文档库 最新最全的文档下载
当前位置:文档库 › 第二章参数估计

第二章参数估计

第二章参数估计
第二章参数估计

第二章 参数估计

一、填空题

1、总体X 的分布函数为);(θx F ,其中θ为未知参数,则对θ常用的点估计方法有 , 。

2、设总体X 的概率密度为

(),(;)0,x e x f x x θθ

θθ--?≥=?

而12,,

,n X X X 是来自总体X 的简单随机样本,则未知参数θ的矩估计量为

_______

3、设321,,X X X 是来自总体X 的简单随机样本,且μ=)(X E ,记

3211313131X X X ++=

μ,321221

4141X X X ++=μ 2132121X X +=μ, 32144

1

4141X X X ++=μ

则哪个是μ的有偏估计 ,哪个是μ的较有效估计 。

4、随机变量X 的分布函数);(θx F 中未知参数θ的有效估计量和极大似然估计量的关系为 。

5、随机变量X 的分布函数);(θx F 中未知参数θ的有效估计量和最优无偏估计量的关系为 。

6、称统计量),,,(21n X X X T T =为可估函数)(θg 的(弱)一致估计量是

指 。

7、判断对错:设总体),(~2σμN X ,且μ与2σ都未知,设n X X X ,...,,21是来自

该总体的一个样本,设用矩法求得μ的估计量为1?μ、用极大似然法求得μ的估计量为2?μ

,则1?μ=2?μ。 _________________

8、?n θ是总体未知参数θ的相合估计量的一个充分条件是_______ .

解:??lim (), lim Var()0n n

n n E θθθ→∞

→∞

==. 9、已知1021,,x x x 是来自总体X 的简单随机样本,μ=EX 。令

∑∑==+=10

7

6

181?i i i i x A x μ

,则当=A 时,μ?为总体均值μ的无偏估计。

10、 设总体()θ,0~U X ,现从该总体中抽取容量为10的样本,样本值为

0.51.30.61.7 2.21.20.81.5 2.01.6, , , , , , , , , 则参数θ的矩估计为 。

11、 设1?θ与2?θ都是总体未知参数θ的估计,且1?θ比2?θ有效,则1?θ与2?θ的期望与方差满足_______ .

解:1212

????()(), ()()E E D D θθθθ=<. 12、设1?θ和2?θ均是未知参数θ的无偏估计量,且)?()?(2221θθE E >,则其中的统计量 更有效。

13、在参数的区间估计),(21θθ中,当样本容量n 固定时,精度12θθ-提高时,置信度α-1 。

14、设n X X X ,,,21 是来自总体)1,(~μN X 的样本,则μ的置信度为0.95的置信区间为 。

15、设n X X X ,,,21 是来自总体),(~2σμN X 的样本,其中2σ未知,则μ的置信度为0.95的置信区间为 。

16、设n X X X ,,,21 是来自总体),(~2σμN X 的样本,其中μ未知,则2σ的置信度为0.95的置信区间为 。

17、设X 服从参数为λ的指数分布,)2(,,,,21>n X X X n 是来自总体X 的样本,

X 为其样本均值,则X n λ2服从 分布。

18、设总体服从正态分布)1,(μN ,且μ未知,设n X X X ,...,,21为来自该总体的一

个样本,记∑==n

i i X n X 1

1,则μ的置信水平为1α-的置信区间公式是

___________________________________;若已知95.01=-α,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取多大_______。

18、为估计大学生近视眼所占的百分比,用重复抽样方式抽取200名同学进行调查,结果发现有68个同学是近视眼。则大学生近视眼所占的百分比的95%的置信区间为 。

19、设总体X 未知参数为λ,X 为样本均值, X N(0,1),

则λ的一个双侧近似1-α置信区间为 。

20、设总体12~(,1),,,...,n X U X X X θθ+为样本,则θ的矩估计量为 ,极大似然估计量为 。

21、设总体212~(,),,,...,n X N X X X μσ为样本,μ、2σ 未知,则2σ的置信度为1-α的置信区间为 。

22、设总体X 在区间]1,[+θθ上服从均匀分布,则θ的矩估计=θ? ;

=)?(θ

D 。

23、设总体),(~2σμN X ,若μ和2σ均未知,n 为样本容量,总体均值μ的置信水平为α-1的置信区间为),(λλ+-X X ,则λ的值为________;

24、在实际问题中求某参数的置信区间时,总是希望置信水平愈 愈好,而置信区间的长度愈 愈好。但当增大置信水平时,则相应的置信区间长度总是 。

二、简述题

1、描述矩估计法的原理。

2、描述极大似然估计法的原理。

3、极大似然估计法的一般步骤是什么?

4、评价估计量好坏的标准有哪几个?

5、什么是无偏估计?

6、什么是较有效?

7、什么叫有效估计量?

8、判断可估函数)(θg 是有效估计量的充要条件是什么? 9、什么是最优无偏估计量?

10、什么是一致最小方差无偏估计量?

11、有效估计量和最优无偏估计量的关系是什么? 12、什么叫均方误差最小估计量? 13、叙述一致估计量的概念。

14、试述评价一个置信区间好坏的标准。

15、描述区间估计中样本容量、精度、置信度的关系。

三、单选题

1、设总体未知参数θ的估计量θ满足()E θθ=,则θ一定是θ的( ) A 极大似然估计 B 矩估计 C 无偏估计 D 有效估计

2、设总体未知参数θ的估计量θ满足()E θθ≠,则θ一定是θ的( )

A 极大似然估计

B 矩估计

C 有偏估计

D 有效估计

3、设n X X X ,,,21 为来自均值为μ的总体的简单随机样本,则),,2,1(n i X i =( )

A .是μ的有效估计量

B .是μ的一致估计量

C .是μ的无偏估计量

D .不是μ的估计量

4、估计量的有效性是指( ) A.估计量的抽样方差比较小 B.估计量的抽样方差比较大 C.估计量的置信区间比较宽 D.估计量的置信区间比较窄

5、若置信水平保持不变,当增大样本容量时,置信区间( ) A .将变宽 B .将变窄 C .保持不变 D .宽窄无法确定

6、一个95%的置信区间是指( ) A .总体参数有95%的概率落在这一区间内 B .总体参数有5%的概率未落在这一区间内

C .在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数

D .在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数

7、置信度α-1表示区间估计的( ) A .精确性 B .显著性 C .可靠性 D .准确性

8、抽取一个容量为100的随机样本,其均值为x =81,标准差s =12。总体均值μ的99%的置信区间为( )其中:58.2995.0=U 。

A 81±1.97

B 81±2.35

C 81±3.09

D 81±3.52

四、计算题 1、设1,

,n X X 是来自总体X 的样本X 的密度函数为

,0

(),00,0

x e x f x x λλλ-?>=>?

≤? 试求λ的极大似然估计量。

2、设总体X 服从参数为λ的泊松分布,求未知参数λ的矩估计量。

3、 设总体X 服从参数为λ的泊松分布,求未知参数λ的有效估计量。

4、设总体X 的概率密度为

.

,,0,)()(其它θθ≥???=--x e x f x

θ是未知参数,n X X X ,,,21 是来自X 的样本,求θ的矩估计量1θ∧

5、设n X X X ,...,,21是取自总体X 的一个样本,X 的密度函数为

?????<<=else

x x

x f ,00,2)(2θ

θ

其中 未知, >0。 试求 的矩估计和极大似然估计。

6、设n X X X ,...,,21 是取自总体X 的一个样本,X 的密度函数为

?????<<-=else x x x

x f ,

00),(6)(3θ

θθ

其中θ 未知,0>θ 试求θ的矩估计θ?。

7、设总体X 的概率密度为

.

,,0,)()(其它θθ≥???=--x e x f x

θ是未知参数,n X X X ,,,21 是来自X 的样本,

(1)求θ的矩估计量1θ∧

;(2)求θ的最大似然估计量2θ∧

;(3)1θ∧

和2θ∧

是不是θ的无偏估计量(说明原因)?

8、设总体),(~2σμN X ,且μ与2σ都未知,设n X X X ,,,21 为来自总体的一个

样本,设∑==n i i X n X 11,∑=-=n i i X X n S 1

22

)(1。求μ与2σ的极大似然估计量

9、设总体X 的概率分布为

其中)3

0(<<θθ是未知参数,利用总体X 的如下样本值

0,1,1,0,2,0,2,1,1,2

(1)求θ的矩估计值;(2)求θ的最大似然估计值。

10、设随机变量X 的分布函数为

??

???≤>??? ??-=,,,αx αx x αβαx F β

0,1),,( 其中参数1,0>>βα. 设n X X X ,,,21 为来自总体X 的简单随机样本,

(1) 当1=α时, 求未知参数β的矩估计量; (2) 当1=α时, 求未知参数β的最大似然估计量; (3) 当2=β时, 求未知参数α的最大似然估计量.

11、 设)2(,,,21>n X X X n 为来自总体N (0,2σ)的简单随机样本,X 为样本均值,记.,,2,1,n i X X Y i i =-=

求:(1) i Y 的方差(),1,2,

,i D Y i n =;

(2)1Y 与n Y 的协方差).,(1n Y Y Cov

(3)若21)(n Y Y c +是2σ的无偏估计量,求常数c.

12、设总体X 的概率密度为

(),01,

;1,12,0,x f x x θθθ<

=-≤

其他,

其中θ是未知参数()01θ<<,12n ,...,X X X 为来自总体X 的简单随机样本,记N 为样本值12,...,n x x x 中小于1的个数.

(1) 求θ的矩估计;(2)求θ的最大似然估计

13、设总体X 的概率密度为

1

,

021(),12(1)0,x f x x θθθθ?<

???

其他

n X X X ,,,21 为来自总体X 的简单随机样本,X 是样本均值.

(1)求参数θ的矩估计量θ;(2)判断24X 是否为2θ的无偏估计量,并说明理由.

解:(1)

10

1()(,)22(1)42x x E X xf x dx dx dx θθθθθθ+∞-∞

==+=+

-??

?,

令()X E X =,代入上式得到θ的矩估计量为1

?22X θ

=-.

(2)

22221114

1 (4)44[()]4()424E X EX DX EX DX DX n n θθθ

??==+=++=+++????,

因为()00D X θ≥>,,所以22 (4)E X θ>.故24X 不是2θ的无偏估计量.

14、设总体X 服从)0](,0[>θθ上的均匀分布,n X X X ,...,,21是来自总体X 的一个样本,试求参数θ的极大似然估计. 解:X 的密度函数为

1

,0;(,)0,x f x θ

θθ≤≤?=?

?其他,

似然函数为

1

,0,1,2,,,

()0,

n i x i n L θθθ<<=??=?

??其它

显然0θ>时,()L θ是单调减函数,而

{}

12max ,,

,n x x x θ≥,所以

{}12?max ,,,n X X X θ=是θ的极大似然估计.

15、 设总体X 的概率密度为

????

?<<+=其它,0,10,)1()(x x x f θ

θ 1->θ.

n X X X ,...,,21是来自X 的样本,则未知参数θ的极大似然估计量为_________.

解:似然函数为 111(,

,;)(1)(1)(,,)n

n n i n i L x x x x x θθ

θθθ==+=+∏

1

ln ln(1)ln n

i

i L n x θθ==++∑

1ln ln 0

1n

i

i d L n

x d θθ==++

解似然方程得θ的极大似然估计为

1

11

1ln n

i i x n θ==

-∑.

16、设总体的概率密度为

101,

,(;).0,x x f x θθθ-<

?其它 (0)θ>

试用来自总体的样本n X X X ,...,,21,求未知参数θ的矩估计和极大似然估计. 解:先求矩估计

1

10

1EX x dx θθμθθ===

+?

111μθμ∴

=

- 故θ的矩估计为1X

X θ=

-

再求极大似然估计

11

11

1

(,

,;)()n

n n i n i L x x x x x θθθθθ--===∏

1

ln ln (1)ln n

i

i L n x θθ==+-∑

1

ln ln 0

n

i

i d L n x d θθ==+

所以θ的极大似然估计为

1

11ln n

i i x n θ==-

∑.

17、已知分子运动的速度X 具有概率密度

2

2()

,0,0,

()

0,0.

x

x

f x

x

αα

-

?

>>

=

?

n

X

X

X,...,

,

2

1

为X的简单随机样本

(1)求未知参数α的矩估计和极大似然估计;(2)验证所求得的矩估计是否为α的无偏估计。

解:(1)先求矩估计

2

3()

10

x

EX dx

α

μ-

+∞

==?

22

2()()

x x

xe dx

αα

+∞

--

+∞

=

?=

X

α

∴=

再求极大似然估计

2

2()

1

1

(,,;)i

x

n

n

i

L X Xα

α-

=

=

32

2

1

4()

n

n n

n

x x

απ-

-

=

2

2

1

1n

i

i

x

eα=

-∑

?

22

2

12

1

1

ln3ln ln(4)ln()

n n

n

n i

i

L n x x x

απ

α

-

=

=-

++-∑

2

3

1

ln32

n

i

i

L n

x

d

α

ααα

=

=-+∑

得α

的极大似然估计

α=

(2)对矩估计

22

E EX

αα

===

所以矩估计2

X

α=

是α的无偏估计.

18、假设0.50、1.25、0.80、2.00是来自总体X的简单随机样本值.已知ln

Y X

=

服从正态分布(,1)N μ

(1) 求X 的数学期望值()E X (记()E X 为b ); (2) 求μ的置信度为0.95的置信区间;

(3) 利用上述结果求b 的置信度为0.95的置信区间.

19、设n X X X ,,,21 是来自正态总体),(2σμN 的样本, 方差2σ未知,总体均值

μ的置信度为α-1的置信区间的长度记为L ,求4()E L 。

20、某出租车公司欲了解从财大南校到火车站乘租车的时间,随机地抽查了9辆出租车,记录其从财大南校到火车站的时间,算得20=x (分钟),修正样本方差2~s 的标准差3~=s 。若假设此样本来自正态总体),(2σμN ,其中μ与2σ均未知,试求σ的置信水平为0.95的置信下限。

21、已知两个总体X 与Y 独立,),(~211σμN X ,),(~222σμN Y ,2

22121,,,σσμμ未

知,1,...,,21n X X X 和2,...,,21n Y Y Y 分别是来自X 与Y 的样本,求2

221/σσ的置信度为

α-1的置信区间.

解:设

布定理知的样本方差,由抽样分,分别表示总体Y X S S 2

221 ,

[]/2121/212(1,1)(1,1)1P F n n F F n n ααα---<<--=-,

22222

1211221/2122/212//1(1,1)(1,1)S S S S P F n n F n n αασασ-??<<=- ?----??,

所求22

2

1σσ的置信度为α-1的置信区间为 2222

1212

1/212/212//, (1,1)(1,1)S S S S F n n F n n αα-?? ?

----??.

22、一批糖袋的重量(单位:千克)服从正态分布。现在从该批糖袋中随机抽取

12袋,测得这12糖袋的平均重量为057.3,方差为0.1291

求这批糖袋的平均重量μ的置信度为95%的置信区间,并计算估计的精度。

求这批糖袋的重量方差2σ的置信度为95%的置信区间。

23、设总体),(~2σμN X (方差已知),问需抽取容量n 多大时,才能使得总体均值μ的置信度为α-1的置信区间的长度不大于L ?

五、证明题

1、设n X X X ,,,21 是从总体X 抽取的一个样本,X 的密度函数为

1,0(),0

0,0x

e x

f x x θ

θθ

-

?>?=>??≤?

证明样本均值X 是未知参数θ的无偏、有效、一致估计量;

2、设12,,

,n X X X 是总体为2

(,)N μσ的简单随机样本.记∑==n

i i X n X 1

1,

∑=--=n i i

X X n S 122)(11~,22

~1S n

X T -= (Ⅰ)证 T 是2μ的无偏估计量.

(Ⅱ)当0,1μσ==时 ,求()D T .

3、设从均值为μ,方差为2σ>0的总体中分别抽查容量为21,n n 的两独立样本。1X 和2X 分别是两样本的均值。试证明:

对于任意常数21),1(,X b X a Y b a b a +==+都是μ的无偏估计,并确定常数b a ,使

)(Y D 达到最小。

4、设总体X 服从),1(p B 分布,n X X X ,...,,21为总体的样本,证明X 是参数p 的一个UMVUE . 证明:X 的分布律为

1(;)(1),0,1x x f x p p p x -=-=.

容易验证(;)f x p 满足正则条件,于是

2

1

()ln (;)(1)I p E f x p p p p ???==

???-??

. 另一方面

1(1)1

Var()Var()()p p X X n n nI p -=

==,

即X 得方差达到C-R 下界的无偏估计量,故X 是p 的一个UMVUE .

5、设n X X X ,...,,21是来自总体),(θx F 的一个样本,),...,,(?21n n X X X θ是θ的一个估计量,若2)?(,)?(n

n n n D k E σθθθ=+=且0lim lim 2==∞

→∞

→n n n n k σ. 试证n

θ?是θ的相合(一致)估计量。 证 由契贝晓夫不等式,对任意的0ε>有

2(||)n

n n D P k θθθεε--≥≤

----

于是 2

0lim (||)lim 0

n

n n n n P k σθθεε→∞→∞≤--≥≤=

即 n θ依概率收敛于θ,故n θ是θ的相合估计。

3-第7章 统计学 参数估计 练习题

第7章参数估计 练习题 一、填空题(共10题,每题2分,共计20分) 1.参数估计就是用_______ __去估计_______ __。 2. 点估计就是用_______ __的某个取值直接作为总体参数的_______ __。3.区间估计是在_______ __的基础上,给出总体参数估计的一个区间范围,该区间通常由样本统计量加减_______ __得到。 4. 如果将构造置信区间的步骤重复多次,置信区间中包含总体参数真值的次数所占的比例称为_______ __,也成为_______ __。 5.当样本量给定时,置信区间的宽度随着置信系数的增大而_______ __;当置信水平固定时,置信区间的宽度随着样本量的增大而_______ __。 6. 评价估计量的标准包含无偏性、_______ __和_______ __。 7. 在参数估计中,总是希望提高估计的可靠程度,但在一定的样本量下,要提高估计的可靠程度,就会_______ __置信区间的宽度;如要缩小置信区间的宽度,又不降低置信程度,就要_______ __样本量。 8. 估计总体均值置信区间时的估计误差受总体标准差、_______ __和_______ __的影响。 9. 估计方差未知的正态总体均值置信区间用公式_______ __;当样本容量大于等于30时,可以用近似公式_______ __。 10. 估计正态总体方差的置信区间时,用_____ __分布,公式为______ __。 二、选择题(共10题,每题1分,共计10分) 1.根据一个具体的样本求出的总体均值的95%的置信区间 ( )。 A.以95%的概率包含总体均值 B.有5%的可能性包含总体均值 C.一定包含总体均值 D. 要么包含总体均值,要么不包含总体均值 2.估计量的含义是指( )。

总时差双代号网络图时间计算参数-计算题及答案

总时差(用TFi-j表示),双代号网络图时间计算参数,指一项工作在不影响总工期的前提下所具有的机动时间。用工作的最迟开始时间LSi-j与最早开始时间ESi-j之差表示。 自由时差,指一项工作在不影响后续工作的情况下所拥有的机动时间。用紧后工作的最早开始时间与该工作的最早完成时间之差表示。 网络图时间参数相关概念包括: 各项工作的最早开始时间、最迟开始时间、最早完成时间、最迟完成时间、节点的最早时间及工作的时差(总时差、自由时差)。 1总时差=最迟完成时间—尚需完成时间。计算结果若大于0,则不影响总工期。若小于0则影响总工期。 2拖延时间=总时差+受影响工期,与自由时差无关。 3自由时差=紧后最早开始时间—本工作最早完成时间。 自由时差和总时差-----精选题解(免B) 1、在双代号网络计划中,如果其计划工期等于计算工期,且工作i-j的完成节点j在关键线路上,则工作i-j的自由时差()。 A.等于零 B.小于零 C.小于其相应的总时差 D.等于其相应的总时差 答案:D 解析:

本题主要考察自由时差和总时差的概念。由于工作i-j的完成节点j在关键线路上,说明节点j为关键节点,即工作i -j的紧后工作中必有关键工作,此时工作i-j的自由时差就等于其总时差。 2、在某工程双代号网络计划中,工作M的最早开始时间为第15天,其持续时间为7天。 该工作有两项紧后工作,它们的最早开始时间分别为第27天和第30天,最迟开始时间分别为第28天和第33天,则工作M的总时差和自由时差()天。 A.均为5 B.分别为6和5 C.均为6 D.分别为11和6 答案:B 解析: 本题主要是考六时法计算方法 1、工作M的最迟完成时间=其紧后工作最迟开始时间的最小值所以工作M 的最迟完成时间等于[28,33]=28 2、工作M的总时差=工作M的最迟完成时间-工作M的最早完成时间等于28-(15+7)=6 3、工作M的自由时差=工作M的紧后工作最早开始时间减工作M的最早完成时间所得之差的最小值: [27-22;30-22]= 5。 3、在工程网络计划中,判别关键工作的条件是该工作()。

《应用数理统计》吴翊李永乐第二章 参数估计课后习题参考答案汇编

第二章 参数估计 课后习题参考答案 2.1 设总体X 服从二项分布()n X X X p p N B ,,,,11,,21 <<为其子样,求N 及p 的矩法估计。 解: ()()()p Np X D Np X E -==1, 令() ?????-==p Np S Np X 12 解上述关于N 、p 的方程得: 2.2 对容量为n 的子样,对密度函数22 (),0(;)0,0x x f x x x ααααα ?-?=??≤≥? 其中参数α的矩法估计。 解:12 2 ()()a E x x x dx α αα== -? 22 02 2 ()x x dx α α α=- ? 232 1 22 133 3 αααααα α = - =-= 所以 133a x α∧ == 其中121,21 (),, ,n n x x x x x x x n = +++为n 个样本的观察值。 2.3 使用一测量仪器对同一值进行了12次独立测量,其结果为(单位:mm) 232.50,232.48,232.15,232.52,232.53,232.30 232.48,232.05,232.45,232.60,232.47,232.30 试用矩法估计测量的真值和方差(设仪器无系统差)。 ?? ? ??? ? -=-==X S p S X X p X N 2221???

解: () () () ∑∑====-= ===n i i n i i S X X n X D X X n X E 1 22 1 0255 .01 4025 .2321 2.4 设子样1.3,0.6,1.7,2.2,0.3,1.1是来自具有密度函数()10,1 ,<<=ββ βx f 的总 体,试用矩法估计总体均值、总体方差及参数β。 解: () ()()()4.22?2 ,1 ,407 .012 .110 1 2 2 1==== === =-===? ?∑∑==X X dx x dx x xf X E x f X X n S X n X n i i n i i β β β ββ ββ β参数:总体方差:总体均值: 2.5 设n X X X ,,,21 为()1N , μ的一个字样,求参数μ的MLE ;又若总体为( )2 1N σ,的 MLE 。 解:(1) ()()()()() ()()() () ()X x n x x L x n x L e x L x f e x f n i i n i i i n i i i x n i n i i x i n i i i =∑=∑=-=??∑---=∑= == ===--=-- =∏1 112 2 2 1 2 1?0,ln 212ln 2,ln 21 ,,21,1 2 2 μ μμ μμπμπμμπ μμμ

第二章 参数估计

第二章 参数估计 一、填空题 1、总体X 的分布函数为);(θx F ,其中θ为未知参数,则对θ常用的点估计方法有 , 。 2、设总体X 的概率密度为 (),(;)0,x e x f x x θθ θθ--?≥=?

7、判断对错:设总体),(~2σμN X ,且μ与2σ都未知,设n X X X ,...,,21是来自 该总体的一个样本,设用矩法求得μ的估计量为1?μ 、用极大似然法求得μ的估计量为2?μ ,则1?μ=2?μ。 _________________ 8、?n θ是总体未知参数θ的相合估计量的一个充分条件是_______ . 解:??lim (), lim Var()0n n n n E θθθ→∞ →∞ ==. 9、已知1021,,x x x 是来自总体X 的简单随机样本,μ=EX 。令 ∑∑==+=10 7 6 181?i i i i x A x μ ,则当=A 时,μ?为总体均值μ的无偏估计。 10、 设总体()θ,0~U X ,现从该总体中抽取容量为10的样本,样本值为 0.51.30.61.7 2.21.20.81.5 2.01.6, , , , , , , , , 则参数θ的矩估计为 。 11、 设1?θ与2?θ都是总体未知参数θ的估计,且1?θ比2?θ有效,则1?θ与2?θ的期望与方差满足_______ . 解:1212 ????()(), ()()E E D D θθθθ=<. 12、设1?θ和2?θ均是未知参数θ的无偏估计量,且)?()?(2221θθE E >,则其中的统计量 更有效。 13、在参数的区间估计),(21θθ中,当样本容量n 固定时,精度12θθ-提高时,置信度α-1 。 14、设n X X X ,,,21 是来自总体)1,(~μN X 的样本,则μ的置信度为0.95的置信

参数估计练习题

第七章参数估计练习题 一.选择题 1.估计量的含义是指() A.用来估计总体参数的统计量的名称 B.用来估计总体参数的统计量的具体数值 C.总体参数的名称 D.总体参数的具体取值 2.一个95%的置信区间是指() A.总体参数有95%的概率落在这一区间内 B.总体参数有5%的概率未落在这一区间内 C. 在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数。 D.在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数。 %的置信水平是指() A.总体参数落在一个特定的样本所构造的区间内的概率是95% B.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为95% C.总体参数落在一个特定的样本所构造的区间内的概率是5% D.在用同样方法构造的总体参数的多个区间中,包含总体参数的区间比例为5% 4.根据一个具体的样本求出的总体均值的95%的置信区间() A.以95%的概率包含总体均值 B.有5%的可能性包含总体均值 C.一定包含总体均值 D.要么包含总体均值,要么不包含总体均值 5. 当样本量一定时,置信区间的宽度() A.随着置信水平的增大而减小 B. .随着置信水平的增大而增大 C.与置信水平的大小无关 D。与置信水平的平方成反比 6.当置信水平一定时,置信区间的宽度() A.随着样本量的增大而减小 B. .随着样本量的增大而增大 C.与样本量的大小无关 D。与样本量的平方根成正比 7.在参数估计中,要求通过样本的统计量来估计总体参数,评价统计量的标准之一是使它与总体参数的离差越小越好。这种评价标准称为() A.无偏性 B.有效性 C. 一致性 D. 充分性 8. 置信水平(1-α)表达了置信区间的() A.准确性 B. 精确性 C. 显著性D. 可靠性 9. 在总体均值和总体比例的区间估计中,边际误差由() A.置信水平决定 B. 统计量的抽样标准差确定 C. 置信水平和统计量的抽样标准差 D. 统计量的抽样方差确定 10. 当正态总体的方差未知,且为小样本条件下,估计总体均值使用的分布是() A.正态分布 B. t分布 C.χ2分布 D. F分布 11. 当正态总体的方差未知,且为大样本条件下,估计总体均值使用的分布是()

【重磅】双代号网络图时间参数计算

双代号网络图时间参数计算 双代号网络图时间参数计算 双代号网络图是应用较为普遍的一种网络计划形式。它是以箭线及其两端节点的编号表示工作的网络图。 双代号网络图中的计算主要有六个时间参数: ES:最早开始时间,指各项工作紧前工作全部完成后,本工作最有可能开始的时刻; EF:最早完成时间,指各项紧前工作全部完成后,本工作有可能完成的最早时刻 LF:最迟完成时间,不影响整个网络计划工期完成的前提下,本工作的最迟完成时间;LS:最迟开始时间,指不影响整个网络计划工期完成的前提下,本工作最迟开始时间;TF:总时差,指不影响计划工期的前提下,本工作可以利用的机动时间; FF:自由时差,不影响紧后工作最早开始的前提下,本工作可以利用的机动时间。 双代号网络图时间参数的计算一般采用图上计算法。下面用例题进行讲解。 例题:试计算下面双代号网络图中,求工作C的总时差? 早时间计算: ES,如果该工作与开始节点相连,最早开始时间为0,即A的最早开始时间ES=0; EF,最早结束时间等于该工作的最早开始+持续时间,即A的最早结束EF为0+5=5; 如果工作有紧前工作的时候,最早开始等于紧前工作的最早结束取大值,即B的最早开始FS=5,同理最早结束EF为5+6=11,而E工作的最早开始ES为B、C工作最早结束(11、8)

取大值为11。 迟时间计算: LF,如果该工作与结束节点相连,最迟结束时间为计算工期23,即F的最迟结束时间LF=23;LS,最迟开始时间等于最迟结束时间减去持续时间,即LS=LF-D; 如果工作有紧后工作,最迟结束时间等于紧后工作最迟开始时间取小值。 时差计算: FF,自由时差=(紧后工作的ES-本工作的EF); TF,总时差=(本工作的最迟开始LS-本工作的最早开始ES)或者=(本工作的最迟结束LF-本工作的最早结束EF)。 该题解析: 则C工作的总时差为3. 总结: 早开就是从左边往右边最大时间 早结=从左往右取最大的+所用的时间 迟开就是从右边往右边最小时间 迟开=从右往左取最小的+所用的时间 总时差=迟开-早开;或者;总时差=迟结-早结 自由差=紧后工作早开-前面工作的早结 希望你看懂啦。呵呵 工作最早时间的计算:顺着箭线,取大值 工作最迟时间的计算:逆着箭线,取小值 总时差:最迟减最早 自由时差:后早始减本早完 1.工作最早时间的计算(包括工作最早开始时间和工作最早完成时间):“顺着箭线计算,依次取大”(最早开始时间--取紧前工作最早完成时间的最大值),起始结点工作最早开始时间为0。用最早开始时间加持续时间就是该工作的最早完成时间。 2.网络计划工期的计算:终点节点的最早完成时间最大值就是该网络计划的计算工期,

应用统计学:参数估计习题及答案.(优选)

简答题 1、矩估计的推断思路如何?有何优劣? 2、极大似然估计的推断思路如何?有何优劣? 3、什么是抽样误差?抽样误差的大小受哪些因素影响? 4、简述点估计和区间估计的区别和特点。 5、确定重复抽样必要样本单位数应考虑哪些因素? 计算题 1、对于未知参数的泊松分布和正态分布分别使用矩法和极大似然法进行点估计,并考量估计结果符合什么标准 2、某学校用不重复随机抽样方法选取100名高中学生,占学生总数的10%,学生平均体重为50公斤,标准差为48.36公斤。要求在可靠程度为95%(t=1.96)的条件下,推断该校全部高中学生平均体重的范围是多少? 3、某县拟对该县20000小麦进行简单随机抽样调查,推断平均亩产量。根据过去抽样调查经验,平均亩产量的标准差为100公斤,抽样平均误差为40公斤。现在要求可靠程度为95.45%(t=2)的条件下,这次抽样的亩数应至少为多少? 4、某地区对小麦的单位面积产量进行抽样调查,随机抽选25公

顷,计算得平均每公顷产量9000公斤,每公顷产量的标准差为1200公斤。试估计每公顷产量在8520-9480公斤的概率是多少?(P(t=1)=0.6827, P(t=2)=0.9545, P(t=3)=0.9973) 5、某厂有甲、乙两车间都生产同种电器产品,为调查该厂电器产品的电流强度情况,按产量等比例类型抽样方法抽取样本,资料如下: 试推断: (1)在95.45%(t=2)的概率保证下推断该厂生产的全部该种电器产品的平均电流强度的可能范围 (2)以同样条件推断其合格率的可能范围 (3)比较两车间产品质量 6、采用简单随机重复和不重复抽样的方法在2000件产品中抽查200件,其中合格品190件,要求: (1)计算样本合格品率及其抽样平均误差

七参数估计作业

第七章 参数估计 (一) 习题 1. 设是来自总体n X X ,,1 X 的一个样本,求下述各总体的概率密度或分布律中的未知参 数的矩估计量 (1) 其中? ??<<+=其它,010,)1()(x x x f θθ1?>θ是未知参数; (2) 其中 2,1,)1(}{1=?==?x p p x X P x 10<

θ为未知参数; (4) ?????≤≤=?其他 ,0,10,),(1x x x f θθθ, 其中0>θ为未知参数; (5) ?? ???>??=其它,0},exp{1),;(121221θθθθθθx x x f (6) σσ σ||21),(x e x f ?=, 其中0>σ为未知参数. 2. 求上题中各未知参数的极大似然估计量. 3. 设总体X 服从参数为的二项分布: p m ,m x p p x m x X P x m x ,,2,1,0,)1(}{…=???? ?????==?, 10<

参数估计习题参考答案

参数估计习题参考答案

参数估计习题参考答案 班级:姓名:学号:得分 一、单项选择题: 1、关于样本平均数和总体平均数的说法,下列正确的是( B ) (A)前者是一个确定值,后者是随机变量(B)前者是随机变量,后者是一个确定值 (C)两者都是随机变量(D)两者都是确定值 2、通常所说的大样本是指样本容量( A ) (A)大于等于30 (B)小于30 (C)大于等于10 (D)小于10 3、从服从正态分布的无限总体中分别抽取容量为4,16,36的样本,当样本容量增大时,样本均值的标准差将( B ) (A)增加(B)减小(C)不变(D)无法确定 4、某班级学生的年龄是右偏的,均值为20岁,标准差

为 4.45.如果采用重复抽样的方法从该班抽取容量为100的样本,那么样本均值的分布为( A ) (A)均值为20,标准差为0.445的正态分布(B)均值为20,标准差为4.45的正态分布 (C)均值为20,标准差为0.445的右偏分布(D)均值为20,标准差为4.45的右偏分布 5. 区间估计表明的是一个( B ) (A)绝对可靠的范围(B)可能的范围(C)绝对不可靠的范围(D)不可能的范围 6. 在其他条件不变的情形下,未知参数的1-α置信区间,( A ) A. α越大长度越小 B. α越大长度越大 C. α越小长度越小 D. α与长度没有关系 7. 甲乙是两个无偏估计量,如果甲估计量的方差小于乙估计量的方差,则称( D ) (A)甲是充分估计量(B)甲乙一样有效(C)乙比甲有效(D)甲比乙有效 8. 设总体服从正态分布,方差未知,在样本容量和置信度保持不变的情形下,根据不同的样本值得到总体均

单代号搭接网络计划时间参数计算

单代号搭接网络计划时间参数计算 在一般的网络计划(单代号或双代号)中,工作之间的关系只能表示成依次衔接的关系,即任何一项工作都必须在它的紧前工作全部结束后才能开始,也就是必须按照施工工艺顺序和施工组织的先后顺序进行施工。但是在实际施工过程中,有时为了缩短工期,许多工作需要采取平行搭接的方式进行。对于这种情况,如果用双代号网络图来表示这种搭接关系,使用起来将非常不方便,需要增加很多工作数量和虚箭线。不仅会增加绘图和计算的工作量,而且还会使图面复杂,不易看懂和控制。例如,浇筑钢筋混凝土柱子施工作业之间的关系分别用横道图、双代号网络图和搭接网络图表示,如下图所示。 施工过程 名 称 施工进度(天) 1 2 3 4 5 6 7 8 9 10 11 一.搭接关系的种类及表达方式 单代号网络计划的搭接关系主要是通过两项工作之间的时距来表示的,时距的含义,表示时间的重叠和间歇,时距的产生和大小取决于工艺的要求和施工组织上的需要。用以表示搭接关系的时距有五种,分别是STS (开始到开始)、STF (开始到结束)、FTS (结束到开始)、FTF (结束到结束)和混合搭接关系。 (一)FTS (结束到开始)关系 结束到开始关系是通过前项工作结束到后项工作开始之间的时距(FTS )来表达的。如下图所示。 扎钢筋 浇筑混凝土 支模1 支模2 支模3 1 2 4 3 5 6 8 7 9 10 支模1 2 支模2 2 支模3 2 扎筋2 1 扎筋3 1 扎筋1 1 浇筑混凝土1 2 浇筑混 凝土2 2 浇筑混 凝土3 2 支模 6 扎钢筋 3 浇筑 6 STS=4 FTF=1 STS=1 FTF=4 i j FTS i j FTS D i D j

参数估计习题参考答案

参数估计习题参考答案 班级: __________ 姓名: ______________ 学号: __________ 得分 ___________ 、单项选择题: 1、关于样本平均数和总体平均数的说法,下列正确的是 (A )增加 (B )减小 (C )不变 (D )无法确定 4. 某班级学生的年龄是右偏的,均值为 20岁,标准差为4.45.如果 采用重复抽样的方法从该班抽取容量 为100的样本,那么样本均值的分布为 (A ) (A )均值为20,标准差为0.445的正态分布(B )均值为20,标准差为4.45的正态分布 (C )均值为20,标准差为0.445的右偏分布(D )均值为20,标准差为4.45的右偏分布 5. 区间估计表明的是一个 (B ) (A )绝对可靠的范围 (B )可能的范围 (C )绝对不可靠的范围 (D )不可能的范围 6. 在其他条件不变的情形下,未知参数的 1-a 置信区间, (A ) C. a 越小长度越小 D. a 与长度没有关系 7. 甲乙是两个无偏估计量,如果甲估计量的方差小于乙估计量的方差,则称 (D ) (A )甲是充分估计量 (B )甲乙一样有效 (C )乙比甲有效 (D )甲比乙有效 8. 设总体服从正态分布,方差未知,在样本容量和置信度保持不变的情形下,根据不同的样本值得到总 体均值的置信区间长度将 (D ) (A )增加 (B )不变 (C )减少 (D )以上都对 9 ?在其他条件不变的前提下,若要求误差范围缩小 1 / 3,则样本容量 (C ) (A )增加9倍 (B )增加8倍 (C )为原来的2.25倍 (D )增加2.25倍 10设容量为16人的简单随机样本,平均完成工作时间 13分钟,总体服从正态分布且标准差为 若想对完成工作所需时间构造一个 90%置信区间,则 (A ) A.应用标准止态概率表查出 z 值 B.应用 t-分布表查出t 值 C.应用一项分布表查出 p 值 D.应用泊松分布表查出 入值 11. 100(1- a % 是 (C ) A.置信限 B.置信区间 C.置信度 D.可靠因素 12. 参数估计的类型有 (D (A )点估计和无偏估计(B )无偏估计和区间估计 (C )点估计和有效估计(D )点估计和区间估计 13、抽样方案中关于样本大小的因素,下列说法错误的是 (C ) A 、总体方差大,样本容量也要大 B 、要求的可靠程度高,所需样本容量越大 (A )前者是一个确定值,后者是随机变量 (B )前者是随机变量,后者是一个确定值 (C )两者都是随机变量 (D )两者都是确定值 2、通常所说的大样本是指样本容量 (A )大于等于30 ( B )小于30 (C )大于等于10 3、从服从正态分布的无限总体中分别抽取容量为 4,16, 36 标准差将 (A ) (D )小于10 的样本,当样本容量增大时,样本均值的 (B ) A. a 越大长度越小 B. a 越大长度越大 3分钟。

概率统计第七章参数估计参考答案

概 班级 姓名 学号 任课教师 第七章 参数估计 教学要求: 一、理解点估计的概念,了解矩估计法和极大似然估计法; 二、了解无偏性、有效性、一致性等估计量的评判标准; 三、理解区间估计的概念,会求单个正态总体均值与方差的置信区间,会求两个正态总体均值差与方差比的置信区间. 重点:极大似然估计法、矩估计法. 难点:置信区间的定义及求法. 习题一 点估计 1.随机抽取8只活塞环,测得它们的直径(单位:mm )为: 74.001, 74.005, 74.003, 74.001, 74.000, 73.998, 74.006, 74.002 试求总体均值μ与总体方差2σ的矩估计值,并求样本方差2 s . 解:总体的一、二阶原点矩分别为: ()μ=X E , () ()()[]222 2μσ+=+=X E X D X E ; 样本的一、二阶中心矩分别为: X X n A n i i ==∑=111, ∑==n i i X n A 1 2 21; 由矩估计法有 ()X A X E ===∧ ∧ 1μ, ()22 2 2 A X E =+=∧∧ ∧ μσ , 即 X =∧ μ, () ∑∑==∧∧ -=-=-=n i i n i i X X n X X n A 12 2122 22 11μσ 由题中所给数据得 001.74=∧ μ, 52 10388.1-∧?=σ

2.设总体X 的密度函数为,()??? ??≤>=-;0, 0,0,1x x e x f x θθ 其中θ0>是未知参数,求θ的矩 估计. 解:因为 ()θθ θ=== - ∞ +∞ +∞ -? ? dx e x dx x xf X E x 1 )( 则 X =∧ θ. 3.设总体X 服从泊松分布,其分布律为λλ-==e x x X P x ! }{, ,2,1=x .试求未知参 数λ)0(>λ的矩估计. 解:因为 λλλλλλλ λ λ λ =-=-=? =? =∑∑ ∑∑∞ =---∞ =-∞ =∞ =-1 1 11 )!1()! 1(! ! )(x x x x x x x x x e e x e x x x e x X E , 故 X =∧ λ. 4.设总体X 的密度函数为:σ σ x e x f -=21)( ,)(+∞<<-∞x 求参数σ)0(>σ的最大似然估计. 解:似然函数为 ()σ σσσ σ∑=∏==---=n i i i x n x n i e e L 1 221)(1, σ σσ∑=- -=n i i x n L 1 )2ln()(ln , 对σ求导得似然方程 01 )(ln 1 2 =+-=∑=n i i x n d L d σ σσσ 求得σ的最大似然估计为 ∑=∧ =n i i ML x n 1 1σ. 5.已知某种白炽灯泡的使用寿命服从正态分布,其分布参数均未知.在某个星期所生产的这种灯泡中随机抽取10只,测得其寿命(单位:小时)为: 1067, 919, 1196, 785, 1126, 936, 918, 1156, 920, 948. 试用最大似然估计法估计这个星期中生产的灯泡能使用1300小时以上的概率.

[优质文档]第7章参数估计习题及答案

第7章 参数估计 ----点估计 一、填空题 1、设总体X 服从二项分布),(p N B ,10<

α是未知参数, n X X X ,,21为一个样本,试求参数α的矩估计和极大似然估计. 解:因? ?++=+= 10 1 1α1α1αdx x dx x x X E a )()()(2 α1 α2α1α102++= ++= +|a x 令2 α1α ++==??)(X X E X X --=∴112α ?为α的矩估计 因似然函数1212 (,, ;)(1)()n n n L x x x x x x ααα=+ ∑=++=∴n i i X n L 1 α1αln )ln(ln ,由∑==++=??n i i X n L 101ααln ln 得, α的极大似量估计量为)ln (?∑=+-=n i i X n 1 1α 2、设总体X 服从指数分布 ,0 ()0, x e x f x λλ-?>=??其他 ,n X X X ,,21是来自X 的样本,(1) 求未知参数λ的矩估计;(2)求λ的极大似然估计.

双代号网络图时间参数的计算

双代号网络图时间参数的计算 参数名称符号英文单词 工期 计算工期TCComputer Time 要求工期TR RequireTime 计划工期T P Plan Time 工作的 时间参数 持续时间D i-jDay 最早开始时间ES i-j Earliest Starting Tim e 最早完成时间EF i—j Earliest Finishing Time 最迟完成时间LFi—jLatest Finishing Time 最迟开始时间LSi—jLatest Starting Time 总时差TFi-j Total Float Time 自由时差FF i-j Free Float Time 二、工作计算法 【例题】:根据表中逻辑关系,绘制双代号网络图,并采用工作计算法计算各工作的时间参数。 工作A B C DEFGHI 紧前-A A B B、C C D、E E、 F H、G 时间333854422

(一)工作的最早开始时间ESi—j —-各紧前工作全部完成后,本工作可能开始的最早时刻。 (二)工作的最早完成时间EF i—j EF i-j=ES i-j + D i—j 1。计算工期Tc等于一个网络计划关键线路所花的时间,即网络计划结束工作最早完成时间的最大值,即T c=max{EF i—n} 2.当网络计划未规定要求工期Tr时, Tp=T c 3.当规定了要求工期Tr时,T c≤T p,T p≤T r —-各紧前工作全部完成后,本工作可能完成的最早时刻。

(三)工作最迟完成时间LFi-j 1.结束工作的最迟完成时间LFi-j=T p 2.其他工作的最迟完成时间按“逆箭头相减,箭尾相碰取小值”计算. --在不影响计划工期的前提下,该工作最迟必须完成的时刻。 (四)工作最迟开始时间LS i-j LSi—j=LFi—j—D i-j --在不影响计划工期的前提下,该工作最迟必须开始的时刻。

(整理)参数估计习题.

参数估计习题 一、填空题 1、设总体2 (,) X Nμσ,若2σ已知,总体均值μ的置信度为1α - 的置信区间为:x x ? -+ ? ,则λ=; 2、设由来自正态总体2 (,0.9) X N μ的样本容量为9的简单随机样本,得样本均值5 x=,则未知参数μ的置信度0.95的置信区间为; 3、设 12 , X X为来自总体2 (,) X Nμσ的样本,若 12 1 1999 CX X +为μ的一个无偏估计,则C=; 4、设 12 ,,, n X X X为来自正态总体2 (,) Nμσ的样本,,a b为常数,且0a b <<,则随机区间 22 11 ()() , n n i i i i X X b a μμ == ?? -- ?? ?? ∑∑的长度L的数学期望为; 5、设?θ是未知参数θ的估计量,若称?θ为θ的无偏估计量,则 ?() Eθ=; 6、设 12 ??,θθ为总体未知参数θ的两个无偏估计量,若称 1 ?θ比 2 ?θ更有效, 则 1 ?() Dθ 1 ?() Dθ; 7、设θ为总体的未知参数,若由样本确定的两个统计量 1 ?θ和 2 ?θ,且 12 ?? θθ <,对于预先给定的α值(01 α <<),满足 12 ?? {}1 Pθθθα <<=-,则称随机区间 12 ?? (,) θθ 为θ的1α -或100(1)% α -置信区间,其中为置信上限,为置信下限, 称为置信度; 8、设 12 ,,, n X X X为来自正态总体2 (,) Nμσ的一个样本,样本均值 1 1n i i X X n= =∑ 是的无偏估计量; 9、设 12 ,,, n X X X是取自总体X的一个样本,2 () D Xσ =,则 22 1 1 () 1 n i i S X X n= =- - ∑为的无偏估计量;

参数估计习题课

第21讲 参数估计习题课 教学目的:1. 通过练习使学生进一步掌握矩估计和最大似然估计的计算方法; 2. 通过练习使学生理解无偏性和有效性对于评价估计量标准的重要性; 3. 通过练习使学生进一步掌握正态总体参数的区间估计和单侧置信限。 教学重点:矩估计和最大似然估计,无偏性与有效性,正态总体参数的区间估计。 教学难点:矩估计,最大似然估计,正态总体参数的区间估计。 教学时数:2学时。 教学过程: 一、知识要点回顾 1. 矩估计 用各阶样本原点矩n k i i 11x n k V ==∑ 作为各阶总体原点矩k EX 的估计,1,2,k =L 。若有参 数2g(,(),,)k E X E X E X θ=L ()(),则参数θ的矩估计为 n n n 2i=1i=1i=1 111?(,,,)k i i i X X X n n n θ=∑∑∑L 。 2. 最大似然估计 似然函数1()(;)n i i L f x θθ==∏,取对数ln[()]L θ,从 ln() d d θθ =0中解得θ的最大似然估计θ ?。 3. 无偏性,有效性 当θθ=?E 时,称θ?为θ的无偏估计。 当21?D ?D θθ<时,称估计量1?θ比2 ?θ有效。 二 、典型例题解析

1.设,0 ()0, 0x e x f x x θθ-?>=?≤?,求θ的矩估计。 解 ,0dx xe EX x ?+∞ -=θθ设du dx u x x u θ θ θ1 ,1 ,= = = 则0 01 1 1()0() u u u EX ue du ue e du e θ θθθ+∞ +∞--+∞ --+∞????==-+=+-? ?? ?????=θ 1 故1EX θ= ,所以x 1?=θ 。 2. 设总体X 在[]b a ,上服从均匀分布,求a 和b 的矩估计。 解 由均匀分布的数学期望和方差知 1 ()()2E X a b =+ (1) 21()()12 D X b a =- (2) 由(1)解得a EX b -=2,代入(2)得2)22(121a EX DX -=, 整理得2)(3 1 a EX DX -=,解得 ()()a E X b E X ?=-?? =?? 故得b a ,的矩估计为 ??a x b x ?=-??=+?? 其中∑=-=n i i x x n 1 22 )(1?σ 。 3.设总体X 的密度函数为(;)! x e f x x θ θθ-= ,求θ的最大似然估计。 解 设)!)...(!)(!(),()(2111n n x n i i x x x e x f L n i i θ θ θθ-=∑===∏,则

第7章参数估计习题及答案精编版

第7章 参数估计 ----点估计 一、填空题 1、设总体X 服从二项分布),(p N B ,10<

α是未知参数, n X X X ,,21为一个样本,试求参数α的矩估计和极大似然估计. 解:因? ?++=+= 10 1 1α1α1αdx x dx x x X E a )()()(2 α1 α2α1α102++= ++= +|a x 令2α 1α ++==??)(X X E X X --=∴112α ?为α的矩估计 因似然函数1212 (,, ;)(1)()n n n L x x x x x x ααα=+ ∑=++=∴n i i X n L 1α1αln )ln(ln ,由∑==++=??n i i X n L 1 01ααln ln 得, α的极大似量估计量为)ln (?∑=+-=n i i X n 1 1α 2、设总体X 服从指数分布 ,0 ()0,x e x f x λλ-?>=?? 其他 ,n X X X ,,21是来自X 的样本,(1) 求未知参数λ的矩估计;(2)求λ的极大似然估计.

工程网络计划有关时间参数的计算典型例题

工程网络计划有关时间参数的计算典型例题 例题1:某工程双代号网络计划如下图所示(单位:天)。该网络计划的关键线路为()。 A.①→③→⑤→⑥ B.①→③→④→⑤→⑥和①→②→③→④→⑤→⑥ C.①→②→⑤→⑥和①→②→③→④→⑥ D.①→②→③→⑤→⑥ 【正确答案】B 【答案解析】按工作计算法可知,总工期为14天,关键线路为:①→③→④→⑤→⑥和①→②→③→④→⑤→⑥两条。参见教材P128. 例题2:[背景资料]某施工企业与业主签订了某工程的施工承包合同。经监理工程师审核批准的施工进度计划如下图所示(时间单位:天)。 根据上述背景资料,回答下列第1~4小题: 第1小题:双代号网络图中虚箭线表示()。 A.资源消耗程度B.工作的持续时间C.工作之间的逻辑关系D.非关键工作 【正确答案】C

【答案解析】在双代号网络图中,为了正确地表达图中工作之间的逻辑关系,往往需要用虚箭线。虚线是实际工作中并不存在的一项虚设工作,故它们既不占用时间,也不消耗资 源。 在双代号网络图中,任意一条实箭线都要占用时间、消耗资源。参见教材P116. 第2小题:监理工程师审核批准的施工进度计划工期是()天。 A.210 B.245 C.280 D.300 【正确答案】D 【答案解析】本题实质就是计算该网络计划的工期。计算得到的最早开始时间、最早完成时间、最迟开始时间、最迟完成时间、总时差和自由时差。由图可知计划工期是300天。由于该网络计划图较简单,也可以分别计算四条线路的持续时间,关键线路的长就是计划工 期。参见教材P127. 工期泛指完成任务所需要的时间,一般有以下3种; (1)计算工期,根据网络计划时间参数计算出来的工期,用T c表示; (2)要求工期,任务委托人所要求的工期,用T r表示; (3)计划工期,根据要求工期和计算工期所确定的作为实施目标的工期,用T p表示。 网络计划的计划工期T p应按下列情况分别确定:当已规定了要求工期T r时,T p≤T r; 当未规定要求工期时,可令计划工期等于计算工期,T p=T r。 计算过程见下图所示:

第二章 一元线性回归习题

第二章 单方程计量经济学模型理论与方法(上) 一、填空题: 3.被解释变量的观测值i Y 与其回归理论值)(Y E 之间的偏差,称为__________;被解释变量的观测值i Y 与 其回归估计值i Y ?之间的偏差,称为__________。 4.对线性回归模型μββ++=X Y 10进行最小二乘估计,最小二乘准则是____________________。 5.高斯—马尔可夫定理证明在总体参数的各种无偏估计中,普通最小二乘估计量具有__________的特性,并由此才使最小二乘法在数理统计学和计量经济学中获得了最广泛的应用。 6. 普通最小二乘法得到的参数估计量具有__________、__________、__________统计性质。 9.对计量经济学模型作统计检验包括__________检验、__________检验、__________检验。 10.总体平方和TSS 反映____________________之离差的平方和;回归平方和ESS 反映了____________________之离差的平方和;残差平方和RSS 反映了____________________之差的平方和。 15.在计量经济建模时,对非线性模型的处理方法之一是线性化,模型βα+= X X Y 线性化的变量变换形式为____________________,变换后的模型形式为__________。 二、单选题: 1.回归分析中定义的() A.解释变量和被解释变量都是随机变量 B.解释变量为非随机变量,被解释变量为随机变量 C.解释变量和被解释变量都为非随机变量 D.解释变量为随机变量,被解释变量为非随机变量 2.最小二乘准则是指使()达到最小值的原则确定样本回归方程。 A.()∑=-n t t t Y Y 1? B.∑=-n t t t Y Y 1?

第七章 参数估计

第七章 参数估计 §7.1 参数的点估计 §7.2 估计量的评选标准 一、 填空题 1.矩估计法是通过 参数 与 总体矩 的联系,解出参数,并用 样本矩 代替 总体矩 而得到参数估计的一种方法; 2.极大似然估计法是在 总体分布形式 已知情况下的一种点估计方法; 3.设n X X X 2,1是正态总体),(2σμN 的一个样本,则μ的极大似然估计为 =μ? ∑=n i i X n 11 ;总体方差的矩估计为=σ2 ? ∑=-n i i X X n 1 2)(1 ; 4.设()12?,,,n X X X θ 为未知参数θ的估计量,若() ?E θθ=,则称?θ为θ的无偏估计量; 5.设n X X X 2,1为总体X 的一个样本,则总体均值)(X E 的无偏估计为 ∑==n i i X n X 11 ;总体方差)(X D 的无偏估计为 ∑=--=n i i X X n S 1 22 )(11 ; 6.设总体X 服从二项分布(),,B N p N 已知,()12,,,n X X X 是来自X 的样本,则p 的极大似然估计量为 X N ; 解 {}() 1i i i N x x x i N P x x C p p -==-, ()()11 1111n n i i i i i i i i n n x N x nN x x x x N N i i L C p p C p p ==--==∑??∑=-=- ??? ∏∏, ()111ln ln ln ln 1i n n n x N i i i i i L C x p nN x p ===?????? =++-- ? ? ??? ????∑∑∏, 令11ln 11 0,1n n i i i i d L x nN x dp p p ==????=--= ? ?-????∑∑得到1n i i x X p nN N ===∑。 7.在天平上重复称量一重为a 的物品,假设各次称量结果相互独立且服从正态分布 ()2,0.2N a ,若以n X 表示n 次称量结果的算术平均值,则为使{} 0.10.95n P X a -<≥,n 的最小值应不小于自然数16。 解 ()()2 2 0.2,n n E X a D X n n σ===,所以20.2,n X N a n ?? ???

相关文档