文档库 最新最全的文档下载
当前位置:文档库 › 直线回归与线性相关基本知识

直线回归与线性相关基本知识

多元线性回归模型的案例分析

1. 表1列出了某地区家庭人均鸡肉年消费量Y 与家庭月平均收入X ,鸡肉价格P 1,猪肉价格P 2与牛肉价格P 3的相关数据。 年份 Y/千 克 X/ 元 P 1/(元/千克) P 2/(元/千克) P 3/(元/千克) 年份 Y/千克 X/元 P 1/(元/ 千克) P 2/(元/ 千克) P 3/(元/千克) 1980 2.78 397 4.22 5.07 7.83 1992 4.18 911 3.97 7.91 11.40 1981 2.99 413 3.81 5.20 7.92 1993 4.04 931 5.21 9.54 12.41 1982 2.98 439 4.03 5.40 7.92 1994 4.07 1021 4.89 9.42 12.76 1983 3.08 459 3.95 5.53 7.92 1995 4.01 1165 5.83 12.35 14.29 1984 3.12 492 3.73 5.47 7.74 1996 4.27 1349 5.79 12.99 14.36 1985 3.33 528 3.81 6.37 8.02 1997 4.41 1449 5.67 11.76 13.92 1986 3.56 560 3.93 6.98 8.04 1998 4.67 1575 6.37 13.09 16.55 1987 3.64 624 3.78 6.59 8.39 1999 5.06 1759 6.16 12.98 20.33 1988 3.67 666 3.84 6.45 8.55 2000 5.01 1994 5.89 12.80 21.96 1989 3.84 717 4.01 7.00 9.37 2001 5.17 2258 6.64 14.10 22.16 1990 4.04 768 3.86 7.32 10.61 2002 5.29 2478 7.04 16.82 23.26 1991 4.03 843 3.98 6.78 10.48 (1) 求出该地区关于家庭鸡肉消费需求的如下模型: 01213243ln ln ln ln ln Y X P P P u βββββ=+++++ (2) 请分析,鸡肉的家庭消费需求是否受猪肉及牛肉价格的影响。 先做回归分析,过程如下: 输出结果如下:

SPSS线性回归分析案例

回归分析 实验内容:基于居民消费性支出与居民可支配收入的简单线性回归分析 【研究目的】 居民消费在社会经济的持续发展中有着重要的作用。影响各地区居民消费支出的因素很多,例如居民的收入水平、商品价格水平、收入分配状况、消费者偏好、家庭财产状况、消费信贷状况、消费者年龄构成、社会保障制度、风俗习惯等等。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的经济模型去研究。 【模型设定】 我们研究的对象是各地区居民消费的差异。由于各地区的城市与农村人口比例及经济结构有较大差异,现选用城镇居民消费进行比较。模型中被解释变量Y选定为“城市居民每人每年的平均消费支出”。从理论和经验分析,影响居民消费水平的最主要因素是居民的可支配收入,故可以选用“城市居民每人每年可支配收入”作为解释变量X,选取2010年截面数据。 1、实验数据 表1: 2010年中国各地区城市居民人均年消费支出和可支配收入

2、实验过程 作城市居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)的散点图,如图1:

表2 模型汇总b 表3 相关性 从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,所以建立如下线性模型:Y=a+bX

表4 系数a 3、结果分析 表2模型汇总:相关系数为0.965,判定系数为0.932,调整判定系数为0.930,估计值的标准误877.29128 表3是相关分析结果。消费性支出Y与可支配收入X相关系数为0.965,相关性很高。 表4是回归分析中的系数:常数项b=704.824,可支配收入X的回归系数a=0.668。a的标准误差为0.034,回归系数t的检验值为19.921,P值为0,满足95%的置信区间,可认为回归系数有显著意义。得线性回归方程Y=0.668X+704.824. 【实验结论】 (1)结果显示,变量之间具有如下关系式:Y=0.668X+704.824.也就是说消费与收入之间存在稳定的函数关系。随着收入的增加,消费将增加,但消费的增长低于收入的增长。这与凯尔斯的绝对收入消费理论刚好吻合。但为了研究方便,这里假设边际消费倾向为常数。由公式知X每增长1个单位,Y增加0.668个单位。

简单线性回归模型

第二章 简单线性回归模型 一、单项选择题 1.影响预测误差的因素有( ) A .置信度 B .样本容量 C .新解释变量X 0偏离解释变量均值的程度 D .如果给定值X 0等于X 的均值时,置信区间越长越好。 2.OLS E 的统计性质( ) A .线性无偏性 B .独具最小方差性 C .线性有偏 D .β∧ 是β的一致估计 3.OLSE 的基本假定( ) A .解释变量非随机 B .零均值 C .同方差 D .不自相关 4.F 检验与拟合优度指标之间的关系( ) A . 21111n p p R --?? ?- ?-?? B . 21111n p p R --?? ?- ?-?? C . 2111n p p R -???- ?-?? D . 2111n p p R -???- ?-?? 5.相关分析和回归分析的共同点( ) A .都可表示程度和方向 B .必须确定解释(自)变量和被解释(因)变量 C .不用确定解释(自)变量和被解释(因)变量 D .都研究变量间的统计关系 6.OLS E 的基本假设有( ) A .解释变量是随机的 B .随机误差项的零均值假设

C .随机误差项同方差假设 D .随机误差项线性相关假设 7.与 2 ()() 1 ()1i i i n x x y y i n x x i - --==∑∑ 等价的式子是( ) A .2 2 1()1i i i n x y nx y i n x n x i -=-=∑∑ B .2()1()1i i i n x x y i n x x i --==∑∑ C .2()1()1i i i n x x x i n x x i -=-=∑∑ D .xy xx L L 8.下列等式正确的是( ) A .SSR=SST+SSE B .SST=SSR+SSE C .SSE=SSR+SST D .SST=SST ×SSE 9.无偏估计量i β的方差是( ) A . 2 1 () n j j X X σ=-∑ B . 2 2 1 ()n j j X X σ=-∑ C . 2 () n j j X X σ=-∑

第10章-简单线性回归分析思考与练习参考答案

第10章 简单线性回归分析 思考与练习参考答案 一、最佳选择题 1.如果两样本的相关系数21r r =,样本量21n n =,那么( D )。 A. 回归系数21b b = B .回归系数12b b < C. 回归系数21b b > D .t 统计量11r b t t = E. 以上均错 2.如果相关系数r =1,则一定有( C )。 A .总SS =残差SS B .残差SS =回归 SS C .总SS =回归SS D .总SS >回归SS E. 回归MS =残差MS 3.记ρ为总体相关系数,r 为样本相关系数,b 为样本回归系数,下列( D )正确。 A .ρ=0时,r =0 B .|r |>0时,b >0 C .r >0时,b <0 D .r <0时,b <0 E. |r |=1时,b =1 4.如果相关系数r =0,则一定有( D )。 A .简单线性回归的截距等于0 B .简单线性回归的截距等于Y 或X C .简单线性回归的残差SS 等于0 D .简单线性回归的残差SS 等于SS 总 E .简单线性回归的总SS 等于0 5.用最小二乘法确定直线回归方程的含义是( B )。 A .各观测点距直线的纵向距离相等 B .各观测点距直线的纵向距离平方和最小 C .各观测点距直线的垂直距离相等 D .各观测点距直线的垂直距离平方和最小

E .各观测点距直线的纵向距离等于零 二、思考题 1.简述简单线性回归分析的基本步骤。 答:① 绘制散点图,考察是否有线性趋势及可疑的异常点;② 估计回归系数;③ 对总体回归系数或回归方程进行假设检验;④ 列出回归方程,绘制回归直线;⑤ 统计应用。 2.简述线性回归分析与线性相关的区别与联系。 答:区别: (1)资料要求上,进行直线回归分析的两变量,若X 为可精确测量和严格控制的变量,则对应于每个X 的Y 值要求服从正态分布;若X 、Y 都是随机变量,则要求X 、Y 服从双变量正态分布。直线相关分析只适用于双变量正态分布资料。 (2)应用上,说明两变量线性依存的数量关系用回归(定量分析),说明两变量的相关关系用相关(定性分析)。 (3)两个系数的意义不同。r 说明具有直线关系的两变量间相互关系的方向与密切程度,b 表示X 每变化一个单位所导致Y 的平均变化量。 (4)两个系数的取值范围不同:-1≤r ≤1,∞<<∞-b 。 (5)两个系数的单位不同:r 没有单位,b 有单位。 联系: (1)对同一双变量资料,回归系数b 与相关系数r 的正负号一致。b >0时,r >0,均表示两变量X 、Y 同向变化;b <0时,r <0,均表示两变量X 、Y 反向变化。 (2)回归系数b 与相关系数r 的假设检验等价,即对同一双变量资料,r b t t =。由于相关系数r 的假设检验较回归系数b 的假设检验简单,故在实际应用中常以r 的假设检验代替b 的假设检验。 (3)用回归解释相关:由于决定系数2 R =SS 回 /SS 总 ,当总平方和固定时,回归平方 和的大小决定了相关的密切程度。回归平方和越接近总平方和,则2 R 越接近1,说明引入相关的效果越好。例如当r =0.20,n =100时,可按检验水准0.05拒绝H 0,接受H 1,认为两变量有相关关系。但2 R =(0.20)2=0.04,表示回归平方和在总平方和中仅占4%,说明

线性回归中的相关系数

线性回归中的相关系数 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

线性回归中的相关系数 山东胡大波 线性回归问题在生活中应用广泛,求解回归直线方程时,应该先判断两个变量是否是线性相关,若相关再求其直线方程,判断两个变量有无相关关系的一种常用的简便方法是绘制散点图;另外一种方法是量化的检验法,即相关系数法.下面为同学们介绍相关系数法. 一、关于相关系数法 统计中常用相关系数r来衡量两个变量之间的线性相关的强弱,当 x不全为零,y i i 也不全为零时,则两个变量的相关系数的计算公式是: r就叫做变量y与x的相关系数(简称相关系数). 说明:(1)对于相关系数r,首先值得注意的是它的符号,当r为正数时,表示变量x,y正相关;当r为负数时,表示两个变量x,y负相关; (2)另外注意r的大小,如果[] r∈,,那么正相关很强;如果[] 0.751 r∈-- ,,那 10.75 么负相关很强;如果(] ,或[) r∈,,那么相关性一般;如果 0.300.75 r∈-- 0.750.30 [] r∈-,,那么相关性较弱. 0.250.25 下面我们就用相关系数法来分析身边的问题,确定两个变量是否相关,并且求出两个变量间的回归直线. 二、典型例题剖析 例1测得某国10对父子身高(单位:英寸)如下:

(1)对变量y 与x 进行相关性检验; (2)如果y 与x 之间具有线性相关关系,求回归直线方程; (3)如果父亲的身高为73英寸,估计儿子身高. 解:(1)66.8x =,67y =,10 21 44794i i x ==∑,10 21 44929.22i i y ==∑,4475.6x y =, 2 4462.24x =, 2 4489y =,10 1 44836.4i i i x y ==∑, 所以10 i i x y nx y r -= ∑ 80.4 0.9882.04 ≈ ≈, 所以y 与x 之间具有线性相关关系. (2)设回归直线方程为y a bx =+,则10 1102 21 1010i i i i i x y xy b x x ==-= -∑∑44836.444756 0.46854479444622.4 -= ≈-, 670.468566.835.7042a y bx =-=-?=. 故所求的回归直线方程为0.468535.7042y x =+. (3)当73x =英寸时,0.46857335.704269.9047y =?+=, 所以当父亲身高为73英寸时,估计儿子的身高约为英寸. 点评:回归直线是对两个变量线性相关关系的定量描述,利用回归直线,可以对一些实际问题进行分析、预测,由一个变量的变化可以推测出另一个变量的变化.这是此类问题常见题型. 例2 10名同学在高一和高二的数学成绩如下表:

第九章 相关与简单线性回归分析

第九章相关与简单线性回归分析 第一节相关与回归的基本概念 一、变量间的相互关系 现象之间存在的依存关系包括两种:确定性的函数关系和不确定性的统计关系,即相关关系。 二、相关关系的类型 1、从相关关系涉及的变量数量来看:简单相关关系;多重相关或复相关。 2、从变量相关关系变化的方向看:正相关;负相关。 3、从变量相关的程度看:完全相关;不相关;不完全相关。 二、相关分析与回归分析概述 相关分析就是用一个指标(相关系数)来表明现象间相互依存关系的性质和密切程度;回归分析是在相关关系的基础上进一步说明变量间相关关系的具体形式,可以从一个变量的变化去推测另一个变量的变化。 相关分析与回归分析的区别: 目的不同:相关分析是用一定的数量指标度量变量间相互联系的方向和程度;回归分析是要寻求变量间联系的具体数学形式,要根据自变量的固定值去估计和预测因变量的值。 对变量的处理不同:相关分析不区分自变量和因变量,变量均视为随机变量;回归区分自变量和因变量,只有因变量是随机变量。 注意:相关和回归分析都是就现象的宏观规律/平均水平而言的。 第二节简单线性回归 一、基本概念 如果要研究两个数值型/定距变量之间的关系,以收入x与存款额y为例,对n个人进行独立观测得到散点图,如果可以拟合一条穿过这一散点图的直线来描述收入如何影响存款,即简单线形回归。 二、回归方程 在散点图中,对于每一个确定的x值,y的值不是唯一的,而是符合一定概率分布的随机变量。如何判断两个变量之间存在相关关系?要看对应不同的x,y的概率分布是否相同/y的总体均值是否相等。 在x=xi的条件下,yi的均值记作E(yi),如果它是x的函数,E(yi) =f(xi),即回归方程,就表示y和x之间存在相关关系,回归方程就是研究自变量不同取值时,因变量y的平均值的变化。当y的平均值和x呈现线性关系时,称作线性回归方程,只有一个自变量就是一元线性回归方程。 一元线性回归方程表达式:E(y i )= α+βx i ,其中α称为常数,β称为回

第十九章直线相关与回归试题

第十九章 直线相关与回归 A 型选择题 1、若计算得一相关系数r=0.94,则( ) A 、x 与y 之间一定存在因果关系 B 、同一资料作回归分析时,求得回归系数一定为正值 C 、同一资料作回归分析时,求得回归系数一定为负值 D 、求得回归截距a>0 E 、求得回归截距a ≠0 2、对样本相关系数作统计检验(H 0:ρ=0),结果0.05()v r r >,统计结论是( )。 A. 肯定两变量为直线关系 B 、认为两变量有线性相关 C 、两变量不相关 B. 两变量无线性相关 E 、两变量有曲线相关 3、若1210.05()20.01(),v v r r r r >>,则可认为( )。 A. 第一组资料两变量关系密切 B. 第二组资料两变量关系密切 C 、难说哪一组资料中两变量关系更密切 D 、两组资料中两变量关系密切程度不一样 E 、以上答案均不对 4、相关分析可以用于( )有无关系的研究 A 、性别与体重 B 、肺活量与胸围 C 、职业与血型 D 、国籍与智商 E 、儿童的性别与体重 5、相关系数的假设检验结果P<α,则在α水平上可认为相应的两个变量间( ) A 、有直线相关关系 B 、有曲线相关关系 C 、有确定的直线函数关系 D 、有确定的曲线函数关系 E 、不存在相关关系 6、根据样本算得一相关系数r ,经t 检验,P <0.01说明( )

A 、两变量有高度相关 B 、r 来自高度相关的相关总体 C 、r 来自总体相关系数ρ的总体 D 、r 来自ρ≠0的总体 E 、r 来自ρ>0的总体 7、相关系数显著检验的无效假设为( ) A 、r 有高度的相关性 B 、r 来自ρ≠0的总体 C 、r 来自ρ=0的总体 D 、r 与总体相关系数ρ差数为0 E 、r 来自ρ>0的总体 8、计算线性相关系数要求( ) A .反应变量Y 呈正态分布,而自变量X 可以不满足正态分布的要求 B .自变量X 呈正态分布,而反应变量Y 可以不满足正态分布的要求 C .自变量X 和反应变量Y 都应满足正态分布的要求 D .两变量可以是任何类型的变量 E .反应变量Y 要求是定量变量,X 可以是任何类型的变量 9、对简单相关系数r 进行检验,当检验统计量t r >t 0.05(ν)时,可以认为两变量x 与Y 间( ) A .有一定关系 B .有正相关关系 C .无相关关系 D .有直线关系 E .有负相关关系 10、相关系数反映了两变量间的( ) A 、依存关系 B 、函数关系 C 、比例关系 D 、相关关系 E 、因果关系 11、)2(,2/05.0-

简单线性相关(一元线性回归分析)..

第十三讲 简单线性相关(一元线性回归分析) 对于两个或更多变量之间的关系,相关分析考虑的只是变量之间是否相关、相关的程度,而回归分析关心的问题是:变量之间的因果关系如何。回归分析是处理一个或多个自变量与因变量间线性因果关系的统计方法。如婚姻状况与子女生育数量,相关分析可以求出两者的相关强度以及是否具有统计学意义,但不对谁决定谁作出预设,即可以相互解释,回归分析则必须预先假定谁是因谁是果,谁明确谁为因与谁为果的前提下展开进一步的分析。 一、一元线性回归模型及其对变量的要求 (一)一元线性回归模型 1、一元线性回归模型示例 两个变量之间的真实关系一般可以用以下方程来表示: Y=A + BX + ε 方程中的A 、B 是待定的常数,称为模型系数,ε是残差,是以X 预测Y 产生的误差。 两个变量之间拟合的直线是: y a bx ∧ =+ y ∧ 是 y 的拟合值或预测值,它是在X 条件下Y 条件均值的估计 a 、 b 是回归直线的系数,是总体真实直线A 、B 的估计值,a 即 constant 是截距,当自变量的值为0时,因变量的值。 b 称为回归系数,指在其他所有的因素不变时,每一单位自变量的变化引起的因变量的变化。 可以对回归方程进行标准化,得到标准回归方程: y x ∧ =β β 为标准回归系数,表示其他变量不变时,自变量变化一个标准差单位(Z X X S j j j = -),因变量Y 的标准差的平均变化。

由于标准化消除了原来自变量不同的测量单位,标准回归系数之间是可以比较的,绝对值的大小代表了对因变量作用的大小,反映自变量对Y的重要性。 (二)对变量的要求:回归分析的假定条件 回归分析对变量的要求是: 自变量可以是随机变量,也可以是非随机变量。自变量X值的测量可以认为是没有误差的,或者说误差可以忽略不计。 回归分析对于因变量有较多的要求,这些要求与其它的因素一起,构成了回归分析的基本条件:独立、线性、正态、等方差。 (三)数据要求 模型中要求一个因变量,一个或多个自变量(一元时为1个自变量)。 因变量:要求间距测度,即定距变量。 自变量:间距测度(或虚拟变量)。 二、在对话框中做一元线性回归模型 例1:试用一元线性回归模型,分析大专及以上人口占6岁及以上人口的比例(edudazh)与人均国内生产总值(agdp)之间的关系。 本例使用的数据为st2004.sav,操作步骤及其解释如下: (一)对两个变量进行描述性分析 在进行回归分析以前,一个比较好的习惯是看一下两个变量的均值、标准差、最大值、最小值和正态分布情况,观察数据的质量、缺少值和异常值等,缺少值和异常值经常对线性回归分析产生重要影响。最简单的,我们可以先做出散点图,观察变量之间的趋势及其特征。通过散点图,考察是否存在线性关系,如果不是,看是否通过变量处理使得能够进行回归分析。如果进行了变量转换,那么应当重新绘制散点图,以确保在变量转换以后,线性趋势依然存在。 打开st2004.sav数据→单击Graphs → S catter →打开Scatterplot 对话框→单击Simple →单击 Define →打开 Simple Scatterplot对话框→点选 agdp到 Y Axis框→点选 edudazh到 X Aaxis框内→单击 OK 按钮→在SPSS的Output窗口输出所需图形。 图12-1 大专及以上人口占6岁及以上人口比例与人均国内生产总值的散点图

案例分析报告(一元线性回归模型)

案例分析报告(2014——2015学年第一学期) 课程名称:预测与决策 专业班级:电子商务1202 学号: 2204120202 学生姓名:陈维维 2014 年 11月

案例分析(一元线性回归模型) 我国城镇居民家庭人均消费支出预测 一、研究目的与要求 居民消费在社会经济的持续发展中有着重要的作用,居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。从理论角度讲,消费需求的具体内容主要体现在消费结构上,要增加居民消费,就要从研究居民消费结构入手,只有了解居民消费结构变化的趋势和规律,掌握消费需求的热点和发展方向,才能为消费者提供良好的政策环境,引导消费者合理扩大消费,才能促进产业结构调整与消费结构优化升级相协调,才能推动国民经济平稳、健康发展。例如,2008年全国城镇居民家庭平均每人每年消费支出为11242.85元,最低的青海省仅为人均8192.56元,最高的上海市达人均19397.89元,上海是黑龙江的2.37倍。为了研究全国居民消费水平及其变动的原因,需要作具体的分析。影响各地区居民消费支出有明显差异的因素可能很多,例如,零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。 二、模型设定 我研究的对象是各地区居民消费的差异。居民消费可分为城镇居民消费和农村居民消费,由于各地区的城镇与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。而且,由于各地区人口和经济总量不同,只能用“城镇居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。 所以模型的被解释变量Y选定为“城镇居民每人每年的平均消费支出”。 因为研究的目的是各地区城镇居民消费的差异,并不是城镇居民消费在不同时间的变动,所以应选择同一时期各地区城镇居民的消费支出来建立模

线性回归中的相关系数

线性回归中的相关系 数 Revised on November 25, 2020

线性回归中的相关系数 山东胡大波 线性回归问题在生活中应用广泛,求解回归直线方程时,应该先判断两个变量是否是线性相关,若相关再求其直线方程,判断两个变量有无相关关系的一种常用的简便方法是绘制散点图;另外一种方法是量化的检验法,即相关系数法.下面为同学们介绍相关系数法. 一、关于相关系数法 统计中常用相关系数r来衡量两个变量之间的线性相关的强弱,当 x不全 i 为零,y i也不全为零时,则两个变量的相关系数的计算公式是: r就叫做变量y与x的相关系数(简称相关系数). 说明:(1)对于相关系数r,首先值得注意的是它的符号,当r为正数时,表示变量x,y正相关;当r为负数时,表示两个变量x,y负相关; (2)另外注意r的大小,如果[] r∈,,那么正相关很强;如果 0.751 [] ,或[) 0.300.75 r∈,,那么相关 r∈-- 0.750.30 r∈-- ,,那么负相关很强;如果(] 10.75 性一般;如果[] 0.250.25 r∈-,,那么相关性较弱. 下面我们就用相关系数法来分析身边的问题,确定两个变量是否相关,并且求出两个变量间的回归直线. 二、典型例题剖析 例1测得某国10对父子身高(单位:英寸)如下: (1)对变量y与x进行相关性检验;

(2)如果y 与x 之间具有线性相关关系,求回归直线方程; (3)如果父亲的身高为73英寸,估计儿子身高. 解:(1)66.8x =,67y =,102 144794i i x ==∑,10 2144929.22i i y ==∑,4475.6x y =,2 4462.24x =, 24489y =,10 144836.4i i i x y ==∑, 所以10i i x y nx y r -∑ 80.40.9882.04 =≈≈, 所以y 与x 之间具有线性相关关系. (2)设回归直线方程为y a bx =+,则 101 102211010i i i i i x y xy b x x ==-=-∑∑44836.4447560.46854479444622.4 -=≈-, 670.468566.835.7042a y bx =-=-?=. 故所求的回归直线方程为0.468535.7042y x =+. (3)当73x =英寸时,0.46857335.704269.9047y =?+=, 所以当父亲身高为73英寸时,估计儿子的身高约为英寸. 点评:回归直线是对两个变量线性相关关系的定量描述,利用回归直线,可以对一些实际问题进行分析、预测,由一个变量的变化可以推测出另一个变量的变化.这是此类问题常见题型. 例2 10名同学在高一和高二的数学成绩如下表:

第8章 相关分析与回归分析及答案

第八章相关与回归分析 一、本章重点 1.相关系数的概念及相关系数的种类。事物之间的依存关系,可以分为函数关系和相关关系。相关关系又有单向因果关系和互为因果关系;单相关和复相关;线性相关和非线性相关;不相关、不完全相关和完全相关;正相关和负相关等类型。 2.相关分析,着重掌握如何画相关表、相关图,如何测定相关系数、测定系数以及进行相关系数的推断。相关表和相关图是变量间相关关系的生动表示,对于未分组资料和分组资料计算相关系数的方法是不同的,一元线性回归中相关系数和测定系数有着密切的关系,得到样本相关系数后还要对总体相关系数进行科学推断。 3.回归分析,着重掌握一元回归的基本原理方法,一元回归是线性回归的基础,多元线性回归和非线性回归都是以此为基础的。用最小平方法估计回归参数,回归参数的性质和显著性检验,随机项方差的估计,回归方程的显著性检验,利用回归方程进行预测是回归分析的主要内容。 4.应用相关与回归分析应注意的问题。相关与回归分析都有它们的应用范围,必须知道在什么情况下能用,什么情况下不能用。相关分析和回归分析必须以定性分析为前提,否则可能会闹出笑话,在进行预测时选取的样本要尽量分散,以减少预测误差,在进行预测时只有在现有条件不变的情况下才能进行,如果条件发生了变化,原来的方程也就失去了效用。 二、难点释疑 本章难点在于计算公式多,不容易记忆,所以更要注重计算的练习。为了掌握基本计算的内容,起码应认真理解书上的例题,做完本指导书上的全部计算题。初学者可能会感到本章公式多且复杂,难于记忆,其实只要抓住Lxx、Lxy、Lyy 这三个记号,记住它们的展开式,几个主要的公式就不难记忆了。如果能自己把这些公式推证一下,搞清其关系,那就更容易记住了。 三、练习题 (一)填空题 1事物之间的依存关系,根据其相互依存和制约的程度不同,可以分为(函数关系)和(相关关系)两种。 2.相关关系按相关关系的情况可分为()和();按自变量的多少分(单相关)和(复相关);按相关的表现形式分(线性相关)和(非线性相关);按相关关系的密切程度分(完全相关)、(不完全相关)和(不相关);按相关关系的方向分(正相关)和(负相关)。 3.回归方程只能用于由(自变量)推算(因变量)。 4.一个自变量与一个因变量的线性回归,称为(一元线性回归) 5.估计变量间的关系的紧密程度用(相关系数) 6.在相关分析中,要求两个变量都是随机的,而在回归分析中要求自变量是(不是随机的),因变量是(随机的)。 7.已知剩余变差为250,具有12对变量值资料,那么这时的估计标准误差是()。 8.将现象之间的相关关系,用表格来反映,这种表称为(相关表),将现象之间的相关关系用图表示称(相关图)。

线性回归中的相关系数

线性回归中的相关系数 Last updated on the afternoon of January 3, 2021

线性回归中的相关系数 山东胡大波 线性回归问题在生活中应用广泛,求解回归直线方程时,应该先判断两个变量是否是线性相关,若相关再求其直线方程,判断两个变量有无相关关系的一种常用的简便方法是绘制散点图;另外一种方法是量化的检验法,即相关系数法.下面为同学们介绍相关系数法. 一、关于相关系数法 统计中常用相关系数r来衡量两个变量之间的线性相关的强弱,当 x不全为零,y i i 也不全为零时,则两个变量的相关系数的计算公式是: r就叫做变量y与x的相关系数(简称相关系数). 说明:(1)对于相关系数r,首先值得注意的是它的符号,当r为正数时,表示变量x,y正相关;当r为负数时,表示两个变量x,y负相关; (2)另外注意r的大小,如果[] r∈,,那么正相关很强;如果[] 0.751 r∈-- ,,那 10.75 么负相关很强;如果(] ,或[) r∈,,那么相关性一般;如果 0.300.75 r∈-- 0.750.30 [] r∈-,,那么相关性较弱. 0.250.25 下面我们就用相关系数法来分析身边的问题,确定两个变量是否相关,并且求出两个变量间的回归直线. 二、典型例题剖析 例1测得某国10对父子身高(单位:英寸)如下:

(1)对变量y 与x 进行相关性检验; (2)如果y 与x 之间具有线性相关关系,求回归直线方程; (3)如果父亲的身高为73英寸,估计儿子身高. 解:(1)66.8x =,67y =,10 21 44794i i x ==∑,10 21 44929.22i i y ==∑,4475.6x y =, 2 4462.24x =, 2 4489y =,10 1 44836.4i i i x y ==∑, 所以10 i i x y nx y r -= ∑ 80.4 0.9882.04 ≈ ≈, 所以y 与x 之间具有线性相关关系. (2)设回归直线方程为y a bx =+,则10 1102 21 1010i i i i i x y xy b x x ==-= -∑∑44836.444756 0.46854479444622.4 -= ≈-, 670.468566.835.7042a y bx =-=-?=. 故所求的回归直线方程为0.468535.7042y x =+. (3)当73x =英寸时,0.46857335.704269.9047y =?+=, 所以当父亲身高为73英寸时,估计儿子的身高约为英寸. 点评:回归直线是对两个变量线性相关关系的定量描述,利用回归直线,可以对一些实际问题进行分析、预测,由一个变量的变化可以推测出另一个变量的变化.这是此类问题常见题型. 例2 10名同学在高一和高二的数学成绩如下表:

一般线性回归分析案例

一般线性回归分析案例 1、案例 为了研究钙、铁、铜等人体必需元素对婴幼儿身体健康的影响,随机抽取了30个观测数据,基于多员线性回归分析的理论方法,对儿童体内几种必需元素与血红蛋白浓度的关系进行分析研究。这里,被解释变量为血红蛋白浓度(y),解释变量为钙(ca)、铁(fe)、铜(cu)。 表一血红蛋白与钙、铁、铜必需元素含量 (血红蛋白单位为g;钙、铁、铜元素单位为ug) case y(g)ca fe cu 17.0076.90295.300.840 27.2573.99313.00 1.154 37.7566.50350.400.700 48.0055.99284.00 1.400 58.2565.49313.00 1.034 68.2550.40293.00 1.044 78.5053.76293.10 1.322 88.7560.99260.00 1.197 98.7550.00331.210.900 109.2552.34388.60 1.023 119.5052.30326.400.823 129.7549.15343.000.926 1310.0063.43384.480.869 1410.2570.16410.00 1.190 1510.5055.33446.00 1.192 1610.7572.46440.01 1.210 1711.0069.76420.06 1.361 1811.2560.34383.310.915 1911.5061.45449.01 1.380 2011.7555.10406.02 1.300 2112.0061.42395.68 1.142 2212.2587.35454.26 1.771 2312.5055.08450.06 1.012 2412.7545.02410.630.899 2513.0073.52470.12 1.652 2613.2563.43446.58 1.230

多元线性回归实例分析

SPSS--回归-多元线性回归模型案例解析!(一) 多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为: 毫无疑问,多元线性回归方程应该为: 上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) 1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。 2:无偏性假设,即指:期望值为0 3:同共方差性假设,即指,所有的随机误差变量方差都相等 4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。 今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:

点击“分析”——回归——线性——进入如下图所示的界面:

将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入) 如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)

第十章直线相关与回归

第十章 直线相关与回归 一、教学大纲要求 (一) 掌握内容 ⒈ 直线相关与回归的基本概念。 ⒉ 相关系数与回归系数的意义及计算。 ⒊ 相关系数与回归系数相互的区别与联系。 (二)熟悉内容 ⒈ 相关系数与回归系数的假设检验。 ⒉ 直线回归方程的应用。 ⒊ 秩相关与秩回归的意义。 (三)了解内容 曲线直线化。 二、 学内容精要 (一) 直线回归 1. 基本概念 直线回归(linear regression)建立一个描述应变量依自变量变化而变化的直线方程,并要求各点与该直线纵向距离的平方和为最小。直线回归是回归分析中最基本、最简单的一种,故又称简单回归(simple regression )。 直线回归方程bX a Y +=?中,a 、b 是决定直线的两个系数,见表10-1。 表10-1 直线回归方程a 、b 两系数对比 a b 含义 回归直线在Y 轴上的截距(intercept )。 表示X 为零时,Y 的平均水平的估计值。 回归系数(regression coefficient ),即直线的斜率。表示X 每变化一个单位时,Y 的平均变化量的估计值。 系数>0 a >0表示直线与纵轴的交点在原点的上方 b >0,表示直线从左下方走向右上方,即Y 随X 增大而增大 系数<0 a <0表示直线与纵轴的交点在原点的下方 b <0,表示直线从左上方走向右下方,即Y 随X 增大而减小 系数=0 a =0表示回归直线通过原点 b =0,表示直线与X 轴平行,即Y 不随X 的变化而变化 计算公式 X b Y a -= XX XY l l X X Y Y X X b =---= ∑∑2 )())(( 2. 样本回归系数b 的假设检验 (1)方差分析; (2)t 检验。

第三节:多元线性相关与回归分析

第三节 多元线性相关与回归分析 一、标准的多元线性回归模型 上一节介绍的一元线性回归分析所反映的是1个因变量与1个自变量之间的关系。但是,在现实中,某一现象的变动常受多种现象变动的影响。例如,消费除了受本期收入水平的影响外,还会受以往消费和收入水平的影响;一个工业企业利润额的大小除了与总产值多少有关外,还与成本、价格等有关。这就是说,影响因变量的自变量通常不是一个,而是多个。在许多场合,仅仅考虑单个变量是不够的,还需要就一个因变量与多个自变量的联系来进行考察,才能获得比较满意的结果。这就产生了测定与分析多因素之间相关关系的问题。 研究在线性相关条件下,两个和两个以上自变量对一个因变量的数量变化关系,称为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型相类似,只是在计算上比较麻烦一些而已。限于本书的篇幅和程度,本节对于多元回归分析中与一元回归分析相类似的内容,仅给出必要的结论,不作进一步的论证。只对某些多元回归分析所特有的问题作比较详细的说明。 多元线性回归模型总体回归函数的一般形式如下: t kt k t t u X X Y ++?++=βββ221 (7.51) 上式假定因变量Y 与(k-1)个自变量之间的回归关系可以用线性函数来近似反映.式中,Y t 是变量Y 的第t个观测值;X jt 是第j 个自变量X j 的第t个观测值(j=1,2,……,k);u t 是随机误差项;β1,β2,… ,βk 是总体回归系数。βj 表示在其他自变量保持不变的情况下,自变量X j 变动一个单位所引起的因变量Y 平均变动的数额,因而又叫做偏回归系数。该式中,总体回归系数是未知的,必须利用有关的样本观测值来进行估计。 假设已给出了n个观测值,同时1?β,2?β…,k β?为总体回归系数的估计,则多元线性回 归模型的样本回归函数如下: t kt k t t e X X Y ++?++=βββ???221 (7.52) (t =1,2,…,n) 式中,e t 是Y t 与其估计t Y ?之间的离差,即残差。与一元线性回归分析相类似,为了进 行多元线性回归分析也需要提出一些必要的假定。多元线性回归分析的标准假定除了包括上一节中已经提出的关于随机误差项的假定外,还要追加一条假定。这就是回归模型所包含的自变量之间不能具有较强的线性关系,同时样本容量必须大于所要估计的回归系数的个数即n >k 。我们称这条假定为标准假定6。 二、多元线性回归模型的估计 (一)回归系数的估计 多元线性回归模型中回归系数的估计同样采用最小二乘法。设 ∑-=∑=22)?(t t t Y Y e Q 2221)???(kt k t t X X Y βββ-?--∑= (7.53) 根据微积分中求极小值的原理,可知残差平方和Q存在极小值,欲使Q达到最小,Q对1?β、2?β…,k β?的偏导数必须等于零。将Q对1?β、2?β…,k β?求偏导数,并令其等于零,加以整理后可得到以下k个方程式: ∑=∑+?+∑+t kt k t Y X X n βββ???221 ∑=∑+?+∑+∑t t kt t k t t Y X X X X X 2222221???βββ (7.54)

SPSS多元线性回归分析报告实例操作步骤

SPSS 统计分析 多元线性回归分析方法操作与分析 实验目的: 引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。 实验变量: 以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。 实验方法:多元线性回归分析法 软件:spss19.0 操作过程: 第一步:导入Excel数据文件 1.open data document——open data——open;

2. Opening excel data source——OK. 第二步: 1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method选择Stepwise. 进入如下界面: 2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、

Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue. 3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.

第十一章线性相关分析报告与线性回归分析报告

第十一章线性相关分析与线性回归分析 11.1 两个变量之间的线性相关分析 相关分析是在分析两个变量之间关系的密切程度时常用的统计分析方法。最简单的相关分析是线性相关分析,即两个变量之间是一种直线相关的关系。相关分析的方法有很多,根据变量的测量层次不同,可以选择不同的相关分析方法。总的来说,变量之间的线性相关关系分为三种。一是正相关,即两个变量的变化方向一致。二是负相关,即两个变量的变化方向相反。三是无相关,即两个变量的变化趋势没有明显的依存关系。两个变量之间的相关程度一般用相关系数r 来表示。r 的取值范围是:-1≤r≤1。∣r∣越接近1,说明两个变量之间的相关性越强。∣r∣越接近0,说明两个变量之间的相关性越弱。相关分析可以通过下述过程来实现: 11.1.1 两个变量之间的线性相关分析过程 1.打开双变量相关分析对话框 执行下述操作: Analyze→Correlate(相关)→Bivariate(双变量)打开双变量相关分析对话框,如图11-1 所示。 图11-1 双变量相关分析对话框 2.选择进行相关分析的变量 从左侧的源变量窗口中选择两个要进行相关分析的变量进入Variable 窗口。 3.选择相关系数。 Correlation Coefficient 是相关系数的选项栏。栏中提供了三个相关系数的选项:(1)Pearson:皮尔逊相关,即积差相关系数。适用于两个变量都为定距以上变量,且两个

变量都服从正态分布的情况。这是系统默认的选项。 (2)Kendall:肯德尔相关系数。它表示的是等级相关,适用于两个变量都为定序变量的情况。 (3)Spearman:斯皮尔曼等级相关。它表示的也是等级相关,也适用于两个变量都为定序变量的情况。 4.确定显著性检验的类型。 Test of Significance 是显著性检验类型的选项栏,栏中包括两个选项: (1)Two-tailed:双尾检验。这是系统默认的选项。 (2)One-tailed:单尾检验。 5.确定是否输出相关系数的显著性水平 Flag significant Correlations:是标出相关系数的显著性选项。如果选中此项,系统在输出结果时,在相关系数的右上方使用“*”表示显著性水平为0.05;用“**”表示显著性水平为0.01。 6. 选择输出的统计量 单击Options 打开对话框,如图11-2 所示。 图11-2 相关分析选项对话框 (1)Statistics 是输出统计量的选项栏。 1)Means and standard deviations 是均值与标准差选项。选择此项,系统将在输出文件中输出均值与标准差。 2)Cross- product deviations and covariances 是叉积离差与协方差选项。选择此项,系统将在输出文件中输出每个变量的离差平方和与两个变量的协方差。 上述两项选择只有在主对话框中选择了Pearson:皮尔逊相关后,计算结果才有价值。 (2)缺失值的处理办法 Missing Valuess 是处理缺失值的选项栏。 1)Exclude cases pairwise 是成对剔除参与相关系数计算的两个变量中有缺失值的个案。2)Exclude cases listwise 是剔除带有缺失值的所有个案。 上述选项做完以后,单击Continue 按钮,返回双变量相关分析对话框。 8.单击OK 按钮,提交运行。系统在输出文件窗口中输出相关分析的结果。 11.1.2 两个变量之间的线性相关分析实例分析

相关文档
相关文档 最新文档