文档库 最新最全的文档下载
当前位置:文档库 › 解析几何的产生与数形结合的思想

解析几何的产生与数形结合的思想

解析几何的产生与数形结合的思想
解析几何的产生与数形结合的思想

解析几何的产生与数形结合的思想

目录

一、解析几何的产生

二、解析几何的基本内容

三、解析几何的意义

四、数形结合思想的概念

五、运用数形结合思想的原则

六、运用数形结合思想的常见问题

七、运用数形结合思想的注意要点

八、数形结合思想的意义

一、解析几何的产生

十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要。比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体试验着抛物线运动的。这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,原先的一套方法显然已经不适应了,这就导致了解析几何的出现。

从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种“普遍”的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。

为了实现上述的设想,笛卡尔茨从天文和地理的经纬制度出发,指出平面上的点和实数对(x,y)的对应关系。x,y的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质。这就是解析几何的基本思想。

解析几何的产生并不是偶然的。在笛卡尔写《几何学》以前,就有许多学者研究过用两条相交直线作为一种坐标系;也有人在研究天文、地理的时候,提出了一点位置可由两个“坐标”(经度和纬度)来确定。这些都对解析几何的创建产生了很大的影响。

在数学史上,一般认为和笛卡尔同时代的法国业余数学家费尔马也是解析几何的创建者之一,应该分享这门学科创建的荣誉。

费尔马是一个业余从事数学研究的学者,对数论、解析几何、概率论三个方面都有重要贡献。他性情谦和,好静成癖,对自己所写的“书”无意发表。但从他的通信中知道,他早在笛卡尔发表《几何学》以前,就已写了关于解析几何的小文,就已经有了解析几何的思想。只是直到1679年,费尔马死后,他的思想和著述才从给友人的通信中公开发表。

二、解析几何的基本内容

在解析几何中,首先是建立坐标系。例如,取定两条相互垂直的、具有一定方向和度量单位的直线,叫做平面上的一个直角坐标系oxy。利用坐标系可以把平面内的点和一对实数(x,y)建立起一一对应的关系。除了直角坐标系外,还有斜坐标系、极坐标系、空间直角坐标系等等。在空间坐标系中还有球坐标和柱面坐标。

坐标系将几何对象和数、几何关系和函数之间建立了密切的联系,这样就可以对空间形式的研究归结成比较成熟也容易驾驭的数量关系的研究了。用这种方法研究几何学,通常就叫做解析法。

解析几何的创立,引入了一系列新的数学概念,特别是将变量引入数学,使数学进入了一个新的发展时期,这就是变量数学的时期。解析几何在数学发展中起了推动作用。恩格斯对此曾经作过评价“数学中的转折点是笛卡尔的变数,有了变数,辩证法进入了数学;有了变数,微分和积分也就立刻成为必要的了。

三、解析几何的意义

1637年,笛卡儿发表了《几何学》,创立了直角坐标系。他用平面上的一点到两条固定直线的距离来确定点的距离,用坐标来描述空间上的点。他进而又创立了解析几何学,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来实现发现几何性质,证明几何性质。《几何学》卷Ⅱ讨论曲线的性质的内容,标志着解析几何的诞生。笛卡儿不仅在哲学领域里开辟了一条新的道路,而且在数学上也有非凡的成就,推动了数学发展的进程。当时,代数还是一门比较新的科学,几何学的思维还在数学家的头脑中占有统治地位。

解析几何的出现,改变了自古希腊以来代数和几何分离的趋向,把相互对立着的“数”与“形”统一了起来,使几何曲线与代数方程相结合。笛卡儿的这一天才创见,更为微积分的创立奠定了基础,从而开拓了变量数学的广阔领域。恩格斯对此作了高度的评价,他说:“数学中的转折点是笛卡尔的变数。有了变数,运动进行了数学;有了变数辩证法进行了数学;有了变数,微分和积分也就立刻变成了必要,而它们也能立刻产生了…”

解析几何的创立使数学(当时主要是代数和几何)研究有了行之有效的方法。几何概念可以用代数表示,几何的目标可以通过代数去达到。反过来,给代数语言以几何解释,可以直观的掌握代数语言的意义,又可以得到启发去提出新的结论。

设直尺GL的一端固定在G点上,可以绕G点旋转,AK⊥GA,有一个三角板CKB的边BK 贴在AK直线上,上下移动,使直尺通过三角板BK边上的固定点L,求GL与三角板CK边(或

延长线)交点C 的轨迹。

笛卡尔选直线AB 为量度点的位置标准,以A 为原点(即AB 为横坐标轴,A 为坐标原点),如图一所示。

作NL ⊥AK ,“因为CB 与BA 是两个位置的未知和未定的量(指变量),我们分别命它们为y 和x ”,

又设GA=a ,KL=b,NL=c

∵c :b=y :BK

∴BK=

y c b ,AL=x+b -y c

b 又CB :BL=y :(b -y

c b )=GA:AL=a(x+b -y c

b ) ∴ab -y

c ab =xy+c

b y 2-by 从而所求转变的方程是y 2=cy-y b cx +ay-ac

参考文献:[1]朱家生《数学史》第二版,高等教育出版社2011.5

[2](美)约翰·塔巴克《几何学》张红梅、刘献军译,商务印书馆2008.2

[3]汪晓琴、韩祥临《中学数学中的数学史》,科学出版社2002.7

[4]张红《数学简史》,科学出版社2008.1

四、数形结合思想的概念

包含“以形助数”和“以 数辅形”两个方面,其应用大致可分

为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。

五、运用数形结合思想的原则

(1)等价性原则.在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞.有时,由于图形的局限性,不能完整的表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,要注意其带来的负面效应.

(2)双方性原则.既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分析容易出错.

(3)简单性原则.不要为了“数形结合”而数形结合.具体运用时,一要考虑是否可行和是否有利;二要选择好突破口,恰当设参、用参、建立关系,做好转化;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运用函数图象时应设法选择动直线与定二次曲线.

六、运用数形结合思想的常见问题

(1)构建函数模型并结合其图象求参数的取值范围;

(2)构建函数模型并结合其图象研究方程根的范围;

(3)构建函数模型并结合其图象研究量与量之间的大小关系;

(4)构建函数模型并结合其几何意义研究函数的最值问题和证明不等式;

(5)构建立体几何模型研究代数问题;

(6)构建解析几何中的斜率、截距、距离等模型研究最值问题;

(7)构建方程模型,求根的个数;

(8)研究图形的形状、位置关系、性质等。

七、运用数形结合思想的注意要点

(1)准确画出函数图象,注意函数的定义域;

(2)用图象法讨论方程(特别是含参数的方程)的解的个数是一种行之有效的方法,值得注意的是首先要把方程两边的代数式看作是两个函数的表达式(有时可能先作适当调整,以便于作图),然后作出

两个函数的图象,由图求解。

八、数形结合思想的意义

数形结合是研究数学和数学教学中的重要思维原则之一,其解法跨越了数学各分科知识的界限.数形结合是沟通数形之间的联系,并通过这种联系所产生的感知或认知的作用,形成和谐完美的数学概念,寻找问题解决途径的一种有效方法.数形结合是直观与抽象,感知与思维的结合。

数形结合思想采用了代数方法和几何方法最好的方面:几何图形形象直观,便于理解;代数方法的一般性,解题过程的程序化,可操作性强,数形结合的思想方法是学好中学数学的重要思想方法.因此,研究数形结合思想是相当必要的。

已知实数x,y 满足x ·x+y ·y=3(y ≥0), (1)求m 的取值范围; (2)求证: 思维启迪 :m 可以看作两点(x,y )与(-3,-1)连线的斜率,b 可以看作直线y=-2x+b 在y 轴上的截距.

解 (1)m 可看作过半圆x2+y2=3(y ≥0)上的点

M (x,y )和定点A (-3,-1)的直线的斜率.

由图可知k1≤m ≤k2(k1,k2分别为直线AM1,AM2的斜率),

圆心到切线k2x-y+3k2-1=0的距离为

,31++=

x y m ,

2y x b +=].

15,32[-∈b ,6333311-=+=k ,k k k d )(6213,31132222舍去负值±==+-=.62136

33+≤≤-∴m

(2)证明 b 可看作斜率为-2,过半圆x ·x+y ·y=3(y ≥0)上一点P (x,y )的直线在y 轴上的截距.

由图可知n2≤b ≤n1,P2C 的方程为 ∵圆心到切线P1B :2x+y+c=0的距离

探究提高 条件中的数量关系决定了几何图形的性质,反之,几何图形的性质反映了数量关系,数形结合思想能将抽象思维与形象思维有机地结合起来,恰当地运用可提高解题速度,优化解题过程。

已知实系数一元二次方程x ·x+ax+2b=0 有两个根,一个根在区间(0,1)内,另一个根 在区间(1,2)内,求:

(1)点(a,b )对应的区域的面积;

(2) 的取值范围;

(3)(a-1)2+(b-2)2的值域.

解 方程x2+ax+2b=0的两根在区间(0,1)和

(1,2)上的几何意义分别是:函数 y=f(x)=x 2+ax+2b 与x 轴的两个交点的横坐标分别在区间(0,1)和(1,2)内,由此可得不等式组

f(0)>0, b>0,

f(1)<0, 〓 a+2b+1<0

f(2)>0, , a+b+2>0

在如图所示的aOb 坐标平面内,满足约束条件的点(a,b )对应的平面区域为△ABC (不包括边界). ),3(2+-=x y ,

32,02-===n y x 令,35==c d .1532,15,151≤≤-∴=∴±=∴b n c 12--a b y ? ).1,3(.02,012-???=++=++A b a b a 解得由),0,2(.0,02-???==++B b b a 解得

由).0,1(.

0,012-???==++C b b a 解得由2

121=??=?h BC S ABC

(1)△ABC 的面积为 (h 为A 到Oa 轴的距离). (2) 的几何意义是点(a,b )和点D (1,2)连线的斜率.

(3)∵(a-1)2+(b-2)2表示区域内的点(a,b)与定点(1,2)之间距离的平方,

∴(a-1)2+(b-2)2∈(8,17).

参考文献:[1] 袁桂珍. 数形结合思想方法及其运用[J]. 广西教育 , 2004,(15) .

[2] 张亮. 数形结合法的几个应用[J]. 井冈山师范学院学报 , 2003,(05) .

[3] 莫红梅. 谈数形结合在中学数学中的应用[J]. 教育实践与研究 , 2003,(12) .

[4] 施献慧. 数形结合思想在数学解题中的应用[J]. 云南教育 , 2003,(35) .

[5] 王银篷. 浅谈数形结合的方法[J]. 中学数学 , 2004,(12) . 1

2--a b ,11102,413112=+-==+-=CD AD k k ,12CD AD k a b k <--<由图可知).1,41(12,11241

∈--<--<∴a b a b 即

数形结合法解一元二次不等式的教学设计-

数形结合法解一元二次不等式的教学设计 教师面对的是一个个鲜活的生命个体,怎样让我们的课堂充分体现出学生的主观能动性,为每个学生创设出动脑、动口、动手的机会,创设和谐、宽松、高效的课堂教学是每个教师都在思考并希望解决的问题。因此,教学设计需要从学生熟悉的内容出发,根据数学的学科特点和学生的实际情况,深入钻研教材,分析教学任务,有针对性地设计教学方案。 1客观分析教材 1.1学习一元二次不等式的重要性 在幼儿师范学校,数学是一门重要的文化课程。为提高学前教育专业学生的数学素养,必须努力提高数学课堂教学质量,使学生切实掌握从事幼儿教育工作和进一步学习所需要的数学基础知识和基本技能,进一步提高学生的思维能力、运算能力、空间想象能力、解决实际问题的能力;结合数学教学进行思想教育,进一步培养学生的良好的个性品质、辩证唯物主义观点和科学态度。解一元二次不等式需要通过讨论一元二次方程的解的情况、画出对应二次函数的示意图、观察函数图象得出一元二次不等式的解集。因此,理解和掌握数形结合法求解一元二次不等式可以有效提高学前教育专业学生的数学思维能力、运算能力、空间想象能力和解决实际问题的能力。 1.2教学内容分析 教材是学生学习的重要载体,是教师教学的客观依据。一元二次不等式及其解法这一部分内容编排在二次函数的图象和性质之后,接下来是一元一次不等式组、绝对值不等式的解法,再是一元二次不等式的解法。本节内容教学重、难点:数形结合法解一元二次不等式。 为此,可以将求解一元二次不等式的相关内容归纳如下:1、将具体例子进行细化,分步进行:第一步,确定方程的根的情况;第二步,画出对应二次函数的对应图形;第三步,观察图形,结合二次函数的图象的意义确定一元二次不等式的解集。2、数学的学习方法之一是数形结合,用此方法形象直观,容易掌握,多给学生强调此方法,让学生习惯于数形结合法解决数学问题,因此不要求学生记忆书上结论,避免学生死记硬背。3、举例强化。

数形结合思想在高中数学解题中的应用

第5讲 数形结合思想在解题中的应用 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.的取值范围。之间,求和的两根都在的方程若关于k k kx x x 310322 -=++ 分析:0)(32)(2=++=x f x k kx x x f 程轴交点的横坐标就是方,其图象与令 ()13(1)0y f x f =-->的解,由的图象可知,要使二根都在,之间,只需,(3)0f >, ()()02b f f k a - =-<10(10) k k -<<∈-同时成立,解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 020 20202

数形结合法解决问题

数形结合法解决问题 教学目标: 1.使学生进一步感受和认识转化的策略,能根据一些算式的特点,采用转化策略用简便的方法计算得数;能发现一些计算的规律,并能应用规律简便计算。 2.使学生经历采用转化策略使计算简单的体悟过程,进一步感受转化的思想方法,积累数学活动的基本经验,发展思维的灵活性和敏捷性。 3.使学生在获得策略体验的过程中,感受转化策略的价值,增强策略意识;在应用转化中感受计算规律,产生学习数学的兴趣;受到事物可以互相转化观点的熏陶。 教学重点:用转化策略解决相关计算。 教学难点:理解算式转化的依据和方法。 课前准备:课件。 教学过程: 一、揭示内容 谈话:我们上节课学习了解决问题的策略,认识了转化的策略,知道转化就是把要解决的新问题,变成已经能解决的问题,获得解决问题的相应的思路和方法。今天我们继续学习解决问题转化的策略,主要研究一些计算问题的转化策略,发现一些转化的具体方法,获得一些计算的规律,使一些计算比较简便。 二、学习策略

1.了解特点,计算结果。 出示例2,让学生观察有没有什么特点。提问:观察算式,你有什么发现吗? 说明:这个算式中作加数的分数,后一个加数都是前一个的一半。让学生想办法计算得数,和同学说说怎样计算的。 交流:你是怎样计算的?(板书算式和计算过程)先通分实际上用了什么策略? 2.引导转化。 (1)引导:先通分再计算,实际上是把异分母分数加法转化成了同分母分数加法,使算式可以直接计算得数。那这个算式能不能转化成更简单的,使计算变得更方便呢?看看有没有办法。 现在先想一想, 1/1什么意思?和其余的分数呢?2/4那能不能根据每个分数的意义,像学习分数加法那样,在图上用涂色的方法来计算表示结果呢?可以怎样表示呢,哪位来说一说? (2)引导:那我们就把正方形看作单位“1”,(呈现图形)大家能在正方形里填上算式里的4个加数吗?请在课本上填一填,然后观察图形,想想可以怎样转化。 提问:观察图中分数相加的结果,能想到怎样转化吗? 启发:没有涂色的空白部分占大正方形的几分之几?相加的和跟“1\()”有什么关系?原来的算式可以怎样转化?

数形结合思想在小学数学教学中的渗透与应用

数形结合思想在小学数学教学中的渗透与应用 数形结合思想是根据数与形之间的对应关系,通过数与形的相互转化,将抽象的数学语言与直观的图形结合起来解决问题的思想方法。数形结合思想是数学中最重要、最基本的思想方法之一,是解决许多数学问题的有效思想。利用数形结合能使“数”和“形”统一起来。以形助数、以数辅形,可以使许多数学问题变得简易化。 小学数学中虽然不像初中数学那样,将数形结合的思想系统化, 但作为学习数学的启蒙和基础阶段,数形结合的思想已经渐渐渗透其中,为更好的学习数与代数、空间与图形两方面的知识服务,同时也在培养抽象思维,解决实际问题方面起了较大的作用。 数形的结合是双向的,一方面,抽象的数学概念、复杂的数量关系,借助图形使之直观化、形象化、简单化;另一方面,复杂的形体可以用简单的数量关系表示。 如我在教学“求一个数的几倍是多少”时,学生最难理解的是“倍”的概念,如何把“倍”的数学概念深入浅出地教授给学生,使他们能对“倍”有自己的理解,并内化成自己的东西?我认为用图形演示的方法是最简单又最有效的方法。于是我就利用书上的主题图。在第一行排出用4根小棒围出的一个正方形,再在第二行排出同样的两个正方形,第三行摆出同样的四个正方形。结合演示,让学生观察比较第一行和第二行小棒的数量特征,通过教师启发,学生小组合作讨论和交流,使学生清晰地认识到:第一行与第二行比较,第一行是1个4根,第二行是2个4根;把一个4根当作一份,则第一行小棒是1份,而第二行就有两份。用数学语言:把4根小棒当作1倍,第二行小棒的根数就是第一行小棒的2倍。这样,从演示图形中让学生看到从“个数”到“份数”,再引出倍数,很快就触及了概念的本质。接着我请学生说出第三行小棒根数与第一行的关系,学生能准确的从三个4根说出了第三行是第一行的3倍。 再如六年级有这样一题:一杯牛奶,甲第一次喝了半杯,第二次又喝了剩下的一半,就这样每次都喝了上一次剩下的一半。甲五次一共喝了多少牛奶? 此题若把五次所喝的牛奶加起来,即1/2+1/4+1/8+1/16+1/32就为所求,但这不是最好的解题策略。我们先画一个正方形,并假设它的面积为单位“1”,由图可知,1-1/32就为所求,这里不但向学生渗透了数形结合思 5分米,或宽增加12分米,面积都增加60平方分米,原来长方形的面积是多少平方分米?”的教学中,我引导学生根据题意画出面积图:

速解高中解析几何的方法之一——数形结合

速解高中解析几何的方法之一——数形结合 四川省郫县第三中学姚慰民 【摘要】解析几何是高考数学的必考内容,在所有题型中所占比值相对较高。一般来说,解析几何的难度比函数低,且有一定的技巧性,只要掌握了速解技巧,将题目的“数”与“形”相结合,将题目所给条件一一对应来帮助解题,就能减少解题时间,也不会漏掉题目条件,提高答题效率。因此,准确运用数形结合答题方法是高中解析几何成绩的决定因素。文章对速解高中解析几何方法中的数形结合进行分析,对数形结合在解析几何几种题型中的运用进行举例说明。 【关键词】高中解析几何;速解方法;数形结合 中图分类号:G633.65 文献标识码:A 文章编号:1671-0568(2015)33- 所谓数形结合,就是把题目所给条件中的“数”与“形”一一对应,用简单的、直观的几何图形及条件之间的位置关系来将复杂的、抽象的数学语言及条件之间的数量关系结合起来,通过形象思维与抽象思维之间的结合以形助数或以数解形,使复杂的问题简单化、抽象的问题具体化,以达到化解题途径的目的。可见,数形结合在平面解析几何和立体解析几何的解题中有重要的作用。 一、解析几何的概念 解析几何是几何学的分支,主要是用代数方法研究几何对象之间的关系和性质,因而解析几何也叫坐标几何,它包括平面解析几何和立体解析几何两部分。平面解析几何是二维空间上的解析几何,立体解析几何是三维空间上的解析几何,立体解析几何比平面解析几何更加复杂、抽象。 二、数形结合法的概述 1.数形结合的解题思想 通常来说,一道题目不会明确指定用数形结合的方法进行答题,每道题也不会只有一种解题方法,但数形结合方法在解析几何答题中具备相当的优势,能减少运算量,节约答题时间,提高正确率。因此,学生需要在平时练习中形成数形结合的解题思想,遇到解析几何时,能清楚条件与问题之间的数量关系与位置关系,将“数”与“形”一一对应,快速找到解题

数形结合解不等式问题

数形结合解不等式问题 省玉田县林南仓中学金志刚(邮编064106) 不等式问题是高中数学中的重要容,也是历年高考的必考题目。有些题目因为计算量大很多学生感觉学起来困难太大,以至产生了畏难情绪。本文试图将抽象数学问题与具体直观图形结合起来,充分利用图形性质和特点,对问题理行分析思考,化抽象为直观,化繁琐为简洁。 例1 已知集合 } {21 )1 ( 1g a x g x A< + -,集合} {0 )2 )( (> - - =x a x x B,若A∪B=R,则实数a的取值围是_________。 分析:如用代数法解不等式,求a的取值围,需分三种情况讨论,而用数形结合方法则可一步获解。 由 } {21 )1 ( 1g a x g x A< + - = 得 } {1 1+ < < - =a x a x A。 又由 {}0 )2 () (> - - =x a x x B, 令)2 )( ( ) (- - =x a x x f, 据图可见A ∪ B=R的充要条件是 .3 1 1 3 )1 ( ,0 )1 ( < < ? ? ? ? > - > - ? ? ? ? > + > - a a a a f a f 例2 设函数f(x)={, x> , x x , - x 1 2 2 1    ≤ 若f( x)>1,则 x的取值围是() A、(-1,1) B、(-1,+∞) C、(-,-2)(0,+) D、(-,-1)(1,+) 分析:本题主要考查函数的基本知识,利用函数的单调性 解不等式以及考生借助数形结合思想解决问题的能力。 一般解法: 1 { 2 1 > > x x 或 1 1 2 { > - ≤ x x 解得得x<-1或x >1。 解法2:如图1,在同一坐标系中,作出函数y=f(x)的

数形结合解决问题

第课时总课时 数形结合解决问题 【教学内容】: 义务教育课程标准实验教科书青岛版小学数学六年级下册116——117页。 【教学目标】: 在回顾整理的过程中,加深对数形结合思想方法的认识,使学生充分感受数形结合在小学数学学习中的应用。 【教学重点】: 通过一些数形结合的实例,使学生体会数形结合思想的优越性,并能帮助学生建立思路解决问题。【教学过程】; 一、谈话引入。 师:同学们,在我们的数学学习中,除了研究各种数以外,还经常要用到各种各样的图形。利用图形来研究问题,会使问题变得更加简单明了。请同学们回忆所学的知识,你能举一些这样的例子吗?学生思考后举例。 二、自主探究。 1、教师出示某电脑公司2008年各种电脑销售情况的具体数据及条形统计图、扇形统计图和某电脑公司2004-2008最畅销的两种电脑销量折线统计图。 师:仔细观察这些数据和统计图,你有什么发现? 学生各抒己见,发表自己的看法。 师引导学生总结:图形描述数据更加直观、有效。条形统计图能清楚看出数量的多少,扇形统计图能清楚看出个部分同总数之间的关系,折线统计图能清楚看出数量增长情况。 2、师:图形不仅在描述数据方面有优越性,在其他方面同样能体现出优势。你还能举例说明数形结合在其他方面的应用吗?(生独立思考)下面请同学们以小组为单位交流自己的想法。交流过程中,要注意倾听他人的想法。 集体交流。 教师在学生交流的基础上引导学生发现:画图可以帮助我们理解计算方法、图形可以更加形象的反映成正比例关系的两种量的变化情况、在平面内确定物体的位置也利用了数形结合。 3、小结 师:通过刚才的交流,我们发现实际上许多问题的解决都利用了数形结合,你能谈一谈自己的体会吗? 三、拓展延伸。 师:同学们,我们在解决问题中常常用到的线段图,也是数形结合思想的一个重要应用。例如前面学过的相遇问题、百分数应用题等等。下面我们就做两个题目,体会画线段图解决问题的优越性。 1、育才小学2000年有60台计算机,2006年以达到150台。2006年比2000年增加了百分之几? 2、有两根蜡烛,一根长8厘米,另一根长6厘米。把两根都燃掉同样长的一部分后,短的一根剩下的长度是长的一根剩下的3/5。每段燃掉多少厘米? (学生独立解答,体会用线段图解决问题的优越性。) 集体交流,引导学生陈述自己的解题思路。 四、归纳梳理。 师:这节课我们主要研究了利用数形结合的方法来解决问题,你能谈 谈自己的收获吗? 学生谈自己收获,提出尚存疑惑的问题。

数形结合思想

数形结合思想 1. 数形结合思想的概念。 数形结合思想就是通过数和形之间的对应关系和相互转化来解决问题的思想方法。数学是研究现实世界的数量关系与空间形式的科学,数和形之间是既对立又统一的关系,在一定的条件下可以相互转化。这里的数是指数、代数式、方程、函数、数量关系式等,这里的形是指几何图形和函数图象。在数学的发展史上,直角坐标系的出现给几何的研究带来了新的工具,直角坐标系与几何图形相结合,也就是把几何图形放在坐标平面上,使得几何图形上的每个点都可以用直角坐标系里的坐标(有序实数对)来表示,这样可以用代数的量化的运算的方法来研究图形的性质,堪称数形结合的完美体现。数形结合思想的核心应是代数与几何的对立统一和完美结合,就是要善于把握什么时候运用代数方法解决几何问题是最佳的、什么时候运用几何方法解决代数问题是最佳的。如解决不等式和函数问题有时用图象解决非常简捷,几何证明问题在初中是难点,到高中运用解析几何的代数方法有时就比较简便。 2. 数形结合思想的重要意义。 数形结合思想可以使抽象的数学问题直观化、使繁难的数学问题简捷化,使得原本需要通过抽象思维解决的问题,有时借助形象思维就能够解决,有利于抽象思维和形象思维的协调发展和优化解决问题的方法。数学家华罗庚曾说过:“数缺形时少直觉,形少数时难入微。”这句话深刻地揭示了数形之间的辩证关系以及数形结合的重要性。众所周知,小学生的逻辑思维能力还比较弱,在学习数学时必须面对数学的抽象性这一现实问题;教材的编排和课堂教学都在千方百计地使抽象的数学问题转化成学生易于理解的方式呈现,借助数形结合思想中的图形直观手段,可以提供非常好的教学方法和解决方案。如从数的认识、计算到比较复杂的实际问题,经常要借助图形来理解和分析,也就是说,在小学数学中,数离不开形。另外,几何知识的学习,很多时候只凭直接观察看不出什么规律和特点,这时就需要用数来表示,如一个角是不是直角、两条边是否相等、周长和面积是多少等。换句话说,就是形也离不开数。因此,数形结合思想在小学数学中的意义尤为重大。 3. 数形结合思想的具体应用。 数形结合思想在数学中的应用大致可分为两种情形:一是借助于数的精确性、程序性和可操作性来阐明形的某些属性,可称之为“以数解形”;二是借助形

数形结合在小学数学解决问题中的运用

数形结合在小学数学解决问题中的运用 许巷中心小学傅玲玲 [摘要]数学是研究现实世界的空间形式和数量关系的科学,数与形是数学的基本研究对象,数是形的抽象概括,形是数的直观表现。数形结合是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。它包含“以形助教”、“以数解形”和“数形互译”三个方面。本文将结合小学数学中的教学实例,阐述数形结合思想在解决问题这个方面教学中的运用。 [关键词]数形结合;解决问题;小学数学 数学是以现实世界的空间形式和数量关系作为自己特定的研究对象,也就是说,数学是研究“数”与“形”及其相互关系的一门科学。数形结合的思想是数学的重要思想之一。[1] 数形结合就是通过数(数量关系)与形(空间形式)的相互转化、互相作用来解决数学问题的一种思想方法。其实质是将抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,使得抽象的数学概念或复杂的数量关系直观化、形象化、简单化。[2] 数形结合是指在数学问题解决过程中,结合问题中各要素间的本质联系,根据实际需要,将数量关系与几何图形相结合,依据数与形的对应关系,通过数与形相互转化的方式使问题得到巧妙解决的一种思想方法。在解决问题中,其策略具体表现为把有关数量关系的问题转化成图形性质的问题进行分析,或者将有关图形性质的问题转化成数量关系的问题加以讨论,最终解决问题。这种思想方法不仅分析问题的代数含义,而且还要揭示其几何意义,把抽象的数学运算和直观的几何图形紧密地联系起来。这种思想方法具备了数的精确性和形的直观性的双重优势,以数精确地分析形,或以形直观地表示数,正如数学家华罗庚所说:“数缺形时少直观,形少数时难入微”。 故而,数形结合是小学数学教材编排的重要原则,也是小学数学教材的一个重要特点,更是解决问题时常用的方法。它包含“以形助教”、“以数解形”和“数形互译”三个方面。

浅谈数形结合思想的应用

浅谈数形结合思想的应用 ——蒋海朋摘要:数学是在客观上研究数量关系和空间形式的一门科学,用通俗易懂的话来概括就是数学是研究“数”和“形”的一门科学。数相对于形来说更为抽象,形相对于数来说较为直观,在研究学习中,数与形是相辅相成、息息相关的。对于这个问题,本人在结合自己学习的总结以及前人所提供的经验,并且查阅相关资料,对于这个话题做一个简单的分析。文中的例子都是本人在学习中总结的历年高考、中考的试题以及模拟题,有很强的代表性。 关键词:数形结合数学思想应用 1 引言 1.1问题提出的背景 纵观数学发展的历史进程,数学家们早已把“数”和“形”联系在一起。早在公元300年之前,欧几里得的著作《几何原本》,他从几何的角度出发去研究和处理等价的代数问题;笛卡尔利用坐标为根基,通过代数为途径来研究几何问题,进而创立了解析几何学;化圆为方、三等分角、立方倍积这些几何难题都通过代数的方法得以完美解决。 数学往往被分为两大类:代数、几何。虽然他们被分为两类,但他们绝不是相互独立的,反而是密切相关的。很多代数上的问题计算量很大,看似非常复杂,甚至无从下手,但是利用了图形之后就会发现问题迎刃而解,直观的图形很容易反映图形的性质;很多几何问题因为辅助线相对复杂想不到,导致无法进一步研究,但是往往我们利用坐标系能够把几何问题转化成代数问题,同样也做到了化 繁为简。这就是数学上常用的数形结合思想。 1.2问题研究的意义 伟大的数学家华罗庚就曾说过:“数形结合百般好,割裂分家万事休。”这两句诗充分直观得反映了“数”与“形”这两者密不可分的联系。应用数形结合思想来思考问题就是要求我们结合代数的准确论证和图形的直观描述来发现问题的解决途径的一种思想方法。由此可见,数形结合思想对于数学解题方面的应用来说是十分重要的,但老师往往仅仅把它当做一种思想一谈而过,照着课本讲课,没有引导学生进一步思考,导致很多学生都不能具体有序地应用这种思想。 2 数形结合思想的重要地位 2.1使用数形结合思想的意义 数形结合思想无疑是连接“数”和“形”的桥梁,几何的直观形象和数量关系的严谨他们各有优点,在应用过程中有目的有计划地将“数”与“形”结合在一起,根据题目的已知条件,整合“数”和“形”的相关信息,巧妙结合,从而建起它们中间的桥梁,兼取两者之优,能让我们的解题更为轻松。

利用数形结合处理数学问题的技巧

利用数形结合处理数学问题的技巧 摘要 数形结合在代数解题中有广泛应用,是数学研究的常用方法,它的思想可以把抽象的代数问题具体化,把数量关系与空间图形结合起来,既能分析其代数意义,又能揭示其几何意义。它包含“以形助数”和“以数辅形”两个方面。下面将通过一些典型例题,探索解题中应用数形结合的技巧和方法。 关键词:数形结合思想方法技巧典型例题 正文: 数与形是数学中最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合,或形数结合。我国著名数学家华罗庚曾说过:“数形结合百般好,隔裂分家万事非。”“数”与“形”反映了事物两个方面的属性。我们认为,数形结合,主要指的是数与形之间的一一对应关系。数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数辅形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的。 作为一种数学思想方法,数形结合的应用大致又可分为两种情形:或者借助于数的精确性来阐明形的某些属性,或者借助形的几何直观性来阐明数之间某种关系,即数形结合包括两个方面:第一种情形是“以数解形”,而第二种情形是“以形助数”。“以数解形”就是有些图形太过于简单,直接观察却看不出什么规律来,这时就需要给图形赋值,如边长、角度等等。“以形助数”就是把某些复杂的数学问题通过几何图形很直观的看出来,这样就把问题直观具体化。 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: 一、解决集合问题:在集合运算中常常借助于数轴来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 二、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 三、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。 四、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。 五、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 六、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。 七、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。 八、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。

数形结合法解不等式

数形结合解不等式 宜都市一中王从志 纵观2008年高考试卷,关于不等式的命题重点考查不等式的基础知识,基本技能和基本思想方法。预测在2009年的高考试卷中,考查不等式的命题仍将主要考查“三基”。而准确求解不等式是解决不等式相关问题的基本功。因此,我们在复习过程中要根椐不等式能成立、恰成立及恒成立等问题的特点,选择各类不等式问题的最佳解法。 类型一:简单不等式的解法 例1:解下列不等式: 2 (1).2 x x x -> 1 (2). -3<<2 x 【解析】:(1)解法一(公式法) 原不等式等价于x2-2x>x或x2-2x<-x解得x>3或x<0或03﹜ 解法2(数形结合法) 作出示意图,易观察原不等式的解集为﹛x︱x<0或03﹜ 第(1)题图第(2)题图 【解析】:此题若直接求解分式不等式组,略显复杂,且容易解答错误;若能结合反 比例函数图象,则解集为 1 | 2 x x ?? > ?? ?? 1 或x<- 3 ,结果一目了然。 例2:解不等式: 1 ||x x ≥

【解析】作出函数f(x)=|x|和函数g(x)=1 x 的图象, 易知解集为01∞?∞(-,)[,+) 类型二:解含参数不等式问题 例2变式:解关于x 的不等式: ||a x x ≥ 分析:此题若直接求解,需对x 和a 的取值分情况讨论,易混淆。结合绝对值和反比例函数图象的性质,很容易得到 (1)a>0时,解集为a ∞(,+) (2)a=0时,解集为0(0∞?∞(-,),+) (3)a<0时,解集为,a ∞-(-) 练习:1、.|1||1|0x x +--≥解不等式  【引导学生归纳、比较诸如分类讨论、平方法、几何意义法,数形结合等不同等价转化方法,并相互展示交流。】 2、变式练习:如果将以上不等式右边不为0,以上哪些方法更佳 例如: .|1||1|32x x +--≥ 解不等式 。除了分类讨论、几何意义等方法外,以下函数 转化、数形结合方法可供参考: 【解法1】令2(1)()|1||1|2(11) 2(1)x g x x x x x x -<-??=+--=-≤≤??>? 令()32h x = ,分别作出函数g(x)和h(x)的图象,知原不等式的解集为3[,)4+∞

复习专题数形结合解决数学问题的重要手段

A B O C x y P 复习专题 数形结合—解决数学问题的重要手段 一、内容提要: 1、数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性。 2、一般说来,依形想数,可使几何问题代数化.由数想形,可使代数问题几何化.这样数形结合,相辅相成,既有利于开拓解题思路,又有利于发展思维能力. 二、例题分析: 例1.如图,图象(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的函数关系.根据图像所给的信息,下列说法中 ①第3分时汽车的速度是40千米/时; ②从第3分到第6分,汽车的速度是40千米/时; ③从第3分到第6分,汽车行驶了120千米; ④从第9分到第12分,汽车的速度从60千米/时减少到0千米/时; 正确的有_______________.(只填序号) 例2.如图,直线l 是一次函数y kx b =+的图象,点A 、B 在 直线l 上.根据图象回答下列问题: (1)写出方程0=+b kx 的解; (2)写出不等式b kx +>1的解集; (3)若直线l 上的点P (a,b )在线段AB 上移动, 则a 、b 应如何取值? 例3、如图,矩形ABCO ,O 为坐标原点,B 的坐标为(8,6),A 、C 分别在坐标轴上,P 是线段BC 上动点,设PC =m ,已知点D 在第一象限,且是两直线y 1=2x +6、y 2=2x -6中某条上的一点,若△APD 是等腰Rt △,求点D 的坐标 例4、..甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC 、线段DE 分别表示甲、乙两车所行路程y (千米)与时间x (小时)之间的函数关系对应的图象(线段AB 表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题: y 与时间x 的函数关系式; (2)求两车在途中第二次相遇时,它们距出发地的路程; (3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程) 三、思维提升: 1.已知关于x 的不等式组 ?? ?---0125>>a x x 无解,则a 的取值范围是 . A O D P B F C E y (千米) x (小时) 480 6 8 10 2 4.5 速度/(千米/时) /分 60 40 20 3 6 9 12

浅谈数形结合思想在小学数学中的应用

浅谈数形结合思想在小学数学中的应用 摘要 数形结合的思想是一种重要的数学思想方法,就是通过数与形之间的对应和转化来解决数学问题, 利用数形结合能使“数”和“形”统一起来。以形助数、以数辅形, 可以使抽象问题具体化,可以使复杂问题简单化。 关键词 数形结合、思想、应用 一、小学生都是从直观、形象的图形开始入门学习数学 从人类发展的历史来看,具体形象的事物是出现在抽象的符号、文字之前的,人类一开始用小石子,贝壳记下所发生的事情,慢慢的发展成为用形象的符号记事,后来出现了数字。这个过程和小学生学习数学过程有着很大的相似之处。低年级的小学生学习数学,也是从具体的物体开始识数,很多知识都是从具体形象逐步向抽象逻辑思维过渡,但这时的逻辑思维是初步的,且在很大程度上仍具有具体形象性。这方面的例子有有很多,如低年级开始学习识数、学习找规律、学习乘除法,到中年级的分数的初步认识、高年级的认识负数等都是以具体的事物或图形为依据,学生根据已有的生活经验,在具体的表象中抽象出来。 此外,他们往往能在图形的操作或观察中学会收集与选择重要的信息内容;发现图形与数学知识之间的联系,并乐于用图形来表达数学关系。现在的小学课本中很多习题,已知条件不是用文字的形式给出,而是蕴藏在图形中,既是学生喜欢接受的形象,也培养了他们的观察能力和逻辑思维能力。 要让学生真正掌握数形结合思想的精髓,必须有雄厚的基础知识和熟练的基本技巧,如果教师只讲解几个典型习题并且学生会解题了,就认为学生领会了数形结合这一思想方法,这是一种片面的观点。平时要求学生认真上好每一堂课,学好新教材的系统知识,掌握各种图像特点,理解和把握各种几何图形的性质。教师讲题时,要引导学生根据问题的具体实际情况,多角度多方面的观察和理解问题,揭示问题的本质联系,利用“数”的准确澄清“形”的模糊,用“形”的直观了解“数”的计算,从而来解决问题。教学中要紧紧抓住数形转化的策略,通过多渠道来协调知识间的联系,激发学生学习兴趣,并及时总结数形结合在解题中运用的规律性,来训练学生的逻辑思维能力,并提高学生的理解能力和运用水平。 二、利用图形的直观,帮助学生理解数量之间的关系,提高学习效率 用数形结合策略表示题中量与量之间的关系,可以达到化繁为简、化难为易的目的。 “数形结合”可以借助简单的图形(如统计图)、符号和文字所作的示意图,促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显其最本质的特征。它是小学数学教材的一个重要特点,更是解决问题时常用的方法。 例如:1、小学高年级中所学的,运用分数乘法、除法解决问题。引用人教版小学六年级上册数学书,第二章分数乘法,第二节解决问题,第20页,第二题。

数形结合解不等式问题

数形结合解不等式问题 河北省玉田县林南仓中学 金志刚(邮编064106) 不等式问题是高中数学中的重要内容,也是历年高考的必考题目。有些题目因为计算量大很多学生感觉学起来困难太大,以至产生了畏难情绪。本文试图将抽象数学问题与具体直观图形结合起来,充分利用图形性质和特点,对问题理行分析思考,化抽象为直观,化繁琐为简洁。 例1 已知集合}{21)1(1g a x g x A <+-,集合}{0)2)((>--=x a x x B ,若A ∪B=R ,则实数a 的取值范围是_________。 分析:如用代数法解不等式,求a 的取值范围,需分三种情况讨论,而用数形结合方法则可一步获解。 由}{21)1(1g a x g x A <+-= 得}{11+<<-=a x a x A 。 又由{}0)2()(>--=x a x x B , 令)2)(()(--=x a x x f , 据图可见A ∪ B=R 的充要条件是 .31010 30)1(,0)1(<->-??? ?>+>-a a a a f a f 例 2 设函数f(x)={ ,x>,xx,-x0 122 1 ≤若f(0x )>1,则0x 的取值范围是 ( ) A 、(-1,1) B 、(-1,+∞ ) C 、(-∞,-2)?(0,+∞) D 、(-∞,-1)?(1,+∞) 分析:本题主要考查函数的基本知识,利用函数的单调性解不等式以及考生借助数形结合思想解决问题的能力。 一般解法:1 { 2 1 >>x x 或 1120 {>-≤x x 解得得x<-1或x >1。

解法2:如图1,在同一坐标系中,作出函数y=f(x )的图象 和直线y=l ,它们相交于(-1,1)和(1,1)两点, 由 f(x)>1 得 x<-1 或 x>1 例3 解不等式x x +>2 常规解法:原不等式等价于(I)x x x x ≥+≥+>???? ???02022 或(II )???≥+<020x x 解(I)得02≤2的解就是使y x 12=+的图象在 y x 2=的上方的那段对应的横坐标。 如右图,不等式的解集为{}x x x x A B |≤<,而x B 可由x x +=2解得x x B A ==-22,,故不等式的解集为{}x x |-≤<22 例4 若-3<1 x <2,则x 的取值范围是( ) A 、(-13 ,12 ) B 、(12 ,13 ) C 、(-13 ,0)?(12 ,+∞) D 、(-∞,-13 )?(1 2 ,+ 分析:本题若用常规解法则比较花时间,若用函数y=1 x 图象求解,则比较简单。如右图不难得出 -3<1 x <2 解是 x<-13 或 x>1 2 例5. 设对于任意实数 ,函数 总有意义,求 实数a 的取值范围。 解法1:函数有意义,则 ,即在上 总成立。

最新小学数学六年级下册《数形结合解决问题》

小学数学六年级下册《数形结合解决问 题》

青岛版小学数学六年级下册《数形结合解决问题》精品教案 【教学内容】: 义务教育课程标准实验教科书青岛版小学数学六年级下册116——117页。【教学目标】: 在回顾整理的过程中,加深对数形结合思想方法的认识,使学生充分感受数形结合在小学数学学习中的应用。 【教学重点】: 通过一些数形结合的实例,使学生体会数形结合思想的优越性,并能帮助学生建立思路解决问题。 【教学过程】; 一、谈话引入。 师:同学们,在我们的数学学习中,除了研究各种数以外,还经常要用到各种各样的图形。利用图形来研究问题,会使问题变得更加简单明了。请同学们回忆所学的知识,你能举一些这样的例子吗? 学生思考后举例。 【设计意图】教师给学生一定的思考时间,可以使学生对所学过的用图形来研究问题的有关知识进行初步的梳理,从而为本节课的学习做好铺垫。 二、自主探究。 1、教师出示某电脑公司2008年各种电脑销售情况的具体数据及条形统计图、扇形统计图和某电脑公司2004-2008最畅销的两种电脑销量折线统计图。 师:仔细观察这些数据和统计图,你有什么发现?

学生各抒己见,发表自己的看法。 师引导学生总结:图形描述数据更加直观、有效。条形统计图能清楚看出数量的多少,扇形统计图能清楚看出个部分同总数之间的关系,折线统计图能清楚看出数量增长情况。 【设计意图】将原始数据和统计图同时呈现,可以给学生造成视觉上的冲击。原始数据杂乱无章而统计图简单明了,能够帮助阅读的人有效的提取信息。对于用图形描述数据的优越性,学生一目了然。 2、师:图形不仅在描述数据方面有优越性,在其他方面同样能体现出优势。你还能举例说明数形结合在其他方面的应用吗?(生独立思考)下面请同学们以小组为单位交流自己的想法。交流过程中,要注意倾听他人的想法。 集体交流。 教师在学生交流的基础上引导学生发现:画图可以帮助我们理解计算方法、图形可以更加形象的反映成正比例关系的两种量的变化情况、在平面内确定物体的位置也利用了数形结合。 3、小结 师:通过刚才的交流,我们发现实际上许多问题的解决都利用了数形结合,你能谈一谈自己的体会吗? 【设计意图】学生个人的想法可能是粗浅的、片面的,而通过小组交流,倾听他人的想法和意见,可以进一步完善自己的想法。教师在学生交流的基础上运用多媒体呈现相关的例子,通过这些数形结合的直观的例子,让学生充分感受数形结合在数学学习中的应用。 三、拓展延伸。

浅谈数形结合思想在教学中的应用

本科生毕业论文(设计)题目:浅谈数形结合思想在教学中的应用 学号: 0707140154 姓名:汪洋 专业:数学与应用数学 年级:07级一班 系别:数学系 完成日期:2010年10月 指导教师:

浅谈数形结合思想在教学中的应用 汪洋 (合肥师范学院数学系) 摘要 数形结合就是把问题的数量关系和空间形式结合起来考察,根据解决问题的需要,可以把数量关系的问题转化为图形的性质问题去讨论,或者把图形的性质问题转化为数量关系的问题来研究,简言之“数形相互取长补短”。数形结合作为一种常见的数学方法, 沟通了代数、三角与几何的内在联系。一方面,借助于图形的性质可以将许多抽象的数学概念和数量关系形象化、简单化,给人以直觉的启示。另一方面,将图形问题转化为代数问题,以获得精确的结论。因此,数形结合不应仅仅作为一种解题方法,而应作为一种十分重要的数学思想方法, 它可以拓宽学生的解题思路, 提高他们的解题能力,将它作为知识转化为能力的“桥”。 关键词:数形结合思想;直观;数学教学;应用 Discusses the number shape union thought shallowly in the teaching

application Wang yang (Department of Mathematics, Hefei Normal University) ABSTRACT Counts the shape union is unifying the question stoichiometric relation and the space form to inspect, according to solving the question need, we can transform the stoichiometric relation question for the graph nature question discusses, or transform the graph nature question for the stoichiometric relation question studies, “the number shape makes up for one's deficiency by learning from others strong points mutually in short”. Counts the shape union as one common mathematical method, has communicated the algebra, the triangle and the geometry inner link. On one hand, with the aid in the graph nature may make many abstract mathematics concepts and the stoichiometric relation visualization and simplification, for the human by the intuition enlightenment. On the other hand, transforming the graph question as the algebra question, obtains the precise conclusion. Therefore, counts the shape union not to take one problem solving method merely, but should take one very important mathematics thinking method, it may expand students' problem solving mentality, sharpens their problem solving ability, takes the knowledge it to transform as ability “the bridge”. Key words: Counts the shape union thought,Intuitively, Mathematics teaching, Application 目录 一、前言 (3) 二、正文 (3)

中考一次函数与不等式数形结合专题讲义

中考一次函数与不等式数形结合专题讲义 一次函数与正比列函数的的概念: 1. 一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数. 2. 如果y=kx+b(k,b为常数,且k≠0),那么y叫做x的一次函数。当b=0而k≠0时,它是正比例函数,由此可知正比例函数是一次函数的特殊情况.当k=0而b≠0时,它不是一次函数. 一次函数的图像与性质: 1.一次函数y=kx+b(k≠0)的图像是一条直线,通常也称直线y=kx+b,由于两点确定一条 直线,故画一次函数的图像时,只要先描出两点,再连成直线就可以了,为了方便,通常 取图像与坐标轴的两个交点(0,b),(-b k ,0)就行了. 2.一次函数y=kx+b沿着y轴向上(“+”)、下(“-”)平移m(m>0)?个单位得到一次 函数y=kx+b±m;一次函数y=kx+b沿着x轴向左(“+”)、?右(“-”)平移n(n>0)个单位得到一次函数y=k(x±n)+b;一次函数沿着y轴平移与沿着x轴平移往往是同 步进行的.只不过是一种情况,两种表示罢了;直线y=kx+b与x轴交点为(-b k ,0), 与y轴交点为(0,b),且这两个交点与坐标原点构成的三角形面积为S△=1 2 ·│- b k │·│ b│. 例1 一次函数y=kx+3?的图像与坐标轴的两个交点之间的距离为5,则k 的值为________.答案:k=±? 例2.已知直线L1经过点A(-1,0)与点B(2,3),另一条直线L2经过点B,且与x轴相交于点P(m,0). (1)求直线L1的解析式; (2)若△APB的面积为3,求m的值. 答案:(1)y=x+1;(2)m=1或m=﹣3 例3.如图,直线y=kx+b经过A(-3,0)和B(2,m 式组2x+m-4﹤kx+b≤0的解集为__________

相关文档
相关文档 最新文档