因此步进式加热炉优化设定控制技术的推广对钢铁企业意义重大。步进式加热炉的生产目的是满足轧制要求的钢坯温度分布,并实现钢坯表面氧化烧损最少和能耗最小。由于步进式加热炉具有非线性、不确定性等特点,其动态特性很难用数学模型加以描述,因此采用经典的控制方法难以收到理想的控制效果,只能依靠操作人员凭经验控制设定值,当工况发生变化时,往往使工艺指标(如空燃比)实际值偏离目标值范围,造成产品质量下降消耗增加。针对以上情况,本文通过理论和仿真比较说明使用双交叉限幅控制系统是一种比较好的燃烧控制方法。 关键词:步进式加热炉;空燃比;双交叉限幅;系统仿真

Abstract Metallurgical industry consumes large amounts of energy, the billet heating furnace accounts for 1/4 of the total energy consumption of iron and steel industry. Since 70 time metaphase, the advanced industrial countries have conducted extensive research, in-depth on the energy saving control device of different combustion, greatly reduces the energy consumption. Reheating furnace is not only the most important one of the equipment of the rolling line, but also a large energy consumer. Billet heating technology directly affects strip steel product quality, energy consumption and mill life. The step type heating furnace optimal setting control technology is of great significance to the promotion of iron and steel enterprises. Step type heating furnace production is designed to meet the requirements of the temperature distribution of the billet rolling surface, and to achieve the fewest stock scale loss and energy consumption. Due to the characteristics of reheating furnace is a nonlinear, uncertainty, its dynamic characteristics is difficult to use mathematical model to describe, so using classic control theory to receive the ideal control effect, can only rely on the operation experience of the personnel to control the set value, when the conditions change, often make the process indicators (such as the air fuel ratio) the actual value is far from the target range, decrease the product quality consumption increase. In view of the above situation, this paper through theoretical and simulation results illustrate the use of double cross limiting control system is a good method for controlling combustion. Keywords: reheating furnace; air fuel ratio; double cross limit; system simulation

燃料燃烧及热平衡计算参考

燃料燃烧及热平衡计算参考 3.1 城市煤气的燃料计算 3.1.1 燃料成分 表2.2 城市煤气成分(%)[2] 成分 CO 2 CO CH 4 C 2H 6 H 2 O 2 N 2 合计 含量 10 5 22 5 46 2 10 100 3.1.2 城市煤气燃烧的计算 1、助燃空气消耗量[2] (1)理论空气需要量 Lo=21O O 0.5H H 3.5C CH 20.5CO 2 2624-++?+ Nm 3/Nm 3 (3.1) (3.1)式中:CO 、CH 4 、 C 2H 6 、 H 2 、 O 2——每100Nm 3湿气体燃料中各成分的体积含量(Nm 3)。则 Lo=21 2465.055.322255.0-?+?+?+? = 4.143 Nm 3/Nm 3 (2)实际空气需要量 L n =nL 0, Nm 3/Nm 3 (3.2) (1.2)式中:n ——空气消耗系数,气体燃料通常n=1.05 1.1 现在n 取1.05,则 L n =1.05×4.143=4.35 Nm 3/Nm 3 (3)实际湿空气需要量 L n 湿 =(1+0.00124 2H O g 干) L n , Nm 3/Nm 3 (3.3) 则 L n 湿=(1+0.00124×18.9)×4.35=4.452 Nm 3/Nm 3 2、天然气燃烧产物生成量 (1)燃烧产物中单一成分生成量 CO)H 2C CH (CO 0.01 V 6242CO 2+++?=’

(3.4) 2 O V 0.21(=?′0n-1)L (3.5) 2 2n N V (N 79L )0.01=+?′ (3.6) )L 0.124g H H 3C (2CH 0.01V n 干 O H 2624O H 22+++?= (3.7) 式中CO 、CH 4 、 C 2H 6 、 H 2 ——每100Nm 3湿气体燃料中各成分的体积含量。 则 0.475)5222(100.01V 2CO =+?++?= Nm 3/Nm 3 4.4131)(1.050.21V 2O ?-?==0.046 Nm 3/Nm 3 01.0)35.47910(V 2N ??+==3.54 Nm 3/Nm 3 4.35)18.90.124465322(20.01V O H 2??++?+??==1.152 Nm 3/Nm 3 (2)燃烧产物总生成量 实际燃烧产物量 V n = V CO2+V O2+V N2+V H2O Nm 3/Nm 3 (3.8) 则 V n =0.47+0.046+3.54+1.152=5.208 Nm 3/Nm 3 理论燃烧产物量 V 0=V n -(n -1)L O (3.9) V 0=5.208-(1.05-1)×4.143=5.0 Nm 3/Nm 3 (3) 燃料燃烧产物成分[2] %100V V CO n CO 22?= (3.10) %100V V O n O 22?= (3.11) %100V V N n N 22?= (3.12) 100%V V O H n O H 22?= (3.13)

加热炉控制系课程设计

第1章加热炉控制系统 加热炉控制系统工程背景及说明 加热炉自动控制(automatic control of reheating furnace),是对加热炉的出口温度、燃烧过程、联锁保护等进行的自动控制。早期加热炉的自动控制仅限控制出口温度,方法是调节燃料进口的流量。现代化大型加热炉自动控制的目标是进一步提高加热炉燃烧效率,减少热量损失。为了保证安全生产,在生产线中增加了安全联锁保护系统。 影响加热炉出口温度的干扰因素很多,炉子的动态响应一般都比较迟缓,因此加热炉温度控制系统多选择串级和前馈控制方案。根据干扰施加点位置的不同,可组成多参数的串级控制。使用气体燃料时,可以采用浮动阀代替串级控制中的副调节器,还可以预先克服燃料气的压力波动对出口温度的影响。这种方案比较简单,在炼油厂中应用广泛。 这种控制的主要目的是在工艺允许的条件下尽量降低过剩空气量,保证加热炉高效率燃烧。简单的控制方案是通过测量烟道气中的含氧量,组成含氧量控制系统,或设计燃料量和空气量比值调节系统,再利用含氧量信号修正比值系数。含氧量控制系统能否正常运行的关键在于检测仪表和执行机构两部分。现代工业中都趋向于用氧化锆测氧技术检测烟道气中的含氧量。应用时需要注意测量点的选择、参比气体流量和锆管温度控制等问题。加热炉燃烧控制系统中的执行机构特性往往都较差,影响系统的稳定性。一般通过引入阻尼滞后或增加非线性环节来改善控制品质。 在加热炉燃烧过程中,若工艺介质流量过低或中断烧嘴火焰熄灭和燃料管道压力过低,都会导致回火事故,而当燃料管道压力过高时又会造成脱火事故。为了防止事故,设计了联锁保护系统防止回火和温度压力选择性控制系统防止脱火。联锁保护系统由压力调节器、温度调节器、流量变送器、火焰检测器、低选器等部分组成。当燃料管道压力高于规定的极限时,压力调节系统通过低选器取代正常工作的温度调节系统,此时出料温度无控制,自行浮动。压力调节系统投入运行保证燃料管道压力不超过规定上限。当管道压力恢复正常时,温度调节系统通过低选器投入正常运行,出料温度重新受到控制。当进料流量和燃料流量低于允许下限或火焰熄灭时,便会发出双位信号,控制电磁阀切断燃料气供给量以防回火。 随着节能技术不断发展,加热炉节能控制系统正日趋完善。以燃烧过程数学模型为依据建立的最佳燃烧过程计算机控制方案已进入实用阶段。例如,按燃烧过程稳态数学模型组成的微机控制系统已开始在炼油厂成功使用。有时利用计算机实现约束控制,使加热炉经常维持在约束条件边界附近工作,以保证最佳燃烧。

加热炉控制系统要点

目录 第1章加热炉控制系统工艺分析 (1) 1.1 加热炉的工艺流程简述 (1) 1.2 加热炉控制系统的组成 (2) 第2章加热炉控制系统设计 (3) 2.1 步进梁控制 (3) 2.2 炉温控制 (4) 2.3 紧急停炉保护和连锁 (5) 第3章基于REALINFO的加热炉系统监控程序设计 (7) 3.1加热炉的主控界面 (7) 3.2加热炉的趋势界面 (8) 3.3加热炉的仪表界面 (9) 第4章结论与体会 (10) 参考文献 (11)

第1章加热炉控制系统工艺分析 在炼油化工生产中常见的加热炉是管式加热炉。其形式可分为箱式、立式和圆筒炉三大类。对于加热炉,工艺介质受热升温或同时进行汽化,其温度的高低会直接影响后一工序的操作工况和产品质量。 加热炉是传统设备的一种,同样具有热量传递过程。热量通过金属管壁传给工艺介质,因此他们同样符合导热与对流的基本规律。但加热炉属于火力加热设备,首先由燃料的燃烧产生炙热的火焰和高温的气流,主要通过辐射传热将热量传给管壁,然后由管壁传给工艺介质,工艺介质在辐射室获得的热量约占总符合的70%~80%,而在对流段获得的热量约占热负荷的20%~30%。因此加热炉的传热过程比较复杂,想从理论上获得对象特性是很困难的。 当炉子温度过高时,会使物料在加热炉内分解,甚至造成结焦而烧坏炉管。加热炉的平稳操作可以延长炉管使用寿命。因此,加热炉出口温度必须严加控制。 加热炉的对象特征一般基于定性分析和实验测试获得。从定性角度出发,可以看出其传热过程为:炉膛炽热火焰辐射给炉管,经热传导、对流传热给工艺介质。所以与一般传热对象一样,具有较大的时间常数和纯滞后时间。 特别是炉膛,它具有较大的热容量,故滞后更为显著,因此加热炉属于一种多容量的被控对象。根据若干实验测试,并做了一些简化,可以用一介环节加纯滞后来近似,其时间常熟和纯滞后时间与炉膛容量大小及工艺介质停留时间有关。 炉膛容量大,停留时间长,则时间常数和纯滞后时间大,反之亦然。 1.1 加热炉的工艺流程简述 随着工业自动化水平的迅速提高,工业控制自动化技术正在向智能化、网络化和集成化方向发展,从而反映出当今自动化技术的发展方向。 现加热炉控制系统主要特点: (1)生产能耗大幅度降低。 (2)产量大幅度提高。 (3)生产自动化水平非常高,原加热炉的控制系统大多是单回路仪表和继电逻辑控制系统,传动系统也大多是模拟量控制式的供电装置,现在的加热炉的控制系统都是PLC或DCS系统,而且大多还具有二级过程控制系统和三级生产管理系统。 本系统的工艺流程图如下图:

燃料与燃烧第二版习题答案

《燃料与燃烧》习题解 (仅供参考) 第一篇 燃料概论 1. 某种煤的工业分析为:M ar =3.84, A d =10.35, V daf =41.02, 试计算它的收到基、干燥基、干燥无灰基的工业分析组成。 解:干燥无灰基的计算:0 2.41=daf V 98.58100=-=daf daf V Fc ; 收到基的计算 ar ar ar ar V M A FC ---=100 36.35100 100=--? =ar ar daf ar A M V V A ar = 9.95 FC ar = 50.85 干燥基的计算: 35.10=d A V d = 36.77; 88.52100=--=d d d A V FC 2. 某种烟煤成分为: C daf =83.21 H daf =5.87 O daf =5.22 N daf =1.90 A d =8.68 M ar =4.0; 试计算各基准下的化学组成。 解:干燥无灰基:80.3100=----=daf daf daf daf daf N O H C S 收到基: 33.8100 100=-? =ar d ar M A A 95.72100 100=--?=ar ar daf ar M A C C H ar =5.15 O ar =4.58 N ar =1.67 S ar =3.33 M ar =4.0 干燥基: 68.8=d A 99.75100 100=-? =d daf d A C C 36.5913.0=?=daf d H H

77.4913.0=?=daf d O O N d = N daf ×0.913 =1.74 47.3913.0=?=daf d S S 干燥无灰基:C daf =83.21 H daf =5.87 O daf =5.22 N daf =1.90 S daf =3.80 3. 人工煤气收到基组成如下: 计算干煤气的组成、密度、高热值和低热值; 解:干煤气中: H 2,d = 48.0×[100/(100-2.4)]=49.18 CO ,d = 19.3×1.025=19.77 CH 4,d = 13.31 O 2,d = 0.82 N 2,d = 12.30 CO 2,d = 4.61 ρ=M 干/22.4=(2×49.18%+28×19.77%+16×13.31%+32×0.82%+28× 12.30%+44×4.61%)/22.4 = 0.643 kg/m 3 Q 高 =4.187×(3020×0.1977+3050×0.4918+9500×0.1331) =14.07×103 kJ/m 3= 14.07 MJ/ m 3 Q 低 =4.187×(3020×0.1977+2570×0.4918+8530×0.1331) =12.55×103 kJ/m 3= 12.55 MJ/ m 3 第二篇 燃烧反应计算 第四章 空气需要量和燃烧产物生成量 5. 已知某烟煤成分为(%):C daf —83.21,H daf —5.87, O daf —5.22, N daf —1.90, S daf —3.8, A d —8.68, W ar —4.0, 试求: (1) 理论空气需要量L 0(m 3/kg ); (2) 理论燃烧产物生成量V 0(m 3/kg ); (3) 如某加热炉用该煤加热,热负荷为17×103kW ,要求空气消耗系数 n=1.35,求每小时供风量,烟气生成量及烟气成分。 解:(1)将该煤的各成分换算成应用成分: % 33.8100 4 100%68.8100100%=-?=-? =ar d ar W A A

加热炉控制系统

目录 第1章绘制控制工艺流程图 (1) 1.1工艺生产过程简介 (1) 1.2加热炉的基本控制 (1) 1.3加热炉的单回路控制方案 (4) 第2章节流装置的计算方法和计算机辅助设计计算 (6) 2.1GB/T2624-93概述 (6) 2.2计算实例 (6) 第3章调节阀口径计算 (11) 3.1调节阀的选型 (11) 3.2调节阀口径计算 (11) 3.3计算实例 (12) 第4章结论与体会 (14) 参考文献 (15) 附录 (16)

第1章绘制控制工艺流程图 1.1工艺生产过程简介 在炼油化工生产中常见的加热炉是管式加热炉。其形式可分为箱式、立式和圆筒炉三大类。对于加热炉,工艺介质受热升温或同时进行汽化,其温度的高低会直接影响后一工序的操作工况和产品质量。当炉子温度过高时,会使物料在加热炉内分解,甚至造成结焦而烧坏炉管。加热炉的平稳操作可以延长炉管使用寿命。因此,加热炉出口温度必须严加控制。 加热炉是传统设备的一种,同样具有热量传递过程。热量通过金属管壁传给工艺介质,因此它们同样符合导热与对流传热的基本规律。但加热炉属于火力加热设备,首先由燃料的燃烧产生炽热的火焰和高温的气流,主要通过辐射传热将热量传给管壁,然后由管壁传给工艺介质,工艺介质在辐射室获得的热量约占总热负荷的70%~80%,而在对流段获得的热量约占热负荷的20%~30%。因此加热炉的传热过程比较复杂,想从理论上获取对象特性是很困难的。 加热炉的对象特征一般基于定性分析和实验测试获得。从定性角度出发,可以看出其传热过程为:炉膛炽热火焰辐射给炉管,经热传导、对流传热给工艺介质。所以与一般传热对象一样,具有较大的时间常数和纯滞后时间。特别是炉膛,它具有较大的热容量,故滞后更为显著,因此加热炉属于一种多容量的被控对象。根据若干实验测试,并做了一些简化,可以用一介环节加纯滞后来近似,其时间常熟和纯滞后时间与炉膛容量大小及工艺介质停留时间有关。炉膛容量大,停留时间长,则时间常数和纯滞后时间大,反之亦然。 1.2加热炉的基本控制 加热炉进料一般分为几个支路。常规的控制方法是:在各支路上安装各自的流量变送器和控制阀,而用炉出口总管温度来调节炉用燃料量。这样的调节方法根本没有考虑支管温度均衡的控制,支管温度均衡的控制由操作工凭经验根据分支温差来调节分支流量差。这种人为操作显然无法实现稳定的均衡控制,往往是各支管流量较均衡,而分支温度有相当大的差异,某一炉管因局部过热而结焦的可能性很大。为了改善和克服这种情况,需要采用支路均衡控制方法。近年来出现的差动式平衡控制、解藕控制以及多变量预测控制等方法能够收取一定的效果。其中差动式方法不仅效果不错,而且实现简单,操作简便,对于长期运行有一定的优势。另外,针对系统的非线性、强耦合特性,模糊控制等智能控制方法也能实现较好的控制。 加热炉出口总管温度是加热炉环节最为重要的参数,出口温度的稳定对于后续工艺的生产稳定、操作平稳甚至提高收率至关重要。最简单的控制方法就是采用单回路的反馈控制。单回路反馈控制简单实用,有它的使用价值。但该方法没有考虑燃料量变化的影响,所以出口温度不容易稳定,在一定程度上也会造成燃料的浪费。在简单反馈控制方案的基

加热炉的温度自动控制系统

加热炉的温度自动控制系统 一.系统设计的目的及意义 加热炉被广泛应用于工业生产和科学研究中。由于这类对象使用方便,可以通过调节输出功率来控制温度,进而得到较好的控制性能,故在冶金、机械、化工等领域中得到了广泛的应用。 在一些工业过程控制中,工业加热炉是关键部件,炉温控制精度及其工作稳定性已成为产品质量的决定性因素。对于工业控制过程,PID 调节器具有原理简单、使用方便、稳定可靠、无静差等优点,因此在控制理论和技术飞跃发展的今天,它在工业控制领域仍具有强大的生命力。 在产品的工艺加工过程中,温度有时对产品质量的影响很大,温度检测和控制是十分重要的,这就需要对加热介质的温度进行连续的测量和控制。 在冶金工业中,加热炉内的温度控制直接关系到所冶炼金属的产品质量的好坏,温度控制不好,将给企业带来不可弥补的损失。为此,可靠的温度的监控在工业中是十分必要的。 二.控制要求 加热炉设备的控制任务是根据生产负荷的需要,供应热量,同时要使加热炉在安全、经济的条件下运行。按照这些控制要求,加热炉设备将有主要的控制要求: 加热炉燃烧系统的控制方案要满足燃烧所产生的热量,适应物料负荷的需要,保证燃烧的经济型和加热炉的安全运行,使物料温度与燃料流量相适应,保持物料出口温度在一定范围内。 三.系统介绍 本加热炉温度控制系统采用单回路控制方案,即可实现控制要求。在运行过程中,当物料出口温度受干扰影响改变时,温度检测元件测得的模拟信号也会发生对应的改变,该信号经过变送器转换后变成调节器可分析的数字信号,进入调节器,

将变动后的信号再与给定相比较,得出对应偏差信号,调节器将给定温度与测得的温度进行比较得出偏差值,然后经PID 算法给出输出信号,执行器接收调节器发来的信号后,根据信号调节阀门开度,进而控制燃料流量,改变物料出口温度,实现对物料出口温度的控制。不断重复以上过程,直至物料出口温度接近给定,处于允许范围内,且达到稳定。由此消除干扰的影响,实现温度的控制要求。 四.具体控制系统设计 1 测温元件 本控制系统的测温元件采用Pt100热电阻,工业用铂电阻作为温度测量变送器,通常用来和显示、记录、调节仪表配套,直接测量各种生产过程中从0 ~ 500℃ 范围内的液体、蒸汽和气体介质以及固体等表面温度。 2 调节控制器件 DDZ-III 型PID 调节器TDM-400性能指标如下表所示: 表 DDZ-III 型PID 调节器性能指标 被控量 给定量

加热炉自控制系统

课程设计(论文)题目:加热炉自动送料 控制系统 设计名称:机电传动控制 班级学号:0901014102 学生姓名:沈鸿姣 指导教师:李岩 2011年12月24日

目录 前言 (2) 课程设计的任务和要求 (3) 课程设计的任务 (3) 设计内容: (3) 设计要求: (3) 课程设计的基本要求 (3) 控制要求 (3) 总体设计 (5) PLC选型: (5) PLC端子接线 (6) PLC程序设计 (7) 设计思想 (7) PLC顺序功能图 (8) PLC梯形图 (10) 程序调试说明 (17) 结束语 (18) 参考文献 (19)

前言 加热炉自动控制(automatic control of reheating furnace)对加热炉的出口 温度、燃烧过程、联锁保护等进行的自动控制.早期加热炉的自动控制仅限控制出口温度,方法是调节燃料进口的流量.现代化大型加热炉自动控制的目标是进一步提高加热 炉燃烧效率,减少热量损失.为了保证安全生产,在生产线中增加了安全联锁保护系统. 这种控制的主要目的是在工艺允许的条件下尽量降低过剩空气量,保证加热炉 高效率燃烧.简单的控制方案是通过测量烟道气中的含氧量,组成含氧量控制系统,或设计燃料量和空气量比值调节系统,再利用含氧量信号修正比值系数.含氧量控制系统能否正常运行的关键在于检测仪表和执行机构两部分.现代工业中都趋向于用氧化锆测氧技术检测烟道气中的含氧量.应用时需要注意测量点的选择、参比气 体流量和锆管温度控制等问题.加热炉燃烧控制系统中的执行机构特性往往都较差,影响系统的稳定性.一般通过引入阻尼滞后或增加非线性环节来改善控制品质. 在加热炉燃烧过程中,若工艺介质流量过低或中断烧嘴火焰熄灭和燃料管道压 力过低,都会导致回火事故,而当燃料管道压力过高时又会造成脱火事故.为了防止事故,设计了联锁保护系统防止回火和温度压力选择性控制系统防止脱火. 联锁保护系统由压力调节器、温度调节器、流量变送器、火焰检测器、低选器等部分组成.当燃料管道压力高于规定的极限时,压力调节系统通过低选器取代正 常工作的温度调节系统,此时出料温度无控制,自行浮动.压力调节系统投入运行保证燃料管道压力不超过规定上限.当管道压力恢复正常时,温度调节系统通过低 选器投入正常运行,出料温度重新受到控制.当进料流量和燃料流量低于允许下限 或火焰熄灭时,便会发出双位信号,控制电磁阀切断燃料气供给量以防回火. 随着节能技术不断发展,加热炉节能控制系统正日趋完善.以燃烧过程数学模型为依据建立的最佳燃烧过程计算机控制方案已进入实用阶段.例如,按燃烧过程稳态数学模型组成的微机控制系统已开始在炼油厂成功使用.有时利用计算机实现约束控制,使加热炉经常维持在约束条件边界附近工作,以保证最佳燃烧.随着建立燃烧模型工作的进展和计算机技术的应用,加热炉燃烧过程控制系统将得到进一步的完善.

加热炉自控制系统

- -- 课程设计(论文) 题目:加热炉自动送料 控制系统 设计名称:机电传动控制 班级学号:0901014102 学生:鸿姣 指导教师:岩 2011年12月24日

目录 前言 (2) 课程设计的任务和要求 (3) 课程设计的任务 (3) 设计容: (3) 设计要求: (3) 课程设计的基本要求 (3) 控制要求 (3) 总体设计 (5) PLC选型: (5) PLC端子接线 (6) PLC程序设计 (7) 设计思想 (8) PLC顺序功能图 (9) PLC梯形图 (11) 程序调试说明 (18) 结束语 (19) 参考文献 (20)

前言 加热炉自动控制(automatic control of reheating furnace)对加热炉的出口温度、燃烧过程、联锁保护等进行的自动控制.早期加热炉的自动控制仅限控制出口温度,方法是调节燃料进口的流量.现代化大型加热炉自动控制的目标是进一步提高加热炉燃烧效率,减少热量损失.为了保证安全生产,在生产线中增加了安全联锁保护系统. 这种控制的主要目的是在工艺允许的条件下尽量降低过剩空气量,保证加热炉高效率燃烧.简单的控制方案是通过测量烟道气中的含氧量,组成含氧量控制系统,或设计燃料量和空气量比值调节系统,再利用含氧量信号修正比值系数.含氧量控制系统能否正常运行的关键在于检测仪表和执行机构两部分.现代工业中都趋向于用氧化锆测氧技术检测烟道气中的含氧量.应用时需要注意测量点的选择、参比气体流量和锆管温度控制等问题.加热炉燃烧控制系统中的执行机构特性往往都较差,影响系统的稳定性.一般通过引入阻尼滞后或增加非线性环节来改善控制品质. 在加热炉燃烧过程中,若工艺介质流量过低或中断烧嘴火焰熄灭和燃料管道压力过低,都会导致回火事故,而当燃料管道压力过高时又会造成脱火事故.为了防止事故,设计了联锁保护系统防止回火和温度压力选择性控制系统防止脱火. 联锁保护系统由压力调节器、温度调节器、流量变送器、火焰检测器、低选器等部分组成.当燃料管道压力高于规定的极限时,压力调节系统通过低选器取代正常工作的温度调节系统,此时出料温度无控制,自行浮动.压力调节系统投入运行保证燃料管道压力不超过规定上限.当管道压力恢复正常时,温度调节系统通过低选器投入正常运行,出料温度重新受到控制.当进料流量和燃料流量低于允许下限或火焰熄灭时,便会发出双位信号,控制电磁阀切断燃料气供给量以防回火. 随着节能技术不断发展,加热炉节能控制系统正日趋完善.以燃烧过程数学模型为依据建立的最佳燃烧过程计算机控制方案已进入实用阶段.例如,按燃烧过程稳态数学模型组成的微机控制系统已开始在炼油厂成功使用.有时利用计算机实现约束控制,使加热炉经常维持在约束条件边界附近工作,以保证最佳燃烧.随着建立燃烧模型工作的进展和计算机技术的应用,加热炉燃烧过程控制系统将得到进一步的完善.

燃料燃烧计算例题

计算: 一、已知某烟煤的应用基成分为(%):C y —74.31,H y —4.47, O y —4.36, N y —1.78, S y —2.75, A y —8.33, W y —4.0,煤的低位热值为:29.53(MJ/kg ) 试求: 1、理论空气需要量L 0(Nm3/kg )和理论烟气量V 0(Nm3/kg ); 2、如某加热炉用该煤加热,热负荷为17×103 kW ,过剩空气系数n=1.35,求该加热炉每小时的供风量,每小时的烟气生成量以及烟气的成分比例。 解:(1) 计算理论空气需要量L 0和理论烟气量V 0: () kg Nm O S H C L /74.701.036.475.247.4831.743821.0429.11100 1 83821.0429.1130=??? ? ??-+?+???= ? ??? ??-+?+??= () kg Nm L N W H S C V /08.874.779.0224.02878.1184247.43275.2100 31.74100791004.2228182321230 0=?+???? ??++++=+???? ??++++= (2)加热炉每小时所需煤量为: h kg Q m /10073.2295303600 101736001017333?=??=??=低 每小时的烟气生成总量: ()) /(10237.274.7)135.1(08.82073])1[3400h Nm L n V m V m V n tol ?=?-+?=-+?=?=( 每小时需要的供风量: h Nm mnL L tol /10166.274.735.12073 340?=??==(可以据此选择鼓风机) 计算各烟气组分的小时体积量: )/(5.287520731004 .221231.741004.221232h Nm m C V co =??=?? = )/(9.392073100 4.22327 5.21004.223232h Nm m S V so =??=??=

03燃料燃烧计算与锅炉热平衡习题 (1)

第三章燃料燃烧计算与锅炉热平衡(1) 一、名词解释: 1、燃烧 2、完全燃烧 3、不完全燃烧 4、过量空气系数α 5、理论空气量 6、过量空气 7、漏风系数 8、飞灰浓度 9、理论烟气容积 10、理论干烟气容积 11、三原子气体容积份额 二、填空题: 1、当α>1、完全燃烧时,烟气的成分有________________________;当α>1、不 完全燃烧时,烟气的成分有________________________。 2、烟气焓的单位是“kJ/kg”,其中“kg”是指______________________。 3、负压运行的锅炉中,沿烟气流程到空气预热器前,烟气侧的RO2逐渐______,O2 逐渐_______,烟气侧的α逐渐_______,漏风总量逐渐________,飞灰浓度逐 渐______。 4、烟气中的过量空气(含水蒸气容积)ΔV=_________________。 5、利用奥氏烟气分析仪进行烟气分析时,先让烟气经过装有___________溶液的吸 收瓶1,以吸收烟气中的___________;再让烟气经过装有___________溶液的吸收瓶2,以吸收烟气中的___________;最后让烟气经过装有___________溶液的吸收瓶3,以吸收烟气中的___________。以上吸收顺序_________颠倒。 6、烟气成分一般用烟气中某种气体的_________占_________容积的_________表示。 7、完全燃烧方程式为__________________,它表明___________________________。 当α=1时,该方程式变为_________________,它表明______________________,利用它可以求___________________________。 8、计算α的两个近似公式分别为________________、_______________。两式的使

加热炉的温度自动控制系统教学内容

加热炉的温度自动控 制系统

加热炉的温度自动控制系统 一.系统设计的目的及意义 加热炉被广泛应用于工业生产和科学研究中。由于这类对象使用方便,可以通过调节输出功率来控制温度,进而得到较好的控制性能,故在冶金、机械、化工等领域中得到了广泛的应用。 在一些工业过程控制中,工业加热炉是关键部件,炉温控制精度及其工作稳定性已成为产品质量的决定性因素。对于工业控制过程,PID调节器具有原理简单、使用方便、稳定可靠、无静差等优点,因此在控制理论和技术飞跃发展的今天,它在工业控制领域仍具有强大的生命力 在产品的工艺加工过程中,温度有时对产品质量的影响很大,温度检测和控制是十分重要的,这就需要对加热介质的温度进行连续的测量和控制。 在冶金工业中,加热炉内的温度控制直接关系到所冶炼金属的产品质量的好坏,温度控制不好,将给企业带来不可弥补的损失。为此,可靠的温度的监控在工业中是十分必要的。 二.控制要求 加热炉设备的控制任务是根据生产负荷的需要,供应热量,同时要使加热炉在安全、经济的条件下运行。按照这些控制要求,加热炉设备将有主要的控制要求:加热炉燃烧系统的控制方案要满足燃烧所产生的热量,适应物料负荷的需要,保证燃烧的经济型和加热炉的安全运行,使物料温度与燃料流量相适应,保持物料出口 系统介绍 温度在一定范围内。

本加热炉温度控制系统采用单回路控制方案,即可实现控制要求。在运行过程 中,当物料出口温度受干扰影响改变时,温度检测元件测得的模拟信号也会发 生对应的改变,该信号经过变送器转换后变成调节器可分析的数字信号,进入 调节器,将变动后的信号再与给定相比较,得出对应偏差信号,调节器将给定 温度与测得的温度进行比较得出偏差值,然后经 PID 算法给出输出信号,执行 器接收调节器发来的信号后,根据信号调节阀门开度,进而控制燃料流量,改 变物料出口温度,实现对物料出口温度的控制。不断重复以上过程,直至物料 出口温度接近给定,处于允许范围内,且达到稳定。由此消除干扰的影响,实 现温度的控制要求。 四.具体控制系统设计 1测温元件 本控制系统的测温元件采用 Pt100热电阻,工业用铂电阻作为温度测量变 送器,通常用来和显示、记录、调节仪表配套,直接测量各种生产过程中从 0 ?500 C 范围内的液体、蒸汽和气体介质以及固体等表面温度。 2 调节控制器件 DDZ-III 型PID 调节器TDM-400性能指标如下表所示: 表5.2 DDZ-III 型PID 调节器性能指标 给定量 (设定的温 控制量

加热炉燃烧控制系统设计与仿真毕业设计

加热炉燃烧控制系统设计与仿真毕业设计

南通纺织职业技术学院毕业设计(论文) YGW-9300型有机热载体加热炉控制系统 课程名称PLC原理及应用 系、专业电气自动化

加热炉燃烧控制系统设计与 仿真 摘要 冶金工业消耗大量的能源,其中钢坯加热炉就占钢铁工业总能耗的四分之一。自70年代中期以来,各工业先进国对各种燃烧设备的节能控制进行了广泛、深入的研究,大大降低了能耗。 步进式加热炉不仅是轧线上最重要的设备之一,而且也是耗能大户。钢坯加热的技术直接影响带钢产品的质量、能源消耗和轧机寿命。因此步进式加热炉优化设定控制技术的推广对钢铁企业意义重大。步进式加热炉的生产目的是满足轧制要求的钢坯温度分布,并实现钢坯表面氧化烧损最少和能耗最小。由于步进式加热炉具有非线性、不确定性等特点,其动态特性很难用数学模型加以描述,因此采用经典的控制方法难以收到理想的控制效果,只能依靠操作人员凭经验控制设定值,当工况发生变化时,往往使工艺指标(如空燃比)实际值偏离目标值范围,造成产品质量下降消耗增加。针对以上情况,本文通过理论和仿真比较说明使用双交叉限幅控制系统是一种比较好的燃烧控制方法。 关键词:步进式加热炉;空燃比;双交叉限幅;系统仿真

目录 摘要 ............................................................................................................................. I ABSTRACT ............................................................................... 错误!未定义书签。第一章引言 .. (1) 第二章步进式加热炉 (4) 2.1步进式加热炉简介 (4) 2.2步进式加热炉工艺过程 (5) 2.3加热炉控制技术的发展和现状 (8) 第三章燃烧控制系统设计及仿真 (9) 3.1 步进式加热炉生产工艺和控制要求 (9) 3.2燃烧控制系统及仿真 (10) 3.2.1 Simulink简介 (10) 3.2.2 仿真模型的建立 (11) 3.2.3串级比值控制系统设计及仿真 (12) 3.2.4 单交叉限幅燃烧控制系统设计及仿真 (17) 3.2.5双交叉限幅控制系统设计及仿真 (22) 3.2.6偏置单元和炉膛负压控制系统简介 (29) 第四章组态软件MCGS在加热炉控制中的应用 (30) 4.1 MCGS简介 (30) 4.2 MCGS在加热炉控制中的应用 (32) 第五章仪表选型 (34) 5.1检测元件的选型 (34)

加热炉控制系统 (2)

目录 第1章加热炉控制系统工艺分析 ______________________________________ 1第2章加热炉控制系统设计 __________________________________________ 2 2.1 步进梁控制____________________________________________________ 2 2.2炉温控制______________________________________________________ 3 2.3 紧急停炉保护和连锁____________________________________________ 5第3章基于组态王的加热炉系统监控程序设计 _________________________ 6第4章结论与体会 __________________________________________________ 8参考文献 ___________________________________________________________ 9

第1章加热炉控制系统工艺分析 在炼油化工生产中常见的加热炉是管式加热炉。其形式可分为箱式、立式和圆筒炉三大类。对于加热炉,工艺介质受热升温或同时进行汽化,其温度的高低会直接影响后一工序的操作工况和产品质量。当炉子温度过高时,会使物料在加热炉内分解,甚至造成结焦而烧坏炉管。加热炉的平稳操作可以延长炉管使用寿命。因此,加热炉出口温度必须严加控制。 加热炉是传统设备的一种,同样具有热量传递过程。热量通过金属管壁传给工艺介质,因此它们同样符合导热与对流传热的基本规律。但加热炉属于火力加热设备,首先由燃料的燃烧产生炽热的火焰和高温的气流,主要通过辐射传热将热量传给管壁,然后由管壁传给工艺介质,工艺介质在辐射室获得的热量约占总热负荷的70%~80%,而在对流段获得的热量约占热负荷的20%~30%。因此加热炉的传热过程比较复杂,想从理论上获取对象特性是很困难的。 加热炉的对象特征一般基于定性分析和实验测试获得。从定性角度出发,可以看出其传热过程为:炉膛炽热火焰辐射给炉管,经热传导、对流传热给工艺介质。所以与一般传热对象一样,具有较大的时间常数和纯滞后时间。特别是炉膛,它具有较大的热容量,故滞后更为显著,因此加热炉属于一种多容量的被控对象。根据若干实验测试,并做了一些简化,可以用一介环节加纯滞后来近似,其时间常熟和纯滞后时间与炉膛容量大小及工艺介质停留时间有关。炉膛容量大,停留时间长,则时间常数和纯滞后时间大,反之亦然。

加热炉温度控制系统

第1章绪论 1.1 综述 在人类的生活环境中,温度扮演着极其重要的角色。温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。无论你生活在哪里,从事什么工作,无时无刻不在与温度打着交道。自18世纪工业革命以来,工业发展对是否能掌握温度有着绝对的联系。在冶金、钢铁、石化、水泥、玻璃、医药等等行业,可以说几乎80%的工业部门都不得不考虑着温度的因素。 在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。 1.2 加热炉温度控制系统的研究现状 随着新技术的不断开发与应用,近年来单片机发展十分迅速,一个以微机应用为主的新技术革命浪潮正在蓬勃兴起,单片机的应用已经渗透到电力、冶金、化工、建材、机械、食品、石油等各个行业。单片机温度控制系统是数控系统的一个简单应用,在冶金、化工、建材、机械、食品、石油等各类工业中,广泛使用于加热炉、热处理炉、反应炉等。 温度是工业对象中的一个重要的被控参数。由于炉子的种类不同,因而所使用的燃料和加热方法也不同,例如煤气、天然气、油、电等;由于工艺不同,所需要的温度高低不同,因而所采用的测温元件和测温方法也不同;产品工艺不同,控制温度的精度也不同,因而对数据采集的精度和所采用的控制算法也不同。 传统的温度采集方法不仅费时费力,而且精度差,单片机的出现使得温度的采集和数据处理问题能够得到很好的解决。不仅如此,传统的控制方式不能满足高精度,高速度的控制要求,如温度控制表温度接触器,其主要缺点是温度波动范围大,由于它主要通过控制接触器的通断时间比例来达到改变加热功率的目的,受仪表本身误差和交流接触器的寿命限制,通断频率很低。近几年来快速发展了多种先进的温度控制方式,如:PID控制,模糊控制,神经网络及遗传算法控制等。这些控制技术大大的提高了控制精度,不但使控制变得简便,而且使产品的质量更好,降低了产品的成本,提高了生产效

…锅炉及锅炉房设备(第四版)思考题

1.锅炉的任务是什么?在国民经济中的重要性如何? 任务:安全可靠,经济有效的把燃料化学能转化成热量,进而将热量传递给水,以产生热水或蒸汽。重要性:a.广泛性广泛应用于现代工业各个部门,成为发展国民经济的重要热工设备之一。b.迫切性:节能和环保c.工业锅炉与企业的关系 2.锅炉与锅炉房设备有何区别?各自起什么作用?又是怎样工作的? 锅炉的最根本组成是汽锅和炉子。燃料在炉子中燃烧,将燃料的化学能转化为热能,高温的烟气通过汽锅受热面把热量传递给汽锅中温度较低的水。锅炉房设备是保证锅炉的生产过程能连续不断地进行,达到安全可靠,经济有效地供热。是锅炉本体和它的辅助设备的总称。 3.锅炉是怎样工作的,大致分几个过程? 燃料的燃烧过程,烟气向水的传热过程,水的受热汽化过程 4锅炉上有哪些安全部件?作用是什么? 压力表:测量和显示锅炉汽水系统的工作压力,使锅炉在允许的工作压力下安全进行。 安全阀:自动泄压报警,使锅炉在允许的工作压力下运行水位表:显示锅炉水位,避免发生缺水或满水事故。高低水位报警器:水位达到最高或最低运行限度时自动发出报警信号5.名牌4t/h,1.3Mpa生产饱和蒸汽的锅炉,工作压力达不到1.3Mpa,只能到0.8Mpa,为什么?压力0.8Mpa是如何保持的? 1.3Mpa是额定蒸汽压力,是允许的最大压力。压力控制器设定压力低以保护锅炉设备。压力0.8Mpa是通过燃烧控制的。 6.衡量锅炉经济性的指标:锅炉热效率,金属耗率,耗电率 7.空气预热器:利用锅炉尾部烟气的热量加热燃烧所需的空气,降低排烟温度 8省煤器:给水预热设备,吸收烟气的对流换热,有效的降低排烟温度,提高热效率,节约燃料9.排污率:排污水量与蒸发量的比值。10.标准煤:统一的能源计量单位 11.正平衡效率:有效输入热量与输入的总热量的比值。12.干燥无灰基:去除全部灰分和水分的燃料作为分析的基准。13.断面热强度:qf=BQ/3600F 14.蒸汽品质:单位质量蒸汽所含杂质的数量,反应蒸汽的洁净程度 15.自然循环锅炉:利用水和汽水混合物的密度差来循环流动的锅炉。强制循环锅炉:借助泵的压头使工质流动循环的锅炉。16.高位发热量:燃料燃烧时所放出的热量,包含水蒸气的气化潜热。低位发热量:扣除水蒸气的气化潜热。 为什么燃料成分要用收到基,空气干燥基,干燥基及干燥无灰基这四种来表示?一般各用在什么场合?只有分析基准相同的分析数据,才能确切地说明燃料的特性,评价和比较燃料的优劣。收到基用于锅炉的燃烧、传热、通风和热工实验计算空气干燥基用于在实验室中进行燃料成分分析干燥基用于无水状态下进行燃料成分分析干燥无灰基用于在无水无灰条件下进行燃料成分分析 什么是煤的元素分析和工业分析?各分析成分在燃烧过程中起的作用如何?煤的元素分析是测定煤中碳、氢、氧、氮、硫、磷等元素的含量煤的工业分析是对煤的水分、灰分、挥发分和固定碳等指标的测定。碳是燃料的主要可燃元素氢是燃料的另一重要可燃元素氧和氮是燃料中的不可燃部分硫是燃料中的有害气体灰分是夹杂在燃料中的不可燃矿物质水分也是燃料中的主要杂质 什么是煤的焦渣特性?分几类?它对锅炉工作有何影响?煤的焦渣特性指煤的不同焦结性状分八类粉状、粘结、弱黏结、不熔融粘结、不膨胀熔融粘结、微膨胀熔融粘结、膨胀熔融粘结、强膨胀熔融粘结层燃炉用弱粘结性煤,极易被气流吹走,使燃烧不完全,还会从从炉排通风空隙中漏落,造成漏落损失,用焦结性很强的煤较大的焦块内的质点难与空气接触,燃烧困难,也会增大通风阻力,使燃烧恶化。

相关文档