文档库 最新最全的文档下载
当前位置:文档库 › SINAMICS S120 斜坡函数发生器RFG的小功能:速度设定值跟踪

SINAMICS S120 斜坡函数发生器RFG的小功能:速度设定值跟踪

SINAMICS S120 斜坡函数发生器RFG的小功能:速度设定值跟踪
SINAMICS S120 斜坡函数发生器RFG的小功能:速度设定值跟踪

RFG,Ramp Function Generator,斜坡函数发生器。

在S120中VECTOR模式下,RFG默认是设定值通道的一部分。人为的阶跃的速度给定,通过RFG以后就变成了连续平滑的速度给定,这样不至于对负载造成冲击。这是一个十分常见,也十分实用,也十分简单的功能。

这里要说的速度设定值跟踪,描述的是一种特定工况下的功能。一般在转矩控制场合,采用速度环饱和+转矩限幅的方式控制电机输出转矩时(当然先设置

P2144=0好把F07900屏蔽掉),如果转矩限幅值已到达,电机输出转矩受限,那也就意味着速度实际值将不能跟随设定值。如果设定值较大,比如3000rpm,而实际转速较小,比如300rpm。此时,如果把转矩限幅放开(这个放开是阶跃),速度设定值将直接起作用,驱动器将以最大能力将电机旋转到3000rpm,而且是阶跃给出,这样必将对机械系统造成重创。

如果有了速度设定值跟踪,就可以避免以上危险发生。它是这样起作用的:当实际转速受限持续低于设定转速时,比如300rpm,速度设定值不会升到3000rpm,而是自动冻结在比实际转速高一点点,默认是设定值的1.3倍,即390rpm。

这个功能相关参数是P1145,默认P1145=1.3。如果想禁用该功能,设置P1145=0即可。

正弦波三角波函数发生器

XXX学校 XXX学院 综合课程设计 设计题目 专业名称 班级学号 学生姓名 指导教师 设计时间2018.12.17~2018.1.4 课程设计任务书 专业:学号:学生姓名<签名): 设计题目: 一、设计实验条件 XXX实验室 Proteus软件 Multisim软件 二、设计任务及要求

1.实现频率为10kHz,峰峰值±5v的正弦波到三角波的变换; 2.整体电路由模拟器件产生; 3.实现三种不同电路产生。 三、设计报告的内容 1.设计题目与设计任务<设计任务书) 2.前言<绪论)(设计的目的、意义等> 3.设计主体<各部分设计内容、分析、结论等) 4.结束语<设计的收获、体会等) 5.参考资料 四、设计时间与安排 1、设计时间: 2周 2、设计时间安排: 熟悉实验设备、收集资料:天 设计图纸、实验、计算、程序编写调试:天 编写课程设计报告:天 答辩:天1、前言 函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件 (如低频信号函数发生器S101全部采用晶体管>,也可以采用集成电路(如单片函数发生器模块8038>,它是现代测试领域内应用最为广泛的通用仪器之

一。在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都学要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。它可以产生多种波形信号,如正弦波,三角波,方波等,因而广泛用于通信、雷达、宇航等领域。为进一步掌握电路的基本理论及实验调试技术,本设计报告由三种方法实现了正弦波—方波—三角波函数发生器的设计方法。b5E2RGbCAP 现今世界中电子技术与电子产品的应用越加广泛,人们对电子技术的要求也越来越高。因此如何根据实际要求设计出简便实用的电子技术物品便显得尤为重要。灵活、快速的选用不同特征的信号源成了现代测量技术值得深入研究的课题。能将简单的易获取的信号转换为自己所需的复杂信号是一项必不可少的技术。我们有必要做好这相关方面的研究,为被测电路提供所需要的信号及各种波形,以便完成各种相关实验。信号源在各种实验应用和实验测试处理中,仿真各种测试信号,提供给被测电路,用来满足实验的各种要求。本文所设计的波形发生器就是信号源的一种,采用集成运算放大器、电阻和电容组成简单的电路,实现波形的产生和转换。p1EanqFDPw 作为电子专业的学生,对函数信号发生器的设计、仿真、制作是一项最基本的实践技能,也是一种很好的锻炼机会,是一种综合能力的锻炼,它涉及到基本电路原理的知识,Mutisim仿真软件的使

EDA课程设计——函数信号发生器

EDA课程设计——函数信号发生器 实验报告 学院(系) 专业、班级 学生姓名 学号 小组其他队员: 指导教师

(1)实验要求 (2)总体设计思路 (3)程序仿真 (4)实验结果 (5)心得体会 一.实验要求 (1)利用VHDL语言设计一个多功能信号发生器,可以产生正弦波,三角波,锯齿波和方波的数字信号。

(2)焊接一个D/A转换器,对输出的数字信号转换成模拟信号并在示波器上产生波形。 (3)在电路板上可以对波形进行选择输出。 (4)在电路板上可以对波形的频率与幅度进行调节。 二.总体设计思路 信号发生器主要由分频,波形数据的产生,四选一多路选择,调幅和D/A转换五个部分组成。 总体框架图如下: (1)分频 分频器是数字电路中最常用的电路之一,在FPGA的设计中也是使用效率非常高的基本设计。实现的分频电路一般有两种方法:一是使用FPGA芯片内部提供的锁相环电路,如ALTERA提供的PLL(Phase Locked Loop),Xilinx提供的DLL(Delay Locked Loop);二是使用硬件描述语言,如

VHDL、Verilog HDL等。本次我们使用VHDL进行分频器设计,将奇数分频,和偶数分频结合起来,可以实现50%占空比任意正整数的分频。 分频器原理图: 在我们本次试验中的实现即为当按下按键时,频率自动减半。如当输入为100MHZ,输出为50MHZ。 (2)信号的产生。 根据查找资料,我们最终确定了在QUARTUS中波形数据产生的方法,即利用地址信号发生器和LPM_ROM模块。ROM 的地址信号发生器,有七位计数器担任。LPM_ROM底层是FPGA 中的M4K等模块。然后在VHDL顶层程序设计中将两部分调用从而实现信号的发生。ROM中存放不同的初始化MIF文件(存放不同波形的数据)从而产生不同的波形。 信号产生模块:

函数发生器的设计

函数发生器的设计

目录 一、设计任务与要求 二、方案与论证 1.正弦波产生电路: 1. 1RC桥式正弦波振荡电路: 2.正弦波变换为方波的电路: 2.1 电压比较器电路: 3.方波变换为三角波的电路: 3.1 积分运算电路: 三、仿真 四、元器件清单 五、调式与性能分析:

一、 设计任务与要求: 掌握方波——三角波——正弦波函数发生器的设计方法与测试技术。了解集成运算放大器与晶体管差分放大器组成的函数发生器的工作原理与设计方法。学会安装与调试由分离器件与集成电路组成的多级电子电路小系统。 设计并制作一个简易函数发生器,要求如下: 1. 输出波形:正弦波、方波、三角波等 2. 频率范围:1Hz~10Hz, 10Hz~100Hz 3. 输出电压:方波Vp-p<=24V , 三角波Vp-p<=8V , 正弦波Vp-p>1V . 二、方案与论证 方案总体分为三部分,先设计一个正弦波发生电路,再将正弦波信号经迟滞比较器转化为方波,再将方波经积分运算转变为三角波。 正弦波 方波 三角波 1. 正弦波产生电路: RC 桥式振荡电路原理图如下: RC 桥式振荡电路 迟滞比较器 积分电路

3 2 6 7 415 U1 UA741 C C R R RF R1 0R1 由选频网络和放大电路两部分组成。选频网络兼作放大电路的正反馈,反馈系数Fv = Vf / V o ,当f =1 / (2πRC) 时,幅频响应的幅值为最大Fmax = 1/3 ,相频响应的相位角为零。也就是说,只有当f =1 / (2πRC) 时,输出电压的幅值最大,为输入电压的1/3,且输出电压与输入电压同相。 噪声中有f =1 / (2πRC) 这个频率,直流电源提供能源,选频网络的正反馈使输出频率越来越大,最后受电路中非线性元件的限制,振荡幅度自动稳定下来。适当调整负反馈的强弱,使Av

函数发生器实验报告.

2010暑假实习报告 班级: 指导老师: 姓名: 学号: 时间:2010.6.25~2010.7.11

一 实习内容:函数发生器 一个电路同时产生正弦波、三角波、方波。 要求:1 正弦波幅度不小于1V ; 三角波不小于5V ; 方波不小于14V ; 2 频率可调 范围分为三段: 10HZ —100HZ ;100HZ —1KHZ ;1KHZ —10KHZ 。 二 所用仪器设备: 万用表,稳压电源,示波器,信号发生器,电烙铁,剪刀,镊子。 函数发生器设计电路图 v o1 +12V 13 12 4 R 3 20k Ω –12V 47k Ω 10k Ω R 2 2 R 1 10k Ω 1 RP 2 R 4 5.1k Ω 100k Ω 7 6 R 5 10k Ω A 1 A 2 9 4 C 1 10μF + + S C 2 1μF +12V v o2 10 + C 3 470μF RP 3 47k Ω + C 4 470μF R B1 6.8k Ω T 1 R C1 10k Ω +12V R C2 10k Ω C 6* 0.1μF C 5 + 470μF v o3 R B2 T 2 6.8k Ω 100Ω RP 4 R E2 100Ω R E3 2k Ω T 3 T 4 R E4 2k Ω R 8k Ω BG319 –12V μA747 1 2 μA747 1 2 –12V RP 1 A 1 A 2 * - + – +

测量结果记录与分析 体会:本次函数发生器是我们第九组在本次暑假实习中最成功的一次实习,我和同组的搭档马银超小心地焊接,认真的连线,积极学习74L S 191, 74L S 192, 74L S 74 芯片的内部构造以更深入地理解电路的工作原理,当我们完成整个焊接的工作时,就迫不及待地想要测试,我 电容波形 0.1u 0.01u 1u 方波 幅度 18V 幅度 19V 幅度 20V 最小频率3.5KHZ 最小频率35HZ 最小频率30HZ 最大频率8.5KHZ 最大频率1.2KHZ 最大频率1.1HZ 三角 波 幅度 3-9V 幅度5-11.5V 幅度4.5-16.5V 最小频率1.5KHZ 最小频率55HZ 最小频率16HZ 最大频率7.5KHZ 最大频率1.6KHZ 最大频率85HZ 正弦波 幅度0.2-0.98V 幅度1.3-4.5V 幅度1.5-4.1V 最小频率2.1KHZ 最小频率29HZ 最小频率17HZ 最大频率11KHZ 最大频率 0.96KHZ 最大频率81HZ

函数发生器设计

多功能信号发生器设计 一、设计任务 设计一个多功能信号发生器,要有如下: 1、输出信号波形的形式:正弦波、三角波、方波、单次脉冲。 2、输出信号的频率:20Hz~2kHz,连续可调。 3、输出信号的幅度:1V P-P~10V P-P,连续可调;单次脉冲:低电平≤0.4V,高电平3.5~5V。 4、输出信号直流电平调节范围:-5V~+5V。 5、输出信号波形精度:正弦波失真度≤2%;三角波的线性度≤1%;方波信号的上(下) 升沿时间≤2μS。 二、设计方案分析 信号发生器在科学实验、电子测量、自动控制、设备检测、无线通讯等领域有着广泛的应用。信号发生器的基本功能是可以提供符合一定技术指标要求的电信号,其波形、频率、幅值均可以调节。实现信号发生器电路的方案很多,其特点也不同,主要有模拟电路实现方案、数字电路实现方案和模数混合实现的方案。 1、采用单片机控制技术实现的信号发生器 该方案的主要思路是采用编程的方法来产生希望得到的波形,用户将要输出的波形预先存储在半导体存储器中,在需要某种波形时将储存在存储器中的数据依次读出来,经过数模转换、滤波等处理后,输出该波形的信号。该方案优点是输出信号的频率稳定,抗干扰能力强,实现任意波形的信号容易,可通过外置按键或键盘来设定所需要产生信号源的类型和频率,还可以通过显示器显示出波形的相关信息。不足之处是由于单片机的处理数据的速度有限,当产生频率比较高的信号时,输出波形的质量将下降。 2、利用直接数字频率合成(DDS)集成芯片实现的信号发生器 随着大规模集成电路制作技术的发展,采用直接数字频率合成技术实现的信号产生集成芯片应用越来越广泛。DDS集成芯片内部主要由相位累加器、波形存储器、高速D/A转换器等环节组成,在时钟脉冲的控制下,相位累加器对输入的频率控制字不断进行累加得到相应的相位码,同时相位码序列作为地址信号去寻址波形存储器进行相位码到幅度码的转换,并输出不同的幅度编码。这一系列不同的幅度编码经过D/A转换器得到相应的阶梯电压信号,最后经过低通滤波器平滑,即可输出相应的信号。一般集成DDS芯片内部时钟脉冲的频率固定,其相位累加器位数也不变,所以只需改变频率控制字即可实现输出信号频率的变化。利用DDS集成电路设计的信号发生器具有输出频率高,频率稳定度高,输出频率分辨率高,易于实现全数字控制等优点,是目前设计高精度、高性能信号发生器的首选方案。目前典型的DDS集成芯片有AD9850、AD9851、AD9852和AD9834等。 3、利用专用函数发生器集成电路实现的信号发生器 利用集成函数发生器专用芯片可以方便的实现多种波形的输出,而且外围电路简单,调试容易。例如早期的函数发生器集成芯片有ICL8038、BA205、XR2206/2207/2209等,这些芯片的不足时输出信号的频率不高,最大仅有几百kHz,调节方式不灵活,频率和脉冲信号的占空比不能独立调节。MAX038是美国MAXIM公司推出的新一代单片函数信号发生器,MAX038内部含有精密带隙电压参考、鉴相器和TTL同步输出,可以采用较少的外部元件构成一台高频函数发生器,也可单独用作电压控制振荡器、频率调制器、脉宽调制器、锁相环、频率合成器和FSK信号发生器,它的主要特点有:0.1Hz~20MHz的输出频率调节范围,350:1的扫频范围,10%~90%的占空比调节范围,可以输出正弦波、方波、矩形波、三角波、锯齿波等波形,且频率和占空比调节互不影响,是目前较为理想的函数发生器集成芯片。

实验六-方波—三角波—正弦波函数发生器

实验六-方波—三角波—正弦波函数发生器

六.方波-三角波-正弦波函数发生器 一、实验目的 函数信号发生器是一种可以同时产生正弦波、三角波和方波信号电压波形的电路,调节外部电路参数,还可以获得占空比可调的锯齿波、阶梯波等信号的电压波形。本实验主要是掌握方波-三角波-正弦波函数发生器的设计方法。 二、设计任务要求 频率范围:100~1000Hz,1000~10000Hz 输出电压: 方波V pp≤24V 三角波V pp=6V 正弦波V pp=1V 波形特征: 方波t r<100μs 三、实验原理 本实验方波-三角波-正弦波的设计电路如下图所示: 由比较器、积分器和反馈网络组成振荡器,比较器所产生

的方波通过积分器变成三角波,最后利用差分放大器传输特性曲线,将三角波转换成正弦波。 具体的电路设计如下图所示,三角波-方波产生电路是把比较器与积分器首尾相连,而三角波-正弦波的变换电路采用的是单端输入-单端输出差动放大电路输入输出方式。下面将仔细分析两个子电路。 ①方波-三角波产生器 方波-三角波产生器有很多种,此次试验是采用把比较器和积分器首尾相连构成方波-三角波产生器 的方式,具体分析电路如下所示:

集成运放A 2的输出信号三角波V O2为A 1的输入信号V 1,又因为A1的反相端接地,可得三角波输出V O2的峰值V O2m 为 V O2m =Z P V R R R 1 3 2 + 式中的V Z 为方波的峰值电压。 因积分电路输出电压从0上升到V 1m 所需时间为1/4T,故 RC T V dt R V C V R R R V Z T Z Z P M O 41 4 1 322== += ? 其中 R=R 4+R P2 ()C R R R R R T p p 1 32 4 2 4++= 从上述分析关系可得,调节R P2和电容C 的大小可改变振荡频率,改变R 2/(R P1+R 3)的比值可调节三角波的峰值。 ② 三角波-正弦波产生电路 三角波-正弦波产生电路的设计简图如下所示:

基于单片机的多功能信号发生器的系统设计与应用

基于单片机的多功能信号发生器的系统设计与应用 信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。各种波形曲线均可以用三角函数方程式来表示。例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。 随着集成芯片制造工艺的进一步发展,一些高性能的波形产生专用芯片逐渐被应用到该领域并获得成功。波形发生装置的电路设计得到进一步简化,而与此同时,所产生的波形的质量却得到了显著提高。例如应用比较广泛的DDS芯片AD9833系列,能制作出各种频带宽,质量高的波形信号,例如应用高性能的AD9833芯片,可以做出频率1GHZ以上,频率分辨率0.1HZ以下的优质波形[2]。 科技不断发展,在各个领域对信号产生电路提出了越来越高的要求。以往那些只具有单一优势的波形发生装置的应用越来越受到限制。例如用模拟器件构成的波形发生器电路简单可靠、信号频率较高,但可调节性差;采用数字电路为核心的波形发生装置所产生的信号可调节性好,但电路复杂,而频率又不易做的很高。较为理想的波形发生装置应该同时具备多方面的优良品质,信号的频带应该较宽,而且步进精确。另外,微型化也是信号产生装置的发展趋势之一,这样,才能将信号发生装置方便的嵌入到各种仪器设备中。随着芯片制造工艺的不断提高,性能更高、体积更小的专用信号处理芯片必将会越来越多地应用到信号产生电路中,使更高质量的信号的产生成为可能。 DDS技术的实现,一般有如下几种可选的方案。首先是使用专用的DDS芯片,例如应用比较广泛的DDS芯片AD9833系列。专用DDS芯片性能可靠,特别是在高频领域,有着无可替代的地位。但在中低频领域,专用DDS芯片却不一定是唯一的选择。

基于51单片机的函数信号发生器的设计

龙源期刊网 https://www.wendangku.net/doc/d014579725.html, 基于51单片机的函数信号发生器的设计 作者:朱兆旭 来源:《数字技术与应用》2017年第02期 摘要:本文所设计的系统是采用AT89C51单片机和D/A转换器件DAC0832产生所需不 同信号的低频信号源,AT89C51 单片机作为主体,采用D/A转换电路、运放电路、按键和LCD液晶显示电路等,按下按键控制生成方波、三角波、正弦波,同时用LCD显示相应的波形,输出波形的周期可以用程序改变,具有线路简单、结构紧凑、性能优越等特点。 关键词:51单片机;模数转换器;信号发生器 中图分类号:TP391 文献标识码:A 文章编号:1007-9416(2017)02-0011-01 1 前言 波形发生器,是一种作为测试用的信号源,是当下很多电子设计要用到的仪器。现如今是科学技术和设备高速智能化发展的科技信息社会,集成电路发展迅猛,集成电路能简单地生成各式各样的波形发生器,将其他信号波形发生器于用集成电路实现的信号波形发生器进行对比,波形质量、幅度和频率稳定性等性能指标,集成电路实现的信号波形发生器都胜过一筹,随着单片机应用技术的不断成长和完善,导致传统控制与检测技术更加快捷方便。 2 系统设计思路 文章基于单片机信号发生器设计,产生正弦波、方波、三角波,连接示波器,将生成的波形显示在示波器上。按照对作品的设计研究,编写程序,来实现各种波形的频率和幅值数值与要求相匹配,然后把该程序导入到程序存储器里面。 当程序运行时,一旦收到外界发出的指令,要求设备输出相应的波形时,设备会调用对应波形发生程序以及中断服务子程序,D/A转换器和运放器随之处理信号,然后设备的端口输出该信号。其中,KEY0为复位键,KEY1的作用是选择频率的步进值,KEY2的作用是增加频 率或增加频率的步进值,KEY3的作用是减小频率或减小频率的步进值,KEY4的作用是选择三种波形。103为可调电阻,用于幅值的调节。自锁开关起到电源开关的作用。启动电源,程序运行的时候,选择正弦波,红色LED灯亮起;选择方波,黄色LED灯亮起;选择三角波,绿色LED灯亮起。函数信号发生器频率最高可达到100Hz,最低可达到10Hz,步进值0.1- 10Hz,幅值最高可到3.5V。系统框图如图1所示。 3 软件设计

多功能信号发生器课程设计

《电子技术课程设计》 题目:多功能信号发生器 院系:电子信息工程 专业:xxxxxxxx 班级:xxxxxx 学号:xxxxxxxx 姓名:xxx 指导教师:xxx 时间:xxxx-xx-xx

电子电路设计 ——多功能信号发生器目录 一..课程设计的目的 二课程设计任务书(包括技术指标要求) 三时间进度安排(10周~15周) a.方案选择及电路工作原理; b.单元电路设计计算、电路图及软件仿真; c.安装、调试并解决遇到的问题; d.电路性能指标测试; e.写出课程设计报告书; 四、总体方案 五、电路设计 (1)8038原理, LM318原理, (2)性能\特点及引脚 (3)电路设计,要说明原理 (4)振动频率及参数计算 六电路调试 要详细说明(电源连接情况, 怎样通电\ 先调试后调试,频率调试幅度调试波行不稳调试 七收获和体会

一、课程设计的目的 通过对多功能信号发生器的电路设计,掌握信号发生器的设计方法和测试技术,了解了8038的工作原理和应用,其内部组成原理,设计并制作信号发生器能够提高自己的动手能力,积累一定的操作经验。在对电路焊接的途中,对一些问题的解决能够提高自己操作能力随着集成制造技术的不断发展,多功能信号发射器已经被制作成专用的集成电路。这种集成电路适用方便,调试简单,性能稳定,不仅能产生正弦波,还可以同时产生三角波和方波。它只需要外接很少的几个元件就能实现一个多种波、波形输出的信号发生器。不仅如此,它在工作时产生频率的温度漂移小于50×10-6/℃;正弦波输出失真度小于1%,输出频率范围为0.01Hz~300kHz;方波的输出电压幅度为零到外接电源电压。因此,多功能信号发生器制作的集成电路收到了广泛的应用。 二、课程设计任务书(包括技术指标要求) 任务:设计一个能产生正弦波、方波、三角波以及单脉冲信号发生器。 要求: 1.输出频率为f=20Hz~5kHz的连续可调正弦波、方波和三角波。 2.输出幅度为5V的单脉冲信号。 3.输出正弦波幅度V o= 0~5V可调,波形的非线性失真系数γ≤

正弦波函数信号发生器

电子技术课程设计报告 电子技术课程设计报告——正弦波函数信号发生器的设计 作品40% 报告 20% 答辩 20% 平时 20% 总分 100% 设计题目:班级:班级学号:学生姓名:

目录 一、预备知识 (1) 二、课程设计题目:正弦波函数信号发生器 (2) 三、课程设计目的及基本要求 (2) 四、设计内容提要及说明 (3) 4.1设计内容 (3) 4.2设计说明 (3) 五、原理图及原理 (8) 5.1功能模块电路原理图 (9) 5.2模块工作原理说明 (10) 六、课程设计中涉及的实验仪器和工具 (12) 七、课程设计心得体会 (12) 八、参考文献 (12)

一、预备知识 函数发生器是一种在科研和生产中经常用到的基本波形生产期,现在多功能的信号发生器已经被制作成专用的集成电路,在国内生产的8038单片函数波形发生器,可以产生高精度的正弦波、方波、矩形波、锯齿波等多种信号波,这中产品和国外的lcl8038功能相同。产品的各种信号频率可以通过调节外接电阻和电容的参数进行调节,快速而准确地实现函数信号发生器提供了极大的方便。发生器是可用于测试或检修各种电子仪器设备中的低频放大器的频率特性、增益、通频带,也可用作高频信号发生器的外调制信号源。顾名思义肯定可以产生函数信号源,如一定频率的正弦波,有的可以电压输出也有的可以功率输出。下面我们用简单的例子,来说明函数信号发生器原理。 (a) 信号发生器系统主要由下面几个部分组成:主振级、主振输出调节电位器、电压放大器、输出衰减器、功率放大器、阻抗变换器(输出变压器)和指示电压表。 (b) 工作模式:当输入端输入小信号正弦波时,该信号分两路传输,其一路径回路,完成整流倍压功能,提供工作电源;另一路径电容耦合,进入一个反相器的输入端,完成信号放大功能。该放大信号经后级的门电路处理,变换成方波后经输出。输出端为可调电阻。 (c) 工作流程:首先主振级产生低频正弦振荡信号,信号则需要经过电压放大器放大,放大的倍数必须达到电压输出幅度的要求,最后通过输出衰减器来直接输出信号器实际可以输出的电压,输出电压的大小则可以用主振输出调节电位器来进行具体的调节。 它一般由一片单片机进行管理,主要是为了实现下面的几种功能: (a) 控制函数发生器产生的频率; (b) 控制输出信号的波形; (c) 测量输出的频率或测量外部输入的频率并显示; (d) 测量输出信号的幅度并显示; (e) 控制输出单次脉冲。 查找其他资料知:在正弦波发生器中比较器与积分器组成正反馈闭环电路,方波、三角波同时输出。电位器与要事先调整到设定值,否则电路可能会不起振。只要接线正确,接通电源后便可输出方波、三角波。微调Rp1,使三角波的输出幅度满足设计要求,调节Rp2,则输出频率在对应波段内连续可变。 调整电位器及电阻,可以使传输特性曲线对称。调节电位器使三角波的输出幅度经R输出等于U值,这时输出波形应接近正弦波,调节电位器的大小可改善波形。 因为运放输出级由PNP型与NPN型两种晶体管组成复合互补对称电路,输

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明 1-1 SG1651A函数信号发生器使用说明 一、概述 本仪器是一台具有高度稳定性、多功能等特点的函数信号发生器。能直接产生正弦波、三角波、方波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。TTL可与主信号做同步输出。还具有VCF输入控制功能。频率计可做内部频率显示,也可外测1Hz~的信号频率,电压用LED显示。 二、使用说明 面板标志说明及功能见表1和图1 图1 表1 序 面板标志名称作用号 1电源电源开关按下开关,电源接通,电源指示灯亮 2 1、输出波形选择 波形波形选择 2、与1 3、19配合使用可得到正负相锯齿波和脉

DC1641数字函数信号发生器使用说明 一、概述 DC1641使用LCD显示、微处理器(CPU)控制的函数信号发生器,是一种小型的、由集成电路、单片机与半导体管构成的便携式通用函数信号发生器,其函数信号有正弦波、三角波、方波、锯齿波、脉冲五种不同的波形。信号频率可调范围从~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显示。信号的最大幅度可达20Vp-p。脉冲的占空比系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。除此以外,能外接计数输入,作频率计数器使用,其频率范围从10Hz~10MHz(50、100MHz[根据用户需要])。计数频率等功能信息均由LCD显示,发光二极管指示计数闸门、占空比、直流偏置、电源。读数直观、方便、准确。 二、技术要求 函数发生器 产生正弦波、三角波、方波、锯齿波和脉冲波。 2.1.1函数信号频率范围和精度 a、频率范围 由~2MHz分七个频率档级LCD显示,各档级之间有很宽的覆盖度, 如下所示: 频率档级频率范围(Hz) 1 ~2 10 1~20 100 10~200

函数发生器设计和仿真实现

课程设计 课程名称模拟电子技术基础课程设计题目函数发生器 学院 专业 班级 姓名 指导教师 2015 年01 月20 日

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 函数发生器的设计和仿真实现 初始条件: 具备模拟电子电路的理论知识; 具备模拟电路基本电路的设计能力; 具备模拟电路的基本调试手段; 自选相关电子器件。 要求完成的主要任务: (1)设计任务 根据要求,完成对方波-三角波-正弦波发生器的仿真设计、仿真、装配与调试,并自制直流稳压电源 (2)设计要求 ①正弦波Upp≈3V,幅度连续可调;三角波Upp≈5V,幅度连续可调;方波Upp≈14V,幅度连续可调。 频率范围:三段:10~100Hz,100 Hz~1KHz,1 KHz~10 KHz; 频率控制方式:改变RC时间常数; 正弦波输出电量:电流; ②选择电路方案,完成对确定方案电路的设计。 ③利用Proteus或Multisim仿真设计电路原理图,确定电路元件参数、掌握电路工作原理并仿真实现系统功能。 ④安装调试并按规范要求格式完成课程设计报告书。 ⑤选做:利用仿真软件的PCB设计功能进行PCB设计。 时间安排: 1、 2015 年 1月13日集中,作课设具体实施计划与课程设计报告格式的要求说明,查阅相关资料,学习电路的工作原理。。 2、 2015 年 1月14日至2015年1月16日,方案选择和电路设计。 3、 2015 年 1月 17日至2015年1月18日,电路调试和设计说明书撰写。 4、 2015 年 1月 20日上交课程设计成果及报告,同时进行答辩。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

函数发生器实验设计报告

《函数发生器设计实验》 实验报告 小组成员:黄文成 习灿 方丹 指导老师: 刘亚琪 湖北经济学院电子工程系 2012.12

摘要:函数发生器是一种多波形的信号源,它可以产生正弦波、方波、三角波、锯齿波、甚至任意波形。当调节外部电路参数时,可以获得占空比可调的矩形波和锯齿波。有的函数发生器还具有调制的功能,可以进行调幅、调频、调相、脉宽调制和VCO控制。可以用于生产测试、仪器维修和实验室,还广泛用于医学、教育、化学、通讯、地球物理学、工业控制、军事和宇航等领域。 一、方案设计与论证 方案(一) 设计一个集成电路,由运算放大器NE5532及分离元件构成,第一部实现方波――三角板产生电路,第二部分利用差分放大电路实现三角波--正弦波的变换。 方案(二) 利用单片集成芯片的函数发生器。 方案(三) 利用专用直接数字合成DDS芯片的函数发生器。 方案论证与选定 方案(一)电路的性能好,而且使用能力强,工作范围大,可以直接对其进行调频调幅,但它对焊接工艺有一定要求。方案(二)能产生多种波形,达到较高的频率,且易于调试,但这种方案要求幅度和频率都可调。方案(三)能产生任意波形并达到很高的频率,但成本较高。综合考虑上述各种因素,由于实验室条件和成本的限制,从简单而且便于购买的前提出发我们选择方案(一)为我们最终的设计方案。

二、 电路设计 性能指示要求 输出波形 方波、三角波 、正弦波; 频率范围 1Hz~10Hz, 10Hz~100Hz; 输出电压 方波V p-p ≤24V ,三角波V p-p =8V , 正弦波V p-p >1V ; 波形特性 方波t r <1μs(1kHz ,最大输出时) 非线性失真系数:三角波γ△<2%, 正弦波γ~<5% 函数发生器组成框图 函数发生器实验电路图 采用如图所示电路,其中运算放大器A 1与A 2用一只双运放μA747,差分放大器采用本章第三节设计完成的晶体管单端输入— 单端输出差分放大器电路。因为方波的幅度接近电源电压,所以取电源电压+V CC = +12V ,–V EE = –12V 比较器 积分器 差分放大器 v o1 +12V 13 12 4 R 3 20k Ω –12V 47k Ω 10k Ω R 2 2 R 1 10k Ω 1 RP 2 R 4 5.1k Ω 100k Ω 7 6 R 5 10k Ω A 1 A 2 9 4 C 1 10μF + + S C 2 1μF +12V v o2 10 + C 3 470μF RP 3 47k Ω + C 4 470μF R B1 6.8k Ω T 1 R C1 10k Ω +12V R C2 10k Ω C 6* 0.1μF C 5 + 470μF v o3 R B2 T 2 6.8k Ω 100Ω RP 4 R E2 100Ω R E3 2k Ω T 3 T 4 R E4 2k Ω R 8k Ω BG319 –12V μA747 1 2 μA747 1 2 –12V RP 1 A 1 A 2 * - + – +

多功能信号发生器课程设计

课题:多功能信号发生器专业:电子信息工程 班级:1班 学号: 姓名: 指导教师:汪鑫 设计日期: 成绩: 重庆大学城市科技学院电气学院

多功能信号发生器设计报告 一、设计目的作用 1.掌握简易信号发生器的设计、组装与调试方法。 2.能熟练使用multisim10电路仿真软件对电路进行设计仿真调试。 3.加深对模拟电子技术相关知识的理解及应用。 二、设计要求 1.设计任务 设计一个能够输出正弦波、方波、三角波三种波形的信号发生器,性能要求如下: (1)输出频率,f=20Hz-5kHz 连续可调的正弦波、方波、三角波; (2)输出正弦波幅度V=0-5V可调,波形的非线性失真系数<=5%; (3)输出三角波幅度V=0-5V可调。 (4)输出方波幅度可在V=0-12V之间可调。 2.设计要求 (1)设计电路,计算电路元件参数,拟定测试方案和步骤; (2)测量技术指标参数; (3)写出设计报告。 三、设计的具体实现 1、系统概述 1.1正弦波发生电路的工作原理: 产生正弦振荡的条件: 正弦波产生电路的目的就是使电路产生一定频率和幅度的正弦波,我们一般在放大电路中引入正反馈,并创造条件,使其产生稳定可靠的振荡。正弦波产生电路的基本结构是:引入正反馈的反馈网络和放大电路。其中:接入正反馈是产生振荡的首要条件,它又被称为相位条件;产生振荡必须满足幅度条件;要保证输出波形为单一频率的正弦波,必须具有选频特性;同时它还应具有稳幅特性。因此,正弦波产生电路一般包括:放大电路;反馈网络;选频网络;稳幅电路个部分。 正弦波振荡电路的组成判断及分类: (1)放大电路:保证电路能够有从起振到动态平衡的过程,电路获得一定幅值的输出值,实现自由控制。 (2)选频网络:确定电路的振荡频率,是电路产生单一频率的振荡,即保证电路产生正弦波振荡。 (3)正反馈网络:引入正反馈,使放大电路的输入信号等于其反馈信号。(4)稳幅环节:也就是非线性环节,作用是输出信号幅值稳定。 判断电路是否振荡。方法是: (1)是否满足相位条件,即电路是否是正反馈,只有满足相位条件才可能产

高频实验函数信号发生器设计报告

目录一.设计 1.设计指标 2.设计目的 二.总电路及原理三.各部分组成及原理1.原理框图 2.方波发生电路 3.三角波产生电路 4. 正弦波电路 四.实物图 五.原件清单 六.心得体会

一.设计 设计指标 1)可产生方波、三角波、正弦波。并测试、调试、组装。 2)方波幅值<=24V且频率可调在10hz-10khz,三角波幅值可调为8V,正弦波幅值可调为2V 3)使用741芯片完成此电路 4)电路焊接美观大方,走线布局合理 设计目的 1).掌握电子系统的一般设计方法 2).掌握模拟IC器件的应用 3).培养综合应用所学知识来指导实践的能力 4).掌握常用元器件的识别和测试 5).熟悉常用仪表,了解电路调试的基本方法 二.总电路及原理 由RC构成振荡电路,反相滞回比较器产生矩形波,两者构成方波发生电路,方波经积分器产生三角波,三角波由滤波器产生正弦波,两级滤波产生更好的正弦波。

三.各部分组成及原理原理框图 1.方波发生电路 方波发生电路三角波正弦波

电路简介 方波发生电路主要由两部分构成 1.反相输入滞回比较器 2.RC振荡电路 若开始滞回比较器输出电压为U1,此时运放同相输入端电压为UP=U1*R3/(R3+R4)同时U1通过R2对电容充电,当电容电压达到同相端的电压时输出电压变为-U1,同时同相端电压变为-UP,由于电容电压大于输出端电压所以电容通过R1放电,当电容电压等于-UP时输出电压又变为U1,同相端电压变为UP,此时输出电压通过R1对电容进行充电,整个过程不断重复形成自激振荡,由于电容充电时间与放电时间相同,故占空比为50%,形成方波。 利用一阶电路的三要素法列方程求得振荡周期为 T=2R1C5in(1+2R3/R4) 运放采用双电源+12V、-12V,输出正弦波幅值为14V左右 注意事项 电路中的稳压管可以起到调节电压幅值并稳定电压的作用,经运放输出端接的R2可以起到稳定波形的作用,但不宜过大,此电路中应不超过500?。另外由于运放为741芯片,故波的频率不会很高,此电路应为一个低频电路。 调节R4/R3的比值,C5,R1的阻值均可以调节电路的频率,但要调节幅值的同时不改变波的频率就只能通过稳压管调节,此为电路的缺陷之一

函数发生器的设计与制作.

第一章绪论 函数信号发生器本来是一种超低频仪器,不打为所注意,但近几年来,情况发生了极大的变化。现在函数发生器,不仅可以产生各种各样的数学波形,而且还具有某些专用仪器的能力,如频率合成、扫描、调制(调幅、调频与调相)。以上这些功能在台式函数发生器与调控函数发生器与程控函数发生器之间权衡选用,前者常被称作“便携式”,后者通常用于自动测试的设备中。由于函数发生器性能价格比较很好,应用范围日益扩大。据报道,函数发生器在国外已成为设计人员在工作台上不可缺少的信号源。 所有先进的函数发生器都具有这样或那样的灵活性,由外部电压选择发生器的频率是它的共同点;另一特点是,滞留偏置可调,可按具体实验要求调节输出信号的直流电平。波形空度比可调。因而波形形状可变。 许多函数发生器具有可调的起/止相位鉴别器,相位锁定,以及具有触发输入或门控输出的选择,有的发生器还可以借操作人员把伪隨机噪声加到波形上,以使用于噪声环境,也可以把所有产生的信号相位锁定于外接源的相位上。

第二章总体电路方案设计与选择 2.1设计要求 1.输出的各种波形工作频率范围0.02Hz~1kHz连续可调。 2.正弦波幅值±10V,失真度小于1.5%。 3.方波幅值±10V。 4.三角波峰峰值20V;各种输出波形幅值均连续可调。 2.2设计的基本方案 方案一:由RC桥式电路振荡产生正弦波,再经整形积分产生方波和三角波。由运算放大器进行设计,如图2-2所示: 图2-2函数发生器原理图1 采用振荡电路获得正弦波,再由比较器获得方波,最后通过积分电路获得三角波。 方案二:用ICL8038集成函数信号发生器所需信号。接入外部电路后ICL8038的9、3、2引脚就可分别产生方波、三角波、正弦波,频率调节部分通过其它的引脚接外电路来完成 .然后从ICL8038出来经过选择开关选择所需波形进入

设计制作一个方波-三角波-正弦波函数信号发生器

课程设计说明书 课程设计名称:模拟电子技术基础 课程设计题目:设计制作一个产生方波—三角波—正弦波函数转 换器 学院名称:信息工程学院 专业:电子信息工程班级: 学号:姓名: 评分:教师: 20 12 年 2 月22 日

《模拟电路》课程设计任务书 20 11-20 12 学年第2 学期第1 周-1.5周 题目设计制作一个产生方波-三角波-正弦波函数转换器 内容及要求 1 输出波形频率范围为0.2KHz~20kHz且连续可调; 2正弦波幅值为±2V; 3方波幅值为2V; 4三角波峰-峰值为2V,占空比可调; 5设计电路所需的直流电源可用实验室电源。 进度安排 1. 布置任务、查阅资料、选择方案,领仪器设备: 2天; 2. 领元器件、制作、焊接:3天 3.调试+验收: 2.5天 4.提交报告:2011-2012学年第二学期3~7周 学生姓名: 指导时间:第1~1.5周指导地点: E楼508 室任务下达20 12 年 2 月 12 日任务完成20 12 年 2 月 22 日 考核方式1.评阅□√ 2.答辩□ 3.实际操作□√ 4.其它 □ 指导教师彭嵩系(部)主任陈琼

摘要 在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。用三角波,方波发生电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。因此,本设计意在用LM324放大器设计一个产生方波-三角波-正弦波的函数转换器。为了使这三种波形实现转换,需要设计一个电路将直流电转换成方波和三角波,继而将三角波转换成正弦波。首先直流电源通过一个同相滞回比较电路转换为方波,方波通过一个积分电路转换为三角波,最后经滤波电路(RC振荡电路产生)转换为正弦波。从而实现转换器的设计。(关键字:放大、波形转换、积分)

函数信号发生器

基于labview的函数信号发生器的设计 [摘要] 介绍一种基于labvIEW环境下自行开发的虚拟函数信号发生器,它不仅能够产 生实验室常用的正弦波、三角波、方波、锯齿波信号,而且还可以通过输入公式,产生测试和研究领域所需要的特殊信号。对任意波形的发生可实现公式输入;对信号频率、幅度、相位、偏移量可调可控;方波占空比可以调控;噪声任意可加、创建友好界面、信号波形显示;输出频谱特性;所有调制都可微调与粗调。该仪器系统操作简便,设计灵活,功能强大,可以完成不同环境下的测量要求。因此具有很强的实用性。 关键词:虚拟仪器,labvIEW,虚拟函数信号发生器,正弦波,三角波,方波,锯齿波, 特殊信号。 引言: 在有关电磁信号的测量和研究中,我们需要用到一种或多种信号源,而函数信号发生器则为我们提供了在研究中所需要的信号源。它可以产生不同频率的正弦波,方波,三角波,锯齿波,正负脉冲信号,调频信号,调幅信号和随机信号等。其输出信号的幅值也可以按需要进行调节。传统信号发生器种类繁多,价格昂贵,而且功能固定单一,不具备用户对仪器进行定义及编程的功能,一个传统实验室很难拥有多类信号发生器。然而,基于虚拟仪器技术的实验室均能满足这一要求。 1、虚拟仪器简介: 自从1986年美国NI(National Instrument)公司提出虚拟仪器的概念以来,随着计 算机技术和测量技术的发展,虚拟仪器技术也得到很快的发展。虚拟仪器是指:利用现有的PC机,加上特殊设计的仪器硬件和专用软件,形成既有普通仪器的基本功能,又有一般仪器所没有的特殊功能的新型仪器。与传统的仪器相比其特点主要有:具有更好的测量精度和可重复性;测量速度快;系统组建时间短;由用户定义仪器功能;可扩展性强;技术更新快等。虚拟仪器以软件为核心,其软件又以美国NI公司的Labview虚拟仪器软件开发平台最为常用。Labview是一种图形化的编程语言,主要用来开发数据采集,仪器控制及数据处理分析等软件,功能强大。目前,该开发软件在国际测试、测控行业比较流行,在国内的测控领域也得到广泛应用。函数信号发生器是在科学研究和工程设计中广泛应用的一种通用仪器。下面结合一个虚拟函数信号发生器设计开发具体介绍基于图形化编程语言Labview的虚拟仪器编程方法与实现技术。 2、虚拟函数信号发生器的结构与组成 2.1 虚拟函数信号发生器的前面板

函数信号发生器设计方案

函数信号发生器的设 计与制作 目录 一.设计任务概述 二.方案论证与比较 三.系统工作原理与分析 四.函数信号发生器各组成部分的工作原理 五.元器件清单 六.总结 七.参考文献

函数信号发生器的设计与制 一.设计任务概述 (1)该发生器能自动产生正弦波、三角波、方波。 (2)函数发生器以集成运放和晶体管为核心进行设计 (3)指标: 输出波形:正弦波、三角波、方波 频率范围:1Hz~10Hz,10Hz~100Hz 输出电压:方波VP-P≤24V,三角波VP-P=8V,正弦波VP-P>1V; 二、方案论证与比较 2.1·系统功能分析 本设计的核心问题是信号的控制问题,其中包括信号频率、信号种类以及信号强度的控制。在设计的过程中,我们综合考虑了以下三种实现方案: 2.2·方案论证 方案一∶采用传统的直接频率合成器。这种方法能实现快速频率变换,具有低相位噪声以及所有方法中最高的工作频率。但由于采用大量的倍频、分频、混频和滤波环节,导致直接频率合成器的结构复杂、体积庞大、成本高,而且容易产生过多的杂散分量,难以达到较高的频谱纯度。 方案二∶采用锁相环式频率合成器。利用锁相环,将压控振荡器(VCO)的输出频率锁定在所需要频率上。这种频率合成器具有很好的窄带跟踪特性,可以很好地选择所需要频率信号,抑制杂散分量,并且避免了量的滤波器,有利于集成化和小型化。但由于锁相环本身是一个惰性环节,锁定时间较长,故频率转换时间较长。而且,由模拟方法合成的正弦波的参数,如幅度、频率相信都很难控制。 方案三:采用8038单片压控函数发生器,8038可同时产生正弦波、方波和三角波。改变8038的调制电压,可以实现数控调节,其振荡范围为0.001Hz~300K 方案四:采用分立元件设计出能够产生3种常用实验波形的信号发生器,并确定了各元件的参数,通过调整和模拟输出,该电路可产生频率低于1-10Hz的3种信号输出,具有原理简单、结构清晰、费用低廉的优点。该电路已经用于实际电路的实验操作。 三、系统工作原理与分析 采用由集成运算放大器与场效应管共同组成的方波—三角波—正弦波函数发生器的设计方法,先通过比较器产生方波,再通过积分器产生三角波,最后通过场效应管正弦波转换电路形成正弦波,波形转换原理图如下:

相关文档
相关文档 最新文档