文档库 最新最全的文档下载
当前位置:文档库 › 二氧化碳传感器 COZIR 详细参数 资料

二氧化碳传感器 COZIR 详细参数 资料

二氧化碳传感器 COZIR  详细参数 资料
二氧化碳传感器 COZIR  详细参数 资料

COZIR?Software User’s Guide

1 Serial Format and Connection (2)

1.1 Connection (2)

1.2 Reading Format (3)

2 Command Summary (4)

3 Operating Modes (6)

3.1 Mode 0 Command Mode (6)

3.2 Mode 1 Streaming Mode (6)

3.3 Mode 2 Polling Mode (6)

4 Output Fields (7)

5 Zero Point Calibration (8)

5.1 Zero in a known gas concentration (recommended) (8)

5.2 Zero in Nitrogen (8)

5.3 Zero in Fresh Air (assumed to be 450ppm) (8)

5.4 Fine Tune the Zero Point (8)

5.5 Zero Point Adjustment (9)

5.6 Auto Zero Point Calibration (9)

6 Span Calibration (10)

7 User Settings (11)

7.1 Digital Filter (11)

7.2 User Options – EEPROM Settings (11)

7.2.1 Setting EEPROM (11)

7.2.2 Reading EEPROM (12)

7.2.3 EEPROM Settings (12)

8 Command Set (13)

8.1 Customisation (13)

8.2 Information (14)

8.3 Switching between Modes (14)

8.4 Zeroing and Calibration (15)

8.5 Polling Commands (16)

This documentation is provided on an as-is basis and no warranty as to its suitability or accuracy for any particular purpose is either made or implied. Gas Sensing Solutions Ltd will not accept any claim for damages howsoever arising as a result of use or failure of this information. Your statutory rights are not affected. This information is not intended for use in any medical appliance, device or system in which the failure of the product might reasonably be expected to result in personal injury. This document provides preliminary information that may be subject to change without notice.

The information in this guide is for the use of employees and customers of GSS Ltd only.

1 Serial Format and Connection

1.1 Connection

Communication to and from the COZIR ? sensor is via a serial connection. Pins are shown looking at the connector of the sensor.

The Rx and Tx pins are normally high, suitable for direct connection to a UART. If the sensor is to be read by a true RS232 device (eg a PC) it is necessary to pass through a level converter to step up/down the voltage and invert the signal.

A starter kit is available to allow simple interfacing between the sensor and a PC. Contact GSS (https://www.wendangku.net/doc/dc14813610.html, ) for details.

Connection to the sensor is via a 10 way, 0.1” pitch connector . In practice, only the first 4 pins are required (GND, 3V3, Rx and Tx) so a 4 way connector can be used.

COZIR-A

COZIR-W

When powered, the sensor will immediately start to transmit readings (see Mode 1 in “Operating Modes”)

NB If you connect to the sensor using HyperTerminal?, you must select the box “Send line ends with line feeds” under ASCII setup.

1.2Reading Format

The reported CO2 output is presented as:

Z ##### z #####/r/n

Where

Z ##### shows the CO2 concentration after digitally filtering

and

z ##### shows the instantaneous CO2 concentration without any digital filtering.

The concentration is reported in the following units

Note that the same units must be used when sending concentration information to the sensor (X command, F command).

Note that all output from the sensor has a leading space.

2Command Summary

For complete details of the commands and their correct usage, please refer to the Command Reference.

All communications are in ASCII, have a leading space(ASCII character 32), and are terminated by carriage return, line feed (ASCII characters 13 and 10). This document uses the protocol “\r\n” to indicate the carriage return line feed.

The character ‘#’ represents an ASCII representation of a numeric character (0-9).

Note that there is a space between the first letter and any parameter. For example, the X command reads “X space 2000 carriage return line feed”.

3Operating Modes

The COZIR? sensor can be operated in three different modes. Users can switch between the modes using the “K” command.

3.1Mode 0 Command Mode

This is primarily intended for use when extracting larger chunks of information from the sensor (for example using the Y and * commands).

In this mode, the sensor is stopped waiting for commands. No measurements are made, and the sensor will run through a warm-up cycle after exiting this command. There is no latency in command responses.

The power consumption is less than 3.5mW as no measurement activity takes place. Commands which report measurements or alter the zero point setting are disabled in mode 0.

3.2Mode 1 Streaming Mode

This is the factory default. Measurements are reported twice per second. Commands are processed when received, except during measurement activity, so there may be a time delay of up to 100mS in responding to commands. The power consumption is 3.5mW (assuming one field of information is transmitted, and there is no temperature and humidity sensor).

3.3Mode 2 Polling Mode

In polling mode, the sensor only reports readings when requested. The measurement cycle continues in the background, but the output stream is suppressed. The power consumption depends on the frequency of polling, but is approximately the same as the streaming mode power consumption.

In Polling Mode, measurements can be accessed using the polling commands H, L, Q, T and Z (see “C ommand Reference”).

4Output Fields

The COZIR? sensor can be configured to output up to five fields of information. Typically, the only fields of interest are the CO2 concentration and Temperature/Humidity (if fitted).

This allows users to customise the output string transmitted by the sensor. Up to five values can be transmitted in the string. The format is always the same: each field is identified by an single character, followed by a space, followed by the five digit number indicating the value of the parameter.

The output fields can be set by sending a command of the format “M 12345\r\n” where 12345 represents a mask value which defines the output fields.

The mask value is created by adding the mask values for the parameters required (see table below). The sensor will output a maximum of five fields. If the mask setting represents more than five fields, only the first five (those with the highest mask values) will be output.

Note that most fields are for advanced use only and require specific guidance from GSS engineering for their correct interpretation and use.

For example, to output the temperature, humidity and CO2 measurements, send:

M 4164\r\n

The output string will then be:

H 12345 T 12345 Z 00010\r\n

5Zero Point Calibration

There are a several methods to calibrate the zero point of the sensor. The recommended method is zero point calibration in a known gas (see X command) which will give the most accurate zero setting.

In all cases, the best zero is obtained when the gas concentration is stable and the sensor is at a stabilized temperature.

5.1Zero in a known gas concentration (recommended)

Place the sensor in a known gas concentration and allow time for the sensor temperature to stabilize, and for the gas to be fully diffused into the sensor.

Send the command “X ###\r\n”

The concentration must be in the same units as the sensor output (see “Reading Format”. The sensor will respond with an echo of the command and the new zero point.

For example, to set the zero point in a COZIR-A when the sensor is in a known gas concentration of 2000ppm

send:X 2000\r\n

response: X 32950\r\n

5.2Zero in Nitrogen

Place the sensor in a gas containing no CO2 (typically nitrogen). and allow time for the sensor temperature to stabilize, and for the gas to be fully diffused into the sensor.

Send the command “U\r\n”

The sensor will respond with an echo of the command and the new zero point.

For example,

send:U\r\n

response: U 32950\r\n

5.3Zero in Fresh Air (assumed to be 450ppm)

If there is no calibration gas and no nitrogen available, the sensor zero point can be set in fresh air. The sensor is programmed to assume that fresh air is 450ppm (this value is user configurable – see “User Settings”).

Place the sensor in a fresh air environment and allow time for the sensor temperature to stabilize, and for the fresh air to be fully diffused into the sensor.

Send th e command “G\r\n”

The sensor will respond with an echo of the command and the new zero point.

For example,

send:G\r\n

response: G 32950\r\n

5.4Fine Tune the Zero Point

If the CO2 concentration and the sensor reported concentration are known, the zero point can be adjusted using the known concentration to fine tune the zero point. This is similar in operation to the “X” command (see above) but can operate on historic data. For example, if the sensor has been

in an environment in which it is know to have been exposed to outside air, and the sensor reading is known at that time, the zero point can be fine tuned to correct the reading. This is typically used to implement automated calibration routines.

The command takes two parameters, separated by a space. The first parameter is the reading reported by the sensor. The second is the corrected reading. Both parameters must be in the same units as the sensor output (see “Reading Format”)

The sensor will respond with an echo of the command and the new zero point.

For example,

send: F 400 380\r\n

response: 32950\r\n

In this example, the sensor zero point would be corrected so that a reading of 400ppm, would now be reported as 380ppm.

5.5Zero Point Adjustment

The precise zero point can be fine-tuned by sending a zero point to the sensor. This is not recommended for general use.

Send the command “u #####\r\n” where ##### is the new zero point.

5.6Auto Zero Point Calibration

The sensor can be configured to zero automatically using fresh air as the calibration source. Contact GSS Ltd for details.

6Span Calibration

NB Span calibration must only be performed AFTER the unit has been correctly zeroed.

NB The COZIR? Sensor should not require span calibration. GSS does not recommend using the span calibration procedure.

Span calibration allows users to fine tune readings to ensure that the sensor gives exactly the correct reading when presented with a gas of know concentration. Typically, span calibration should not be required, however it may become necessary if he unit has suffered shock (mechanical or thermal) sufficient to cause a local distortion of the optical elements. It can also be used to fine tune the unit to give the most accurate readings around a specific concentration of interest.

Procedure:

?Switch on the unit and allow to warm up for at least two minutes.

?Present the sensor with a known gas for calibration. The gas should be in the general range which the sensor is to be used to measure.

?Allow the sensor reading (filtered output) to settle.

?Work out the span calibration factor by using the formula

?Span Calibration Factor = (Known Gas Concentration x 8192)/Sensor Reading

?Now programme the span calibration factor into the unit by sending the following command S ####\r\n

where

####is Span Calibration Factor

\r\n is Line Feed, Carriage Return

7User Settings

7.1Digital Filter

The CO2 measurement is passed through a digital filter to condition the signal. The characteristics of the filter can be altered by the user to tune the sensor performance to specific applications.

The filter can be set to a value between 1 and 256 (see below for smart filter). A low value will result in the fastest response to changes in gas concentration, a high value will result in a slower response. Note that the response is also determined by the diffusion rate into the sensor. The default setting is 32.

To change the setting, type “A ###\r\n” where ### is the required filter setting.

For most applications, a filter setting of 32 is recommended.

Eg

A 32 \r\n

The filter works as a low pass filter - increasing the parameter reduces measurement noise, but slows the response.

If the filter is set to zero, a smart filter mode will be used in which the filter response is altered to suit the prevailing conditions. This is useful if there is a combination of steady state conditions, with some periods of rapidly changing concentrations.

7.2User Options – EEPROM Settings

Some user settings can be altered in the internal EEPROM.

These settings can be set by using the parameter setting command “P”, and read using a lower case “p”.

7.2.1Setting EEPROM

To set an EEPROM location, send “P ### ###\r\n” where th e first parameter is the address, and the second is the value.

Note that two byte values must be set one byte at a time.

For example, to change the default value of the ambient gas concentration used for ambient calibration (ie the assumed CO2 concentration in fresh air) to 380ppm, send

send: P 10 1\r\n

response: P 00010 00001\r\n

send: P 11 124\r\n

response: P 00011 00124\r\n

7.2.2Reading EEPROM

To read a parameter value from an EEPROM location, send “p #####\r\n” where ##### is the address of the parameter.

Note that two byte values must be read one byte at a time.

For example, to read the value of the ambient gas concentration used for ambient calibration (ie the assumed CO2 concentration in fresh air)send:

send: p 10\r\n

response: p 00010 00001\r\n

send: p 11\r\n

response: p 00011 00124\r\n

7.2.3EEPROM Settings

Most of the EEPROM settings are two byte values, indicated by HI and LO in the variable name in the following table. We recommend contacting GSS before altering the default values.

8Command Set

This gives the complete command set for the COZIR? sensor and illustrates use of some of the more commonly used options.

Key points to note are:

?In all cases, commands are terminated with a carriage return, line feed (“\r\n”).

?Commands are case sensitive.

?The commands use all use ASCII characters. Each command lists the ASCII letter and includes the hex code for avoidance of doubt.

?Always check for a correct response before sending another command.

?If a command is unrecognized, the sensor will respond with a “?”

WARNING

This document is provided to give a complete reference of the command set and outputs from the COZIR? sensor. It is intended for advanced users only. If in doubt, please contact GSS engineering prior to use.

8.1Customisation

A COMMAND (0x41) USER CONFIGURATION

Eg: "A 128\r\n"

Description: Set the value for the digital filter.

Syntax: ASCII character 'A', SPACE, decimal, terminated by 0x0d 0x0a (CR & LF) Response: "A 00032\r\n"

a COMMAND (0x61) INFORMATION

Eg: "a\r\n"

Description: Return the value for the digital filter.

Syntax:ASCII Character 'a' terminated by 0x0d 0x0a (CR & LF)

Response: Eg: "a 00032\r\n"

M COMMAND (0x4D) USER CONFIGURATION

Eg: "M 212\r\n"

Description: Determines which values are going to be returned by the unit.

Syntax: "M", SPACE, followed by an up-to 5 digit number, each bit of which dictates which item will be returned by the sensor, terminated by 0x0d 0x0a (CR & LF). Response: Eg "M 212\r\n" (see “Output Fields” for details)

P COMMAND (0x50) USER CONFIGURATION

Eg: "P 10 1\r\n"

Description: Sets a user configurable parameter..

Syntax: "P", SPACE, followed by an up to 2 digit number, SPACE followed by an up to 3 digit number, terminated by 0x0d 0x0a (CR & LF).

Response: Eg "P 00001 00010\r\n" (see “User Settings” for details)

p COMMAND (0x70) USER CONFIGURATION

Eg: "p 10\r\n"

Description: Returns a user configurable parameter.

Syntax: "P", SPACE, followed by an up-to 2 digit number, terminated by 0x0d 0x0a (CR & LF).

Response: Eg "P 10 1\r\n" (see “User Settings” for details)

8.2Information

Y COMMAND (0x59) INFORMATION

Eg:"Y\r\n"

Description: the present version string for the firmware

Syntax: ASCII character 'Y', terminated by 0x0d 0x0a ( CR & LF )

Response: Y May 30 2008 10:45:03 CA08 B 00233

NB This command requires that the sensor has been stopped (see …K? command).

* COMMAND (0x59) INFORMATION

Eg:"*\r\n"

Description: Returns a number of fields of information giving information about the sensor configuration and behavior.

Syntax: ASCII character '*', terminated by 0x0d 0x0a ( CR & LF )

Response: Contact GSS for details.

8.3Switching between Modes

For discussion of different modes of operation, see the section “Operating Modes”.

K COMMAND (0x4B) USER CONFIGURATION

Eg: "K 1"

Description: Switches the sensor between the operating modes..

Syntax: ASCII character "K", SPACE, followed by the mode number, terminated by 0x0d 0x0a (CR & LF).

Response: "K #\r\n" where # is the mode number.

8.4Zeroing and Calibration

See examples of each of the zero and calibration commands in the following section.

U COMMAND (0x55) CALIBRATION – USE WITH CARE

Eg: "U\r\n"

Description: Calibrates the zero point assuming the sensor is in 0ppm CO2.

Syntax: ASCII Character 'U' terminated by 0x0d 0x0a ( CR & LF )

Response: “U 32767\r\n” (the number is variable)

G COMMAND (0x47) CALIBRATION – USE WITH CARE

Eg: "G\r\n"

Description : Calibrates the zero point assuming the sensor is in 450ppm CO2.

Syntax: ASCII character 'G'

Response: "G 33000\r\n" (the number is variable).

F COMMAND (0x46) CALIBRATION – USE WITH CARE

Eg: “F 410 390\r\n”

Description : Calibrates the zero point using a known reading and known CO2 concentration. Syntax: ASCII character 'F' then a space, then the reported gas concentration then a space then the actual gas concentration.

Response: "F 33000\r\n" (the numbers are variable).

X COMMAND (0x58) CALIBRATION – USE WITH CARE

Eg: "X 1000\r\n"

Description : Calibrates the zero point with the sensor in a known concentration ofCO2. Syntax: ASCII character 'X' then a space, then the gas concentration.

Response: "X 33000\r\n" (the number is variable).

S COMMAND (0x53) CALIBRATION – USE WITH CARE

Eg: "S 8193\r\n"

Description: Set the 'Span' value in EEPROM

Syntax: ASCII character 'S', SPACE, decimal, terminated by 0x0d 0x0a (CR & LF) Response: “S 8193\r\n” (the number mirrors the input value).

s COMMAND (0x73) INFORMATION

Eg: "s\r\n"

Description: Reports the set 'Span' value in EEPROM Nominally 8192 = a

multiplier of 1.

Syntax: ASCII Character 's', terminated by 0x0d 0x0a (CR & LF)

Response: “S 8193\r\n”

u COMMAND (0x75) USE ONLY WITH GSS GUIDANCE

Eg: "u 32767\r\n"

Description: Send a zero set point.

Syntax: ASCII character 'u', SPACE, decimal, terminated by 0x0d 0x0a (CR & LF) Response: "u 32767\r\n"

NB For advanced use only. Contact GSS before using this command.

8.5Polling Commands

H COMMAND (0x48) INFORMATION

Eg: "H\r\n"

Description: Reports the humidity measurement from the temperature and humidity sensor (if fitted). Divide by 10 to get the %RH

Syntax: ASCII Character 'H', terminated by 0x0d 0x0a (CR & LF)

Response: “H 00551\r\n”

L COMMAND (0x4C) INFORMATION

Eg: "L\r\n"

Description: Reports the light measurement from the light sensor (if fitted).

Syntax: ASCII Character 'L', terminated by 0x0d 0x0a (CR & LF)

Response: “L 02221\r\n”

T COMMAND (0x54) INFORMATION

Eg: "T\r\n"

Description: Reports the humidity measurement from the temperature and humidity sensor (if fitted). Subtract 1000 and divide by 10 to get the temperature in ?C.

Syntax: ASCII Character 'T', terminated by 0x0d 0x0a (CR & LF)

Response: “T 01224\r\n”

Z COMMAND (0x5A) INFORMATION

Eg: "Z\r\n"

Description: Reports the latest CO2 measurement in ppm.

Syntax: ASCII Character 'Z', terminated by 0x0d 0x0a (CR & LF)

Response: “Z 00512\r\n”

Q COMMAND (0x51) INFORMATION

Eg: "Q\r\n"

Description: Reports the latest measurement fields as defined by the most recent …M? command.

Syntax: ASCII Character 'Q', terminated by 0x0d 0x0a (CR & LF) Response: “H 12345 T 12345 Z 00010\r\n”

压力传感器分类与简介

将压力转换为电信号输出的传感器。通常把压力测量仪表中的电测式仪表称为压力传感器。压力传感器一般由弹性敏感元件和位移敏感元件(或应变计)组成。弹性敏感元件的作用是使被测压力作用于某个面积上并转换为位移或应变,然后由位移敏感元件(见位移传感器)或应变计(见电阻应变计、半导体应变计)转换为与压力成一定关系的电信号。有时把这两种元件的功能集于一体,如压阻式传感器中的固态压力传感器。压力是生产过程和航天、航空、国防工业中的重要过程参数,不仅需要对它进行快速动态测量,而且还要将测量结果作数字化显示和记录。大型炼油厂、化工厂、发电厂和钢铁厂等的自动化还需要将压力参数远距离传送(见遥测),并要求把压力和其他参数,如温度、流量、粘度等一起转换为数字信号送入计算机。因此压力传感器是极受重视和发展迅速的一种传感器。压力传感器的发展趋势是进一步提高动态响应速度、精度和可靠性以及实现数字化和智能化等。常用压力传感器有电容式压力传感器、变磁阻式压力传感器(见变磁阻式传感器、差动变压器式压力传感器)、霍耳式压力传感器、光纤式压力传感器(见光纤传感器)、谐振式压力传感器等。 传感器的基本知识 一、传感器的定义 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 二、传感器的分类 目前对传感器尚无一个统一的分类方法,但比较常用的有如下三种: 1、按传感器的物理量分类,可分为位移、力、速度、温度、流量、气体成份等传感器 2、按传感器工作原理分类,可分为电阻、电容、电感、电压、霍尔、光电、光栅、热电偶等传感器。 3、按传感器输出信号的性质分类,可分为:输出为开关量(“1”和"0”或“开”和“关”)的开关型传感器;输出为模拟型传感器;输出为脉冲或代码的数字型传感器。 关于传感器的分类: 1.按被测物理量分:如:力,压力,位移,温度,角度传感器等; 2.按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等; 3.按照传感器转换能量的方式分: (1)能量转换型:如:压电式、热电偶、光电式传感器等; (2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等; 4.按照传感器工作机理分: (1)结构型:如:电感式、电容式传感器等; (2)物性型:如:压电式、光电式、各种半导体式传感器等; 5.按照传感器输出信号的形式分: (1)模拟式:传感器输出为模拟电压量; (2)数字式:传感器输出为数字量,如:编码器式传感器。 三、传感器的静态特性 传感器的静态特性是指对静态的输入信号,传感器的输出量与输入量之间所具有相互关系。因为这时输入量和输出量都和时间无关,所以它们之间的关系,即传感器的静态特性可用一个不含时间变量的代数方

(整理)传感器的含义.

1、传感器的定义 英文名称:transducer / sensor 传感器是一种物理装置或生物器官,能够探测、感受外界的信号、物理条件(如光、热、湿度)或化学组成(如烟雾),并将探知的信息传递给其他装置或器官。 国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量并按照一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 2、传感器的分类 可以用不同的观点对传感器进行分类:它们的转换原理(传感器工作的基本物理或化学效应);它们的用途;它们的输出信号类型以及制作它们的材料和工艺等。 根据传感器工作原理,可分为物理传感器和化学传感器二大类:传感器工作原理的分类物理传感器应用的是物理效应,诸如压电效应,磁致伸缩现象,离化、极化、热电、光电、磁电等效应。被测信号量的微小变化都将转换成电信号。 化学传感器包括那些以化学吸附、电化学反应等现象为因果关系的传感器,被测信号量的微小变化也将转换成电信号。

有些传感器既不能划分到物理类,也不能划分为化学类。大多数传感器是以物理原理为基础运作的。化学传感器技术问题较多,例如可靠性问题,规模生产的可能性,价格问题等,解决了这类难题,化学传感器的应用将会有巨大增长。 按照其用途,传感器可分类为: 压力敏和力敏传感器 液面传感器 速度传感器 加速度传感器 湿敏传感器 气敏传感器 真 以其输出信号为标准可将传感器分为: 模拟传感器—— 数字传感器——将被测量的非电学量转换成数字输出信号(包括直接和间接转换) 膺数字传感器——将被测量的信号量转换成频率信号或短周期 信号的输出(包括直接或间接转换) 开关传感器——当一个被测量的信号达到某个特定的阈值时,传 感器相应地输出一个设定的低电平或高电平信号。

二氧化碳传感器的工作原理

随着我国大气污染日益严重,近日杭州、北京等大半个中国都被雾霾严重袭击。传感器作为测量气体浓度的一种检测装置也在此同时不断的出现和发展。传感器的种类繁多,每种传感器都适用一定的应用领域,在测量气体上包括化学传感器、陶瓷传感器和测量湿度的温湿度记录仪,二氧化碳传感器等。 传感器需要经常校准,并只能在清洁的环境中工作。传统的co2传感器对于像co2这样的不可燃气体的测量尤其困难,化学传感器很难胜任这项工作,使用寿命也很短。其他的各种间接测量方法,由于它们通常不仅仅对一种气体组成度敏感。所以其精度很低且漂移量较大。与化学二氧化碳传感器相比,光学测量仪器有许多优点,但其昂贵的价格也确时降低了它的市场竞争力。不过,随着产品集成化程度的提高,其生产成本也正在降低。 这种co2传感器的工作原理是:采用了单束双波长非发散性红外线洲量方法,其独特之处在于它的滤光镜——1种袖珍电子调谐干扰仪。这种滤光铣保证了它所透过的光波波长的精确性和稳定性,避免了由于滤光镜厦探刹器不匹配而发生的问题及传统的旋转式滤光镜所产生的磨损。本文所要讨论的是光学测量方法中的一种即非发散性红外线测量。 各种气体都会吸收光。不同的气体吸收不同波长的光,比如co2就对红外线(波长为4。26m)最敏感。二氧化碳分析仪通常是把被测气体吸入一个测量室,测量室的一端安装有光源而另一端装有滤光镜和探测器。滤光镜的作用是只容许某一特定波长的光线通过。探测器则测量通过测量室的光通量。探测器所接收到的光通量取决于环境中被测气体的浓度。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.wendangku.net/doc/dc14813610.html,/

传感器简答题

1-2 什么是测量误差?测量误差有几种表达方式?它们通常应用在什么场合? 测量误差是测得值减去被测值的真值。 测量误差有五种表达方式分别是: (1)绝对误差:当被测量大小相同时,常用绝对误差来评定准确度。 (2)实际相对误差:相对误差常用来表示和比较测量的准确度。 (3)引用误差:引用误差是仪表中通用的一种误差表示方法。 (4)基本误差 (5)附加误差:基本误差和附加误差常用于仪表和传感器中。 1-6 什么是随机误差?系统误差可以分为哪几类?系统误差有哪些检验方法?如何减小和消除系统误差? 在同一测量条件下,多次测量同一量值时,绝对值和符号保持不变,或在条件改变时,按一定规律变化的误差称为系统误差。 系统误差可分为恒值(定值)系统误差和变值系统误差。误差的绝对值和符号已确定的系统误差称为恒值(定值)系统误差;绝对值和符号变化的系统误差称为变值系统误差,变值系统误差又可分为线性系统误差、周期性系统误差和复杂规律系统误差等。 检验方法:实验对比法;残余误差观察法;准则检查法 系统误差的消除: 1. 从产生误差根源上消除系统误差; 2.用修正方法消除系统误差的影响; 3. 在测量系统中采用补偿措施; 4.可用实时反馈修正的办法,来消除复杂的变化系统误差。 1-8什么是粗大误差?如何判断监测数据中存在的粗大误差? 超出在规定条件下的预期的误差成为粗大误差,粗大误差又称为疏忽误差。 判断粗大误差的原则是看测量值是否满足正态分布,要对测量数据进行必要的检验。通常用来判断粗大误差的准则有:3 准则(莱以特准则);肖维勒准则;格拉布斯准则。 2-1什么叫传感器?它由哪几部分组成?他们的作用及相互关系如何? 答:传感器是能感受(或响应)规定的被测量并按照一定的规律转换成可用输出信号的器件或装置。 通常传感器有敏感元件和转换元件组成。其中,敏感元件是指传感器中能直接感受或响应被测量的部份;转换元件是指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测

CO2传感器在呼气末二氧化碳(ETCO2)

CO2传感器在呼气末二氧化碳(ETCO2)监测中的应用 呼气末二氧化碳(ETCO2)监测是一项无创、简便、实时、连续的功能学监测指标。 其在急诊科的临床工作中得到了越来越广泛的使用。工采了解到在呼吸过程中将测得的二氧化碳浓度与相应时间一- -对应描图,即可得到所谓的二氧化碳曲线。 对于小气道梗阻导致通气困难的患者,如重症哮喘和慢性阻塞性肺病患者,在采用二氧化碳分压监测仪时,由于肺泡内气体排出速度缓慢,时相Ⅱ波形上升趋于平缓。气体存留在肺泡内的时间较久,肺泡气的二氧化碳分压更接近静脉血二氧化碳分压。这一部分气体在呼气后期缓慢排出,使得二氧化碳波形在时相Ⅲ呈斜向上的鲨鱼鳍样特征性改变。 严重气道梗阻患者,因死腔通气比例增大,可导致呼出气二氧化碳分压显著下降。对于治疗性低通气患者,例如急性呼吸窘迫综合征患者进行保护性肺通气策略治疗时,小潮气量(6mL/kg甚至更低)通气增加了二氧化碳滞留的风险。实时监测ETCO2,可以及时发现二氧化碳潴留,并减少动脉血气检查频次。 低通气高危患者监测,推荐深度镇静镇痛或麻醉患者监测ETCO2。对于存在低通气风险的患者,例如镇痛镇静、门急诊手术的患者,使用ETCO2监测仪发现的通气异常早于氧饱和度下降和可观察到的低通气状态。 呼吸末二氧化碳测量技术近年来有了很大的发展,特别是二氧化碳检测设备的关键部件,如红外光源和红外探测器的发展,为二氧化碳传感器检测技术的进步提供了很大的帮助。该技术在临床实践中的应用越来越广泛,临床对该技术的要求也越来越高。例如,对信号质量控制、呼吸参数测量的准确性和可靠性提出了更高的要求。 工采英国GSS高速响应红外二氧化碳传感器(NDIR CO2传感器) - SprintIR,具有高速检测(20Hz)的特性,其非扩散红外光吸收技术的感测技术适用于捕捉CO2浓度快速度变化的领域,如新陈代谢评估和呼吸机。 1/ 1

传感器性能指标

一、测量仪表的基本性能 1、精确度 (1)精密度δ 它表明仪表指示值的分散性,即对某一稳定的被测量,由同一个测量者,用同一个仪表,在相当短的时间内,连续重复测量多次,其测量结果(指示值)的分散程度。δ愈小,说明测量愈精密。 例如,某温度仪表的精密度δ=0.5℃,即表示多次测量结果的分散程度不大于0.5℃。精密度是随机误差大小的标志,精密度高,意味着随机误差小。 但是必须注意,精密度与准确度是两个概念,精密度高不一定准确。 (2)准确度ε 它表明仪表指示值与真值的偏离程度。 例如,某流量表的准确度ε=0.3m3/s,表示该仪表的指示值与真值偏离0.3m3/s。准确度是系统误差大小的标志,准确度高,意味着系统误差小。同样,准确度高不一定精密。(3)精确度τ 它是精密度与准确度的综合反映,精确度高,表示精密度和准确度都比较高。在最简单的情况下,可取两者的代数和,即τ=δ+ε。精确度常以测量误差的相对值表示。 2、稳定性 (1)稳定度 指在规定时间内,测量条件不变的情况下,由于仪表自身随机性变动、周期性变动、漂移等引起指示值的变化。一般以仪表精密度数值和时间长短一起表示。 例如,某仪表电压指示值每小时变化1.3V,则稳定性可表示为1.3mV/h。 (2)影响量 测量仪表由外界环境变化引起指示值变化的量,称为影响量。它是由温度、湿度、气压、振动、电源电压及电源频率等一些外界环境影响所引起的。说明影响量时,必须将影响因素与指示值偏差同时表示。 例如,某仪表由于电源电压发生变化10%而引起其指示值变化0.02mA,则应写成 0.02mA/U±10%。 二、传感器的分类和性能指标 1、传感器的分类

卫生型压力传感器的功能及参数

卫生型压力传感器的功能 卫生型压力传感器属于高温熔体压力传感器系列,除具有压力传感器本身的特性之外,还具有卫生级仪器的特性。 卫生型压力传感器的特性:刚性杆和软管隔离,环保安全的隔离膜片组件结构,均不含或产生有害的物质,介质温度在400℃以下,具有良好的稳定性和精度。 卫生型压力传感器主要应用于食品、药物、饮料、酿酒、医疗器械等设备的高温流体/熔体/气体介质的压力测量和控制。 卫生型压力传感器的主要技术参数 量程:0~1~300MPa 综合精度:0.25%FS;0.5%FS 输出:2.0mV/V;4~20mA;0~5V;1~5V;0~10V 校准信号:80%FS校准;零点与满量程调节 工作温度:-10~450℃ 零点温漂移:≤±0.05%FS℃ 量程温度漂移:≤±0.05%FS℃ 安全过载:150%FS 极限过载:200%FS 响应时间:5 mS(上升到90%FS) 供电电压:传感器:10VDC(6-12VDC)变送器:24VDC(9~36 V) 长期稳定性:0.1%FS/年 绝缘电阻:大于2000MΩ 100VDC 振动影响:对于20HZ-1KHZ的机械振动,输出变化小于0.1%FS 密封等级:IP65 信号引出:五芯接插件5pin

螺纹连接:M14X1.5;M16X1.5;M18X1.5;M20X1.5;M22X1.5 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.wendangku.net/doc/dc14813610.html,/

带你认识基本的传感器特性参数

带你认识基本的传感器特性参数 复性、精度、分辨率、零点漂移、带宽,本文将对这些参数进行一一介绍。 量程 每个传感器都有自身的测量范围,被测量处在这个范围内时,传感器的输出信号才是有一定的准确性的。 传感器的量程X FS、满量程输出值Y FS、测量上限X max、测量下限X min的关系见下图。 灵敏度 传感器的灵敏度是指其输出变化量ΔY与输入变化量ΔX的比值,可以用k表示。对于一个线性度非常高的传感器来说,也可认为等于其满量程输出值Y FS与量程X FS的比值。灵敏度高通常意味着传感器的信噪比高,这将会方便信号的传递、调理及计算。 k=ΔY ΔX

线性度 传感器的线性度又称非线性误差,是指传感器的输出与输入之间的线性程度。理想的传感器输入-输出关系应该是程线性的,这样使用起来才最为方便。但实际中的传感器都不具备这种特性,只是不同程度的接近这种线性关系。 实际中有些传感器的输入-输出关系非常接近线性,在其量程范围内可以直接用一条直线来拟合其输入-输出关系。有些传感器则有很大的偏离,但通过进行非线性补偿、差动使用等方式,也可以在工作点附近一定的范围内用直线来拟合其输入-输出关系。 选取拟合直线的方法很多,上图表示的是用最小二乘法求得的拟合直线,这是拟合精度最高的一种方法。实际特性曲线与拟合直线之间的偏差称之为传感器的非线性误差δ,其最大值与满量程输出值Y FS的比值即为线性度γL。 γL=± δ Y FS ×100% 迟滞

当输入量从小变大或从大变小时,所得到的传感器输出曲线通常是不重合的。也就是说,对于同样大小的输入信号,当传感器处于正行程或反行程时,其输出值是不一样大的,会有一个差值ΔH,这种现象称为传感器的迟滞。 产生迟滞现象的主要原因包括传感器敏感元件的材料特性、机械结构特性等,例如运动部件的摩擦、传动机构间隙、磁性敏感元件的磁滞等等。迟滞误差γH的具体数值一般由实验方法得到,用正反行程最大输出差值ΔH max的一半对其满量程输出值Y FS的比值来表示。 γH=±?H max FS ×100% 重复性 一个传感器即便是在工作条件不变的情况下,若其输入量连续多次地按同一方向(从小到大或从大到小)做满量程变化,所得到的输出曲线也是会有不同的,可以用重复性误差γR 来表示。 重复性误差是一种随机误差,常用正行程或反行程中的最大偏差ΔY max的一半对其满量程输出值Y FS的比值来表示。

新型的数字温湿度传感器性能参数.

新型的数字温湿度传感器性能参数 LM-400、LM-410、LM-420是一种新型的温度或温湿度采集模块,利用它可以实现现场温度值、相对湿度值的采集,同时利用其自身的RS-485总线串行通信接口可以方便地和机房监控主机或其他工控主机进行联网。 工作于-40℃~85℃工业级温湿度采集模块,按显示方式分,有不带LCD显示屏(LM-400)和带LCD显示屏(LM-410、LM-420)两类,按报警方式分有不带独立报警(LM-400、LM-410)和带独立报警(LM-420)两类。采集温度范围为-40℃~+85℃,精度0.1℃;相对湿度范围0~100%,精度0.5% 。 LM-400、LM-410、LM-420温湿度采集模块可通过隔离的485通讯接口与RS-485局域控制网组网连接,RS-485最多允许32个温湿度采集模块挂在同一总线上,但如采用Link-Max的RS-485中继器,则可将多达256个温湿度采集模块连到同一网络,且最大通信距离为1200m。在将温湿度采集模块安装入网前,应对其进行配置,并首先应将模块的波特率与网络的波特率设为一致,同时应分别设置温湿度采集模块为不同的地址,防止各温湿度采集模块的地址冲突。 将温湿度采集模块正确连接后,主机发出读数据命令即可使温湿度采集模块将数据送回主机。温湿度采集模块内的数据每秒钟更新一次,并周期性地更新LCD显示屏的显示数据。

LM-400用于不需要显示的场合,如户外ATM机柜,LM-410用于不需要现场独立报警的场合,如有主机控制的安防工程;LM-420是功能最多的型号,除可完成温度采集、湿度采集外,还可以预先设置温度、湿度的上下限报警值,当环境参数超过该设定值时,机内蜂鸣器立即响起报警声,同时LM-420机内的继电器吸合,可以用来控制一个声光报警器(警号),不用主机也可实现自主报警,让现场管理人员第一时间地作出应对措施。 LM-400、LM-410、LM-420智能温湿度采集模块是一种具有广泛应用前景的全数字化温湿度采集模块,使用该模块可使计算机房的环境监控变得十分容易,监控主机可方便地进行机房的各重要区块(如刀片服务器机柜、路由器机柜、网络交换机机柜、UPS配电柜)的温湿度数据采集,同时简化了整个机房监控系统,而机房监控系统的可靠性也得到了提高。因此,该模块在机房监控系统、电力系统和工业自动化等领域获得广泛的应用,具有极优的性价比。 LM-400、LM-410、LM-420还可和LM-8052NET配合,组成TCP/IP的温度采集网络,可实现远程采集温度与湿度。 性能参数 输入响应时间(模块内数据更新率)为1秒同步测量 1路隔离的485, MODBUS RTU通讯协议 采用RS-485二线制输出接口时,具有+15kV的ESD保护功能

LH-S09A 微型拉压力传感器特点及用途,LH-S09A 微型拉压力传感器技术参数

LH-S09A 微型拉压力传感器特点及用途,LH-S09A 微型拉压力传感 器技术参数 随着中国自动化不断发展进步,工控自动化产品也是大众需求。上海力恒传感技术有限公司致力于力传感器及其信号处理的系统工作,公司在力传感器领域有着不断的追求。下面由力恒传感小编为大家讲解LH-S09A 微型拉压力传感器特点,LH-S09A 微型拉压力传感器用途,LH-S09A 微型拉压力传感器技术参数,LH-S09A 微型拉压力传感器型号相关内容! LH-S09A 微型拉压力传感器 型号:LH-S09A 高度19.1,宽度22,厚度6.7,可测量拉压双向力;高速动态响应输出,精度0.05%;测力部分:内螺纹方向的拉伸或压缩。广泛应用于自动化力值检测,典型应用:按键检测。

注:1、螺丝安装时,深度不可超过4毫米。不可接触到传感器中间部分,以免影响测量结果。 2、传感器安装时,两边盖板不可与中间柱体接触,否则影响测试准度。 注:螺丝安装时,不能拧太深。不可接触到传感器中间部分,以免影响测量结果。技术参数 量程Capacity 0-1N~50N~2000N 材质 Material 不锈钢 输出灵敏度Rated output 2.0 ±10% mV/V 输出电阻 Output Impedance 350±3Ω 非线性Non-linearity 0.05 % F.S. 绝缘电阻 Insulation >5000MΩ /10VDC 滞后Hysteresis 0.05 % F.S. 使用电压 Recommended 2.5-5V

以上内容是由上海力恒传感技术有限公司小编整理,希望能帮助到大家~ 上海力恒传感技术有限公司致力于力传感器及其信号处理的系统工作,公司在力传感器领域有着不断的追求。 Excitation 重复性 Repeatability 0.05 % F.S. 至大工作电压 Excitation max 10V 蠕变(30分钟) Creep(30min) 0.05 % F.S. 温度补偿范围 Compensated Temp Range -10~60℃ 温度灵敏度漂移 Temp Effect On Output 0.1 % F.S./ 10℃ 工作温度范围 Operating Temp Range -20~80℃ 零点温度漂移 Temp Effect On Zero 0.1 % F.S./ 10℃ 安全负载 Safe Load 120% 防护等级 Protection Class IP 65 极限负载 Ultimate Load Limit 150% 输入阻抗 Input Impedance 350±15Ω 电缆长度 Cable Length ?2-3 x 3m 电缆线连接方式 Wire Connection Ex +: 红 (Red) ; Ex -: 黑 (Black) ; Sig +: 绿 (Green ); Sig -: 白 (White)(压为正,拉为负);

传感器复习题-李章红

传感器复习题-李章红

传感器复习题 1.1、什么是传感器?按国标定义,“传感器”应如何说明含义? 答:从广义的角度来说,感知信号检出器件和信号处理部分总称为传感器。我们对传感器的定义:一种能把特定信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。从狭义的角度来对传感器定义是:能把外界非电信号转换成电信号输出的器件。 我国国家标准(GB7665-87)对传感器的定义是:“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出:传感器的输出与输入之间存在确定的关系。按使用的场合不同传感器又称为变换器、换能器、探测器。 1.2、传感器有哪几部分组成?试述它们的作用及相互关系。 答:(1)组成:由敏感元件、转换元件、基本电路组成。 (2)关系及作用:传感器处于研究对象与测试系统的接口位置,即检测与控制之首。传感器是感知、获取及检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号。其作用于地位特别重要 1.4、传感器如何分类?按传感器检测的范畴可分为哪几种? 答:按照我国制定的传感器分类体系表,传感器分为物理传感器、化学传感器、生物量传感器三大类,含12个小类。按照传感器的检测对象可分为:力学量、热学量、流体量、光学量、电量、磁学量、声学量、化学量、生物量、机器人等等。 1.7、请列举出你用到或者看到的传感器,并说明其作用。如果没有传感器,

二氧化碳传感器方案

XXX公司 二氧化碳传感器在会议室内使用的方案 XXXX公司 2013年4月10日

目录 第一部分二氧化碳的概述 (3) 第二部分二氧化碳传感器在通风控制领域的应用 (4) 第三部分二氧化碳传感器的在楼宇自中的优点 (8) 第四部分XXX项目涉及二氧化碳传感器改造的房间 (9)

第一部分二氧化碳的概述 我们的地球被一层大气包围着,其中氧气占21%,78%是氮气,1%是其它气体。这1%气体当中,就有只有一小部分为二氧化碳气体,约为300ppm(百万分之一,即0.03%),它比空气重1.5倍;可吸收红外波,产生温室效应。 二氧化碳在空气中的含量越高,对人体的影响就越大,当二氧化碳含量高出0.7%时,人体就会感到不舒服,当超过10%时,人体就会出现昏迷和死亡。达到20%,人就会在几秒内死亡(详见图一)。因此在人群比较密集的地方,二氧化碳含量是一个非常重要的参数,直接关系到人体舒适度和安全。但是它又是植进行光合作用的重要元素,也可以说,没有二氧化碳,也就没有自然界的生机勃勃。因此,由于二氧化碳气体这些特性,使得像机场、大厦、办公室、厂矿、温室、实验室、化工、食品保鲜等行业都会需要对二氧化碳值进行测量。

图一:二氧化碳含量所产生的影响 第二部分二氧化碳传感器在通风控制领域的应用根据相关标准,室内二氧化碳(CO2)的浓度和通风率之间有着密切的关系。无论是在空间内, 人多或是少的情况下,此系统能有效地节约宝贵的能源和保持室内良好的空气品质。一般上, 安装以CO2控制为基础的通风控制系统带来的好处显现, 设备的投资可在两年内由所节省的能源得到回报。目前,这种通风控制系统已经被广泛地应用在带有先进大楼集中管理(BMS)系统的智能化楼宇群中。 本系统结构应用在需要实现通风控制的环境中。 如下图,整个自动化通风系统的最小组成包括:一个eSENSE2传感器及一个PP-116电源模块(可以提供传感器24VDC电源和控制换气扇230VAC电源的继电开关)。

传感器的主要参数特性

传感器的主要参数特性 传感器的种类繁多,测量参数、用途各异.共性能参数也各不相同。一般产品给出的性能参数主要是静态特性利动态特性。所谓静态特性,是指被测量不随时间变化或变化缓慢情况下,传感器输出值与输入值之间的犬系.一般用数学表达式、特性曲线或表格来表示。动态特性足反映传感器随时间变化的响应特性。红外碳硫仪动恋特性好的传感器,其输出量随时间变化的曲线与被测量随时间变化的曲线相近。一般产品只给出响应时间。 传感器的主要特性参数有: (1)测量范围(量程) 量程是指在正常工种:条件下传感器能够测星的被测量的总范同,通常为上限值与F 限位之差。如某温度传感器的测员范围为零下50度到+300度之间。则该传感器的量程为350摄氏度。 (2)灵敏度 传感器的灵敏度是指佑感器在稳态时输出量的变化量与输入量的变化量的比值。通常/d久表示。对于线性传感器,传感器的校准且线的斜率就是只敏度,是一个常量。而非线性传感器的灵敏度则随输入星的不同而变化,在实际应用巾.非线性传感器的灵敏度都是指输入量在一定范围内的近似值。传感器的足敏度越高.俏号处理就越简单。 (3)线性度(非线性误差) 在稳态条件下,传感器的实际输入、输出持件曲线勺理想直线之日的不吻合程度,称为线性度或非线性误差,通常用实际特性曲线与邵想直线之司的最大偏关凸h m2与满量程输出仪2M之比的百分数来表示。该系统的线性度X为 (4)不重复性 z;重复性是指在相同条件下。传感器的输人员技同——方向作全量程多次重复测量,输出曲线的不一致程度。通常用红外碳硫仪3次测量输11j的线之间的最大偏差丛m x与满量程输出值ym之比的百分数表示,1、2、3分别表示3次所得到的输出曲线.它是传感器总误差中的——项。 (5)滞后(迟滞误差) 迟滞现象是传感器正向特性曲线(输入量增大)和反向特性曲线(输入量减小)的不重合程度,通常用yH表示。

压力传感器原理【详解】

压力传感器原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一.压力传感器原理 一些常用传感器原理及其应用: 1、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。

金属电阻应变片的内部结构 1、应变片压力传感器原理 如图1所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω?cm2/m) S——导体的截面积(cm2) L——导体的长度(m) 我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长

二氧化碳传感器检测原理

CO2传感器/变送器原理 目前检测CO2的方法主要有化学法、电化学法、气相色谱法、容量滴定法等这些方法普遍存在着价格贵、普适性差等问题测量精度还较低。而传感器法具有安全可靠、快速直读、可连续监测等优点目前应用于二氧化碳气体传感器主要有电化学式、热传导式、电容式、固体电介质式和红外吸收式等。下面主要介绍几种传感器 1、固体电解质CO2气体传感器 固体电解质CO2气体传感器是由Gauthier提出的。初期用K2CO3固体电解质制备的电位型CO2传感器受共存水蒸气影响很大难以实用后来有人利用稳定化锆酸盐Zr O2?MgO设计一种CO2敏感传感器。La F3单晶与金属碳酸盐相结合制成的CO2传感器具有良好的气敏特性在此基础上有人提出利用稳定化锆酸盐/碳酸盐相结合而成的传感器。1990年日本山田等人采用NASICON(Na+超导体)固体电解质和二元碳酸盐(Ba CO3Na2CO3)电极使传感器响应特性有了大的改进。但是这类电位型的固态CO2传感器需要在高温(400~600℃)下工作且只适宜于检测低浓度CO2应用范围受到限制。现有采用聚丙烯腈(PAN)、二甲亚砜(DMSO)和高氯酸四丁基铵(TBAP)制备了一种新型固体聚合物电解质。以恰当用量配比PAN(DMSO)2(TBAP)2聚合物电解质呈有高达10-4S·cm- 1的室温离子电导率和好的空间网状多孔结构 由其在金微电极上成膜构成的全固态电化学体系在常温下对CO2气体有良好的电流响应特性消除了传统电化学传感器因电解液渗漏或干涸带来的弊端又具有体积小、使用方便的独到优点但其成本过。

2、电容式传感器 电容式传感器是利用金属氧化物一般比其碳酸盐的介电常数要大利用电容的变化来检测CO2。报道采用溶胶——凝胶法以醋酸钡和钛酸丁脂为原材料乙醇和醋酸为溶剂制备了BaTi O3纳米晶材料。采用这种纳米晶材料为基体制备电容式CO2气体传感器.其缺点是检测低浓度CO2时输出倍号小且易受其他气体的影响。 3、光纤CO2传感器 光纤CO2传感器利用CO2与水结合后生成的碳酸酸性很弱其酸性的检测多采用灵敏度较高的荧光法如杨荣华等人研制的基于荧光碎灭原理的有叶琳的聚氯乙烯敏感膜其原理是利用环糊精对叶琳的荧光增强效应且该荧光能被溶液中二氧化碳碎灭该膜响应速度快、重现性好、抗干扰能力强测定碳酸的范围达到了 4.75×10?7~3.90×10?5mol/L这对化学传感器来说是一个较好的性能指标。该方法克服了化学发光传感器消耗试剂的不足不必连续不断地在反应区加送试剂。但其系统繁琐此外使用寿命也较短。 4、红外吸收型CO2传感器(如安易买商城上销售的TELASIA VS08-K 二氧化碳传感器/变送器) 红外吸收c o2传感器是利用不同气体对红外辐射有着不同的吸收光谱吸收强度与气体浓度有关的事实来检测co2浓度的。红外吸收型气体分析检测仪一般由红外辐射源(白炽灯或者红外LED)测量气样室波长选择装置(滤光片)红外探测装置(如热电探测器热电池)组成。如果气体吸收谱线在入射光谱范围内那么红外辐射透过被测气体后在

德国HYDAC压力传感器的性能参数

德国HYDAC压力传感器的性能参数 HYDAC压力传感器的种类繁多,其性能也有较大的差异,如何选择较为适用的传感器,做到经济、合理的使用。 1. 额定压力范围 额定压力范围是满足标准规定值的压力范围。也就是在最高和最低温度之间,传感器输出符合规定工作特性的压力范围。在实际应用时传感器所测压力在该范围之内。 2. 最大压力范围 最大压力范围是指传感器能长时间承受的最大压力,且不引起输出特性永久性改变。特别是半导体压力传感器,为提高线性和温度特性,一般都大幅度减小额定压力范围。因此,即使在额定压力以上连续使用也不会被损坏。一般最大压力是额定压力最高值的2-3倍。 3. 损坏压力 损坏压力是指能够加在传感器上且不使传感器元件或传感器外壳损坏的最大压力。 4. 线性度 线性度是指在工作压力范围内,传感器输出与压力之间直线关系的最大偏离。 5.压力迟滞 为在室温下及工作压力范围内,从最小工作压力和最大工作压力趋近某一压力时,传感器输出之差。 6.温度范围 压力传感器的温度范围分为补偿温度范围和工作温度范围。补偿温度范围是由于施加了温度补偿,精度进入额定范围内的温度范围。工作温度范围是保证压力传感器能正常工作的温度范围。 HYDAC技术参数(量程15MPa-200MPa) 参数单位技术指标参数单位技术指标 灵敏度 mV/V 1.0±0.05 灵敏度温度系数≤%F·S/10℃±0.03 非线性≤%F·S ±0.02~±0.03 工作温度范围℃ -20℃~+80℃ 滞后≤%F·S ±0.02~±0.03 输入电阻 400 10ù 重复性≤%F·S ±0.02~±0.03 输出电阻 350 5ù 蠕变≤%F·S/30min ±0.02 安全过载≤%F·S 150% F·S 零点输出≤%F·S ±2 绝缘电阻 M≥5000M(50VDC) 零点温度系数≤%F·S/10℃±0.03 推荐激励电压 V 10V-15V

传感器复习题与答案(20200514000120)

传感器原理与应用复习题 第一章传感器概述 1.什么是传感器?传感器由哪几个部分组成?试述它们的作用和相互关系。 (1)传感器定义:广义的定义:一种能把特定的信息(物理、化学、生物)按一定的规律转换成某种可用信号输出的器件和装置。广义传感器一般由信号检出器件和信号处理器件两部分组成;狭义的定义:能把外界非电信号转换成电信号输出的器件。 我国国家标准对传感器的定义是:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件和装置。 以上定义表明传感器有这样三层含义:它是由敏感元件和转换元件构成的一种检测装置;能按一定规律将被测量转换成电信号输出;传感器的输出与输入之间存在确定的关系。 (2)组成部分:传感器由敏感元件,转换元件,转换电路组成。 (3)他们的作用和相互关系:敏感元件是直接感受被测量,并输出与被测量成确定关系的物理量;转换元件把敏感元件的输出作为它的输入,转换成电路参量;上述电路参数接入基本转换电路,便可转换成电量输出。 2.传感器的总体发展趋势是什么?现代传感器有哪些特征,现在的传感器多以什么物理量输出? (1)发展趋势:①发展、利用新效应;②开发新材料;③提高传感器性能和检测范围;④微型化与微功耗;⑤集成化与多功能化;⑥传感器的智能化;⑦传感器的数字化和网络化。 (2)特征:由传统的分立式朝着集成化。数字化、多动能化、微型化、智能化、网络化和光机电一体化的方向发展,具有高精度、高性能、高灵敏度、高可靠性、高稳定性、长寿命、高信噪比、宽量程和无维护等特点。 (3)输出:电量输出。 3.压力、加速度、转速等常见物理量可用什么传感器测量?各有什么特点? 名称特点应用 电阻式传感器电阻式传感器具有体积小、质量轻、 结构简单、输出精度较高、稳定性好、 适于动态和静态测量等特点。 用于力、力矩、压力、位移、加速度、 重量等参数的测量 电容式传感器小功率、高阻抗;具有很高的输入阻 抗;静电引力小,工作所需作用力小; 有较高的频率,动态响应特性好;结 构简单,可进行非接触测量。优点是 电容式传感器用于位移、振动、角度、 加速度等机械量精密测量。逐渐应用 于压力、压差、液面、成份含量等方 面的测量。

二氧化碳传感器 CO2

IRceL ? CO2 Technical Specifications Non-Dispersive Infra-Red (NDIR)0-5% vol. Carbon Dioxide Within ± (0.1% vol CO 2 + 4% of concentration) <35 Seconds < ±0.003% CO 2< ±0.075% CO 2 See Operating Principles OP17 Product Dimensions All dimensions in mm All tolerances ±0.15mm unless othewise stated IMPORTANT NOTE: Connection should be made via PCB sockets only. Soldering to the pins will seriously damage your sensor. All performance data is based on conditions at 20°C, 50%RH and 1013mBar, using City Technology recommended circuitry. For sensor performance data under other conditions, refer to the Characterisation Note and Operating Principles. Carbon Dioxide (CO 2) Gas Sensor Part Number: IRCEL-CO2R MEASUREMENT Operating Principle Measurement Range Accuracy (-20°C to +50°C)Response Time (T 90)Repeatability: Zero 5% CO 2Linearity 3-5 VDC, 3.3 V to utilise EEPROM calibration <100 mW at 3.3 V 2 Hz, 50% duty cycle 0.005% CO 2 at zero 0.15% CO 2 at range <10 Seconds ELECTRICAL Supply Voltage Power Consumption Recommended Lamp Frequency Minimum Resolution Warm-up Time Stainless Steel (see back page) 23 g Any MECHANICAL Housing Material Weight Orientation General Purpose Portable / Fixed CO 2 Detection -20°C to +50°C 0 to 99% RH (non-condensing)700 to 1300 mBar with compensation ENVIRONMENTAL Typical Applications Operating Temperature Range Operating Humidity Range Operating Pressure Range < 80 ppm CO 2 per month -20°C to +50°C > 5 years 12 months from date of despatch LIFETIME Long Term Zero Drift Recommended Storage Temp MTBF Standard Warranty Key Features & Benefits: ?Integrated thermister for accurate temperature compensation ?EEPROM programmed with sensor specfic performance characteristics ? Compact Size Pin Function 1Lamp return 2Lamp +5V 3+5V pyro supply 4Detec tor output 5Referenc e output 6Thermis tor output 7 0V py ro s upply 中国  北京赛斯维测控技术有限公司北京市朝阳区望京西路48号金隅国际C座1002 电话:+86 010 8477 5646传真:+86 010 5894 9029邮箱:i angarmy@https://www.wendangku.net/doc/dc14813610.html,

相关文档
相关文档 最新文档