文档库 最新最全的文档下载
当前位置:文档库 › 食品中金属元素的检测方法

食品中金属元素的检测方法

食品中金属元素的检测方法
食品中金属元素的检测方法

食品中金属元素的检测方法

近年来随着工业技术的发展,有越来越多的农药化肥用于农业耕作中,这导致一些有害金属元素如铅、镉、铜、汞等进入食品中。这些金属元素随食物进入人体内,会转变成具有高毒性的化合物。而且多数金属具有蓄积性,半衰期较长,能产生急性和慢性毒性反应,还有可能产生致畸、致癌和致突变的作用。自我国加入WTO后,食品安全受到了政府和人民更广泛的关注,而食品中有害金属元素的检测问题也变得日趋重要。目前常用于食品中金属元素的检测方法有物理法、化学法及生物法,以下将分别进行介绍。

物理法

1、光谱法

(1)原子吸收光度法

原子吸收光光度法(Atomic Absorption Spectrometry,AAS)是基于被测元素基态原子在蒸气状态对其原子共振辐射的吸收进行元素定量分析的一种方法。AAS具有灵敏度高

(ng/mL-pg/mL、准确度高、选择性高、分析速度快等优点。但是,AAS也存在不足,即不能多元素同时分析。

AAS是国家标准所规定的用于检测砷(GB/T5009.11-2003)、铅(GB/T5009.12-2003)、铜(GB/T5009.13-2003)、锌(GB/T5009.14-2003)、镉(GB/T5009.15-2003)、汞

(GB/T5009.17-2003)等元素的方法。B.Demi等人使用AAS检测面包中铁、铜、锌、铅和钙等金属离子的含量,测出了这些离子的平均含量,取得了满意的结果。

(2)原子发射光谱法

原子发射光谱法(Atomic Emission Spectroscopy,AES)是根据原子或离子在电能或热能激发下离解成气态的原子或离子后所发射的特征谱线的波长及其强度测定物质的化学组成和含量的分析方法。

AES操作简单,分析速度快;具有较高的灵敏度(ng/mL-pg/mL)和选择性;试剂用量少,一般只需几克至几十毫克;微量分析准确度高;使用原子发射仪测定,仪器较简单;可以定性及半定量的检测食品中的金属元素。

在《2005年最新国家食品生产认证与质量检验标准实施手册》中规定使用AES检测食品中的微量金属元素。在实际应用中,AES常与电感耦合等离子发射技术(ICP)结合使用,以达到更好的效果。

(3)原子荧光光谱法

原子荧光光谱法(atomic fluorescence spectrometry,AFS),是依据气态原子在辐射激发下发射的荧光强度来进行定量分析的方法,通常使用的仪器是原子荧光光度计。

AFS的主要特点是检出限低、灵敏度高,检测限可达pg/mL。而且AFS还具有谱线简单、干扰小、线性范围宽、易实现多元素同时测定、所用试剂毒性小、便于操作、实用性较强等一系列优点。但是AFS也存在一些不足,即在使用的时候会存在荧光淬灭效应、散射光干扰等问题,这导致在测量复杂试样或高含量样品时会遇到困难。因此,AFS的应用不如AAS和AES广泛,但可作为这两种方法的补充。

在国家标准中,AFS是规定使用的测定水中汞含量(NF/T90-113-2-2002)、果品制品中硒含量(GB/T5009.93-2003)以及食品中锡含量(GB/T5009.137-2003)的检测方法。Taicheng Duan等人使用氢化物发生AFS的方法检测茶叶中的痕量金属镉的含量,证实了该法对镉的检测限为10.8pg/mL。

(4)X射线荧光光谱法

X射线荧光光谱法(X-ray Fluorescence spectrometry,XFS)是利用样品被激发后所发射的x射线随样品中的元素成分及元素含量的变化而变化来定性或定量测定样品中成分的一种方法,其检测限可达到μg/g。

XFS具有分析迅速、样品前处理简单、可分析元素范围广、谱线简单、光谱干扰少、成本低等优点。目前被大量用于金属的无损检测、污水中金属元素的检测以及仪器的无损探视等。该法不仅可以用于检测金属元素,也可以检测非金属元素。季桂娟等人使用该法直接测定茶叶中锌、铅、铜、镉等22种元素,通过数学软件校正基体效应、元素间的谱线重叠干扰等问题,取得了较好的效果。

2、其他方法

(1)光学传感器

光学传感器是在20世纪诞生的一种分析重金属离子的方法。它是一种信号传导器,通常与对金属敏感的物质结合使用而达到检测样品中金属元素的目的。

(2)激光诱导分解光谱法(laser induced breakdown spectroscopy,LIBS)

LIBS是通过检测激光诱导产生的质子的荧光来达到定性定量检测金属元素的目的。与传统的荧光光谱法相比,LIBS的灵敏度与精确度更高。S.koch等人使用该法检测水中钴离子的含量,在信噪比为2的情况下得出其最低检出限为40mg/L。

化学法

1、双硫腙比色法

双硫腙(dithizone,即二苯基硫卡巴腙,diphenylthiocarbazone)比色法是依据双硫腙与某些金属离子形成有色络合物,再采用分光光度计进行比色的一种定性定量的检测方法。

双硫腙比色法只需要分光光度计,不需要特殊的仪器设备,现仍是基层实验室用于测定食品、水、化妆品、生物材料等样品中金属元素的常用方法。但由于该方法操作比较繁琐,稍有操作不当,易造成实验失败,试剂成本较高,检测元素种类受限制,灵敏度较低,重复性差等不足,正逐渐被其他方法所取代。

双硫腙法是国家标准规定使用的用于检测食品中铅(GB/T5009.12-2003)、锌(GB/T5009.14-2003)、汞(GB/T5009.17-2003)等金属元素的方法。同时,双硫腙法还可用于铁、铜等金属元素的测定。徐茂军利用表面活性剂Tween20的胶束增溶作用,建立了以双硫腙水相反应体系直接比色测定食品中铅的新方法。该方法中不需要使用有机溶剂萃取,同时又避免了使用氰化钾等有毒物质,取得了满意结果。

2、高效液相色谱法

高效液相色谱法(High performance Liquid Chromatography,HPLC)是基于流动相中的各组分与固定相发生作用的大小、强弱不同以致在固定相中滞留时间不同的原理进行检测的一种方法。

痕量金属离子可与有机试剂形成稳定的有色络合物,可据此使用高效液相色谱分离,紫外-可见光度检测器定性定量检测金属离子。

HPLC具有分辨率和灵敏度高、分析速度快、重复性好、定量精度高、应用范围广、可实现多元素同时测定的优点,适用于分析高沸点、大分子、强极性、热稳定性差的化合物。但是该法费用较昂贵,要用各种填料柱,容量小,分析生物大分子和无机离子困难,流动相消耗大且有毒性的居多。胡秋芬等建立以试剂2-2-喹啉偶氮)-5-二乙氨基酚(QADEAP)为柱前衍生试剂,内含2%醋酸甲醇溶液和pH4.0醋酸-醋酸钠缓冲溶液梯度洗脱为流动相,Waters Nova-Pak-C18液相色谱柱,二极管矩阵检测器,测定了食品中铁、钴、镍、铜、锌和锰,方法相对标准偏差在1.6%-3.5%之间,加标回收率在93%-107%之间。

3、毛细管电泳分析法

毛细管电泳分析法(capillary electrophores,CE)是荷电粒子或离子以电场为驱动力,在毛细管中按其淌度和分配系数不同进行分离,再经检测器测定的一种检测方法。该法的最低检出限可达到ng/mL。现在常用的仪器是高效毛细管电泳仪。

CE所用仪器简单、易自动化;分析速度快、分离效率高,并可实现多元素同时测定;操作方便、消耗少;前处理简单,基体效应小,而且应用范围极广,常用于食品、化妆品、污水中金属元素的检测。与ICP-AES、ICP-MS、XFS等检测方法相比更具有成本低、适用性强的优势。Huatao Feng等人使用CE检测茶叶中钴、铁、铜、锌和镍等金属元素的含量,在信噪比为3的情况下,得到其最低检测限介于

6ng/mL-30ng/mL。

4、电化学方法

(1)溶出伏安法

溶出伏安法(Stripping Voltammetry)是以表面不能更新的液体或固体电极(如悬汞电极或汞膜电极)作工作电极,使被测组分预先富集在工作电极上,再逐步改变电极的电位(反方向外加电压),使富集在工作电极上的物质重新溶出,根据溶出时的伏安曲线的峰高(或峰面积)进行定量分析的一种方法。

溶出伏安法可分为阳极溶出伏安法(Anodic Stripping Voitammetry)、吸附溶出伏安法(Adsorptive Stripping Voltammetry)和电位溶出伏安法(Potentiometric Stripping Analysis,PSA)。该法最大的优点是灵敏度非常高,测定精确度、灵敏度较好,能同时进行多组分测定,且不需要贵重仪器的分析方法。

阳极溶出伏安法,是将电化学富集与测定方法有机地结合在一起的一种方法。先将被测物质通过阴极还原富集在一个固定的微电极上,再由负向正电位方向扫描溶出,根据极化曲线来进行分析测定。Recai等采用微分脉冲阳极溶出伏安法测定牛奶样品中铅的含量,在沉积电位为-0.5V时测出其线性范围为8.7μg/L-185μg/L。

吸附溶出伏安法的原理是利用待测电活性物质的吸附作用,在一定电位下将其吸附富集在工作电极表面,再以适当的伏安技术测量被吸附电活性物质的浓度。这种方法受实验条件影响小,重现性比较好。Daniel Sancho等在未进行样品前处理的条件下,直接利用镍和钴与丁二酮肟形成配合物[M(DMG)2]悬汞电极作为工作电极测得甜菜糖中含量极少的镍和钴的浓度,当镍和钴的含量分别低于50μg/kg和10μg/kg时仍可检测到。

PSA是恒电位电解富集与伏安分析相结合的一种极谱分析技术。其灵敏度高,

分析试样用量少,适用于微量分析。并具有抗干扰能力强、对检测溶液无严格要求、精密度和分辨率高和测试仪器简单的优点。Gia-como Dugo等使用PSA对大豆、玉米、花生、榛子等植物油中的镉、铅、铜、锌等金属元素进行检测,最低检出浓度为0.4μg/kg-0.9μg/kg。

(2)离子选择电极法

离子选择性电极是一种电化学传感器,其电位与溶液中给定离子的活度的对数呈线性关系,对某一特定离子具有特殊的选择性,对某些离子的测定灵敏度可达10-9数量级。

离子选择性电极能直接测定液体试样,而不受颜色和浊度的干扰、对复杂样品无需预处理、所需仪器设备简单操作方便、有利于连续与自动分析,因此发展极为迅速。但是也存在一些不足,如测量偏差较大,电极寿命短等。甄宝勤等采用巯基棉分离富集痕量铜,用HCl作洗脱剂,建立了饮料中痕量铜的离子选择电极分析方法,灵敏度可达3.0×10-8mol/L,检出限为8.30×10-8 mol/L,相对偏差为3.8%。

5、离子色谱法

离子色谱法(Ion Chromatography,IC)是以低交换容量的离子交换树脂为固定相对离子性物质进行分离,用电导检测器连续检测流出物电导变化的一种液相色谱方法。

IC具有检测灵敏度高、选择性好、多离子同时分析、色谱柱的稳定性高等优点,在环境、食品、化工、电子、生物医药、新材料等许多领域都得到广泛的应用。但是IC也存在一些缺点,如分离效率较低;分析速度相对较慢;有时易受基体影响;分析成本较高等。尽管如此,IC己经是一种硬件相当成熟的技术,在今后相当长的时期内,IC仍将为离子性物质的最佳分离方法。HaitaoLu等使用IC同时检测了猪肝、对虾、茶叶等样品中的铜、镍、锌、镉、钴等7种金属元素,在信噪比为3的情况下,得出该法的最低检测限为0.8ng/mL。

生物法

生物法主要是酶法,指的是添加对金属离子敏感的酶到待测样品中,通过传感器将酶的变构现象显示出来,从而定性定量的检测出样品中金属离子的含量。该法操作简单,灵敏度高,仪器设备要求不高,而且可以通过选择不同的缓冲液以减少干扰。Claudia Preininger使用脲酶与由Lipophilized Nile Blue和PVC构成的光学传

感器结合对样品中的汞、铜等金属离子进行检测,在柠檬酸缓冲液得到其检出限为1ng/mL。

结束语

食品在检测前往往需要消解。传统的消解方法有干化法、湿化法及灰化法,但是这些方法不仅耗时、耗力,而且消解的效果也不够理想。微波消解仪的出现给食品安全检测带来了福音,尤其是对食品中金属元素的检测。微波是频率约在

300MHz~300GHz,即波长在100cm~0.1cm范围内的电磁波。它能穿透绝缘体介质,直接把能量辐射到有电介特性的物质上,以此来加热物体。微波消解使用试剂少,速度快,污染少,最重要的是防止了砷、汞、硒等易挥发元素的损失,现已被广泛用于污水、化妆品、食品等领域金属元素的检测。但是由于消解条件的限制,微波消解仪目前还只是被一些研究和检测单位用于具体样品的消解。在实际的使用中,微波消解仪常常与检测方法联合使用,以提高检测的质量。Yaling Yang等人使用微波消解仪对中药进行消解,然后利用反相HPLC检测了其中铅、镉、汞、镍、铜等金属元素的含量,得出其最低检出限介于2pg/mL-6 pg/mL。

食品中有害金属元素的检测方法很多,有物理法、化学法、生物法,除本文介绍的方法外,还有同位素稀释法、中子活化分析法、质谱法等等。这些方法不仅可以用于食品中金属元素的检测,更多的时候是用在污水、化妆品、药品等领域的金属元素检测。只是不同的领域对检测条件及精度要求不同,所以导致各种方法的发展方向不同。但总的而言,检测方法正向着快速、安全、精确的方向发展。

出师表

两汉:诸葛亮

先帝创业未半而中道崩殂,今天下三分,益州疲弊,此诚危急存亡之秋也。然侍卫之臣不懈于内,忠志之士忘身于外者,盖追先帝之殊遇,欲报之于陛下也。诚宜开张圣听,以光先帝遗德,恢弘志士之气,不宜妄自菲薄,引喻失义,以塞忠谏之路也。

宫中府中,俱为一体;陟罚臧否,不宜异同。若有作奸犯科及为忠善者,宜付有司论其刑赏,以昭陛下平明之理;不宜偏私,使内外异法也。

侍中、侍郎郭攸之、费祎、董允等,此皆良实,志虑忠纯,是以先帝简拔以遗陛下:愚以为宫中之事,事无大小,悉以咨之,然后施行,必能裨补阙漏,有所广益。

将军向宠,性行淑均,晓畅军事,试用于昔日,先帝称之曰“能”,是以众议举宠为督:愚以为营中之事,悉以咨之,必能使行阵和睦,优劣得所。

亲贤臣,远小人,此先汉所以兴隆也;亲小人,远贤臣,此后汉所以倾颓也。先帝在时,每与臣论此事,未尝不叹息痛恨于桓、灵也。侍中、尚书、长史、参军,此悉贞良死节之臣,愿陛下亲之、信之,则汉室之隆,可计日而待也。

臣本布衣,躬耕于南阳,苟全性命于乱世,不求闻达于诸侯。先帝不以臣卑鄙,猥自枉屈,三顾臣于草庐之中,咨臣以当世之事,由是感激,遂许先帝以驱驰。后值倾覆,受任于败军之际,奉命于危难之间,尔来二十有一年矣。

先帝知臣谨慎,故临崩寄臣以大事也。受命以来,夙夜忧叹,恐托付不效,以伤先帝之明;故五月渡泸,深入不毛。今南方已定,兵甲已足,当奖率三军,北定中原,庶竭驽钝,攘除奸凶,兴复汉室,还于旧都。此臣所以报先帝而忠陛下之职分也。至于斟酌损益,进尽忠言,则攸之、祎、允之任也。

愿陛下托臣以讨贼兴复之效,不效,则治臣之罪,以告先帝之灵。若无兴德之言,则责攸之、祎、允等之慢,以彰其咎;陛下亦宜自谋,以咨诹善道,察纳雅言,深追先帝遗诏。臣不胜受恩感激。

今当远离,临表涕零,不知所言。

食品中几种常见的重金属检测方法

食品中几种常见的重金属检测方法 随着现阶段社会经济的快速发展,人们物质生活水平在不断提升,社会各界开始逐步重视食品安全问题。当前环境污染问题较为严重,各类重金属对食品安全构成了极大的威胁。为了有效应对食品安全中的重金属污染问题,当前需要对各类检测技术进行探究,促进食品安全检测工作质量的提升。 食品安全对于社会群众生命健康具有重要影响,当前相关食品检测机构需要从日常工作中提高责任意识,完善各项检测技术,确保食品安全。目前自然界中比重大于5的金属都被称为重金属,并不是所有的重金属都会对人体健康构成威胁,当重金属实际含量超出人体承受限度时会造成不同程度的危害,比如Pb、Cd、As、Hg等元素。许多重金属不能通过简单方法就能有效消除,如果人类长期使用被重金属污染后的食物,将会导致中毒问题。所以对重金属检测方法进行研究,对维护食品安全具有重要意义。 食物中常见重金属的主要来源概述 目前食品中存有的重金属来源主要有自然原因,也有诸多人为因素。自然原因主要包括不同地质和地理要素的影响,比如火山运动频繁的地区或是矿区,部分有毒重金属物质会对当地动植物产生不同程度污染,人类生活在此区域内,误食动植物都会诱发重金属中毒。人为因素导致的污染

主要是各类社会活动产生的主要后果,现阶段我国工业经济发展较快,各类工业生产活动会产生大量废渣和废水,此类废弃物当中存有较多重金属元素,如果相关部门不能对其进行有效处理,此类废弃物排放到自然环境中,不仅会破坏自然生态环境,还会对当地群众生命健康构成威胁。还有部分食物在实际存储和运输过程中与各类重金属元素进行直接接触,或是食物添加剂当中的有毒元素不断累积、发生相应化学反应都会导致重金属中毒现象的发生。 现阶段食品中几种常见的重金属检测方法探析 原子吸收光谱法。原子吸收光谱法主要是根据自由基础形态下的原子对辐射光进行共振吸收,通过光照强度来对食物中含有的重金属元素进行检测。此类方法实际操作较为便捷,能够最快速度得出相应结果,是当前食物重金属检测的重要技术。此类技术将磷酸二氢钾或是硝酸钯作为改进剂,通过添加改进剂能够使得原子温度有效降低,排除外界干扰因素,使得检测结果更加准确。现阶段在原子吸收光谱法中应用的吸收分光光度计都是通过微机进行控制,运用软件进行自动处理,简化了各项操作程序,有效缩短了实际反应时间。 原子荧光光谱法。原子荧光光谱技术是存在于原子发射和原子吸收之间的分析技术,在食物样品中添加还原剂,使得原子能够吸收特定的频率辐射,逐步形成激发态原子,此

(完整word版)重金属检测方法汇总

重金属检测方法汇总 重金属检测方法及应用 一、重金属的危害特性 从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。 (一)自然性: 长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。但是,人类对人工合成的化学物质,其耐受力则要小得多。所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。 (二)毒性: 决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~0.001mg/L之间。 (三)时空分布性: 污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。(四)活性和持久性: 活性和持久性表明污染物在环境中的稳定程度。活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。如汞可转化成甲基汞,毒性很强。与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。 (五)生物可分解性: 有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。大多数有机物都有被生物分解的可能性,而大多数重金属都不易被生物分解,因此重金属污染一但发生,治理更难,危害更大。 (六)生物累积性: 生物累积性包括两个方面:一是污染物在环境中通过食物链和化学物理作用而累积。二是污染物在人体某些器官组织中由于长期摄入的累积。如镉可在人体的肝、肾等器官组织中蓄积,造成各器官组织的损伤。又如1953年至1961年,发生在日本的水俣病事件,无机汞在海水中转化成甲基汞,被鱼类、贝类摄入累积,经过食物链的生物放大作用,当地居民食用后中毒。 (七)对生物体作用的加和性: 多种污染物质同时存在,对生物体相互作用。污染物对生物体的作用加和性有两类:一类是协同作用,混合污染物使其对环境的危害比污染物质的简单相加更为严重;另一类是拮抗作用,污染物共存时使危害互相削弱。 二、重金属的定量检测技术

食品中重金属检测注意事项

样品前处理注意事项: (一)铅、镉前处理注意事项 铅镉是非常容易污染的元素,只要我们的器皿和一些细小的环节稍加不注意就会造成空白和样品的污染,而且样品的不均也会引起平行样品的差异。 在进行样品消解时,干灰化法易造成被测元素的损失;在电热板上加混酸处理时,如果高氯酸在最后剩下过多,会造成空白过高;微波消解要是没有相应的赶酸设备,在转移到小烧杯赶酸,也会引起污染,因此在前处理上应该是步骤越少越好。 (二)砷、汞前处理注意事项 在消解样品的过程中,消解完全时,要把硝酸彻底赶完,因为硝酸具有氧化性质。 汞由于是沸点偏底,是及易挥发的元素,因此在前处理的过程中控制温度尤为重要。 微波消解法快速,试剂消耗少,消解完全,更适于高脂肪试样消解。但微波消解液酸度大,对于原子荧光法测定砷和汞干扰不明显;应用石墨炉原子吸收测定铅时酸度太大会导致背景值升高,且会缩短石墨管使用寿命。 因此,使用微波消解法进行石墨炉原子吸收测定时最好进行赶酸,或将消解液转移至敞口容器置于水浴中将棕色烟赶尽。 常规灰化法样品前处理 ◆常规灰化法测定镉,与微波消解和常规湿消解相比,结果的准确度和再现性较理想。国家标准物质小麦粉中镉测定结果均在允许偏差内。但灰化法铅的测定结果偏低。铅易损失,我们通常采用微波消解法进行铅的测定。 酱油、食盐、味精、酱腌菜等高盐试样用石墨炉原子吸收进行铅测定时背景值很高 上机条件的选择和优化 1、干燥时间的延长有利于元素的稳定 2、灰化温度的选择可以更好的去除一些干扰元素 3、灰化时间的调整可以减少元素的损失 4、测量方式可以适当调整 AAS常见故障的排除方法 仪器故障的判断: 仪器因素:由调制方法确定 化学因素:影响原子化效率或测量密度;样品粘度太大 样品被吸附或沾污 预处理方法与待测元素有干扰 一.灵敏度低 FAAS 1.提升量不足: 喷嘴堵塞 撞击球表面不光洁 雾化效率低 2.燃烧缝偏离光轴 3.燃气,助燃气比例不同: 燃烧头高度不对 乙炔到尾部3.5Kg/cm↓

金属检测手段

无损检测中的UT RT MT PT ET 都是什么意思? 射线检测 Radiographic Testing(缩写 RT); 超声检测 Ultrasonic Testing(缩写 UT); 磁粉检测 Magnetic particle Testing(缩写 MT); 渗透检测 Penetrant Testing (缩写 PT); 涡流检测 Eddy Current Testing (缩写 ET); 一、射线照相法(RT) 是指用X射线或g射线穿透试件,以胶片作为记录信息的器材的无损检测方法,该方法是最基本的,应用最广泛的一种非破坏性检验方法。 1、射线照相检验法的原理:射线能穿透肉眼无法穿透的物质使胶片感光,当X射线或r射线照射胶片时,与普通光线一样,能使胶片乳剂层中的卤化银产生潜影,由于不同密度的物质对射线的吸收系数不同,照射到胶片各处的射线能量也就会产生差异,便可根据暗室处理后的底片各处黑度差来判别缺陷。 2、射线照相法的特点:射线照相法的优点和局限性总结如下: a.可以获得缺陷的直观图像,定性准确,对长度、宽度尺寸的定量也比较准确; b.检测结果有直接记录,可长期保存; c. 对体积型缺陷(气孔、夹渣、夹钨、烧穿、咬边、焊瘤、凹坑等)检出率很高,对面积型缺陷(未焊透、未熔合、裂纹等),如果照相角度不适当,容易漏检; d.适宜检验厚度较薄的工件而不宜较厚的工件,因为检验厚工件需要高能量的射线设备,而且随着厚度的增加,其检验灵敏度也会下降; e.适宜检验对接焊缝,不适宜检验角焊缝以及板材、棒材、锻件等; f.对缺陷在工件中厚度方向的位置、尺寸(高度)的确定比较困难; g.检测成本高、速度慢; h.具有辐射生物效应,无损检测超声波探伤仪能够杀伤生物细胞,损害生物组织,危及生物器官的正常功能。 总的来说,RT的特性是——定性更准确,有可供长期保存的直观图像,总体成本相对较高,而且射线对人体有害,检验速度会较慢。无损检测X光机用于工业部门的工业检测X光机通常为工业无损检测X光机(无损耗检测),此类便携式X光机可以检测各类工业元器件、电子元件、电路内部。例如插座插头橡胶内部线路连接,二极管内部焊接等的检测。BJI-XZ、BJI-UC等工业检测X光机是可连接电脑进行图像处理的X光机,此类工业检测便携式X光机为工厂家电维修领域提供了出色的解决方案。 二、超声波检测(UT) 1)、超声波检测的定义:通过超声波与试件相互作用,就反射、透无损检测设备射和散射的波进行研究,对试件进行宏观缺陷检测、几何特性测量、组织结构和力学性能变化的检测和表征,并进而对其特定应用性进行评价的技术。2)、超声波工作的原理:主要是基于超声波在试件中的传播特性。 a.声源产生超声波,采用一定的方式使超声波进入试件; b.超声波在试件中传播并与试件材料以及其中的缺陷相互作用,使其传播方向或特征被改变; c.改变后的超声波通过检测设备被接收,并可对其进行处理和分析; d.根据接收的超声波的特征,评估试件本身及其内部是否存在缺陷及缺陷的特性。

食品中金属元素的检测方法

食品中金属元素的检测方法 近年来随着工业技术的发展,有越来越多的农药化肥用于农业耕作中,这导致一些有害金属元素如铅、镉、铜、汞等进入食品中。这些金属元素随食物进入人体内,会转变成具有高毒性的化合物。而且多数金属具有蓄积性,半衰期较长,能产生急性和慢性毒性反应,还有可能产生致畸、致癌和致突变的作用。自我国加入WTO后,食品安全受到了政府和人民更广泛的关注,而食品中有害金属元素的检测问题也变得日趋重要。目前常用于食品中金属元素的检测方法有物理法、化学法及生物法,以下将分别进行介绍。 物理法 1、光谱法 (1)原子吸收光度法 原子吸收光光度法(Atomic Absorption Spectrometry,AAS)是基于被测元素基态原子在蒸气状态对其原子共振辐射的吸收进行元素定量分析的一种方法。AAS具有灵敏度高 (ng/mL-pg/mL、准确度高、选择性高、分析速度快等优点。但是,AAS也存在不足,即不能多元素同时分析。 AAS是国家标准所规定的用于检测砷(GB/T5009.11-2003)、铅(GB/T5009.12-2003)、铜(GB/T5009.13-2003)、锌(GB/T5009.14-2003)、镉(GB/T5009.15-2003)、汞 (GB/T5009.17-2003)等元素的方法。B.Demi等人使用AAS检测面包中铁、铜、锌、铅和钙等金属离子的含量,测出了这些离子的平均含量,取得了满意的结果。 (2)原子发射光谱法 原子发射光谱法(Atomic Emission Spectroscopy,AES)是根据原子或离子在电能或热能激发下离解成气态的原子或离子后所发射的特征谱线的波长及其强度测定物质的化学组成和含量的分析方法。 AES操作简单,分析速度快;具有较高的灵敏度(ng/mL-pg/mL)和选择性;试剂用量少,一般只需几克至几十毫克;微量分析准确度高;使用原子发射仪测定,仪器较简单;可以定性及半定量的检测食品中的金属元素。 在《2005年最新国家食品生产认证与质量检验标准实施手册》中规定使用AES检测食品中的微量金属元素。在实际应用中,AES常与电感耦合等离子发射技术(ICP)结合使用,以达到更好的效果。

金属硬度检测方法

金属硬度检测方法 作者:张凤林 硬度是评定金属材料力学性能最常用的指标之一。硬度的实质是材料抵抗另一较硬材料压入的能力。硬度检测是评价金属力学性能最迅速、最经济、最简单的一种试验方法。硬度检测的主要目的就是测定材料的适用性,或材料为使用目的所进行的特殊硬化或软化处理的效果。对于被检测材料而言,硬度是代表着在一定压头和试验力作用下所反映出的弹性、塑性、强度、韧性及磨损抗力等多种物理量的综合性能。由于通过硬度试验可以反映金属材料在不同的化学成分、组织结构和热处理工艺条件下性能的差异,因此硬度试验广泛应用于金属性能的检验、监督热处理工艺质量和新材料的研制。 金属硬度检测主要有两类试验方法。一类是静态试验方法,这类方法试验力的施加是缓慢而无冲击的。硬度的测定主要决定于压痕的深度、压痕投影面积或压痕凹印面积的大小。静态试验方法包括布氏、洛氏、维氏、努氏、韦氏、巴氏等。其中布、洛、维三种试验方法是应用最广的,它们是金属硬度检测的主要试验方法。这里的洛氏硬度试验又是应用最多的,它被广泛用于产品的检验,据统计,目前应用中的硬度计70%是洛氏硬度计。另一类试验方法是动态试验法,这类方法试验力的施加是动态的和冲击性的。这里包括肖氏和里氏硬度试验法。动态试验法主要用于大型的,不可移动工件的硬度检测。 各种金属硬度计就是根据上述试验方法设计的。下面分别介绍基于各种试验方法的硬度计的原理、特点与应用。 1.布氏硬度计(GB/T231.1—2002) 1.1布氏硬度计原理 对直径为D的硬质合金球压头施加规定的试验力,使压头压入试样表面,经规定的保持时间后,除去试验力,测量试样表面的压痕直径d,布氏硬度用试验力除以压痕表面积的商来计算。 HB =F / S ……………… (1-1) =F / πDh ……………… (1-2) 式中: F ——试验力,N; S ——压痕表面积,mm; D ——球压头直径,mm; h ——压痕深度, mm; d ——压痕直径,mm。 1、2布氏硬度计的特点: 布氏硬度试验的优点是其硬度代表性好,由于通常采用的是10 mm直径球压头,3000kg试验力,其压痕面积较大,能反映较大范围内金属各组成相综合影响的平均值,而不受个别组成相及微小不均匀度的影响,因此特别适用于测定灰铸铁、轴承合金和具有粗大晶粒的金属材料。它的试验数据稳定,重现性好,精度高于洛氏,低于维氏。此外布氏硬度值与抗拉强度值之间存在较好的对应关系。

金属元素分析方法

金属元素分析方法 原铁矿中二氧化硅、三氧化铝、三氧化二铁的测定试剂:氢氧化钠;盐酸;准确含量的标样准确称取0.2 克试样至银坩埚中,加入2-3 克氢氧化钠固体,并与试样充分搅拌均匀,加盖放入730 度左右的马弗炉中烧15 分钟取出,少冷却,用镊子夹住用热水冲洗银坩埚,用(1+1)盐酸冲洗银坩埚及盖子,在用水冲洗坩埚,将试液转移到已有20mL 盐酸的250mL 的容量瓶中,待冷却后加水稀释至标线,此溶液做测定二氧化硅、三氧化铝、三氧化二铁的母液。 一、分光光度法测定三氧化二铁 试剂:磺基水杨酸;氨水 准确移取母液5.00mL至100mL容量瓶中,加10mL5^磺基水杨酸,用(1+1)氨水调至黄色并过量3-4 滴,用水稀释至刻度。同时做标样。 二、分光光度法测定二氧化硅试剂:钼酸铵、草酸、硫酸亚铁铵、硫酸 草硫混酸配置:a .30克草酸b.30克硫酸亚铁胺把a放入500mL烧杯中,用沸水把草酸充分溶解;把b放入500mL烧杯中,用沸水充分溶解;却后加169mL(1+1)硫酸搅匀,放入 a 中,加水稀释到1000mL 。 分析步骤:准确移取母液 5.00mL 至100mL 容量瓶中,,加入40mL (1+99)盐酸,加5mL 钼酸铵(10%的水溶液),摇匀静置(显色)可放到热水中保温使显色,10 分钟后,加20mL 草硫混酸,用水稀释至刻度摇匀。同时做标样。将 b 冷 磷的分析 一:钢铁中磷的分析 1 、分析原理: 试样以硝酸溶解,加高锰酸钾将磷全部氧化为正磷酸,加钼酸铵形成磷钼蓝,用氯化亚锡将还原为磷钼蓝,测量吸光度。 2 、试剂 (1)硝酸:(2+5) (2)高锰酸钾(4%) (3)钼酸铵-- 酒石酸钾钠混合液: 将20%钼酸铵溶于20%酒石酸钾钠等体积混合,当日配置。 (4)氟化钠--氯化亚锡溶液;100mL2.4%氟化钠溶液中加0.2克氯化亚锡,氟化钠预先配置,用时加氯化亚锡。

食品中的重金属检验检测方法

食品中的重金属检验检测方法 食品中重金属污染的来源 (1)有些地区特殊的自然条件使得该环境的有毒重金属量会高于一般地区,比如一些特殊的矿区、海底火山附近等,使得该地区的动植物有毒含量高于其他地区。 (2)人为因素造成的环境污染使得有害重金属也污染了食品。在现代化工业生产中排放的工业废渣、废水、废气等造成了水体和土壤的污染。而生物通过环境摄取了重金属后又通过食物链的方式进入到人体内发生潜在的危害。 (3)在食品的加工、销售、储存和运输等各个环节中都有可能接触到有毒的容器、管道等,从而导致食品污染。 食品中重金属的检测方法 紫外分光光度法。紫外分光光度法是物质对光的选择吸收而产生的定量、定性和结构分析方法。加入显色剂使待测的物质在紫外线或者可见光情况下吸收化合物进行的光度测试,但是此方法不能有效的检测含量较低的重金属物质,需要有机溶剂检测某些元素,操作过程较繁琐。 高效液相色谱法。高效液相色谱法即HPLC,它是通过对紫外线-可见光检测仪的使用来记录显色试剂的显色过程及重金属物质形成过程,并通过色谱分离后的有色物体进行的检测。此种方法可以有效的排除杂质对于结果的影响,可

以同时对多种重金属进行相应检测,具有灵敏度高、可选择性、高分离效能等多项优点。 原子光谱技术 (1)原子吸收法(AAS)。原子吸收法包含了石墨炉原子吸收法和火焰原子吸收法两种,它是指通过对气态原子的利用去吸收一定量的光辐射,让原子外层的电子由原本的基态转换成激发态,从而吸收特征谱线,以此对其他化学元素进行测定的方法。各种电子和原子之间的能级存在着差异,它们在共振吸收特定波长的辐射光时具有一定的选择性,被共振吸收的波长刚好等于受到激发的原子产生的光谱波长,这个可以用作元素定性的依据。目前AAS已经成为了分析无机元素定量分析方法中最常见的一种。 F- AAS是一种分析速度快、操作流程简单、信号极其稳定、抗干扰能力、预处理过程简单的一种痕量分析方法,可以直接对高粘度及固体物质进行分析,但是不适合测定不能完全分解的耐高温的重金属元素。而GF- AAS的干扰项较多且十分严重,不宜做多种重金属元素的分析。 (2)电感耦合等离子体质谱法(ICPMS)。电感耦合等离子体质谱法即ICP- MS,它是一种基于等离子为离子源的关于质谱型元素的分析手段,可以同时测定多种重金属元素,此外该种测定方法还可以同其他的色谱分离方法一起使用,用来分析元素的价态。

金属检测常规方法

主流金属制品表面缺陷在线检测方法。 一、漏磁检测 漏磁检测技术广泛应用于钢铁产品的无损检测。其检测原理是,利用磁源对被测材料局部磁化,如材料表面存在裂纹或坑点等缺陷,则局部区域的磁导率降低、磁阻增加,磁化场将部分从此区域外泄,从而形成可检验的漏磁信号。在材料内部的磁力线遇到由缺陷产生的铁磁体间断时,磁力线将会发生聚焦或畸变,这一畸变扩散到材料本身之外,即形成可检测的磁场信号。采用磁敏元件检测漏磁场便可得到有关缺陷信息。因此,漏磁检测以磁敏电子装置与磁化设备组成检测传感器,将漏磁场转变为电信号提供给二次仪表。 漏磁检测技术的整个过程为:激磁-缺陷产生漏磁场-传感器获取信号-信号处理-分析判断。在磁性无损检测中,磁化时实现检测的第一步,它决定着被测量对象(如裂纹)能不能产出足够的可测量和可分辨的磁场信号,同时也影响着检测信号的性能,故要求增强被测磁化缺陷的漏磁信号。被测构件的磁化由磁化器来实现,主要包括磁场源和磁回路等部分。因此,针对被测构件特点和测量目的,选择合适的磁源和设计磁回路是磁化器优化的关键。 漏磁检测金属表面缺陷的物理基础使带有缺陷的铁磁件在磁场 中被磁化后,在缺陷处会产生漏磁场,通过检测漏磁场来辩识有无缺陷。因此,研究缺陷漏磁场的特点,确定缺陷的特征,就成为漏磁检测理论和技术的关键。要测量漏磁场,测量装置须具有较高的灵敏度,特别是能测空间点磁场,还应有较大的测量范围和频带;测量装置须

具有二维及三维的精确步进或调整能力,以确定传感器的空间位置;同时,应用先进的信号处理技术去除噪声,确定实际的漏磁场量。Foerster,Athertion 已成功应用霍尔器件检测缺陷,霍尔器件可在z—Y二维空间步进的最小间隔分别为2μm和0.1μm。 漏磁检测不仅能检测表面缺陷,且能检测内部微小缺陷;可检测到5X10mm。的微小缺陷;造价较低廉。其缺点是,只能用于金属材料的检测,无法识别缺陷种类。目前,漏磁检测在低温金属材料缺陷检测方面已进入实用阶段。如日本川崎公司千叶厂于1993年开发出在线非金属夹杂物检测装置;日本NKK公司福冈厂于同年研制出一种超高灵敏度的磁敏传感器,用于检测钢板表面缺陷。 二、红外线检测与技术 红外线检测是通过高频感应线圈使连铸板坯表面产生感应电流,在高频感应的集肤效应作用下,其穿透深度小于1 mm,且在表面缺陷区域的感应电流会导致单位长度的表面上消耗更多电能,引起连铸板坯局部表面的温度上升。该升温取决于缺陷的平均深度、线圈工作频率、特定输入电能,以及被检钢坯电性能、热性能、感应线圈宽度和钢运动速度等因素。当其它各种因素在一定范围内保持恒定时,就可通过检测局部温升值来计算缺陷深度,而局部温升值可通过红外线检测技术加以检定。利用该技术,挪威Elkem公司于1990年研制出Ther—mOMatic连铸钢坯自动检测系统,日本茨城大学工学部的冈本芳三等在检测板坯试件表面裂纹和微小针孔的实验研究中也利用此法得到较满意的结果。

重金属元素对人体的危害及检测方法

人体内重金属元素的危害及检测方法 一、选定课题的简要说明: 近年来,随着我国工业化快速发展,大气、水土的污染形势日益严峻,人体中金属含量超标已经越来越多的在各地发生,其对人体造成的危害不容无视,如铅毒症、水俣病等。这些中毒症状往往会给人体带来严重的永久性损伤,进而导致残疾甚至死亡。因而,只有了解重金属以及其摄入过多的症状,才能有效防范重金属中毒。 由于危害人体健康的重金属含量极低,常规检查不易查出,一旦查出时往往已经出现严重的并发症,研制灵敏度更高、准确度更好、速度更快的检测方法便是现阶段追求的目标,本文将例举集中常用的测定重金属元素的检测方法。 二、信息检索说明: 1 检索关键词:重金属、人体、危害 2 检索工具和数据库: 2.1 中国期刊全文数据库 2.2 万方数据系统 三、综述: 以上检索共查找到了相关文献85篇,另外又对比参考了各个数据库推荐的相似文献,其中重点参考了中国期刊全文数据库中的20余篇文章。在经过对其的学习和理解并通过自己的总结及相应参考后,现将该课题内容和自己的启示心得综述如下。 摘要对什么是重金属目前尚无严格的定义,化学上跟据金属的密度把金属分成重金属和轻金属,常把密度大于4.5g/cm3的金属称为重金属。如:金、银、铜、铅、锌、镍、钴、铬、汞、镉等大约45种。从环境污染方面所说的重金属是指:汞、镉、铅、铬以及类金属砷等生物毒性显著的重金属。对人体毒害最大的有5种:铅、汞、铬、砷、镉。这些重金属在水中不能被分解,人饮用后毒性放大,与水中的其他毒素结合生成毒性更大的有机物或无机物。通常认可的重金属分析方法有:微谱分析(MS)、紫外可分光光度法(UV)、原子吸收法(AAS)、原子荧光法(AFS)、电感耦合等离子体法(ICP)、X荧光光谱(XRF)、电感耦合等离子质谱法(ICP-MS)。 目录 1重金属中毒的危害

浅析食品重金属测定中的几种样品消解方法

科技论坛 2017年9期︱333︱ 浅析食品重金属测定中的几种样品消解方法 罗砚文 遵义市产品质量检验检测院,贵州 遵义 563000 摘要:食品安全直接关乎人们身体健康,在当前社会快速进步和发展下,对于食品卫生安全提出了更高的要求。做好食品卫生安全检测工作十分关键,尤其是食品中的重金属物质检测,重金属物质可能通过水源、土壤和空气进入到食品中,在食品加工和存储中同样会产生严重的重金属污染,人们在食用重金属物质超标的食品后,将会损坏人体器官,诱发神经性疾病、心脑血管疾病和生殖系统疾病,严重情况下可能致癌。故此,为了保证食品卫生安全,需要选择合理的检测方法。确保食品卫生安全。本文就食品重金属测定中的几种样品消解方法展开深入分析,从多种角度进行剖析,总结当前常见的样品消解方法。 关键词:食品卫生安全;重金属测定;样品消解方法 中图分类号:TS201.6 文献标识码:B 文章编号:1006-8465(2017)09-0333-01 伴随着社会经济的持续增长,环境污染问题愈加严重,相应的带来了一系列食品安全问题,很多有害重金属物质通过化学形态进入到自然环境,对水源、土壤和空气产生污染,进而导致食品出现重金属污染问题。对于食品重金属含量的检测和分析,直接影响着人们的身体健康,这就需要选择合理的样品消解方法,深入分析和检测重金属物质,缩短样品消解时间的同时,可以有效提升检测效率和检测质量,为后续食品卫生安全提充分参考依据。由此,加强食品重金属测定的有效样品消解方法分析,有助于提升样品测定效率,推动社会和谐稳定发展。 1 样品消解方法 1.1 干法灰化 此种方法强调在特定温度下加热处理,物质分解和灰化后残留的物质可以选择适当溶剂溶解。结合灰化条件差异,主要包括两种。一种是在充满氧气的密闭瓶中,通过电火花引燃样品,使用吸收剂来吸收燃烧后产生的物质,用相配套的方法进行测定,此种方法称之为氧瓶燃烧法,可以用于硫、硼和磷物质的检测;另一种则是将检测样品放置在蒸发皿中,在500℃~800℃范围内加热处理,样品分解、灰化的产物使用特定溶剂溶解后测定,此种方法可以有效提升样品物质测定质量和效率。在食品卫生安全检测中,更多的是用于食品中铅、镉、铬等重金属物质的检测。 1.2 湿式消解 湿式消解是指在适量食品中融入氧化性强酸,加热煮沸后可以将有机质分解氧化为水、二氧化碳和其他气体,同时加入催化剂,破坏食品中有机物质。此种方法在实际应用中效果较为突出,对于含有大量有机物质的样品而言,主要是在玻璃容器中试验[1]。硝酸沸点在120℃以上时,可以充当于氧化剂作用,可以有效破坏样品中的有机质;硫酸由于自身特性,脱水能力较强,促使有机物炭化的同时,可以有效提升混合酸沸点。由于热的高氯酸自身较强的脱水和氧化作用,可以有效破坏样品有机质,去除样品中的硝酸同时,促使样品持续氧化。在这个过程中,硫酸自身较强的脱水作用,可以快速分解溶液中的有机质。如果样品中的无机物较多,可以选择混合酸进行消解,其中混合酸中盐酸为主要成分。 1.3 微波消解 微波消解主要是指将密闭容器中的消解液和试样借助微波加热,在高温增压下可以加快样品溶解速度。一般情况下,介质材料中包括极性分子和非极性分子,受到电磁场作用和影响,极性分子原有的分布状态将会发生不同程度上的转变,逐渐根据电磁场极性排列方向分布。如果是受到高频电磁作用影响,按照交变电磁场变化逐渐发生变化,受到微波磁场的影响,极性分子将会快速迁移,并在相互摩擦中致使反应物的温度逐渐升高,促使物质可以快速发生反应被消解。 通过对比分析上述三种消解方法中总锑含量,以菠菜为例,遵循国家标准物质要求,运用AFS 法测定可以得出:干灰法测定值为(0.029、032、0.035;0.039、0.041、0.042)mg/kg,平均值为0.036mg/kg,标准误差为0.0047,相对标准偏差为13.1%;湿消解法测定值为(0.032、0.034、0.035;0.037、0.040、0.040)mg/kg,平均值为0.036mg/kg,标准误差为0.0030,相对标准偏差为8.3%;微波消解法为(0.045、0.046、0.048;0.050、0.050、0.051)mg/kg,平均值为0.048mg/kg,相对标准偏差为13.1%。 2 样品消解法的优势和弊端 2.1 样品消解法的优势 其一,干法灰化优势。此种方法在实际应用中操作简单、便捷,适合应用在无法使用酸处理的有机质样品中,后续处理工作更为便捷,同时可以实现对微量元素的深入分析,一次性处理批量较大的样品。 其二,湿式消解的优势。此种方法操作便捷,更适合应用在重金属含量较大的食品检测中,其中包括铅、铬、锡等物质。加之消解酸纯度较高,内部成分并不复杂,只需要掌握合理的控制消化温 度,即可有效降低元素损失。 其三,微波消解优势。微波消解技术在实际应用中效果较为可观,所用剂量较小,消解效率更高,同时还可以有效降低环境污染,维护生态平衡。具体来看,微波消解技术升温快、加热快,可以有效缩短熔样时间,通过微波加热处理后,可以在罐内形成高温气压;消耗溶剂少,密闭硝酸过程中,可以有效避免酸挥发损失,同时还可以持续加酸,大大降低了资源浪费现象,提升试剂抗干扰能力。 2.2 样品消解法的弊端 其一,干法灰化方法在实际应用中,要求灰化温度在500℃~550℃左右,部分物质蒸导致元素损失。并且,此种方法的回收率不 高,资源利用效率不高,所以在实际应用中,做好样本的加标回收 试验,提升试验数据准确性[3]。 其二,样品在电炉中炭化到无盐过程需要耗费的时间较久,然后将其放入到马弗炉灰化处理中,大概在6个小时至8个小时左右。 如果灰化不充分,可以适当的增加灰化剂反复消化,确保样品可以 得到充分的消化[4]。 其三,湿式消解的氧化时间较久,大致需要1个小时左右,部分样品可以通过混合酸浸泡处理后,实现消解目的,但是费时较久。如果样品完全消解,在这个过程中需要耗费的酸量是非常大的。 其四,微波消解法同样存在不足,由于样品取样量较少,所以一般干样品不超过0.3g~0.5g 之间,鲜样品在1g~2g 之间,液体样品在1ml~2ml 之间。样品消解前需要进行预处理,只有处理完的消解 液,才能快速清除其中剩余酸和氮氧化物,同湿消化法缺陷相一致。 3 结论 综上所述,食品重金属含量的检测和分析,主要是为了维护人们的身体健康,这就需要选择合理的样品消解方法,深入分析和检测重金属物质,缩短样品消解时间的同时,可以有效提升检测效率和检测质量,推动社会和谐稳定发展。 参考文献: [1]谭湘武,马金辉,萧福元,彭蔚,黄昒昕.不同消解方法测定食品样品中总锑含量的比较研究[J].微量元素与健康研究,2015,25(05):1-5. [2]贺东霞.不同消解方法对食品样中Pb、Cd 等重金属测定的影响[J]. 河南预防医学杂志,2015,25(05):334-335+337. [3]杨艳芳,刘凤枝,蔡彦明.土壤样品的王水回流消解重金属测定方法的研究[J].农业环境与发展,2015,31(04):44-45. [4]黄晓纯,刘昌弘,张军,董泳秀,刘文华,赵秋香,李锡坤. ICP-MS 测定蔬菜样品中重金属元素的两种微波消解前处理方法[J].岩矿测试, 2013,11(03):415-419.

重金属元素对人体的危害及检测方法

人体内重金属元素的危害及检测方法 (山东大学化学与化工学院2010级化学基地班耿轶峥 201000112008) 一、选定课题的简要说明: 近年来,随着我国工业化快速发展,大气、水土的污染形势日益严峻,人体中金属含量超标已经越来越多的在各地发生,其对人体造成的危害不容无视,如铅毒症、水俣病等。这些中毒症状往往会给人体带来严重的永久性损伤,进而导致残疾甚至死亡。因而,只有了解重金属以及其摄入过多的症状,才能有效防范重金属中毒。 由于危害人体健康的重金属含量极低,常规检查不易查出,一旦查出时往往已经出现严重的并发症,研制灵敏度更高、准确度更好、速度更快的检测方法便是现阶段追求的目标,本文将例举集中常用的测定重金属元素的检测方法。 二、信息检索说明: 1 检索关键词:重金属、人体、危害 2 检索工具和数据库: 2.1 中国期刊全文数据库 2.2 万方数据系统 三、综述: 以上检索共查找到了相关文献85篇,另外又对比参考了各个数据库推荐的相似文献,其中重点参考了中国期刊全文数据库中的20余篇文章。在经过对其的学习和理解并通过自己的总结及相应参考后,现将该课题内容和自己的启示心得综述如下。 摘要对什么是重金属目前尚无严格的定义,化学上跟据金属的密度把金属分成重金属和轻金属,常把密度大于4.5g/cm3的金属称为重金属。如:金、银、铜、铅、锌、镍、钴、铬、汞、镉等大约45种。从环境污染方面所说的重金属是指:汞、镉、铅、铬以及类金属砷等生物毒性显著的重金属。对人体毒害最大的有5种:铅、汞、铬、砷、镉。这些重金属在水中不能被分解,人饮用后毒性放大,与水中的其他毒素结合生成毒性更大的有机物或无机物。通常认可的重金属分析方法有:微谱分析(MS)、紫外可分光光度法(UV)、原子吸收法(AAS)、原子荧光法(AFS)、电感耦合等离子体法(ICP)、X荧光光谱(XRF)、电感耦合等离子质谱法(ICP-MS)。 目录

金属间相的标准测试方法A923 C法

标识A923-06 检测二相奥氏体/铁素体不锈钢里有害的金属间相的标准测试方法 此标准是在标识A923-06下发布的;仅随着此标识号的是最初版本的年份,如果有修订版的,即为最后版本的年份。括号中的数表示最后重新审定通过的年份。上标(ε)表示自从上次版本或者重新审定通过的之后的编辑的修改。 1.范围 1.1 这些测试方法的目的是能够检验明显地影响到韧性或者抗腐蚀性的二相奥氏体/铁素体不锈钢里有害的金属间相的存在。这些测试方法将不必要能够测试由于其他的原因导致的韧性和耐腐蚀性的丧失。 1.2 二相(奥氏体/铁素体)不锈钢容易受到在暴露在温度范围大概600到1750℉(320到955℃)时的金属间化合物形成的影响。这些沉淀反应的速度是每一片的合成、热的或者热机械历史的作用。这些相的存在对韧性和耐腐蚀性有害。 1.3 对二相不锈钢的正确的热处理能够消除这些有害的相。这些产品的快速冷却提供了通过紧随的热暴露产生的有害相形成的最大的抵抗力。 1.4 与适用的产品规范的化学和机械要求一致并不表示在产品中没有有害相的存在。 1.5 这些测试方法包括如下: 1.5.1 测试方法A-氢氧化钠腐蚀测试来鉴别二相不锈钢的腐蚀结构(段3-7)。 1.5.2 测试方法B-摆锤冲击测试来鉴别二相不锈钢的结构(段8-13) 1.5.3 测试方法C-氯化铁腐蚀测试来鉴别二相不锈钢的结构。(段14-20) 1.6 通过以上三种测试方法都可以容易地测试出有害的金属间相,只要选择了合适的位置和取向的样品。因为金属间相的存在是温度和冷却速率的作用,测试必须在经受最像产生这种金属间相条件的材料的区域进行。在通常的热处理情况下,这个区域是冷却最缓慢的区域。除非对于快速冷却的材料,就有必要从最缓慢冷却地材料区域取样。 1.7 测试并不能确定有害相的精确性质,而能确定影响到韧性或者抗腐蚀性的有害的金属间相的存在。 1.8 热暴露的相关性的例子,金属间相的存在和韧性及耐腐蚀的降级在附录X1和附录X2里给出。 1.9 在用或者英寸-英镑或者SI单位的给出的数值被认为是标准的。在括号中给出的数值仅做参考。 1.10 此标准的只要目的不是强调所有的安全考虑,如果有的话,是跟使用相关的。建立合适的安全和健康操作规程和决定在使用前规定性限制的适用性是此标准的使用者的责任。 2.参考的文件 2.1 ASTM标准 A370钢产品的机械测试的测试方法和定义 G48 使用氯化铁溶液对不锈钢和相关合金的点腐蚀和间隙腐蚀的测试方法。 测试方法A-氢氧化钠腐蚀测试来鉴别二相不锈钢的腐蚀结构 3.范围

几种常用样品前处理方法在食品重金属检验中的应用

几种常用样品前处理方法在食品重金属检验中的应用 摘要介绍了食品金属元素检验时常用的样品前处理方法,分析了在食品金属元素检验中湿消化法,干灰化法,微波消解法和酸提取法这四种样品前处理方法的应用和注意事项。为食品检验工作者选取适当的样品前处理方法提供一定的参考。 关键词湿消化法;微波消解 食品是人类生存的基本要素,由于工业化的发展,导致食品中可能含有或者被污染有危害人体健康的物质。随着人们生活水平的提高,食品安全性问题日益受到重视,国家加大了对食品的监管工作。与此同时也使食品检验工作者的检验工作量增多,这就要求食品检验工作者在保证检验质量的同时还应该提高工作效率。在食品的重金属检验中,样品前处理最为食品检验的关键步骤,直接影响分析结果的精密度和准确度,选择合适的前处理方法,缩短样品的前处理时间,是在保证检验质量的同时提高检验效率的一个重要方法。笔者依据目前常用的四种样品前处理方法结合食品中金属元素的检验经验,分析了四种方法在食品金属检验中的应用和注意事项,为食品检验工作者选取合适的样品前处理方法提供一定的参考。湿消化法 湿消化法是在适量的食品样品中,加入氧化性强酸,加热破坏有机物,使待测的无机成分释放出来,形成不挥发的无机化合物,以便进行分析测定。 湿法消化是目前应用比较广泛的一种食品样品前处理方法,该方法实用性强,几乎所有的食品都可以用该方法消化。 下面介绍下湿法消解的优势:首先、前处理所用的试剂即酸都可以找到高纯度的,同时基体成分都比较简单(偶尔也会产生部分硫酸盐);其次、在实验过程中,只要控制好消化温度,大部分元素一般很少或几乎没有损失。例如,在测定酱油中的砷含量时采用湿法消化加入了硝酸高氯酸混合酸和硫酸,加标回收率为95%以上。即便像“汞”等极易挥发的元素,只要正确掌握消化温度,也不会有损失。 但是湿消化法也有一定的缺陷: 首先,由于该反应是氧化反应,样品氧化时间较长,需要一个小时左右的时间(随样品的成分而定),且实验过程中一次不能消化超过10个样品,因此方法的劳动强度比较大。 其次,样品消化时常使用的试剂硝酸、高氯酸、过氧化氢,硫酸都是具有腐蚀性且比较危险的。在用硝酸和高氯酸时产生的酸雾和烟,对通风橱的腐蚀性也很大。特别需要注意的是用高氯酸消解样品时,应严格遵守操作规程,烧杯中液体不能烧干,并且要保证温度达到200摄氏度时只有少量的有机成分存在,否则高氯酸的氧化电位在此温度下会迅速升高,会导致剧烈的爆炸!因此建议,在使用高氯酸时,最好先用硝酸氧化部分的有机物,或者是先加入硝酸与高氯酸的混合液浸泡一夜,同时实验要在通风橱内进行。消化液不能蒸干,以防部分元素如硒、铅的损失。 还有,由于氧化反应过程中加入了浓酸,这些酸可能会对仪器产生损害进而影响试验结果,因此消解结束后需要排酸,例如,用原子荧光测定总砷,测定时硝酸的存在会妨碍砷化氢的产生,对测定有干扰,消解完全后应尽可能的加热驱除硝酸。国标实验中采用硝酸-硫酸消解样品,由于硫酸的沸点比硝酸要高,所以最后消化液里基本上没有硝酸。但是需要注意的是,采用硝酸-硫酸消解样品时因避免发生碳化,消解过程发生碳化时会使砷严重损失,所以在消解过程中注意若消化液色泽变深应适当补加硝酸,值得注意的是在标准曲线也要保证和样品消解液中相同的酸浓度即要基体匹配。 某些特殊食品湿消解时注意事项: 含油脂成分较高的食品,如植物油、桃酥等,在加入混合酸后,由于样品浮在混酸表面上,容易形成完整的膜,加热时液面上有剧烈的反应,容易造成爆沸或飞溅,因此建议样品称样量不高于1g(植物油最好为0.1-0.2g),同时要在消解过程中随时补加硝酸,一般来讲硝酸高氯酸混合液加入15ml,放置过夜让其缓慢氧化,次日消化中途还需要补加混合酸10ml 左右。

金属检测方法

重金属检测方法汇总重金属检测方法及应用一、重金属的危害特性从环境污染方面所说的重金属,实际上主要是指汞、镉、铅、铬、砷等金属或类金属,也指具有一定毒性的一般重金属,如铜、锌、镍、钴、锡等。我们从自然性、毒性、活性和持久性、生物可分解性、生物累积性,对生物体作用的加和性等几个方面对重金属的危害稍作论述。(一)自然性:长期生活在自然环境中的人类,对于自然物质有较强的适应能力。有人分析了人体中60多种常见元素的分布规律,发现其中绝大多数元素在人体血液中的百分含量与它们在地壳中的百分含量极为相似。但是,人类对人工合成的化学物质,其耐受力则要小得多。所以区别污染物的自然或人工属性,有助于估计它们对人类的危害程度。铅、镉、汞、砷等重金属,是由于工业活动的发展,引起在人类周围环境中的富集,通过大气、水、食品等进入人体,在人体某些器官内积累,造成慢性中毒,危害人体健康。(二)毒性:决定污染物毒性强弱的主要因素是其物质性质、含量和存在形态。例如铬有二价、三价和六价三种形式,其中六价铬的毒性很强,而三价铬是人体新陈代谢的重要元素之一。在天然水体中一般重金属产生毒性的范围大约在1~10mg/L之间,而汞,镉等产生毒性的范围在0.01~0.001mg/L之间。(三)时空分布性:污染物进入环境后,随着水和空气的流动,被稀释扩散,可能造成点源到面源更大范围的污染,而且在不同空间的位置上,污染物的浓度和强度分布随着时间的变化而不同。(四)活性和持久性:活性和持久性表明污染物在环境中的稳定程度。活性高的污染物质,在环境中或在处理过程中易发生化学反应,毒性降低,但也可能生成比原来毒性更强的污染物,构成二次污染。如汞可转化成甲基汞,毒性很强。与活性相反,持久性则表示有些污染物质能长期地保持其危害性,如重金属铅、镉等都具有毒性且在自然界难以降解,并可产生生物蓄积,长期威胁人类的健康和生存。(五)生物可分解性:有些污染物能被生物所吸收、利用并分解,最后生成无害的稳定物质。大多数有机物都有被生物分解的可能性,而大多数重金属都不易被生物分解,因此重金属污染一但发生,治理更难,危害更大。(六)生物累积性:生物累积性包括两个方面:一是污染物在环境中通过食物链和化学物理作用而累积。二是污染物在人体某些器官组织中由于长期摄入的累积。如镉可在人体的肝、肾等器官组织中蓄积,造成各器官组织的损伤。又如1953年至1961年,发生在日本的水俣病事件,无机汞在海水中转化成甲基汞,被鱼类、贝类摄入累积,经过食物链的生物放大作用,当地居民食用后中毒。(七)对生物体作用的加和性:多种污染物质同时存在,对生物体相互作用。污染物对生物体的作用加和性有两类:一类是协同作用,混合污染物使其对环境的危害比污染物质的简单相加更为严重;另一类是拮抗作用,污染物共存时使危害互相削弱。二、重金属的定量检测技术 通常认可的重金属分析方法有:紫外可分光光度法(UV)、原子吸收法(AAS)、原子荧光法(AFS)、电感耦合等离子体法(ICP)、X荧光光谱(XRF)、电感耦合等离子质谱法(ICP-MS)。日本和欧盟国家有的采用电感耦合等离子质谱法(ICP-MS)分析,但对国内用户而言,仪器成本高。也有的采用X荧光光谱(XRF)分析,优点是无损检测,可直接分析成品,但检测精度和重复性不如光谱法。最新流行的检测方法--阳极溶出法,检测速度快,数值准确,可用于现场等环境应急检测。(一)原子吸收光谱法(AAS)原子吸收光谱法是20世纪50年代创立的一种新型仪器分析方法,它与主要用于无机元素定性分析的原子发射光谱法相辅相成,已成为对无机化合物进行元素定量分析的主要手段。原子吸收分析过程如下:1、将样品制成溶液(空白);2、制备一系列已知浓度的分析元素的校正溶液(标样);3、依次测出空白及标样的相应值;4、依据上述相应值绘出校正曲线;5、测出未知样品的相应值;6、依据校正曲线及未知样品的相应值得出样品的浓度值。现在由于计算机技术、化学计量学的发展和多种新型元器件的出现,使原子吸收光谱仪的精密度、准确度和自动化程度大大提高。用微处理机控制的原子吸收光谱仪,简化了操作程序,节约了分析时间。现在已研制出气相色谱—原子吸收光谱(GC-AAS)的联用仪器,进一步拓展了原子吸收光谱法的应用领

相关文档