文档库 最新最全的文档下载
当前位置:文档库 › 常见集成电路及功率的检测原理

常见集成电路及功率的检测原理

常见集成电路及功率的检测原理
常见集成电路及功率的检测原理

常见集成电路及功率的检测原理

一、电子元件的的检测原理

(一)电阻器的检测原理

1、固定电阻器的检测。

A、两表笔(不分正负)分别与电阻的两端引脚相接即可测出实际电阻值。为了提高测量精度,应根据被测电阻标称值的大小来选择量程。由于欧姆挡刻度的非线性关系,它的中间一段分度较为精细,因此应使指针指示值尽可能落到刻度的中段位置,即全刻度起始的20%~80%弧度范围内,以使测量更准确。根据电阻误差等级不同。读数与标称阻值之间分别允许有±5%、±10%或±20%的误差。如不相符,超出误差范围,则说明该电阻值变值了。

B、注意:测试时,特别是在测几十kΩ以上阻值的电阻时,手不要触及表笔和电阻的导电部分;被检测的电阻从电路中焊下来,至少要焊开一个头,以免电路中的其他元件对测试产生影响,造成测量误差;色环电阻的阻值虽然能以色环标志来确定,但在使用时最好还是用万用表测试一下其实际阻值。

2、水泥电阻的检测。检测水泥电阻的方法及注意事项与检测普通固定电阻完全相同。

3、熔断电阻器的检测。在电路中,当熔断电阻器熔断开路后,可根据经验作出判断:若发现熔断电阻器表面发黑或烧焦,可断定是其负荷过重,通过它的电流超过额定值很多倍所致;如果其表面无任何痕迹而开路,则表明流过的电流刚好等于或稍大于其额定熔断值。对于表面无任何痕迹的熔断电阻器好坏的判断,可借助万用表R×1挡来测量,为保证测量准确,应将熔断电阻器一端从电路上焊下。若测得的阻值为无穷大,则说明此熔断电阻器已失效开路,若测得的阻值与标称值相差甚远,表明电阻变值,也不宜再使用。在维修实践中发现,也有少数熔断电阻器在电路中被击穿短路的现象,检测时也应予以注意。

4、电位器的检测。检查电位器时,首先要转动旋柄,看看旋柄转动是否平滑,开关是否灵活,开关通、断时“喀哒”声是否清脆,并听一听电位器内部接触点和电阻体摩擦的声音,如有“沙沙”声,说明质量不好。用万用表测试时,先根据被测电位器阻值的大小,选择好万用表的合适电阻挡位,然后可按下述方法进行检测。

A、用万用表的欧姆挡测“1”、“2”两端,其读数应为电位器的标称阻值,如万用表的指针不动或阻值相差很多,则表明该电位器已损坏。

B、检测电位器的活动臂与电阻片的接触是否良好。用万用表的欧姆档测“1”、“2”(或“2”、“3”)两端,将电位器的转轴按逆时针方向旋至接近“关”的位置,这时电阻值越小越好。再顺时针慢慢旋转轴柄,电阻值应逐渐增大,表头中的指针应平稳移动。当轴柄旋至极端位置“3”时,阻值应接近电位器的标称值。如万用表的指针在电位器的轴柄转动过程中有跳动现象,说明活动触点有接触不良的故障。

5、正温度系数热敏电阻(PTC)的检测。检测时,用万用表R×1挡,具体可分两步操作:

A、常温检测(室内温度接近25℃);将两表笔接触PTC热敏电阻的两引脚测出其实际阻值,并与标称阻值相对比,二者相差在±2Ω内即为正常。实际阻值若与标称阻值相差过大,则说明其性能不良或已损坏。

B、加温检测;在常温测试正常的基础上,即可进行第二步测试—加温检测,将一热源(例如电烙铁)靠近PTC热敏电阻对其加热,同时用万用表监测其电阻值是否随温度的升高而增大,如是,说明热敏电阻正常,若阻值无变化,说明其性能变劣,不能继续使用。注意不要使热源与PTC热敏电阻靠得过近或直接接触热敏电阻,以防止将其烫坏。

6、负温度系数热敏电阻(NTC)的检测。

(1)、测量标称电阻值Rt 用万用表测量NTC热敏电阻的方法与测量普通固定电阻的方法相同,即根据NTC热敏电阻的标称阻值选择合适的电阻挡可直接测出Rt的实际值。但因NTC热敏电阻对温度很敏感,故测试时应注意以下几点:

A、Rt是生产厂家在环境温度为25℃时所测得的,所以用万用表测量Rt时,亦应在环境温度接近25℃时进行,以保证测试的可信度。

B、测量功率不得超过规定值,以免电流热效应引起测量误差。

C、注意正确操作。测试时,不要用手捏住热敏电阻体,以防止人体温度对测试产生影响。

(2)、估测温度系数αt先在室温t1下测得电阻值Rt1,再用电烙铁作热源,靠近热敏电阻Rt,测出电阻值RT2,同时用温度计测出此时热敏电阻RT表面的平均温度t2再进行计算。

7、压敏电阻的检测。用万用表的R×1k挡测量压敏电阻两引脚之间的正、反向绝缘电阻,均为无穷大,否则,说明漏电流大。若所测电阻很小,说明压敏电阻已损坏,不能使用。

8、光敏电阻的检测。

A、用一黑纸片将光敏电阻的透光窗口遮住,此时万用表的指针基本保持不动,阻值接近无穷大。此值越大说明光敏电阻性能越好。若此值很小或接近为零,说明光敏电阻已烧穿损坏,不能再继续使用。

B、将一光源对准光敏电阻的透光窗口,此时万用表的指针应有较大幅度的摆动,阻值明显减些 此值越小说明光敏电阻性能越好。若此值很大甚至无穷大,表明光敏电阻内部开路损坏,也不能再继续使用。

C、将光敏电阻透光窗口对准入射光线,用小黑纸片在光敏电阻的遮光窗上部晃动,使其间断受光,此时万用表指针应随黑纸片的晃动而左右摆动。如果万用表指针始终停在某一位置不随纸片晃动而摆动,说明光敏电阻的光敏材料已经损坏。

(二)电容器的检测原理

电容常见的标记方式是直接标记,其常用的单位有pF,μF两种,很容易认出。但一些小容量的电容采用的是数字标示法,一般有三位数,第一、二位数为有效的数字,第三位数为倍数,即表示后面要跟多少个0。例如:343表示34000pF,另外,如果第三位数为9,表示 10-1,而不是10的9次方,例如:479表示4.7pF。

更换电容时主要应注意电容的耐压值一般要求不低于原电容的耐压要求。在要求较严格的电路中,其容量一般不超过原容量的±20%即可。在要求不太严格的电路中,如旁路电路,一般要求不小于原电容的1/2且不大于原电容的2倍~6倍即可。

1、固定电容器的检测

A、检测10pF以下的小电容 因10pF以下的固定电容器容量太小,用万用表进行测量,只能定性的检查其是否有漏电,内部短路或击穿现象。测量时,可选用万用表R×10k 挡,用两表笔分别任意接电容的两个引脚,阻值应为无穷大。若测出阻值(指针向右摆动)为零,则说明电容漏电损坏或内部击穿。

B、检测10PF~1000μF固定电容器是否有充电现象,进而判断其好坏。万用表选用R×1k 挡。两只三极管的β值均为100以上,且穿透电流要些 可选用3DG6等型号硅三极管组成复合管。万用表的红和黑表笔分别与复合管的发射极e和集电极c相接。由于复合三极管的放大作用,把被测电容的充放电过程予以放大,使万用表指针摆幅度加大,从而便于观察。应注意的是:在测试操作时,特别是在测较小容量的电容时,要反复调换被测电容引脚接触A、B两点,才能明显地看到万用表指针的摆动。

C、对于1000μF以上的固定电容,可用万用表的R×10k挡直接测试电容器有无充电过程以及有无内部短路或漏电,并可根据指针向右摆动的幅度大小估计出电容器的容量。

2、电解电容器的检测原理

A、因为电解电容的容量较一般固定电容大得多,所以,测量时,应针对不同容量选用合适的量程。根据经验,一般情况下,1~47μF间的电容,可用R×1k挡测量,大于47μF 的电容可用R×100挡测量。

B、将万用表红表笔接负极,黑表笔接正极,在刚接触的瞬间,万用表指针即向右偏转较大偏度(对于同一电阻挡,容量越大,摆幅越大),接着逐渐向左回转,直到停在某一位置。此时的阻值便是电解电容的正向漏电阻,此值略大于反向漏电阻。实际使用经验表明,电解电容的漏电阻一般应在几百kΩ以上,否则,将不能正常工作。在测试中,若正向、反向均无充电的现象,即表针不动,则说明容量消失或内部断路;如果所测阻值很小或为零,说明电容漏电大或已击穿损坏,不能再使用。

C、对于正、负极标志不明的电解电容器,可利用上述测量漏电阻的方法加以判别。即先任意测一下漏电阻,记住其大小,然后交换表笔再测出一个阻值。两次测量中阻值大的那一次便是正向接法,即黑表笔接的是正极,红表笔接的是负极。

D、使用万用表电阻挡,采用给电解电容进行正、反向充电的方法,根据指针向右摆动幅度的大小,可估测出电解电容的容量。

3、可变电容器的检测

A、用手轻轻旋动转轴,应感觉十分平滑,不应感觉有时松时紧甚至有卡滞现象。将载轴向前、后、上、下、左、右等各个方向推动时,转轴不应有松动的现象。

B、用一只手旋动转轴,另一只手轻摸动片组的外缘,不应感觉有任何松脱现象。转轴与动片之间接触不良的可变电容器,是不能再继续使用的。

C、将万用表置于R×10k挡,一只手将两个表笔分别接可变电容器的动片和定片的引出端,另一只手将转轴缓缓旋动几个来回,万用表指针都应在无穷大位置不动。在旋动转轴的过程中,如果指针有时指向零,说明动片和定片之间存在短路点;如果碰到某一角度,万用表读数不为无穷大而是出现一定阻值,说明可变电容器动片与定片之间存在漏电现象。

(三)晶体管的检测原理

电路中的晶体管主要有晶体二极管、晶体三极管、可控硅和场效应管等等,其中最常用的是三极管和二极管,如何正确地判断二、三极管的好坏等是学维修关键之一。

1、晶体二极管:首先我们要知道该二极管是硅管还是锗管的,锗管的正向压降一般为0.1伏~0.3伏之间,而硅管一般为0.6伏~0.7伏之间。测量方法为:用两只万用表测量,当一只万用表测量其正向电阻的同时用另外一只万用表测量它的管压降。最后可根据其管压降的数值来判断是锗管还是硅管。硅管可用万用表的R×1K挡来测量,锗管可用R×100挡来测。一般来说,所测的二极管的正反向电阻两者相差越悬殊越好。一般如正向电阻为几百到几千欧,反向电阻为几十千欧以上,就可初步断定这个二极管是好的。同时可判定二极管的正负极,当测得的阻值为几百欧或几千欧时,为二极管的正向电阻,这时负表笔所接的为负极,正表笔所接的为正极。另外,如果正反向电阻为无穷大,表示其内部断线;正反向电阻一样大,这样的二极管也有问题;正反向电阻都为零表示已短路。

2、晶体三极管:晶体三极管主要起放大作用,那么如何来判测三极管的放大能力呢?其方法是:将万用表调到R×100挡或R×1K挡,当测NPN型管时,正表笔接发射极,负表笔接集电极,测出的阻值一般应为几千欧以上;然后在基极和集电极之间串接一个100千欧的电阻,这时万用表所测的阻值应明显的减少,变化越大,说明该三极管的放大能力越强,如果变化很小或根本没有变化,那就说明该三极管没有放大能力或放大能力很弱。

电极的判断方法

测量的锗管用R*100档,硅管用R*1k档,先固定红表笔与任意一支脚接触,黑表笔分别对其余两支脚测量。看能否找到两个小电阻,若不能再把红表笔移向其他的脚继续测量照顾到两个小电阻为止,若固定红线找不到两个小电阻,可固定黑表笔继续查找。

当找到两个小电阻后,所固定的一支表笔所用的为基极。若固定的表笔为黑笔,则三极管为NPN型,若固定的为红笔,则该管为PNP。

A、判断ce极电阻法

用万用表测量除基极为的两极的电阻,交换表笔测两次,如果是锗管,所测电阻较小的一次为准,若为PNP型,测黑表笔所接的为发射极,红表笔接的是集电极,若为NPN型,测黑表笔所接的为集电极,红表笔接的是发射极;如果是硅管,所测电阻较大的一次为准,若为PNP型,测黑表笔所接的为发射极,红表笔接的是集电极,若为NPN型,测黑表笔所接的为集电极,红表笔接的是发射极。

B、PN结正向电阻法

分别测两PN结的正向电阻,较大的为发射极,较小的为集电极。

C、放大系数法

用万用表的两支表笔与基极除外的两支脚接触,若为PNP,则用手指接触基极与红笔所接的那一极看指针摆动的情况,然后交换表笔测一次,以指针摆动幅度大的一次为准,这时,接红表笔的为集电极;若为NPN,则用手指接触基极与红笔所接的那一极看指针摆动的情况,然后交换表笔测一次,以指针摆动幅度大的一次为准,这时,接黑表笔的为集电极。

注意事项:模拟表和数字表的区别,模拟表的红表笔接的是电源的负极,而数字表相反。

IC芯片的检测方法大全

芯片的检测方法 一、查板方法: 1.观察法:有无烧糊、烧断、起泡、板面断线、插口锈蚀。 2.表测法:+5V、GND电阻是否是太小(在50欧姆以下)。 3.通电检查:对明确已坏板,可略调高电压0.5-1V,开机后用手搓板上的IC,让有问题的芯片发热,从而感知出来。 4.逻辑笔检查:对重点怀疑的IC输入、输出、控制极各端检查信号有无、强弱。5.辨别各大工作区:大部分板都有区域上的明确分工,如:控制区(CPU)、时钟区(晶振)(分频)、背景画面区、动作区(人物、飞机)、声音产生合成区等。这对电脑板的深入维修十分重要。 二、排错方法: 1.将怀疑的芯片,根据手册的指示,首先检查输入、输出端是否有信号(波型), 如有入无出,再查IC的控制信号(时钟)等的有无,如有则此IC坏的可能性极大,无控制信号,追查到它的前一极,直到找到损坏的IC为止。 2.找到的暂时不要从极上取下可选用同一型号。或程序内容相同的IC背在上面,开机观察是否好转,以确认该IC是否损坏。

3.用切线、借跳线法寻找短路线:发现有的信线和地线、+5V或其它多个IC不应 相连的脚短路,可切断该线再测量,判断是IC问题还是板面走线问题,或从其它IC上借用信号焊接到波型不对的IC上看现象画面是否变好,判断该IC的好坏。 4.对照法:找一块相同内容的好电脑板对照测量相应IC的引脚波型和其数来确认的 IC是否损坏。 5.用微机万用编程器(ALL-03/07)(EXPRO-80/100等)中的ICTEST软件测试 IC。 三、电脑芯片拆卸方法: 1.剪脚法:不伤板,不能再生利用。 2.拖锡法:在IC脚两边上焊满锡,利用高温烙铁来回拖动,同时起出IC(易伤板,但可保全测试IC)。 3.烧烤法:在酒精灯、煤气灶、电炉上烧烤,等板上锡溶化后起出IC(不易掌握)。4.锡锅法:在电炉上作专用锡锅,待锡溶化后,将板上要卸的IC浸入锡锅内,即可起出IC又不伤板,但设备不易制作。 5.电热风枪:用专用电热风枪卸片,吹要卸的IC引脚部分,即可将化锡后的IC起出(注意吹板时要晃动风枪否则也会将电脑板吹起泡,但风枪成本高,一般约2000元左右)作为专业硬件维修,板卡维修是非常重要的项目之一。拿过来一块有故障的主板,如何判断具体哪个元器件出问题呢?

LTC 具温度 电压和电流测量功能的多节电池电量测量芯片

LTC2943 - 具温度、电压和电流测量功能的多节电池电量测量芯片 特点 ?可测量累积的电池充电和放电电量 ?至 20V 工作范围可适合多种电池应用 ?14 位 ADC 负责测量电池电压、电流和温度 ?1% 电压、电流和充电准确度 ?±50mV 检测电压范围 ?高压侧检测 ?适合任何电池化学组成和容量的通用测量 ?I2C / SMBus 接口 ?可配置警报输出 / 充电完成输入 ?静态电流小于120μA ?小外形 8 引脚 3mm x 3mm DFN 封装 典型应用 描述 LTC2943可测量便携式产品应用中的电池充电状态、电池电压、电池电流及其自身温度。其具有宽输入电压范围,因而可与高达20V的多节电池配合使用。一个精准的库仑计量器负责对流经位于电池正端子和负载或充电器之间的一个检测电阻器电流进行积分运算。电池电压、电流和温度利用一个内部14位无延迟增量累加(No Latency ΔΣTM) ADC来测量。测量结果被存储于可通过内置I2C / SMBus接口进行存取的内部寄存器中。 LTC2943具有针对所有4种测量物理量的可编程高门限和低门限。如果超过了某个编程门限,则该器件将采用SMBus警报协议或通过在内部状态寄存器中设定一个标记来传送警报信号。LTC2943仅需采用单个低阻值检测电阻器以设定测量电流范围。 应用 ?电动工具 ?电动自行车 ?便携式医疗设备 ?视频摄像机

程序: #include <> #include <> #include "" #include "" #include "" #include "" #include "" #include <> 00; Check I2C Address."; Shared between loop() and restore_alert_settings() .\nPlease ensure I2C lines of Linduino are connected to the LTC device"); } } (ack_error); (F("*************************")); print_prompt(); } } } *\n")); (F("* Set the baud rate to 115200 and select the newline terminator.*\n")); (F("* *\n"));

集成电路的检测方法

集成电路的检测方法 现在的电子产品往往由于一块集成电路损坏,导致一部分或几个部分不能常工作,影响设备的正常使用。那么如何检测集成电路的好坏呢?通常一台设备里面有许多个集成电路,当拿到一部有故障的集成电路的设备时,首先要根据故障现象,判断出故障的大体部位,然后通过测量,把故障的可能部位逐步缩小,最后找到故障所在。 要找到故障所在必须通过检测,通常修理人员都采用测引脚电压方法来判断,但这只能判断出故障的大致部位,而且有的引脚反应不灵敏,甚至有的没有什么反应。就是在电压偏离的情况下,也包含外围元件损坏的因素,还必须将集成块内部故障与外围故障严格区别开来,因此单靠某一种方法对集成电路是很难检测的,必须依赖综合的检测手段。现以万用表检测为例,介绍其具体方法。 我们知道,集成块使用时,总有一个引脚与印制电路板上的“地”线是焊通的,在电路中称之为接地脚。由于集成电路内部都采用直接耦合,因此,集成块的其它引脚与接地脚之间都存在着确定的直流电阻,这种确定的直流电阻称为该脚内部等效直流电阻,简称R内。当我们拿到一块新的集成块时,可通过用万用表测量各引脚的内部等效直流电阻来判断其好坏,若各引脚的内部等效电阻R内与标准值相符,说明这块集成块是好的,反之若与标准值相差过大,说明集成块内部损坏。测量时有一点必须注意,由于集成块内部有大量的三极管,二极管等非线性元件,在测量中单测得一个阻值还不能判断其好坏,必须互换表笔再测一次,获得正反向两个阻值。只有当R内正反向阻值都符合标准,才能断定该集成块完好。 在实际修理中,通常采用在路测量。先测量其引脚电压,如果电压异常,可断开引脚连线测接线端电压,以判断电压变化是外围元件引起,还是集成块内部引起。也可以采用测外部电路到地之间的直流等效电阻(称R外)来判断,通常在电路中测得的集成块某引脚与接地脚之间的直流电阻(在路电阻),实际是R内与R外并联的总直流等效电阻。在修理中常将在路电压与在路电阻的测量方法结合使用。有时在路电压和在路电阻偏离标准值,并不一定是集成块损坏,而是有关外围元件损坏,使R外不正常,从而造成在路电压和在路电阻的异常。这时便只能测量集成块内部直流等效电阻,才能判定集成块是否损坏。根据实际检修经验,在路检测集成电路内部直流等效电阻时可不必把集成块从电路上焊下来,只需将电压或在路电阻异常的脚与电路断开,同时将接地脚也与电路板断开,其它脚维持原状,测量出测试脚与接地脚之间的R内正反向电阻值便可判断其好坏。 例如,电视机内集成块TA7609P瑢脚在路电压或电阻异常,可切断瑢脚和⑤脚(接地脚)然后用万用表内电阻挡测瑢脚与⑤脚之间电阻,测得一个数值后,互换表笔再测一次。若集成块正常应测得红表笔接地时为8.2kΩ,黑表笔接地时为272kΩ的R内直流等效电阻,否则集成块已损坏。在测量中多数引脚,万用表用R×1k挡,当个别引脚R内很大时,换用R ×10k挡,这是因为R×1k挡其表内电池电压只有1.5V,当集成块内部晶体管串联较多时,电表内电压太低,不能供集成块内晶体管进入正常工作状态,数值无法显现或不准确。 总之,在检测时要认真分析,灵活运用各种方法,摸索规律,做到快速、准确找出故障 摘要:判断常用集成电路的质量及好坏 一看: 封装考究,型号标记清晰,字迹,商标及出厂编号,产地俱全且印刷质量较好,(有的 为烤漆,激光蚀刻等) 这样的厂家在生产加工过程中,质量控制的比较严格。 二检: 引脚光滑亮泽,无腐蚀插拔痕迹, 生产日期较短,正规商店经营。 三测: 对常用数字集成电路, 为保护输入端及工厂生产需要,每一个输入端分别对VDD

集成电路工艺原理(期末复习资料)

第一章 1、何为集成电路:通过一系列特定的加工工艺,将晶体管、二极管等有源器件和电阻、 电容等无源器件,按照一定的电路互连,“集成”在一块半导体单晶片(如Si、GaAs)上,封装在一个内,执行特定电路或系统功能。 关键尺寸:集成电路中半导体器件能够加工的最小尺寸。 2、它是衡量集成电路设计和制造水平的重要尺度,越小,芯片的集成度越高,速度越 快,性能越好 3、摩尔定律:、芯片上所集成的晶体管的数目,每隔18个月就翻一番。 4、High-K材料:高介电常数,取代SiO2作栅介质,降低漏电。 Low-K 材料:低介电常数,减少铜互连导线间的电容,提高信号速度 5、功能多样化的“More Than Moore”指的是用各种方法给最终用户提供附加价值,不 一定要缩小特征尺寸,如从系统组件级向3D集成或精确的封装级(SiP)或芯片级(SoC)转移。 6、IC企业的分类:通用电路生产厂;集成器件制造;Foundry厂;Fabless:IC 设计公 司;Chipless;Fablite 第二章:硅和硅片的制备 7、单晶硅结构:晶胞重复的单晶结构能够制作工艺和器件特性所要求的电学和机械性 能 8、CZ法生长单晶硅把熔化的半导体级硅液体变成有正确晶向并且被掺杂成n或p型 的固体硅锭; 9、直拉法目的:实现均匀掺杂和复制籽晶结构,得到合适的硅锭直径,限制杂质引入; 关键参数:拉伸速率和晶体旋转速度 10、CMOS (100)电阻率:10~50Ω?cm BJT(111)原因是什么? 11、区熔法?纯度高,含氧低;晶圆直径小。 第三章集成电路制造工艺概况 12、亚微米CMOS IC 制造厂典型的硅片流程模型 第四章氧化;氧化物 12、热生长:在高温环境里,通过外部供给高纯氧气使之与硅衬底反应,得到一层热生长的SiO2 。 13、淀积:通过外部供给的氧气和硅源,使它们在腔体中方应,从而在硅片表面形成一层薄膜。 14、干氧:Si(固)+O2(气)-> SiO2(固):氧化速度慢,氧化层干燥、致密,均匀性、重复性好,与光刻胶的粘附性好. 水汽氧化:Si (固)+H2O (水汽)->SiO2(固)+ H2 (气):氧化速度快,氧化层疏松,均匀性差,与光刻胶的粘附性差。 湿氧:氧气携带水汽,故既有Si与氧气反应,又有与水汽反应。氧化速度氧化质量介于以上两种方法之间。

教你认识半导体与测试设备

更多企业学院: 《中小企业管理全能版》183套讲座+89700份资料 《总经理、高层管理》49套讲座+16388份资料 《中层管理学院》46套讲座+6020份资料 《国学智慧、易经》46套讲座 《人力资源学院》56套讲座+27123份资料 《各阶段员工培训学院》77套讲座+ 324份资料 《员工管理企业学院》67套讲座+ 8720份资料 《工厂生产管理学院》52套讲座+ 13920份资料 《财务管理学院》53套讲座+ 17945份资料 《销售经理学院》56套讲座+ 14350份资料 《销售人员培训学院》72套讲座+ 4879份资料 第一章.认识半导体和测试设备(1) 本章节包括以下内容, 晶圆(Wafers)、晶片(Dice)和封装(Packages) 自动测试设备(ATE)的总体认识

模拟、数字和存储器测试等系统的介绍 负载板(Loadboards)、探测机(Probers)、机械手(Handlers)和温度控制单元(Temperature units) 一、晶圆、晶片和封装 1947年,第一只晶体管的诞生标志着半导体工业的开始,从那时起,半导体生产和制造技术变得越来越重要。以前许多单个的晶体管现在可以互联加工成一种复杂的集成的电路形式,这就是半导体工业目前正在制造的称之为"超大规模"(VLSI,Very Large Scale Integration)的集成电路,通常包含上百万甚至上千万门晶体管。 半导体电路最初是以晶圆形式制造出来的。晶圆是一个圆形的硅片,在这个半导体的基础之上,建立了许多独立的单个的电路;一片晶圆上这种单个的电路被称为die(我前面翻译成"晶片",不一定准确,大家还是称之为die好了),它的复数形式是dice.每个die都是一个完整的电路,和其他的dice没有电路上的联系。 当制造过程完成,每个die都必须经过测试。测试一片晶圆称为"Circuit probing"(即我们常说的CP测试)、"Wafer porbing"或者"Die sort"。在这个过程中,每个die都被测试以确保它能基本满足器件的特征或设计规格书(Specification),通常包括电压、电流、时序和功能的验证。如果某个die不符合规格书,那么它会被测试过程判为失效(fail),通常会用墨点将其标示出来(当然现在也可以通过Maping图来区分)。 在所有的die都被探测(Probed)之后,晶圆被切割成独立的dice,这就是常说的晶圆锯解,所有被标示为失效的die都报废(扔掉)。图2显示的是一个从晶圆上锯解下来没有被标黑点的die,它即将被封装成我们通常看到的芯片形式。

集成电路测试

第一章 集成电路的测试 1.集成电路测试的定义 集成电路测试是对集成电路或模块进行检测,通过测量对于集成电路的输出回应和预期输出比较,以确定或评估集成电路元器件功能和性能的过程,是验证设计、监控生产、保证质量、分析失效以及指导应用的重要手段。 .2.集成电路测试的基本原理 输入Y 被测电路DUT(Device Under Test)可作为一个已知功能的实体,测试依据原始输入x 和网络功能集F(x),确定原始输出回应y,并分析y是否表达了电路网络的实际输出。因此,测试的基本任务是生成测试输入,而测试系统的基本任务则是将测试输人应用于被测器件,并分析其输出的正确性。测试过程中,测试系统首先生成输入定时波形信号施加到被测器件的原始输入管脚,第二步是从被测器件的原始输出管脚采样输出回应,最后经过分析处理得到测试结果。 3.集成电路故障与测试 集成电路的不正常状态有缺陷(defect)、故障(fault)和失效(failure)等。由于设计考虑不周全或制造过程中的一些物理、化学因素,使集成电路不符合技术条件而不能正常工作,称为集成电路存在缺陷。集成电路的缺陷导致它的功能发生变化,称为故障。故障可能使集成电路失效,也可能不失效,集成电路丧失了实施其特定规范要求的功能,称为集成电路失效。故障和缺陷等效,但两者有一定区别,缺陷会引发故障,故障是表象,相对稳定,并且易于测试;缺陷相对隐蔽和微观,缺陷的查找与定位较难。 4.集成电路测试的过程 1.测试设备 测试仪:通常被叫做自动测试设备,是用来向被测试器件施加输入,并观察输出。测试是要考虑DUT的技术指标和规范,包括:器件最高时钟频率、定时精度要求、输入\输出引脚的数目等。要考虑的因素:费用、可靠性、服务能力、软件编程难易程度等。 1.测试界面 测试界面主要根据DUT的封装形式、最高时钟频率、ATE的资源配置和界面板卡形等合理地选择测试插座和设计制作测试负载板。

电流检测电路设计

课程设计报告题目:电流检测电路设计 课程名称:电子信息工程课程设计 学生姓名:焦道楠 学生学号:1314020114 年级:2013级 专业:电子信息工程 班级:(1)班 指导教师:王留留 电子工程学院制 2016年3月

目录 1 绪论 (1) 2 设计的任务与要求 (1) 2.1 课程设计的任务 (1) 2.2 课程设计的要求 (1) 3 设计方案制定 (1) 3.1 设计的原理 (1) 3.2 设计的技术方案 (2) 4 设计方案实施 (3) 4.1 单片机模块 (3) 4.2 传感器模块 (4) 4.3 A/D转换模块 (5) 4.4 LCD12864点阵液晶显示模块 (6) 5 各模块PCB图 (7) 5.1 单片机模块 (7) 5.2 传感器模块 (7) 6 系统的程序设计 (9) 7 心得体会 (10) 参考文献 (10)

电流检测电路设计 学生:焦道楠 指导教师:王留留 电子工程学院电子信息工程专业 1 绪论 在电学中的测量技术涉及的范围非常广,广泛应用于学校、工业、工厂、科研等各种领域,供实验室和工业现场测量使用。随着电子技术的不断发展,在数字化和智能化不断成为主体的今天,电压、电流测量系统中占有非常重要的位置。我们在分析和总结了单片机技术的发展历史及发展趋势的基础上,以实用、可靠、经济的设计原则为目标,设计出全数字化测量电压电流装置。系统主要以AT89C51单片机为控制核心,整个系统由中央控制模块、A/D转换模块、LED显示模块组成。可实现对待测电压、电流的测量,在数码管上显示。本次课程设计我所做的项目是基于单片机的电流检测系统,主要用到A/D转换和数码管显示。近几年来,单片机已逐步深入应用到工农业生产各部门以及人们生活的各个方面。各种类型的单片机也根据社会的需求而相继开发出来。单片机是一个器件级的计算机系统,实际上它是一个微控制器或微处理器。由于它功能齐全,体积小,成本低,因此它可以应用到所有的电子系统中。AT89C51是一种带4K字节闪存的可编程可插除只读存储器的单片机。单片机的可擦除只读存储器可以反复的擦除多次,该器件采用ATMEL高密度非易失性存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能的8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器。 2设计的任务与要求 2.1 课程设计的任务 利用单片机及其相关知识,设计一个电流检测电路。 2.2 课程设计的要求 (1)画出相应电流检测电路的原理图,并进行检测,生成PCB板; (2)编写程序,实现电流检测功能; (3)情况允许的情况下,做出实物,并估算其成本。 3设计方案制定 3.1 设计的原理

集成电路制造工艺流程

集成电路制造工艺流程 1.晶圆制造( 晶体生长-切片-边缘研磨-抛光-包裹-运输 ) 晶体生长(Crystal Growth) 晶体生长需要高精度的自动化拉晶系统。 将石英矿石经由电弧炉提炼,盐酸氯化,并经蒸馏后,制成了高纯度的多晶硅,其纯度高达0.。 采用精炼石英矿而获得的多晶硅,加入少量的电活性“掺杂剂”,如砷、硼、磷或锑,一同放入位于高温炉中融解。 多晶硅块及掺杂剂融化以后,用一根长晶线缆作为籽晶,插入到融化的多晶硅中直至底部。然后,旋转线缆并慢慢拉出,最后,再将其冷却结晶,就形成圆柱状的单晶硅晶棒,即硅棒。 此过程称为“长晶”。 硅棒一般长3英尺,直径有6英寸、8英寸、12英寸等不同尺寸。 硅晶棒再经过研磨、抛光和切片后,即成为制造集成电路的基本原料——晶圆。 切片(Slicing) /边缘研磨(Edge Grinding)/抛光(Surface Polishing) 切片是利用特殊的内圆刀片,将硅棒切成具有精确几何尺寸的薄晶圆。 然后,对晶圆表面和边缘进行抛光、研磨并清洗,将刚切割的晶圆的锐利边缘整成圆弧形,去除粗糙的划痕和杂质,就获得近乎完美的硅晶圆。 包裹(Wrapping)/运输(Shipping) 晶圆制造完成以后,还需要专业的设备对这些近乎完美的硅晶圆进行包裹和运输。 晶圆输送载体可为半导体制造商提供快速一致和可靠的晶圆取放,并提高生产力。 2.沉积 外延沉积 Epitaxial Deposition 在晶圆使用过程中,外延层是在半导体晶圆上沉积的第一层。 现代大多数外延生长沉积是在硅底层上利用低压化学气相沉积(LPCVD)方法生长硅薄膜。外延层由超纯硅形成,是作为缓冲层阻止有害杂质进入硅衬底的。 过去一般是双极工艺需要使用外延层,CMOS技术不使用。 由于外延层可能会使有少量缺陷的晶圆能够被使用,所以今后可能会在300mm晶圆上更多

集成电路板维修方法

我们从事电路板维修事业算算也有十几年了,在过年的工作中,有遇到过技术非常了得经验丰富的老技术人员,也有爱好电子维修技术,没日没夜钻研的年轻后背。个人觉得学习好电路板维修技术,经验的积累固然重要,当掌握正确的维修方法和灵活的维修思路,才能够成为已经技术一流的电路板维修技术人员。 本章节主要介绍了一些集成电路板的检查方法,为基础知识供大家藏考。 一集成电路的检测方法 现在的电子产品往往由于一块集成电路损坏,导致一部分或几个部分不能正常工作,影响设备的正常使用。那么如何检测集成电路的好坏呢?通常一台设备里面有许多个集成电路,当拿到一部有故障的集成电路的设备时,首先要根据故障现象,判断出故障的大体部位,然后通过测量,把故障的可能部位逐步缩小,最后找到故障所在。要找到故障所在必须通过检测,通常修理人员都采用测引脚电压方法来判断,但这只能判断出故障的大致部位,而且有的引脚反应不灵

敏,甚至有的没有什么反应。就是在电压偏离的情况下,也包含外围元件损坏的因素,还必须将集成块内部故障与外围故障严格 区别开来,因此单靠某一种方法对集成电路是很难检测的,必须依赖综合的检测手段。 现以万用表检测为例,介绍其具体方法。我们知道集成块使用时,总有一个引脚与印制电路板上的“地”线是焊通的,在电路中称之为接地脚。由于集成电路内部都采用直接耦合,因此,集成块的其它引脚与接地脚之间都存在着确定的直流电阻,这种确定的直流电阻称为该脚内部等效直流电阻,简称R 内。当我们拿到一块新的集成块时,可通过用万用表测量各引脚的内部等效直流电阻 来判断其好坏,若各引脚的内部等效电阻R 内与标准值相符,说明这块集成块是好的,反之若与标准值相差过大,说明集成块内部损坏。 测量时有一点必须注意,由于集成块内部有大量的三极管,二极管等非线性元件,在测量中单测得一个阻值还不能判断其好坏,必须互换表笔再测一次,获得正反向两

认识半导体和测试设备

认识半导体和测试设备 本章节包括以下内容, ●晶圆(Wafers)、晶片(Dice)和封装(Packages) ●自动测试设备(ATE)的总体认识 ●模拟、数字和存储器测试等系统的介绍 ●负载板(Loadboards)、探测机(Probers)、机械手(Handlers)和温 度控制单元(Temperature units) 一、晶圆、晶片和封装 1947年,第一只晶体管的诞生标志着半导体工业的开始,从那时起,半导体生产和制造技术变得越来越重要。以前许多单个的晶体管现在可以互联加工成一种复杂的集成的电路形式,这就是半导体工业目前正在制造的称之为"超大规模"(VLSI,Very Large Scale Integration)的集成电路,通常包含上百万甚至上千万门晶体管。 半导体电路最初是以晶圆形式制造出来的。晶圆是一个圆形的硅片,在这个半导体的基础之上,建立了许多独立的单个的电路;一片晶圆上这种单个的电路被称为die(我前面翻译成"晶片",不一定准确,大家还是称之为die好了),它的复数形式是dice.每个die 都是一个完整的电路,和其他的dice没有电路上的联系。

当制造过程完成,每个die都必须经过测试。测试一片晶圆称为"Circuit probing"(即我们常说的CP测试)、"Wafer porbing"或者"Die sort"。在这个过程中,每个die 都被测试以确保它能基本满足器件的特征或设计规格书(Specification),通常包括电压、电流、时序和功能的验证。如果某个die不符合规格书,那么它会被测试过程判为失效(fail),通常会用墨点将其标示出来(当然现在也可以通过Maping图来区分)。 在所有的die都被探测(Probed)之后,晶圆被切割成独立的dice,这就是常说的晶圆锯解,所有被标示为失效的die都报废(扔掉)。图2显示的是一个从晶圆上锯解下来没有被标黑点的die,它即将被封装成我们通常看到的芯片形式。 注:本标题系列连载内容及图片均出自《The Fundamentals Of Digital Semiconductor Testing》 第一章.认识半导体和测试设备(2)

集成电路测试原理及方法

H a r b i n I n s t i t u t e o f T e c h n o l o g y 集成电路测试原理及方法简介 院系:电气工程及自动化学院 姓名: XXXXXX 学号: XXXXXXXXX 指导教师: XXXXXX 设计时间: XXXXXXXXXX

摘要 随着经济发展和技术的进步,集成电路产业取得了突飞猛进的发展。集成电路测试是集成电路产业链中的一个重要环节,是保证集成电路性能、质量的关键环节之一。集成电路基础设计是集成电路产业的一门支撑技术,而集成电路是实现集成电路测试必不可少的工具。 本文首先介绍了集成电路自动测试系统的国内外研究现状,接着介绍了数字集成电路的测试技术,包括逻辑功能测试技术和直流参数测试技术。逻辑功能测试技术介绍了测试向量的格式化作为输入激励和对输出结果的采样,最后讨论了集成电路测试面临的技术难题。 关键词:集成电路;研究现状;测试原理;测试方法

目录 一、引言 (4) 二、集成电路测试重要性 (4) 三、集成电路测试分类 (5) 四、集成电路测试原理和方法 (6) 4.1.数字器件的逻辑功能测试 (6) 4.1.1测试周期及输入数据 (8) 4.1.2输出数据 (10) 4.2 集成电路生产测试的流程 (12) 五、集成电路自动测试面临的挑战 (13) 参考文献 (14)

一、引言 随着经济的发展,人们生活质量的提高,生活中遍布着各类电子消费产品。电脑﹑手机和mp3播放器等电子产品和人们的生活息息相关,这些都为集成电路产业的发展带来了巨大的市场空间。2007年世界半导体营业额高达2.740亿美元,2008世界半导体产业营业额增至2.850亿美元,专家预测今后的几年随着消费的增长,对集成电路的需求必然强劲。因此,世界集成电路产业正在处于高速发展的阶段。 集成电路产业是衡量一个国家综合实力的重要重要指标。而这个庞大的产业主要由集成电路的设计、芯片、封装和测试构成。在这个集成电路生产的整个过程中,集成电路测试是惟一一个贯穿集成电路生产和应用全过程的产业。如:集成电路设计原型的验证测试、晶圆片测试、封装成品测试,只有通过了全部测试合格的集成电路才可能作为合格产品出厂,测试是保证产品质量的重要环节。 集成电路测试是伴随着集成电路的发展而发展的,它为集成电路的进步做出了巨大贡献。我国的集成电路自动测试系统起步较晚,虽有一定的发展,但与国外的同类产品相比技术水平上还有很大的差距,特别是在一些关键技术上难以实现突破。国内使用的高端大型自动测试系统,几乎是被国外产品垄断。市场上各种型号国产集成电路测试,中小规模占到80%。大规模集成电路测试系统由于稳定性、实用性、价格等因素导致没有实用化。大规模/超大规模集成电路测试系统主要依靠进口满足国内的科研、生产与应用测试,我国急需自主创新的大规模集成电路测试技术,因此,本文对集成电路测试技术进行了总结和分析。 二、集成电路测试重要性 随着集成电路应用领域扩大,大量用于各种整机系统中。在系统中集成电路往往作为关键器件使用,其质量和性能的好坏直接影响到了系统稳定性和可靠性。 如何检测故障剔除次品是芯片生产厂商不得不面对的一个问题,良好的测试流程,可以使不良品在投放市场之前就已经被淘汰,这对于提高产品质量,建立生产销售的良性循环,树立企业的良好形象都是至关重要的。次品的损失成本可以在合格产品的售价里得到相应的补偿,所以应寻求的是质量和经济的相互制衡,以最小的成本满足用户的需要。 作为一种电子产品,所有的芯片不可避免的出现各类故障,可能包括:1.固定型故障;2.跳变故障;3.时延故障;4.开路短路故障;5桥接故障,等等。测试的作用是检验芯片是否存在问题,测试工程师进行失效分析,提出修改建议,从工程角度来讲,测试包括了验证测试和生产测试两个主要的阶段。

浅谈霍尔电流传感器ACS785ACS712系列电流检测方式

浅谈霍尔电流传感器ACS785/ACS712系列电流检测方式 浅谈电流检测方式 一、检测电阻+运放 优势:成本低、精度较高、体积小 劣势:温漂较大,精密电阻的选择较难,无隔离效果。 分析: 这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。 二、电流互感器CT/电压互感器PT 在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。而CT 和PT 就是特殊的变压器。基本构造上,CT 的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。PT 相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。 CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A 或1A 的变换设备。它的工作原理和变压器相似。也称作TA 或LH(旧符号). 工作特点和要求: 1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。 2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。 3、CT 二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。 4、变换的准确性。 PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V 的变换设备。电磁式电压互感器的工作原理和变压器相同。也称作TV 或YH(旧符号)。 工作特点和要求: 1、一次绕组与高压电路并联。 2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。 3、二次绕组有一点直接接地。 4、变换的准确性

集成电路制造工艺_百度文库(精)

从电路设计到芯片完成离不开集成电路的制备工艺,本章主要介绍硅衬底上的CMOS 集成电路制造的工艺过程。有些CMOS 集成电路涉及到高压MOS 器件(例如平板显示驱动芯片、智能功率CMOS 集成电路等),因此高低压电路的兼容性就显得十分重要,在本章最后将重点说明高低压兼 容的CMOS 工艺流程。 1.1 基本的制备工艺过程 CMOS 集成电路的制备工艺是一个非常复杂而又精密的过程,它由若干单项制备工艺组合而成。下面将分别简要介绍这些单项制备工艺。 1.1.1 衬底材料的制备 任何集成电路的制造都离不开衬底材料——单晶硅。制备单晶硅有两种方法:悬浮区熔法和直拉法,这两种方法制成的单晶硅具有不同的性质和不同的集成电路用途。 1 悬浮区熔法 悬浮区熔法是在20世纪50年代提出并很快被应用到晶体制备技术中。在悬浮区熔法中,使圆柱形硅棒固定于垂直方向,用高频感应线圈在氩气气氛中加热,使棒的底部和在其下部靠近的同轴固定的单晶籽晶间形成熔滴,这两个棒朝相反方向旋转。然后将在多晶棒与籽晶间只靠表面张力形成的熔区沿棒长逐步向上移动,将其转换成单晶。 悬浮区熔法制备的单晶硅氧含量和杂质含量很低,经过多次区熔提炼,可得到低氧高阻的单晶硅。如果把这种单晶硅放入核反应堆,由中子嬗变掺杂法对这种单晶硅进行掺杂,那么杂质将分布得非常均匀。这种方法制备的单晶硅的电阻率非常高,特别适合制作电力电子器件。目前悬浮区熔法制备的单晶硅仅占有很小市场份额。 2 直拉法

随着超大规模集成电路的不断发展,不但要求单晶硅的尺寸不断增加,而且要求所有的杂质浓度能得到精密控制,而悬浮区熔法无法满足这些要求,因此直拉法制备的单晶越来越多地被人们所采用,目前市场上的单晶硅绝大部分采用直拉法制备得到的。 拉晶过程:首先将预处理好的多晶硅装入炉内石英坩埚中,抽真空或通入惰性气体后进行熔硅处理。熔硅阶段坩埚位置的调节很重要。开始阶段,坩埚位置很高,待下部多晶硅熔化后,坩埚逐渐下降至正常拉晶位置。熔硅时间不宜过长,否则掺入熔融硅中的会挥发,而且坩埚容易被熔蚀。待熔硅稳定后即可拉制单晶。所用掺杂剂可在拉制前一次性加入,也可在拉制过程中分批加入。拉制气氛由所要求的单晶性质及掺杂剂性质等因素确定。拉晶时,籽晶轴以一定速度绕轴旋转,同时坩埚反方向旋转,大直径单晶的收颈是为了抑制位错大量地从籽晶向颈部以下单晶延伸。收颈是靠增大提拉速度来实现的。在单晶生长过程中应保持熔硅液面在温度场中的位置不变,因此,坩埚必须自动跟踪熔硅液面下降而上升。同时,拉晶速度也应自动调节以保持等直生长。所有自动调节过程均由计算机控制系统或电子系统自动完成。 1.1.2 光刻 光刻是集成电路制造过程中最复杂和关键的工艺之一。光刻工艺利用光敏的抗蚀涂层(光刻胶)发生光化学反应,结合刻蚀的方法把掩模版图形复制到圆硅片上,为后序的掺杂、薄膜等工艺做好准备。在芯片的制造过程中,会多次反复使用光刻工艺。现在,为了制造电子器件要采用多达24次光刻和多于250次的单独工艺步骤,使得芯片生产时间长达一个月之久。目前光刻已占到总的制造成本的1/3以上,并且还在继续提高。 光刻的主要工艺步骤包括:光刻胶的涂覆,掩模与曝光,光刻胶显影,腐蚀和胶剥离。下面分别进行简要的介绍: 1 光刻胶涂覆

CMOS集成电路制造工艺流程

C M O S集成电路制造工艺 流程 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

陕西国防工业职业技术学院 课程报告 课程微电子产品开发与应用 论文题目CMOS集成电路制造工艺流程 班级电子3141 姓名及学号王京(24#) 任课教师张喜凤 目录

CMOS集成电路制造工艺流程 摘要:本文介绍了CMOS集成电路的制造工艺流程,主要制造工艺及各工艺步骤中的核心要素,及CMOS器件的应用。 引言:集成电路的设计与测试是当代计算机技术研究的主要问题之一。硅双极工艺面世后约3年时间,于1962年又开发出硅平面MOS工艺技术,并制成了MOS集成电路。与双极集成电路相比,MOS集成电路的功耗低、结构简单、集成度和成品率高,但工作速度较慢。由于它们各具优劣势,且各自有适合的应用场合,双极集成工艺和MOS集成工艺便齐头平行发展。 关键词:工艺技术,CMOS制造工艺流程 1.CMOS器件 CMOS器件,是NMOS和PMOS晶体管形成的互补结构,电流小,功耗低,早期的CMOS电路速度较慢,后来不断得到改进,现已大大提高了速度。 分类 CMOS器件也有不同的结构,如铝栅和硅栅CMOS、以及p阱、n阱和双阱CMOS。铝栅CMOS和硅栅CMOS的主要差别,是器件的栅极结构所用材料的不同。P阱CMOS,则是在n型硅衬底上制造p沟管,在p阱中制造n沟管,其阱可采用外延法、扩散法或离子注入方法形成。该工艺应用得最早,也是应用得最广的工艺,适用于标准CMOS电路及CMOS与双极npn兼容的电路。N阱CMOS,是在p型硅衬底上制造n沟晶体管,在n阱中制造p沟晶体管,其阱一般采用离子注入方法形成。该工艺可使NMOS晶体管的性能最优化,适用于制造以NMOS为主的CMOS以及E/D-NMOS和p沟MOS兼容的CMOS电路。双阱CMOS,是在低阻n+衬底上再外延一层中高阻n――硅层,然后在外延层中制造n阱和p阱,并分别在n、p阱中制造p沟和n沟晶体管,从而使PMOS和NMOS晶体管都在高阻、低浓度的阱中形成,有利于降低寄生电容,增加跨导,增强p沟和n沟晶体管的平衡性,适用于高性能电路的制造。 集成技术发展

集成电路测试技术四

集成电路测试技术 测试概论 可测性设计技术

DFT) 雷鑑铭RCVLSI&S 扫描前综合:主要在综合中介绍。在这一步中综合工具会

Multiplexed Flip-Flop 使用一个可选择的数据输入端来实现串行移位的能力。在功能模式时,扫描使能信号选择系统数据输入;在扫描模式时,扫描使能信号选择扫描数据输入。扫描输入的数据来自扫描输入端口或者扫描链中前一个单元的扫描输出端口。为测试使能端,控制数据的输入。 时选通测试模式,测试数据从端输入;时为功能模式,这时系统数据从端输入。 Multiplexed Flip-Flop 扫描形式为工艺库普遍支持的一种模式。 Multiplexed Flip-Flop 结构 扫描 扫描形式使用一个特定的边沿触发测试时钟来提供串行移位的能力。在功能模式时,系统时钟翻转,系统数据在系统时钟控制下输入到单元中;扫描移位时,测试时钟翻转,扫描数据在测试时钟控制下进入到单元中。 为系统时钟,翻转时系统数据从D 钟,翻转时扫描数据从端输入。 Clocked-Scan 雷鑑铭 编译器支持三种变化的扫描形式:单边锁存,双边锁存和时钟控制单边锁存和双边锁存变化都要用到典型的LSSD 扫描单元,如上图所示。该单元含有一对主从锁存器。 主锁存器有两个输入端,能够锁存功能数据或者扫描数据。在功能模式下,系统主时钟控制系统数据的输入;在扫描模式下,测试主时钟控制从数据输入端到主锁存器的数据传输。从时钟控制数据从主锁存器到从锁存器的传输。 典型的LSSD 、扫描测试的步骤 1 各步骤的功能如下: 扫描输入阶段:在这一阶段中,数据串行加入到扫描输入端;当时钟沿到来时,该扫描数据被移入到扫描链。同时,并行输出被屏蔽。 并行测试:这一周期的初始阶段并行输入测试数据,此周期的末段检测并行输出数据。在此周期中时钟信号保持无效,CUT 并行捕获:这一阶段时钟有一次脉冲,在该脉冲阶段从扫描链中捕获关键并行输出数据。CUT 态。捕获到的数据用于扫描输出。 第一次扫描输出:此阶段无时钟信号,出端对扫描链输出值采样,检测第一位扫描输出数据。扫描输出阶段:扫描寄存器捕获到的数据串行移出,在每一周期在扫描输出端检测扫描链输出值。扫描测试是基于阶段的测试过程,典型的测试时序分SI 交叠,待测芯片的测试状态控制信号于有效状态。第一次扫描输出阶段时钟信号保持无效,出端之后每一扫描移位阶段都有一时钟信号,测试机也会采样一次SO 的状态;在最后一个扫描移位阶段用于产生并行输出的有效数

STMC 高端电流检测芯片

Application Circuit STMC109 SOT23 109 DC Motor Control Programmable Current Source Level Translating Over Current Monitor SOT23 Package SOT23 packages. The STMC109is a high side current sense monitor.STMC109 1 DESCRIPTION Using this device eliminates the need to disrupt the ground plane when sensing a load current. It takes a high side voltage developed across a current shunt resistor and translates it into a proportional output current. A user defined output resistor scales the output current into a ground-referenced voltage. The wide input voltage range of 20V down to as low as 2.5V make it suitable for a range of applications.A minimum operating current of just 4μA,combined with its SOT23package make it a unique solution,suitable for portable battery equipment.FEATURES ?Low cost, accurate high-side current sensing.?Output voltage scaling.?Up to 2.5V sense voltage.? 2.5V – 20V supply range.?4μA quiescent current.?1% typical accuracy.? APPLICATIONS ?Battery Chargers ?Smart Battery Packs ???Power Management ?? HIGH-SIDE CURRENT MONITOR V To Load R ORDERING INFORMATION PART NUMBER PACKAGE PARTMARKING Top View I out Load V in 3 2 1 CONNECTION DIAGRAMS ABSOLUTE MAXIMUM RATINGS Voltage on any pin -0.6V to 20V (relative to I out )Continuous output current 25mA Continuous sense voltage V in + 0.5V > V sense ?> V in – 5V Operating Temperature -40 to 85°C Storage Temperature -55 to 125°C Package Power Dissipation (T A = 25°C)SOT23 450mW

音频功率集成电路及功率器件的现代研究

音频功率集成电路及功率器件的现代研究 摘要在科技水平不断提升的情况下,功率集成电路出现了高速的发展态势。在功率集成电路中,音频功率放大器属于重要的构成部分,在消费类电子产品领域中具有广泛的应用。作为全球最大的消费类电子商品市场以及生产的基地,对于音频功率放大器的需求在不断的增多,而且要求标准越来越多。本文对于音频功率集成电路和功率器件展开研究,为实践工作提供有价值的参考。 关键词音频功率集成电路;功率器件;消费类电子 功率集成电路为高压功率器件与信号处理系统和接口电路、外围驱动电路以及检测电路、保护电路等等在相同的芯片上面进行集聚的集成电路。音频功率放大器在功率集成电路中占据着重要的地位,属于不可或缺的构成。当前,研究音频功率放大器、分析音频功率集成电路和功率器件已经是重点探索的方面。 1 音频功率集成电路概况 功率半导体器件在发展期间经历了很多的阶段,在二十一世纪前后,功率半导体器件的发展到了密切的结合集成电路的阶段。在功率半导体器件和集成电路充分联系结合期间,使得功率和微电子器件在芯片制造工艺慢慢趋同,MOS型器件的封装技术靠近着集成电路,而且在器件结构方面将功率MOS型器件以及集成电路在相同芯片或者包装进行设置已经是趋势。音频功率放大芯片的对象就是指各种形式的音箱以及喇叭,采取功率这一途径让微弱的声音信号进行放大,进而获得到足够的驱动负载功能。音频放大器的主要参数很多,包括电源纹波抑制比、总谐波失真加噪声、信噪比、增益、最大输出功率、关断电流以及输出偏移电压。TDA7294為DMOS大功率音频功放集成电路,特点和性能包括作电压高达±40伏、出功率大,音乐功率可达IOOW、失真和低噪音、音和STAND-BY 待机功能等[1]。 2 LS7294电路的分析和仿真 TDA7294的内部等效电路主要包含有四个部分,即分别是双极晶体管组成的输入级、运放和大功率MOS管组成的电流输出级、MOS管构成的第二级放大及电平移位电路、短路保护及过热保护电路。于输出级和第二级电压放大级的密勒电容增添进交流负反馈,可以良好的减轻TDA7294输出级失真问题。同时能够实现分开供电电压放大级和电流放大级的形式,做到将通过电流相互影响降低,属于理想的保真举措。因实施参考输入端的静音功能,所以予以LS7294两个差分PNP对管输入的方式。而且参考输入端涵盖阻尼回路,将静音控制进行优化。关键的环节包括输入级及控制开关、基准源和待机/静音窗口比较器、静音控制单元和待机控制单元、输出功率管下管保护电路、输出功率管上管保护电路及自举电路以及中间MOS增益级及功率输出级电路。仿真时外围电路闭环增益经反馈,可以控制在30dB,在静态的工作期间电流大概是在16.5mA。

相关文档
相关文档 最新文档