文档库 最新最全的文档下载
当前位置:文档库 › 钻孔灌注嵌岩桩竖向承载力规范计算方法探讨

钻孔灌注嵌岩桩竖向承载力规范计算方法探讨

钻孔灌注嵌岩桩竖向承载力规范计算方法探讨
钻孔灌注嵌岩桩竖向承载力规范计算方法探讨

桩基承载力计算公式(老规范)

一、嵌岩桩单桩轴向受压容许承载力计算公式 采用嵌岩的钻(挖)孔桩基础,基础入持力层1~3倍桩径,但不宜小于1.00m,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第4.3.4条推荐的公式计算。 公式为:[P]=(c1A+c2Uh)Ra 公式中,[P]—单桩轴向受压容许承载力(KN); Ra—天然湿度的岩石单轴极限抗压强度(KPa),按表4.2 查取,粉砂质泥岩:Ra =14460KPa;砂岩:Ra =21200KPa h—桩嵌入持力层深度(m); U—桩嵌入持力层的横截面周长(m); A—桩底横截面面积(m2); c1、c2—根据清孔情况、岩石破碎程度等因素而定的系数。挖孔桩取c1=0.5,c2=0.04;钻孔桩取c1=0.4,c2=0.03。 二、钻(挖)孔桩单桩轴向受压容许承载力计算公式 采用钻(挖)孔桩基础,其单桩轴向受压容许承载力[P]建议按《公路桥涵地基与基础设计规范》JTJ024—85第4.3.2条推荐的公式计算。 公式为:[]()R p A Ul Pσ τ+ = 2 1 公式中,[P] —单桩轴向受压容许承载力(KN); U —桩的周长(m); l—桩在局部冲刷线以下的有效长度(m); A —桩底横截面面积(m2),用设计直径(取1.2m)计算;

p τ— 桩壁土的平均极限摩阻力(kPa),可按下式计算: ∑==n i i i p l l 11ττ n — 土层的层数; i l — 承台底面或局部冲刷线以下个土层的厚度(m); i τ— 与i l 对应各土层与桩壁的极限摩阻力(kPa),按表 3.1查取; R σ— 桩尖处土的极限承载力(kPa),可按下式计算: {[]()}322200-+=h k m R γσλσ []0σ— 桩尖处土的容许承载力(kPa),按表3.1查取; h — 桩尖的埋置深度(m); 2k — 地面土容许承载力随深度的修正系数,据规范表 2.1.4取为0.0; 2γ— 桩尖以上土的容重(kN/m 3); λ— 修正系数,据规范表4.3.2-2,取为0.65; 0m — 清底系数,据规范表4.3.2-3,钻孔灌注桩取为 0.80,人工挖孔桩取为1.00。

钻孔灌注桩技术标准

钻孔灌注桩技术标准 一、检验 本条主要适用于以天然土层为地基持力层的浅基础,基槽检验工作应包括下列内容:1、应做好验槽准备工作,熟悉勘察报告,了解拟建建筑物的类型和特点,研究基础设计图纸及环境监测资料。当遇有下列情况时,应列为验槽的重点: (1)当持力土层的顶板标高有较大的起伏变化时; (2)基础范围内存在两种以上不同成因类型的地层时; (3)基础范围内存在局部异常土质或坑穴、古井、老地基或古迹遗址时; (4)基础范围内遇有断层破碎带、软弱岩脉以及湮废河、湖、沟、坑等不良地质条件时;(5)在雨季或冬季等不良气候条件下施工,基底土质可能受到影响时。 2、验槽应首先核对基槽的施工位置。平面尺寸和槽底标高的允许误差,可视具体的工程情况和基础类型确定。验槽方法宜使用袖珍贯入仪等简便易行的方法为主,必要时可在槽底普遍进行轻便钎探,当持力层下埋藏有下卧砂层而承压水头高于基底时,则不宜进行钎探,以免造成涌砂。当施工揭露的岩土条件与勘察报告有较大差别或者验槽人员认为必要时,可有针对性地进行补充勘察工作。 3、基槽检验报告是岩土工程的重要技术档案,应做到资料齐全,及时归档。 2、在压(或夯)实填土的过程中,取样检验分层土的厚度视施工机械而定,一般情况下宜按20~50cm分层进行检验。 3、本条适用于对淤泥、淤泥质土、冲填土、杂填土或其他高压缩性土层构成的地基进行处理的检验。 复合地基的强度及变形模量应通过原位试验方法检验确定,但由于试验的压板面积有限,考虑到大面积荷载的长期作用结果与小面积短时荷载作用的试验结果有一定的差异,故需要再对竖向增强体及地基土的质量进行检验。对挤密碎石桩应用动力触探法检测桩身和桩间土的密实度。对水泥土搅拌桩、低强度素混凝土桩、石灰粉煤灰桩,应对桩身的连续性和材料进行检验。 4、预制打入桩、静力压桩应提供经确认的桩顶标高、桩底标高、桩端进入持力层的深度等。其中预制桩还应提供打桩的最后三阵锤击贯入度、总锤击数等,静力压桩还应提供最大压力值等。 当预制打入桩、静力压桩的入土深度与勘察资料不符或对桩端下卧层有怀疑时,可采用补勘方法,检查自桩端以上1m起至下卧层5d范围内的标准贯入击数和岩土特征。 5、混凝土灌注桩提供经确认的参数应包括桩端进入持力层的深度,对锤击沉管灌注桩,应提供最后三阵锤击贯入度、总锤击数等。对钻(冲)孔桩,应提供孔底虚土或沉渣情况

桩端承载力计算

桩端承载力计算书 计算依据:《建筑桩基技术规范》JGJ94-94和本项目岩土工程勘察报告 单桩竖向承载力设计值(R)计算过程: 桩型:干作业钻孔灌注桩(d<0.8m) 桩基竖向承载力抗力分项系数:γs=γp=γsp=2 桩类别:圆形桩 直径或边长d/a=600mm 截面积As=.282743334m 周长L=1.88495556m 第1土层为:新近填土,黄土,极限侧阻力标准值qsik=20Kpa 层面深度为:0m; 层底深度为:5m 土层厚度h= 5 m 土层液化折减系数ψL=1 极限侧阻力Qsik=L×h×qsik×ψL=1.88495556×5 ×20×1= 188.495556 KN 第2土层为: 粉细砂,极限侧阻力标准值qsik=55Kpa 层面深度为:5m; 层底深度为:7m 土层厚度h= 2 m 土层液化折减系数ψL=1 极限侧阻力Qsik=L×h×qsik×ψL=1.88495556×2 ×55×1= 207.3451116 KN 第3土层为:粉土,极限侧阻力标准值qsik=50Kpa 层面深度为:7m; 层底深度为:10m 土层厚度h= 3 m 土层液化折减系数ψL=1 极限侧阻力Qsik=L×h×qsik×ψL=1.88495556×3 ×50×1= 282.743334 KN 第4土层为: ⑧1泥质砂岩,极限侧阻力标准值qsik=100Kpa 层面深度为:10m; 层底深度为:13m 土层厚度h= 3 m 土层液化折减系数ψL=1 极限侧阻力Qsik=L×h×qsik×ψL=1.88495556×3 ×100×1= 565.486668 KN 第5土层为: ⑧2泥质砂岩,极限侧阻力标准值qsik=140Kpa 层面深度为:13m; 层底深度为:16m 土层厚度h= 3 m 土层液化折减系数ψL=1 极限侧阻力Qsik=L×h×qsik×ψL=1.88495556×3 ×140×1= 791.6813352 KN 总极限侧阻力Qsk=∑Qsik= 2035.7520048 KN 极限端阻力标准值qpk=2500KN 极限端阻力Qpk=qpk×As=2500×.282743334= 706.858335 KN 总侧阻力设计值QsR=Qsk/γs= 1017 KN 端阻力设计值QpR=Qpk/γp= 353 KN 基桩竖向承载力设计值R=Qsk/γs+Qpk/γp= 2035.7520048 /2+ 706.858335 /2= 1370 KN ──────────────────────────────────────────

嵌岩桩承载力的影响因素分析及嵌岩深度的探究

嵌岩桩承载力的影响因素分析及嵌岩深度的探究 【摘要】嵌岩桩所处的土层岩层复杂、桩身混凝土质量的不稳定和施工工艺的多样,导致嵌岩桩承载性能复杂,因而也使得人们对嵌岩桩的破坏机理和承载性状的认识不能达成共识和统一。本文就简单从嵌岩桩的桩长、桩径、桩体模量、持力层性状、桩底沉渣、粗糙度等因素对嵌岩桩承载力进行分析,并对嵌岩深度做简单探究,以求对施工方面能起到一定的理论支持作用。 【关键词】嵌岩桩承载力影响因素嵌岩深度 【Abstract 】Rock-socketed pile soil strata in the complex, pile body concrete quality stability and the construction technology of diversity, cause rock-socketed pile bearing performance complex, making people of rock-socketed piles of failure mechanism and characters of bearing can be reached consensus know and unity. This paper from the simple rock-socketed pile pile length, pile diameter, the pile modulus, include the character, the pile bottom settlings, roughness and factors of rock-socketed pile bearing capacity is analyzed, and the depth of rock-socketed do simple explore and try to construction can play a certain role of theoretical support. 【Key Words 】rock-socketed, pile bearing capacity factors, rock-socketed depth 目前在施工方面存在以下误区,即一方面不管嵌岩桩长细比的大小、上覆土层的土性、沉渣厚度等,一律将嵌岩桩视为端承桩进行设计;另一方面盲目增加嵌岩深度不考虑基岩的力学性状而采用扩底,结果延长了工期、增加了施工难度,同时由于嵌岩桩单桩承载力高,造价也较高,因此此造成的浪费是惊人的,简单从嵌岩桩的桩长、桩径、桩体模量、持力层性状、桩底沉渣、粗糙度等因素对嵌岩桩承载力进行分析,并对嵌岩深度做简单探究,以求对施工方面能起到一定的理论支持作用。 一、嵌岩桩承载力影响因素分析 1、嵌岩桩的桩长和桩径对嵌岩桩受力性状的影响 从力学稳定性上来讲,嵌岩桩的桩长和桩径主要影响嵌岩桩的长细比,长细比越小,嵌岩桩的承载能力越强,嵌岩桩的整体稳定性越好,一般情况下通过增大桩径来提高嵌岩桩的承载力。 2、嵌岩桩的桩体模量对嵌岩桩受力性状的影响

桩基础作业(承载力计算)-附答案

1.某灌注桩,桩径0.8d m =,桩长20l m =。从桩顶往下土层分布为: 0~2m 填土,30sik a q kP =;2~12m 淤泥,15sik a q kP =;12~14m 黏土,50sik a q kP =;14m 以下为密实粗砂层,80sik a q kP =,2600pk a q kP =,该层厚度大,桩未穿透。试计算单桩竖向极限承载力标准值。 【解】 uk sk pk sik i pk p Q Q Q u q l q A =+=+∑ ()20.8302151050280426000.84 1583.41306.92890.3uk sk pk Q Q Q kN π π=+=???+?+?+?+??=+= 2.某钻孔灌注桩,桩径 1.0d m =,扩底直径 1.4D m =,扩底高度1.0m ,桩长 12.5l m =,桩端入中砂层持力层0.8m 。土层分布: 0~6m 黏土,40sik a q kP =;6~10.7m 粉土,44sik a q kP =; 10.7m 以下为中砂层,55sik a q kP =,1500pk a q kP =。试计算单桩竖向极限承载力标准值。 【解】 1.00.8d m m =>,属大直径桩。 大直径桩单桩极限承载力标准值的计算公式为: p pk p i sik si pk sk uk A q l q u Q Q Q ψψ+=+=∑ (扩底桩斜面及变截面以上d 2长度范围不计侧阻力) 大直径桩侧阻、端阻尺寸效应系数为: 桩侧黏性土和粉土:() 1/5 1/5(0.8/)0.81.00.956si d ψ=== 桩侧砂土和碎石类土:()1/3 1/3(0.8/)0.81.00.928si d ψ=== 桩底为砂土:() 1/3 1/3(0.8/)0.81.40.830p D ψ=== ()2 1.00.9564060.956440.831500 1.410581505253.3564 uk Q kN ππ =????+??+???=+= 3.某工程采用泥浆护壁钻孔灌注桩,桩径1.2m ,桩端进入中等风化岩1.0m ,中等风化岩岩体较完整,饱和单轴抗压强度标准值为41.5a MP ,桩顶以下土层参数

钻孔桩单桩承载力特征值计算

钻孔桩单桩承载力特征值计算 一、 按摩擦端承桩计算 已知参数: 根据DBJ15-31-2003中10.2.3条公式a sia i pa p R u q l uq A =+∑计算: 当1000?桩:22211 1.0 3.14 3.14, 1.0 3.140.78544 p u d m A d m ππ==?== =??= ZK1 3.142516.913 4.5330.5500.785=2828kN ZK2 3.14251713 4.6330.5500.785=2795kN a sia i pa p a sia i pa p R u q l uq A R u q l uq A =+=??+?+?+??=+=??+?+?+??∑∑钻孔: (2.3)+1800钻孔: (1.7)+1800当800?桩:22211 0.8 3.14 2.5,0.8 3.140.5044 p u d m A d m ππ==?== =??= ZK1 2.52516.913 4.5330.5500.50=2026kN ZK2 2.5251713 4.6330.5500.50=2000kN a sia i pa p a sia i pa p R u q l uq A R u q l uq A =+=??+?+?+??=+=??+?+?+??∑∑钻孔: (2.3)+1800钻孔: (1.7)+1800二、桩身承载力设计值计算 由DBJ15-31-2003中10.2.7条可知:

2c ,0.70,2511.9/;c c ps c N f A C f N mm φφ≤==其中,砼: 当1000?桩:22211 1.0 3.140.78544 p A d m π= =??= 30.7011.90.785106539c c ps N f A kN φ≤=???= 6539 48431.35 1.35 a N R kN ≤ == 当800?桩:222 110.8 3.140.5044p A d m π==??= 30.7011.90.50104165c c ps N f A kN φ≤=???= 4165 30851.35 1.35 a N R kN ≤ == 三.单桩承载力设计值确定 综上所述: 100025008001800a a R kN R kN φφ==桩,取桩,取

嵌岩桩设计中值得注意的几个问题

嵌岩桩设计中值得注意的几个问题 □肇庆市肇通资产经营有限公司阎海鸿 摘要:针对现有桥梁规范中计算嵌岩桩的单桩轴向受压容许承载力的公式提出几个问题,同时提出了在不同条件下嵌岩桩单桩轴向受压容许承载力更合理的计算方法,论述了建议方法的经济效益。 关键词:嵌岩桩侧阻力端阻力单轴极限抗压强度长径比 随着现代成桩工艺、桩体结构的检测技术与桩的承载力等方面的进步和提高,桩与桩基础得到越来越广泛的应用;当桥梁上部结构荷载较大,而适合作为持力层的岩层又埋藏较深或虽然可作为持力层的土层埋藏不深但其下又存在软弱下卧层,用天然浅基础不能满足结构物对地基强度、变形和稳定性方面的要求时,嵌岩桩作为桩基础的一种形式往往是常用的一种基础。 现行桥梁规范对嵌岩桩垂直承载力的计算,有很多值得探讨的地方。由于山区公路桥梁中所采用的嵌岩桩数量占了相当大的比例,从而积累了大量的实践经验,从这些嵌岩桩的试桩实验中得知,嵌岩桩的实际垂直极限承载力P j常常远大于规范中的计算值。 1 规范对嵌岩桩计算的规定 支承在基岩上或岩层中的单桩,其轴向受压容许承载力取决于桩底处岩石的强度和嵌入基岩的深度,可按下式计算:〔p〕=(C1A+C2Uh)R a〔1〕(1)式中: R a——天然湿度的岩石单轴极限抗压强度(kPa),试件直径为7~10 cm,试件高度与试件直径相等; h——桩嵌入基岩深度(m),不包括风化层; U——桩嵌入基岩部分的横截面周长(m),按设计直径计算; A——桩底截面面积(m2); C1、C2——根据清孔情况、岩石破碎程度等因素而定的系数,按表1采用; 良好的0.60.05 一般的0.50.04 较差的0.40.03 注:①当h≤0.5 m时,C1采用表列数值的0.75倍,C2=0; ②对于钻孔桩,C1、C2值取表值的0.8倍。 1.1 《规范》提出的公式(1)值得思考的几个问题 1.1.1 公式(1)中未考虑新鲜基岩以上覆盖层的侧阻力 显然,这对于埋置较深的桩基是不经济的。在清孔绝对干净,桩底处于理想支撑,桩底岩石完整且强度很高时,桩的竖向位移很微小,公式(1)合理的、适用的,但近年来大量的实践资料表明,当桩

大直径钻孔灌注桩按桩身混凝土强度设计

按桩身混凝土强度设计嵌岩灌注桩的方法 章履远(浙江世贸联合投资集团公司310053) 概述 当前大直径钻孔灌注桩的应用量大面广。如何提高大直径钻孔灌注桩的竖向承载力,以降低桩基成本是人们追求的目标。本文探讨以端承为主的端承桩或摩擦端承桩如何来提高承载能力的问题。笔者通过近几年的工程实践与分析后认为,这种桩型的桩端必须要有中风化或微风化基岩(硬质岩或软质岩均可)作为持力层,且基岩的埋深在10m?80m以内,在这种 条件下,通过技术手段采取施工措施,使桩的承载能力大幅度提高,最后达到最大值——承载能力按桩身混凝土强度控制。本文着重叙述在桩身混凝土强度满足桩的竖向承载力设计要求时应采用的几个技术措施。 二、考虑问题的思路 1 、无论是国家标准《建筑地基基础设计规范》GB 50007 —2002、或行业标准《建筑桩基 技术规范》JGJ94—94,决定摩擦端承桩时,钻孔灌注桩单桩竖向承载力的计算公式总是分为摩擦部分和端承部分。而嵌岩灌注桩的计算就有区别。行业标准JGJ94—94分得较细,其 计算式为Q uk = Q sk+ Q rk+ Q pk,即嵌岩部分也分为嵌岩段摩擦阻力和端承部分支承力二部分,并且随嵌岩深度分别作出修正(见规范第40 页);国家标准GB50007—2002 比较简单, 只要是明确桩端嵌在较完整的硬质岩时,可按公式R a= q pa A p 来确定单桩竖向承载力。近年 来,笔者通过几种嵌岩灌注桩,无论是80m长桩,还是v 20m的短桩,持力层那怕是软质 岩或极软岩, 先用规范计算得出承载力再进行静载荷试桩, 结果发现二者差别都比较大, 表 1 给出计算值与试验值对比。 从表 1 中所列, 21 根试验桩及检验桩的试验值与按规范的计算值相比,除少数桩其试桩值达不到 计算值外,其余大部分桩试验值都超过了计算值,有的还大大超过了计算值。如306#检验桩,其试验值与计算值相比,达到 2.31 比值。其实,许多试验桩,从最终桩顶沉 降值来看,有些桩的荷载还能再增加,比值有可能会超过 3.0,只是由于荷载再加上去,已 没有实标意义(因荷载值己超过了按桩身材料抗压强度控制的最大值)或试桩堆载装置已无法再增加荷重而不得不终止加载。 再从表 1 中可以看出, 短桩比值大, 而长桩比值小, 但不管是长桩或短桩, 只要是嵌岩桩, 比值都能提高。 又从表1可看出,1#工程的S i和S2桩,与4#工程的SZ i、SZ2、SZ3试验桩,二者的地层 情况相似,S i、S2桩的桩端持力层岩石单轴抗压强度标准值(19.4MPa)要比SZ i、SZ2、SZ3桩的桩端持力层岩石单轴抗压强度标准值(6.46MPa)要高,但试验桩极限承载力前者反而比 后者要小, 且桩顶沉降值前者大于后者很多。这二种桩的唯一不同点, 据分析,前者桩底没有注浆,不排除由于桩底不注浆使桩底沉碴过厚而影响到桩底端阻力的发挥(从桩顶沉降过大可知)。 2、表1 中可知,所有试验桩和检验桩的一个共同点是:所有桩都是嵌岩灌注桩。从试验结果来看, 按规范的计算值和实际的静载荷试验值有巨大差别, 有的差别还很大, 尤其是短桩,无法用规范计算来得到解释。这种事实的存在提出了一个新的实际问题:只要是嵌岩灌注桩,当采用某些技术措施后,都能达到按桩身混凝土强度满足桩的竖向承载力来进行单桩设计,可以忽略规范的计算估算值。 为什么要提出这种说法呢?这是基于对嵌岩灌注桩重新认识的一种新的观点——笔者暂称其为“ 岩体延伸” , 即第三系基岩,通过钢筋混凝土

嵌岩桩的最小桩长问题

嵌岩桩的最小桩长问题 ——答《嵌岩桩竖向承载力规范计算方法的讨论》读者问 博主按:近日接到拙文读者的电邮,就嵌岩桩的最小桩长问题进行探讨,特将该读者的电邮和本人的答复帖上,以期抛砖引玉,使这个问题越辩越明。 mr6847的电邮(2011/11/17): 有幸拜读了您二位发表在《建筑结构·技术通讯》上的“嵌岩桩竖向承载力规范计算方法的讨论”,感觉所涉范围全面,分析深刻有独立见解,使我受益良多。现有一事在我们这里还存在异议,即嵌岩桩的桩长,一方认为只要桩嵌入完整岩层内1d以上既是桩,而不必考虑总桩长是否够6d或6m(依据为规范承载力计算公式及一些嵌岩桩实验背景资料);令一方则认为总桩长必须够6d或6m,否则就不是桩,承载力就要折减(依据来自于传统上对桩的认识)。请不吝赐教,谢谢。 此致敬礼 Kingckong的答复(2011/11/22):

1、首先感谢您对拙文的关注,也很好奇想了解您是来自什么地区的。因为有些地区是不可能采用嵌岩桩的(如上海规范《地基基础设计规范》DGJ08-11-2010里面就没有嵌岩桩承载力计算的内容)。 2、您提的问题,本质上就是嵌岩桩究竟要符合哪些基本条件才能体现出桩的工作特征,可以按嵌岩桩的规范公式估算承载力,而不满足的话就只能按浅基础的模型计算地基承载力。 3、由于桩与浅基础的承载和破坏机理不同,因而承载力的计算模式也不一样,计算结果自然就有很大的差别了。您提的问题,迄今为止前人没有进行过系统研究,因此应该说是没有唯一的答案,因为它涉及的影响因素很多,包括所采用的嵌岩桩承载力规范公式的类型、基岩的性质(软岩还是硬岩、完整程度如何等)、上覆土层的情况、桩身强度(受桩身材料强度和施工质量控制)等。不信的话,不妨在baidu或google输入“最小桩长”、“嵌岩桩最小桩长”等关键字进行搜索,您就会发现对此问题是众说纷纭。这也没什么好奇怪的,因为人对客观事物的认知能力是有限的,对影响因素众多的复杂事物更是如此。

钻孔灌注桩检检测方案

钻孔灌注桩检测方案 编制单位:(盖章) 编制人:(签字)审核人(项目负责人):(签字)审批人(公司技术负责人):(签字)编制日期:年月日

目录 一、概述 (1) 二、桩基承载力静载试验 (1) 三、桩基承载力静载试验现场情况分析 (3) 四、桩基承载力高应变法检测 (6) 五、桩基承载力高应变法检测现场情况分析 (8)

一、概述 XX路快速化改造工程,本项目位于XX市XX区XX街道管辖区,本道路路线起点位于XX大道交叉口,终点位于XXX旁,呈东西走向,路线全长1.35km。本工程中涉及桥梁为3座新建人行天桥,人行天桥横跨佛平路,拟建天桥包括两侧设置楼梯、扶梯和电梯。本工程为单跨刚构桥,跨度为33.0~45.0m,主梁用钢箱梁结构,两侧梯道用钢结构,电梯为四面钢结构的观光电梯,墩柱采用钢管,楼梯和扶梯基础用桩基础,电梯井采用扩大基础。主桥及梯道墩柱为钢筋混凝土,基础拟采用钻孔灌注桩基础,1号人行天桥主桥为桩径φ1000摩擦桩,有效桩长为 30米,梯道桩为桩径φ800摩擦桩,有效桩长28米,电梯井桩径为φ600,有效桩长25米;2号人行天桥主桥桩径为桩径φ1000嵌岩桩,有效桩长为1#主墩25米、2#主墩30.5米、3#主墩34.5米,梯道桩为桩径φ800嵌岩桩,有效桩长北侧桩长24.5米,南侧桩长34.5米,电梯井桩径为φ600,有效桩长20米;3号人行天桥主桥为桩径φ1000嵌岩桩,有效桩长:1#主墩 40.9米,2#主墩35米,3#主墩38.9米,梯道桩为桩径φ800嵌岩桩,有效桩长北侧37米,南侧38米,电梯井桩径为φ600,有效桩长25米。为了检验工程基桩单桩竖向承载力,特制定本检测方案。 二、桩基承载力静载试验 1、检测目的 灌注桩基静载荷试验目的在于确定桩的承载力,取得桩基设计参数,检验成桩工艺的合理性,以便经济合理地确定桩径、桩长、改进桩的设计,改进和完善成桩工艺和机具。 2、检测标准及数量规定 本次试验按照中华人民共和国行业标准《建筑基桩检测技术规范》(JGJ106-2014)和国家推荐性行业标准《公路工程基桩动测技术规程》(JTG/TF81-01-2004),根据规范规定,静载试验数量不少于总桩数的1%,且不少于3根,工程总桩数在50根以内时不应少于2根。 3 、静载荷试验方法(锚桩法) 单桩静载荷试验是在桩顶向试验桩逐级施加荷载,观测并记录其沉降量,直至试桩破坏或达到设计要求的终止荷载,绘制Q?s与s?lgt曲线,然后对曲线形态进行分析,确定出单桩竖向抗压极限承载力。加载的计量装置在试验前应通过国家指定的计量单位进行标定。 试桩桩顶沉降量用4只50mm量程的百分表量测,百分表通过磁性表座固定在基准梁上,百分表的触针座落在固定于桩侧的沉降观测装置上,桩在某级荷载作用下于栽个时刻所产生的沉降量可通过4只百分表测得。 试桩加载采用慢速维持荷载法,逐级加载。每级荷载下试桩沉降量达到相对稳定标准后,再加

钻孔灌注桩单桩竖向承载力设计值计算-2011.11.01

单桩竖向承载力设计值计算 一、构件编号: ZH-1 示意图 二、依据规范: 《建筑桩基技术规范》(JGJ 94-2008) 《建筑地基基础设计规范》(GB50007-2002) 三、计算信息

1.桩类型: 桩身配筋率<0.65%灌注桩 2.桩顶约束情况: 固接 3.截面类型: 圆形截面 4.桩身直径: d=800mm;桩端直径: D=1200mm 5.材料信息: 1)混凝土强度等级: C30 fc=14.3N/mm2 Ec=3.0×104N/mm2 2)钢筋种类: HRB335 fy=300N/mm2fy,=300N/mm2Es=2.0×105N/mm2 3)钢筋面积: As=2155mm2 4)净保护层厚度: c=50mm 6.其他信息: 1)桩入土深度: H>6.000m 7.受力信息: 桩顶竖向力: N=800kN 四、计算过程: 1)根据桩身的材料强度确定 桩型:人工成孔灌注桩(d≥0.8m) 桩类别:圆形桩 桩身直径D =800mm 桩身截面面积A ps=0.50m 桩身周长u=2.51m R a=ψc f c A +0.9f y,A S,【5.8.2-1】 ps 式中A ps————桩身截面面积 f c———混凝土轴心抗压强度设计值 ψc———基桩成孔工艺系数,预制桩取0.85,灌注桩取0.7~0.8。 f y,———纵向主筋抗压强度设计值 A S,———纵向主筋截面面积 R a =5363+582=5945KN 2)根据经验参数法确定 计算依据:《建筑桩基技术规范》JGJ94-2008和本项目岩土工程勘察报告 单桩竖向承载力特征值(R a)应按下式确定: R a=1/k×Q uk 【5.2.2】 式中Q uk————单桩竖向极限承载力标准值 K———安全系数,取K=2. Q uk=Q +Q pk= u∑ψsi q sik L i +ψp q pk A p 【5.3.6】 sk 桩型: 人工成孔灌注桩(d≥0.8m) 桩类别:圆形桩 桩端直径D=1400mm 桩端面积A p=1.54m 桩端周长u=4.4m 极限端阻力标准值q pk=3200KPa

关于嵌岩桩承载力的探讨

关于嵌岩桩承载力的探讨 2008年03月04日星期二 09:54 P.M. 福州市建委陈依木 摘要分析了嵌岩桩的承载性状及计算模式;指出在不同工程地质、桩几何尺寸和成桩工艺等条件下嵌岩桩表现为端承和摩擦两种不同的承载性状。 关键词嵌岩桩单桩承载力桩侧阻力桩端阻力沉降 1.概述 建筑基桩穿过覆盖层嵌入基岩中(嵌固于未风化岩中不小于0.5m)称为嵌岩桩。由于基岩强度较高,压缩性极小,嵌岩桩能提供很高的承载力。同时嵌岩桩沉降也很小,建筑物沉降在施工过程中便可完成。由于嵌岩桩具有这些优点,因而在工程设计,尤其是高层建筑及大型构筑物中被广泛采用。 在工程实践中,有些设计者认为嵌岩桩均为端承桩,只具有端阻力,不考虑土层侧阻力。这种计算模式与许多工程实际不符。其实,对不同的工程地质条件,桩的几何尺寸及成桩工艺,嵌岩桩表现出不同的承载性状。对于桩端为基岩,桩周土层为不太弱的情况且长径比L/ D>35的嵌岩桩,桩侧阻力是不容忽视的,这一点已为大量现场试验结果所证明。 2.嵌岩桩的承载性状 由于嵌岩桩的荷载--沉降性状受多种因素影响,很难作出准确的预计。因而我们只能对嵌岩桩的承载性状进行基本分析。嵌岩桩的桩顶沉降主要由二部分组成:①桩身混凝土的弹性压缩;②桩底基岩的应变。这二种分量的相互关系受荷载传递机理的支配。施加在桩顶的荷载通过桩端阻力和桩侧阻力传递给桩周的土体和桩底的基岩,(其中桩侧阻力包括桩周土体侧阻力和嵌岩段侧阻力)桩底基岩和桩周土体应变的相对大小,决定着桩端阻力和桩侧阻力的发挥程度。各位移分量的大小取决于桩的几何形状、荷载大小、成桩工艺及桩底基岩桩周土体和桩身混凝土的弹性模量。 对于嵌入软质基岩,桩周为均匀硬土层且长径比L/D较大的嵌岩桩。桩侧阻和端阻充分发挥所需的极限相对位移同桩周土体和桩底基岩的强度有关,强度越高所需的极限位移越小,强度越低则所需的极限位移越大。当桩底基岩较软,长径比较大时,桩顶荷载作用下,桩身位移相对较大,桩周土体强度较高时,其发挥极限侧阻所需位移相对较小,故桩侧阻力首先达到极限值。此时桩端阻力尚未达到极限值。这种嵌岩桩,其端阻只占桩总承载能力的一部分。可称为端承摩擦桩(侧阻占大部分)或摩擦端承桩(端阻占大部分)。 对于穿过均匀软土层嵌入硬质基岩中的嵌岩桩,由于桩底基岩强度很高,桩底位移很小,桩身位移也不大,此时,桩周土体发挥极限侧阻所需相对位移尚未达到,桩侧阻力无法充分发挥。而硬质基岩所需极限位移能够达到,

钻孔灌注桩的控制控制点

钻孔灌注桩的控制控 制点 Revised on November 25, 2020

几个钻孔桩的质量控制点 一、前言 钻孔(灌注)桩以其承载力大、造价低、适用于各种土质、能制成较大直径和各种长度桩的特点,在基建工程中越来越广泛地被运用,特别是水利水电工程弱基主体建筑物的基础。然而由于多在水下及地下进行,影响施工因素较多,很容易出现各种质量缺陷,如蜂窝、空洞、夹泥断桩和缩径等,影响桩身的完整性和单桩的承载能力,甚至出现质量事故。本文就钻孔桩施工过程的质量控制点进行阐述。 二、质量控制点 钻孔灌注桩质量控制按地面作业和隐蔽作业划为两部分。隐蔽作业的质量控制关键是检测的准确性和检测与施工作业配合的适时性,可编制由成桩过程的不同时段表示的动态控制表,无论对进度还是质量的动态控制都十分有效。而过程中主要的质量控制点为:1、垂直度 桩身垂直度是保证承载能力诸多重要因素中的第一环节,而有的施工现场不检查垂直度,有的单位没有检查设备或根本不知道如何检测,有的单位则因测孔斜费时费力不愿多此一举。孔斜过大,肯定造成桩头偏位,改变桩身的受力状态,对钢筋笼的安置影响较大或者无法安置,从而桩身结构质量和桩上部工程结构质量;终孔后再发现孔斜纠正起来费时费力,且修孔常使桩的充盈系数增大,最大可达;在砂土类地层中孔斜过大还极易造成塌孔,无法成孔。 为避免钻孔倾斜,要在钻机就位和钻孔过程随时注意校核钻杆的垂直度,发现倾斜及时纠正。对于地基不均匀、土层呈斜状分布和土层中夹有大的孤石或其它硬物的情形,在施工方案上必须有完善的组织,对于选择何种机型、钻进速度、纠偏措施等都要有具体的方案。

2、孔深 在恶性工程事故的桩基工程中,孔深不到位的例子很多,对于孔深的量测应作为工作的重点,实际操作中应注意以下问题:(l)测量有误达不到设计深度。一般常用的测绳一经水泡就会出现收缩现象,有的收缩量可达lcm/lm左右,测50m的孔就会产生0.5m左右的误差。更大的测量误差是由于测绳易断引起的,断了以后不知道的人仍以断处为起点继续使用,往往可差数米。采用细钢丝测绳要当心数标松动错位。彻底避免误测的办法是在施工现场或附近地面上设置长度标记作为准绳,每次终孔一定把测绳拿去核实。 (2)钻孔入岩深度达不到设计要求,更多的是由于地层分布不均匀,如岩层分布成倾斜状或起伏变化剧烈导致判断失误。因此入岩深度的控制应引起设计、施工和质检部门的共同重视。入岩深度的控制因钻孔工艺不同而有所区别。反循环工艺和冲击钻成孔的桩,可采用岩样鉴别法。此外,还需注意每个桩的入岩和终孔的岩样最好留样备案,直至工程使用正常,沉降稳定。正循环工艺成孔的桩由于取不到完整岩样确定嵌岩深度很困难。较可靠的办法是认真钻探资料,根据各钻孔土层分布情况综合评判场地地质概况,然后做出岩层分布的等高线图,按等高线图确定成孔深度。因本法有一定的随机性,应适当加大安全系数,有需适当补充钻探孔,在某些缺少钻孔的控制区域,也可用钻机换取芯钻头直接取岩芯判定。正循环工艺采用的方法难度大。 3、孔径 在湖、塘、沟、谷与河漫滩地段新近沉积的粘性土和粉士中钻孔容易出现缩孔现象。尤其要重视液性指数IL>呈软塑状态和流塑状态的粘性土而在IL>呈流塑状态的淤泥质软土层成孔缩孔现象更不可避免。与孔径有关的质量问题有:

灌注桩承载力计算1

3.2.2桩基础结构承载力复核计算 3.2.2.1 桩基荷载计算 机耕桥为3×8×4.5m 的规格,以一跨为计算单元,桥台盖梁底高程为2.32m ,共4根Ф80cm 的灌注桩,桩端高程为-16.0 m ,两桥台地面中心处为弯矩原点,最不利工况下荷载计算成果见表3.2.3。 表3.2.3 机耕桥计算荷载成果表 车道荷载 总垂直荷载 冲击荷载 弯矩 偏心距 q k p k P H M e kN/m KN kN kN kNm m 5.51 212 889.71 28.51 909.0378 0.99 单桩荷载按《建筑桩基技术规范(JGJ94-2008)》中公式计算: 垂直荷载:∑±=2 x x M n P N i y i 水平荷载:n H H i = 式中:i N ——荷载效应标准组合偏心竖向力作用下,第i 基桩或复合基桩的竖向力; P ——荷载效应标准组合下,作用于桩基的总垂直荷载; y M ——荷载效应标准组合下,作用于底板底面,绕通过桩群形心的y 主轴的力矩; i x ——第i 基桩或复合桩基至y 轴的距离; i H ——荷载效应标准组合下,作用于第i 基桩或复合基桩的水平力; H ——荷载效应标准组合下,作用于桩基底板底面的水平力。 n ——桩基中的桩数。 经计算,灌注桩单桩荷载计算见表3.2.4。 表3.2.4单桩荷载计算表 桩号 单桩竖向荷载N (kN ) x i x i /∑(x i 2) 单桩竖向荷载N (kN ) 1 -4.00 -0.125 336.05 2 4.00 0.125 108.80 单桩水平荷载H (kN ) 5.10

注:桩号从左向右依次编号。 3.2.2.2 桩基垂直承载力复核 灌注桩桩基允许垂直承载力按《建筑桩基技术规范(JGJ94-2008)》中公式(5.2.2)和(5.3.5)计算。 )(1 )(11∑+=+== p pk i sik pk sk uk a A q l q K Q Q K Q K R μ 式中:a R ——单桩竖向承载力特征值; uk Q ——单桩竖向极限承载力标准值; K ——安全系数,取为2; μ——桩身周长; sik q ——桩侧第i 层土极限侧阻力标准值; pk q ——极限端阻力标准值; i l ——桩周第i 层土的厚度; p A ——桩端面积。 桩周土极限摩阻力见表3.2.5。 表3.2.5 桩周土极限摩阻力表 土 层 土层厚 桩周土极限 桩的极限端阻力标准 m kPa kPa 表土 0.95 20 粉土 2.09 53 淤泥质粉质粘土 4.09 28 粉质粘土 6.05 62 粉土 4.91 53 1468.97 经计算,钢筋混凝土灌注桩桩基允许垂直承载力为1469kN ,而单桩最大垂直荷载为336.05kN ,小于桩基允许承载力,故钢筋混凝土灌注桩垂直承载力满足要求。 3.2.2.3 桩基水平承载力复核 采用m 法计算桩顶位移和桩最大弯矩。计算成果见表3.2.6。

钻孔灌注桩检测方案(修改)

GREEPARK PETROCHEMICAL COMPANY AMMONIA UREA FERTILIZER PROJECT 桩 基 工 程 检 测 方 案 及 价 格 中国水电八局基础工程分局 2013年1月6日 目录

一、工程概括 二、检测工作目的、工作量及执行标准 三、成孔质量检测方法 四、静载荷试验方法 五、高应变动检测方法 六、低应动力检测方法 七、桩头处理及有关事项 八、检测进度计划 九、质量保证和安全措施 附录:检测费报价清单 检测仪器设备报价清单 报价说明

一、工程概况 GREEPARK PETROCHEMICAL COMPANY AMMONIA UREA FERTILIZER PROJECT基础均采用钻孔灌注桩,本次拟检测部分桩基工程概况如下: 桩号ZH-1:桩径450mm,桩长10m,设计单桩承载力特征值:750KN; 桩号ZH-2:桩径450mm,桩长15m,设计单桩承载力特征值:750KN; 桩号ZH-3:桩径450mm,桩长20m,设计单桩承载力特征值:750KN; 桩的总根数为150根。桩身混凝土强度等级为C35,桩身混凝土浇筑前,孔底沉渣厚度不应大于50mm。 二、检测目的、工作量及执行标准 1.检测目的 成孔质量检测:检测钻孔灌注桩孔径、孔深、垂直度及沉渣厚度是否满足规范要求。 低应变动力检测:检测桩身完整性,判断桩身的缺陷程度及位置并判定桩身完整性类别。 高应变动力检测:判定钻孔灌注桩单桩竖向抗压极限承载力是否满足设计要求;检测桩身缺陷及其位置,判定桩身完整性类别。 工程桩静载荷试验:确定单桩竖向抗压极限承载力,判定竖向抗压承载力是否满足设计要求;确定单桩竖向抗拔极限承载力,判定竖向抗拔承载力是否满足设计要求;确定单桩水平临界和极限承载力,判定水平承载力是否满足设计要求。 2.工作量 根据相关检测要求,并参考国内《建筑桩基检测技术规范》JGJ106-2003相关内容确定检测桩型与桩数,具体检测工作量如下: 桩号ZH-1:成孔质量检测10孔,静载荷试验7组(单桩竖向抗压静载试验3组,单桩竖向抗拔试验2组,单桩水平静载试验2组),高应变动力检测10根,低应变动力检测10根; 桩号ZH-2:成孔质量检测6孔,静载荷试验7组(单桩竖向抗压静载试验3组,单桩竖向抗拔试验2组,单桩水平静载试验2组),高应变动力检测6根,低应变动力检测6根; 桩号ZH-3:成孔质量检测5孔,静载荷试验7组(单桩竖向抗压静载试验3组,单桩竖向抗拔试验2组,单桩水平静载试验2组),高应变动力检测5根,低应变动力检测5根; 总计:成孔质量检测21孔,静载荷试验21组,高应变动力检测21根,低应变动

嵌岩桩竖向承载力探讨

嵌岩桩竖向承载力规范计算方法的讨论 古今强,侯家健 [主要内容]综合归纳了12本国家、行业和地方标准,总结了嵌岩桩竖向承载力4种主要规范计算方法,对比了其差别要点;并就使用规范方法的相关问题进行分析讨论。 [关键词]嵌岩桩;竖向承载力;规范;桩基础 本文所讨论的嵌岩桩,是指桩端嵌入中等风化或微风化基岩中的桩,通常是钻(冲)孔或人工挖孔的灌注桩,其桩端岩体能取样进行单轴抗压试验。对于桩端支承于全风化、强风化岩中的桩,由于不能取岩样成型,其强度不能通过单轴抗压试验确定,本文不作具体讨论。 嵌岩桩具有承载力高、沉降小、群桩效应低的特点,是高层建筑的主要基础形式之一。单桩竖向承载力是最基本的设计参数,静载试验是规范[1,2]推荐确定单桩竖向承载力的首选方法。然而嵌岩桩单桩承载力大,静载试验费用高,一般难以直接压至极限荷载,某些工程受设备或现场条件限制甚至无法进行静载试验,因此对其承载机理的研究尚不够深入。除重大工程外一般仅采用规范提供的经验参数法估算其承载力。下文将对比常见的嵌岩桩承载力规范计算方法,并对相关问题进行讨论。 1 嵌岩桩竖向承载力的四种规范计算方法 综合归纳12本国家、行业和地方标准,估算嵌岩桩竖向承载力共有四类规范方法,见表1。四类规范方法有很大的差异,其差别要点汇总于表2。 授课:XXX

授课:XXX

授课:XXX

授课:XXX

2 对嵌岩桩岩土勘察报告的研读 仔细研读、正确使用岩土勘察报告,是做好结构设计的关键环节之一,其步骤和方法见文[13]。四类规范计算方法都是直接或间接以基岩的f rk推算嵌岩段的桩承载能力,因此对拟采用嵌岩桩的工程,应重点检查勘察报告对基岩持力层的勘察和评价是否到位,包括: (1)是否评定了基岩的坚硬程度、完整程度和基本质量等级。从表2可知,该评价结论将是决定采用何种规范计算方法的主要依据。 (2)勘探孔是否已钻入预计嵌岩面以下(3~5)d,并穿过溶洞、破碎带,到达稳定地层。 (3)基岩持力层f rk试验值是否具有足够的代表性。一方面应采取不少于6组的岩样进行单轴抗压强度试验,另一方面岩样应取自预计桩端深度范围。有的场地上部基岩裂隙发育而取样困难,用于抗压强度试验的岩样取自该岩带的下部,甚至取样深度已接近钻孔终孔深度。对此有必要要求勘察单位取上部的破碎岩样补充做点荷载试验,或根据地方经验对岩样f rk值作适当降低。 对基岩设计参数的检查判断,可进一步参考文[14]。 3 注意规范方法适用条件,避免嵌岩桩设计误区 笔者认为,嵌岩桩竖向承载力四种规范计算方法的差异,可能是源于地区、行业的习惯和统计数据来源的差异。按照我国技术标准体系的特点,列入规范的方法、公式一般都有一定的实测数据、成功的工程经验予以支持,是比较成熟可靠的。 根据有关研究[15-19],各种规范方法的承载力估算结果都普遍偏于安全,个别情况下有较大的富余,因此不存在哪种方法更好的问题。具体使用时需注意规范方法的适用条件、配套的施工要求(如成桩工艺、桩端沉渣厚度等)和调整系数的正确取值,因地制宜地合理选择采用。下面就一些相关问题进行分析讨论。 3.1 是否可以采用地基规范法估算嵌入软岩的嵌岩桩承载力 对嵌入完整、较完整硬质基岩的嵌岩桩,地基规范法提供了只计端阻力的单桩承载力简化计算公式。按《建筑地基基础设计规范》[1]表4.1.3,硬质岩 授课:XXX

灌注桩计算书

1.按桩身受压承载力计算:《建筑桩基技术规范》5.8.2 荷载效应基本组合下桩顶轴向压力设计值N≤ψc f c A ps+0.9f y A s Ψc:成桩工艺系数,取0.75 A ps=0.32×π=0.283m2;A s=1539mm2(10 14); N≤ψc f c A ps+0.9f y A s=0.75×16.7×0.28×106+0.9×360×1539=4043KN 单桩竖向承载力特征值取N/1.35=4043÷1.35=2995KN 2.按中风化灰岩端阻力计算:《建筑桩基技术规范》5. 3.9 Q t=Q s+Q r; Q s=μ∑q si l i ; Q r=ζr f r A p;l i=0.6π=1.885m 根据勘察报告,f r=32.73Mpa,崁岩深度为 1.0m,极限端阻力值和极限侧阻力分别为: Q s=μ∑q si l i=(2.08×10+9.01×22+10.37×30)×1.885=999KN Q r=ζr f r A p=1×1.5×0.502×106=753KN 单桩承载力特征值R a=Q s+ Q r=999+??=??KN 综上:直径为600mm的桩单桩竖向承载力特征值取3000KN

1按桩身受压承载力计算:《建筑桩基技术规范》5.8.2 荷载效应基本组合下桩顶轴向压力设计值N≤ψc f c A ps+0.9f y A s ψc:成桩工艺系数,取0.75 A ps=0.32×π=0.283m2;A s=1539mm2(10 14); N≤ψc f c A ps+0.9f y A s=0.75×16.7×0.28×106+0.9×360×1539=4043KN 单桩竖向承载力特征值取N/1.35=4043÷1.35=2995KN 2.按中风化灰岩端阻力计算:《建筑桩基技术规范》5. 3.9 Q uk=Q sk+Q rk; Q sk=μ∑q sik l i ; Q rk=ζr f rk A p;μ=0.6π=1.885m Q uk:单桩竖向极限承载力标准值 Q sk:土的总极限侧阻力标准值 Q rk:土的嵌岩段总极限阻力标准值 μ:桩身周长 q sik:桩周土与岩石极限侧阻力标准值 f rk:岩石饱和抗压强度 l i:桩周第i层土厚度 ζr:桩嵌岩段侧阻和端阻综合系数,表5.3.9 A p:桩端面积 根据勘察报告,f r=33Mpa,崁岩深度为1.0m,极限端阻力值和极限侧阻力分别为:Q sk=μ∑q si l i=(5.7×30+6.1×50+8.7×200)×1.885=3756KN Q rk=ζr f r A p=0.86×33×2.83×105=8031KN Q uk=Q sk+Q rk=3756+8031=11787KN 单桩承载力特征值R a=Q uk/K=11787/2=5893KN 综上:直径为600mm的桩单桩竖向承载力特征值取3000KN

相关文档
相关文档 最新文档