文档库 最新最全的文档下载
当前位置:文档库 › 高层建筑风致响应和等效静力风荷载的特征_顾明

高层建筑风致响应和等效静力风荷载的特征_顾明

高层建筑风致响应和等效静力风荷载的特征_顾明
高层建筑风致响应和等效静力风荷载的特征_顾明

等效风荷载计算方法分析

等效静力风荷载的物理意义 从风洞试验获取屋面风荷载气动力信息,到得到结构的风振响应整个过程来看,计算过程中涉及到风洞试验和随机振动分析等复杂过程,不易为工程设计人员所掌握,因此迫切需要研究简便的建筑结构抗风设计方法。 等效静力风荷载理论 就是在这一背景下提出的。其基本思想是将脉动风的 动力效应以其等效的静力形式表达出来,从而将复杂的动力分析问题转化为易于被设计人员所接受的静力分析问题。等效静力风荷载是联系风工程研究和结构设计的纽带[3] ,是结构抗风设计理论的 核心内容,近年来一直是结构风工程师研究的热点之一。 等效静力风荷载的物理意义可以用单自由度体系的简谐振动来说明 [45, 108] 。 k c P(t) x(t) 图1.3 气动力作用下的单自由度体系 对如图1.3的单自由度体系,在气动力 P t 作用下的振动方程为: mx cx kx P t (1.4.1) 考虑粘滞阻尼系统,则振动方程可简化为: 2 00 2 22P t x f x f x m (1.4.2) 式中 12 f k m 为该系统的自振频率, 2c km 为振动系统的临界阻尼比。 假设气动力为频率为 f 的简谐荷载,即 20i ft P t F e ,那么其稳态响应为: 202 00 1 2i ft F k x t e f f i f f (1.4.3) 进一步化简有: 2 i ft x t Ae (1.4.4) 其中 02 2 2 1 2F k A f f f f , 2 2arctan 1 f f f f , A 为振幅, 为气动力和 位移响应之间的相位角。 现在假设该系统在某静力 F 作用下产生幅值为A 的静力响应,那么该静力应该为:

风荷载计算

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:(-1) 式中: 1.基本风压值Wo 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的 值确定的风速V0(m/s)按公式确定。但不得小于0.3kN/m2。 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μs 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区; 书P55页表4.2给出了各类地区风压沿高度变化系数。位于山峰和山坡地的高层建筑,其风压高系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μz 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的小。一般取决于建筑建筑物的平面形状等。 计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型或由风洞试验确定。几种常用结构形式的风载体型系数如下图

荷载静力计算

常用结构计算 荷载结构静力计算 荷载 1.结构上的荷载 结构上的荷载分为下列三类: (1)永久荷载如结构自重、土压力、预应力等。 (2)可变荷载如楼面活荷载、屋面活荷载和积灰荷载、吊车荷载、风荷载、雪活载等。 (3)偶然荷载如爆炸力、撞击力等。 建筑结构设计时,对不同荷载应采用不同的代表值。 对永久荷载应采用标准值作为代表值。 对可变荷载应根据设计要求,采用标准值、组合值、频遇值或准永久值作为代表值。 对偶然荷载应按建筑结构使用的特点确定其代表值。 2.荷载组合 建筑结构设计应根据使用过程中在结构上可能同时出现的荷载,按承载能力极限状态和正常使用极限状态分别进行荷载(效应)组合,并应取各自的最不利的效应组合进行设计。 对于承载能力极限状态,应按荷载效应的基本组合或偶然组合进行荷载(效应)组合。 γ0S≤R (2-1) 式中γ0——结构重要性系数; S——荷载效应组合的设计值; R——结构构件抗力的设计值。 对于基本组合,荷载效应组合的设计值S应从下列组合值中取最不利值确定: (1)由可变荷载效应控制的组合 (2-2)

式中γG——永久荷载的分项系数; γQi——第i个可变荷载的分项系数,其中Y Q1为可变荷载Q1的分项系数; S GK——按永久荷载标准值G K计算的荷载效应值; S QiK——按可变荷载标准值Q ik计算的荷载效应值,其中S Q1K为诸可变荷载效应中起控制作用者; ψci——可变荷载Q i的组合值系数; n——参与组合的可变荷载数。 (2)由永久荷载效应控制的组合 (2-3)(3)基本组合的荷载分项系数 1)永久荷载的分项系数 当其效应对结构不利时: 对由可变荷载效应控制的组合,应取1.2; 对由永久荷载效应控制的组合,应取1.35; 当其效应对结构有利时: 一般情况下应取1.0; 对结构的倾覆、滑移或漂浮验算,应取0.9。 2)可变荷载的分项系数 一般情况下应取1.4; 对标准值大于4kN/m2的工业房屋楼面结构活荷载应取1.3。 对于偶然组合,荷载效应组合的设计值宜按下列规定确定:偶然荷载的代表值不乘分项系数;与偶然荷载同时出现的其他荷载可根据观测资料和工程经验采用适当的代表值。 3.民用建筑楼面均布活荷载标准值及其组合值、频遇值和准永久值系数(见表2-1)民用建筑楼面均布活荷载标准值及其组合值、频遇值和准永久值系数表2-1 项次类别 标准值 (kN/m2) 组合值系数 ψc 频遇值系数 ψf 准永久值系数 ψq 1 (1)住宅、宿舍、旅馆、办公楼、医院 病房、托儿所、幼儿园 0.5 0.4

高层建筑结构方案设计荷载估算

高层建筑结构方案设计荷载估算 1.2 高层建筑结构作用效应的特点 1.2.1 高层建筑结构的受力特点 建筑结构所受的外力(作用)主要来自垂直方向和水平方向。在低、多层建筑中,由于结构高度低、平面尺寸较大,其高宽比很小,而结构的风荷载和地震作用也很小,故结构以抵抗竖向荷载为主。也就是说,竖向荷载往往是结构设计的主要控制因素。 建筑结构的这种受力特点随着高度的增大而逐渐发生变化。 在高层建筑中,首先,在竖向荷载作用下,由图1.2.1-1所示的框架可知,各楼层竖向荷载所产生的框架柱轴力为: 边柱 N=wlH/2h 中柱 N=wlH/h 即框架柱的轴力和建筑结构的层数成正比;边柱轴力较中柱小,基本上与其受荷面积成正比。就是说,由各楼层竖向荷载所产生的累积效应很大,建筑物层数越多,底层柱轴力越大;顶、底层柱轴力差异越大;中柱、边柱轴力差异也越大。 其次,在水平荷载作用下,作为整体受力分析,如果将高层建筑结构简化为一根竖向悬臂梁,那么由图1.2.1-2、图1.2.1-3所示其底部产生的倾复弯矩为: 水平均布荷载 Mmax=qH2/2 倒三角形水平荷载 Mmax= Qh3/3 即结构底部产生的倾复弯矩与楼层总高度的平方成正比。就是说,建筑结构的高度越大,由水平作用对结构产生的弯矩就更大,较竖向荷载对结构所产生的累积效应增加更快,其产生的结构内力占总结构内力的比重越大,从而成为结构强度设计的主要控制因素。 1.2.2 高层建筑结构的变形特点 在竖向荷载作用下,高层建筑结构的变形主要是竖向构件的压缩变形。由于各竖向构件的应力大小不同,因而其压缩变形大小也不同。在钢筋混凝土结构中,由于在施工过程中的找平, 同时由于各竖向构件的基底轴力大小不同,若不对基底应力进行调整,也可能导致基础产生不均匀沉降。 在水平荷载作用下,高层建筑结构最大的顶点位移为: 水平均布荷载△max=qH4/8EI 倒三角形水平荷载△max= 11qH4/120EI 式中EI为结构的 从以上可看出,结构顶点位移与其总高度的四次方成正比。则又比水平荷载作用下的内力累积效应增加更快,这就说明,高层建筑结构对结构

[整理]5风荷载计算

5 风荷载计算 5.1 风荷载标准值 主体结构计算时,为了简化计算,作用在外墙面上的风荷载可近似作用在屋面梁和楼面梁处的等效集中荷载替代,垂直于建筑物表面的风荷载标注值按公式5-1计算。 0k z s z ωβμμω???= (5-1) 式中:k ω——风荷载标准值; s μ——风荷载体型系数; z μ——风压高度变化系数; 0ω——基本风压值,本设计中的基本风压取30.00=ω; z β——高度z 处的风振系数; 根据《建筑结构荷载规范》(GB50009—2012)第8.2.1条规定:地面粗糙度可分为四类:A 类指近海海面和海岛、海岸、湖岸及沙漠地区;B 类指田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇;C 类指有密集建筑群的城市市区;D 类指有密集建筑群且房屋较高的城市市区。本设计中地面粗糙度取C 类。 高度z 处的风振系数z β的计算式见公式5-2。 1z z z ξν?βμ=+ (5-2) ξ——脉动增大系数; ν——脉动影响系数; z ?——振型系数; z μ——风压高度变化系数。 根据《建筑结构荷载规范》(GB50009—2012)第8.3节可知:对于框架结构的基本自振周期可以近似按照()10.08~0.10T n n =(n 为建筑层数)估算,应考虑风压脉动对结构发生顺风向风振的影响,本设计中自振周期取10.090.0960.54T n s ==?=,经过计算, 2 1200.300.54=0.087T ω=?。风载体型系数由《建筑结构荷载规范》(GB50009—2012)第8.3节续表8.3.1可以查得:8.0=s μ(迎风面)和5.0-=s μ(背风面)。 根据《建筑结构荷载规范》(GB50009—2012)第8.4.1条规定:当结构基本自振周期s T 25.0≥时,以及对于高度超过30m 且高宽比大于1. 5 的高柔房屋,由风引起的结构振动比较明显,而且随着结构自振周期的增长,风振也随之增强。因此在设计中应考虑风振的影响,而且原则上还应考虑多个振型的影响。 由于本工程总高度为23.00m ,自振周期虽已超过0.25s ,但不属于高耸结构和大跨度结构,所以根据荷载规范8.4.1,本工程不考虑顺风向风振的影响。即本工程在高度z 处

等效静力法模拟风荷载的探讨

等效静力法模拟风荷载的探讨 摘要:本文应用CAESAR II软件采用等效静力法模拟风荷载,详细介绍如何编辑风荷载校核工况,进行加入风荷载的一次应力校核和导向支架的受力评定。 关键词:CAESAR II 风荷载校核管道工况编辑; Discussion on Simulating Wind Load with Equivalent Static Method ZHANG Xian-yue LIU Junchen (CPECC East-china Design Branch,Qingdao 266071,China) Abstract:The paper uses the equivalent static method to simulate the wind load in CAESARII software,particularly presents how to edit the wind load checking condition,and provides the method to how to consider the the primary stress of wind load and the forces of the guide supports. Key words:CAESAR II;wind load;check;pipeline;edit condition; CAESARII软件是由美国COADE公司研制开发的专业管道应力分析软件,它是以梁单元模型为基础的有限元分析程序,它可以进行静力分析也可以进行动力分析[1]。在炼油厂中,管道在工作状态下,除了要承受压力、重力、其他持续荷载作用,还要承受风荷载偶然荷载的作用,ASME B31.3[2]和GB50316[3]要求偶然荷载产生的一次应力不得超过操作状态许用受力的1.33倍。严格的说,风荷载属于动力荷载,应该采用动力学方法进行分析。但是由于动力分析方法过于复杂,难以应用于实际工程设计,所以风荷载计算时,可以采用等效静力法分析计算。该方法将风的荷载作用转化为等效静力荷载,然后采用静力方法进行分析[1]。 一、风荷载的输入 下面以某炼油厂的常减压装置常压塔顶油气线为例,举例说明风荷载的校核方法。根据常减压装置所在地的气象数据,确定基本风压值[4]和地面粗糙度[4]的类别,计算不同高度对应的风压值,输入到CAESAR II风荷载数据表中。考虑到风方向的不确定性,通常将东南西北四个方向的风全部引入到分析模型中,并进行相应的偶然工况编辑,完成受力校核计算。如图1所示填入风荷载和对应高度值: 图1 二、风荷载的工况编辑

高层建筑风环境及其影响研究报告

高层建筑风环境及其影响研究 江清源 概述 随着经济特区的发展,一座座标志性的高层建筑拔地而起,人们自然关心风这个自然因素对这些高层建筑有什么影响?反过来这些高层建筑围又会形成一个什么样的风环境?它对城市规划建筑设计、施工和人们的生活有什么影响?近年来风工程研究工作者都在对高层建筑的风环境进行研究。 所谓“高层建筑”,联合国教科文组织所属的世界高层建筑委员会在1972年召开的年会上曾建议将高层建筑分为四类:即9~16层最高50米者为第一类;17~25层最高75米者为第二类;26~40层最高100米者为第三类;40层以上高于100米者为第四类高层建筑(超高层建筑)。 我国在上世纪80年代以前,10层以上就称为高层建筑。但目前的标准已定为:20层左右为中高层建筑;30层,高100米左右为高层建筑;50层,高200米以上为超高层建筑。 国外高层建筑及其群体所造成负面影响——不良风环境问题,甚至风灾,事故频发,不得不引起我们的关注和重视。国近几年来建筑物的玻璃幕墙、屋顶搭盖物被大风吹毁的事例也不少。如上世纪末回族自治区某宾馆在偶发阵风作用下,一片幕墙玻璃飞落,当场把在宾馆门口迎宾的新娘子砸死。还有大学逸夫楼在一夜大风劲吹下,所有的幕墙玻璃几乎都被吹毁。至于台风季节建筑物、结构物、幕墙玻璃及覆盖物等被风吹毁的事例,在沿海城市更是屡见不鲜的事实。如9914#台风登陆吹倒了会展中心施工塔吊,太古飞机工程公司机库钢板屋面被风掀翻,也是人所共知。 除上述建筑物及其群体在大风中其覆面材料或构件被毁坏的事例外,由于建筑物的体型及其群体布局不当而给行人及地面交通、生活环境等带来的不良风环境影响的事例也更多。 在大风季节时,高层建筑及其群体的布局,可能造成对自身及其围不良风环境,甚至风灾的课题,已责无旁贷地展现在今日城市规划、建筑设计部门、施工单位的面前。如同城市气污染、噪声污染、光污染、采光权纠纷等环境问题一样,能否在高层建筑的规划与布局伊始,事先就密地考虑到优化风环境,防不测风灾,而进行认真的论证和试验,这已成为评估城市建设规划优劣的一个重要衡量指标。显然,良好的风环境指的是,在气象工作者给出的某一大区域里风特性的条件下,为了使人们工作、居住生活与活动有一个舒适的环境,城市规划与设计部门能否力求以最小的代价去营造一个安全而舒适的风环境,来满足广大人民群众安居乐业之需。本文笔者尽所能地收集国外带有普遍性的高层建筑风环境问题的详实资料

高层建筑风荷载

高层建筑风荷载 摘要:文章主要介绍了风荷载对高层建筑的作用,关于风荷载研究的一些方法,并用我做过的北京中铁物流大厦的风洞试验为例说明风洞实验的研究方法。阐述了一些结构等效静力风荷载的计算方法以及抗风设计中应值得继续研究的问题。 关键字:高层建筑,抗风,风洞试验,等效静力风荷载,问题 1.引言 风是从高气压吹向低气压的一种气流。高层建筑是在特殊地区和时间下,为了满足社会和经济的需求而建造的,其独特性和各自特异的风格,增加了城市景观,吸引了大量的旅游观光者。而更具有实用意义的是满足了城市日益增长的工作、生活空间的需求。但任何建筑高度的增加必将会增加风荷载的力度。 风荷载是各类建筑物的主要侧向荷载之一, 对于高、大、细、长等柔性结构而言, 风荷载是起主要作用的, 且时常超过地震作用而成为决定性荷载, 复杂的动力风效应影响是结构设计的控制因素之一。灾害性台风可能导致结构主体开裂或损坏;长时间持续的风致振动则可能使结构某些部位如节点、支座等产生疲劳与损伤, 危及结构安全。随着新技术、新材料、新工艺、新型式、新设计方法的应用, 工程结构也朝着长大化、高耸化、复杂化、柔性化、小阻尼方向发展, 这使得其固有频率越来越接近强风的卓越频率, 对风的敏感性越来越强。因此重大的高耸柔性结构在风荷载作用下的动力效应特性研究也受到学术界和工程界的极大关注和重视。 2.风荷载的分类 风对高层建筑是一种持续时间较长的随机荷载。风对结构物的作用,使结构产生震动,其原因主要有:(1)有与风向一致的风力作用,它包括平均风和脉动风,其中脉动风要引起结构物的顺风向振动,这种形式的振动在一般工程结构中都要考虑;(2)结构物背后的漩涡引起结构物的横风向的振动;(3)由别的建筑物尾流中的气流引起的振动。 2.1 顺风向荷载 《建筑结构荷载规范》(GB50009-2012)明确给出了高层建筑顺风向等效荷载的计算方法,著名学者A.G.Davenport在60 年代建立了基于抖振理论的结构顺风向风荷载计算模型,成为风工程研究及各国制定风荷载规范的基础。由于对等效静力风荷载认识的差别,该计算模型在实际应用中又发展成阵风荷载因子(GLF)法、惯性风荷载(IWL)法、基底弯矩阵风荷载因子法(MGLF)等。GLF 法由Davenport于60 年代提出,现已成为公认的经典方法。该法认为背景和共振分量与平均分量服从同一分布,且与响应类型无关。IWL 法采用惯性力模型来计算背景和共振分量,我国规范采用这一方法。MGLF 法认为基底弯矩对应的背景等效风荷载可以近似作为实际的背景等效风荷载,根据脉动基底弯矩并按振型分解则可得到

典型高层建筑风荷载风洞试验研究

Hans Journal of Civil Engineering 土木工程, 2017, 6(4), 399-407 Published Online July 2017 in Hans. https://www.wendangku.net/doc/dc7734271.html,/journal/hjce https://https://www.wendangku.net/doc/dc7734271.html,/10.12677/hjce.2017.64047 文章引用: 赵敬义, 陈伏彬, 蔡虬瑞, 张明亮, 林立. 典型高层建筑风荷载风洞试验研究[J]. 土木工程, 2017, 6(4): Study of Wind Loads on Typical High-Rise Building by Wind Tunnel Test Jingyi Zhao 1*, Fubin Chen 2#, Qiurui Cai 2, Mingliang Zhang 3, Li Lin 4 1Jinan Lixia Holding Group CO. LTD., Jinan Shandong 2 School of Civil Engineering and Architecture, Changsha University of Science & Technology, Changsha Hunan 3 Hunan NO.6 Engineering CO. LTD., Changsha Hunan 4 Institute of Civil Engineering and Architecture, Xiamen University of Technology, Xiamen Fujian Received: Jun. 29th , 2017; accepted: Jul. 13th , 2017; published: Jul. 18th , 2017 Abstract Wind loads and wind responses of high-rise building are analyzed in detail, based on the wind tunnel test data of Tower-A. And then the design wind loads for curtain wall, structure subject, and wind induced acceleration response have been obtained. The results show that: 1) Significant in-terference effects by around buildings were found; 2) The maximum design wind loads for struc-ture subject occurred on oblique wind direction, such as 195? and 240?. The results are expected to be very useful for the wind load design of the Tower. Keywords High-Rise Building, Wind Tunnel Test, Wind Load, Wind Effect, Interference Effect 典型高层建筑风荷载风洞试验研究 赵敬义1*,陈伏彬2#,蔡虬瑞2,张明亮3,林 立4 1济南历下控股集团有限公司,山东 济南 2 长沙理工大学土木与建筑学院,湖南 长沙 3 湖南省第六工程有限公司,湖南 长沙 4 厦门理工学院土木工程与建筑学院,福建 厦门 收稿日期:2017年6月29日;录用日期:2017年7月13日;发布日期:2017年7月18日 * 第一作者。 # 通讯作者。

风荷载标准值

风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,力,位移,加速度等)是高层建筑设计 计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特 点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动 (简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对 结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件力。阵风对结构的 作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析 脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法 为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引 起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风 振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。 横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算 (3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷载,对结构进行动力计算 风荷载标准值的表达可有两种形式,其一为平均风压加上由脉 动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。由于在结构的风振计算中,一般往往是第1振型起主要作

风荷载计算算例

.风荷载计算 根据《建筑结构荷载规范》(GB50009-2012)规范,风荷载的计算公式为: 0k z s z w u u βω= () s u ——体型系数 z u ——风压高度变化系数 z β——风振系数 0ω——基本风压 k w ——风荷载标准值 体型系数s u 根据建筑平面形状由《建筑结构荷载规范》项次30,迎风面体型系数(压风指向建筑物内侧),背风面(吸风指向建筑外侧面),侧风面(吸风指向建筑外侧面)。 风压高度变化系数z u 根据建筑物计算点离地面高度和地面粗糙度类别,按照规范表确定。本工程结构顶端高度为+=米,建筑位于北京市郊区房屋较稀疏,由规范条地面粗糙度为B 类。 由表高度90米和100米处的B 类地面粗糙度的风压高度变化系数分别为和。 则米高度处的风压高度变化系数通过线性插值为: 对于高度大于30m 且高宽比大于的房屋,以及基本自振周期T1大于的各种高耸结构,应考虑风压脉动对结构产生顺风向风振的影响。 本工程30层钢结构建筑。基本周期估算为()1T =0.10~0.15n=3.0~4.5s ,应考虑脉动风对结构顺风向风振的影响,并由下式计算: 1012Z z gI B β=+ () 式中: g ——峰值因子,可取 10I ——10m 高度名义湍流强度,对应ABC 和D 类地面粗糙,可分别取、、和;

R ——脉动风荷载的共振分量因子 z B ——脉动风荷载的背景分量因子 脉动风荷载的共振分量因子可按下列公式计算: 式中: 1f ——结构第1阶自振频率(Hz ) w k ——地面粗糙度修正系数,对应A 、B 、C 和D 类地面粗糙,可分别取、、和; 1ζ——结构阻尼比,对钢结构可取,对有填充墙的钢结构房屋可取,对钢筋混凝土及砌体结构可取,对其他结构可根据工程经验确定。 经过etabs 软件分析,结构自振周期1 4.67f s = 脉动风荷载的背景分量因子可按下列规定确定: 式中: 1()z φ——结构第1阶振型系数 H ——结构总高度 (m ),对应A 、B 、C 和D 类地面粗糙度,H 的取值分别不能大于300m 、350m 、450m 和550m ; x ρ——脉动风荷载水平方向相关系数; z ρ——脉动风荷载竖向方向相关系数; k 、1α—— 脉动风荷载的空间相关系数可按下列规定确定: (1)竖直方向的相关系数可按下式计算: 式中: H ——结构总高度 (m );对应A 、B 、C 和D 类地面粗糙度,H 的取值分别不应大于300m 、350m 、450m 和550m ; (2) 水平方向相关系数可按下式计算: 式中:

风荷载标准值

风荷载标准值 文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

风荷载标准值 关于风荷载计算 风荷载是高层建筑主要侧向荷载之一,结构抗风分析(包括荷载,内力,位移,加速度等)是高层建筑设计计算的重要因素。 脉动风和稳定风 风荷载在建筑物表面是不均匀的,它具有静力作用(长周期哦部分)和动力作用(短周期部分)的双重特点,静力作用成为稳定风,动力部分就是我们经常接触的脉动风。脉动风的作用就是引起高层建筑的振动(简称风振)。 以顺风向这一单一角度来分析风载,我们又常常称静力稳定风为平均风,称动力脉动风为阵风。平均风对结构的作用相当于静力,只要知道平均风的数值,就可以按结构力学的方法来计算构件内力。阵风对结构的作用是动力的,结构在脉动风的作用下将产生风振。 注意:不管在何种风向下,只要是在结构计算风荷载的理论当中,脉动风一定是一种随机荷载,所以分析脉动风对结构的动力作用,不能采用一般确定性的结构动力分析方法,而应以随机振动理论和概率统计法为依据。 从风振的性质看顺风向和横风向风力 顺风向风力分为平均风和阵风。平均风相当于静力,不引起振动。阵风相当于动力,引起振动但是引起的是一种随机振动。也就是说顺风向风力除了静风就是脉动风,根本就没有周期性风力会引起周期性风振,绝对没有,起码从结构计算风载的理论上顺风向的风力不存在周期性风力。

横风向,既有周期性振动又有随机振动。换句话说就是既有周期性风力又有脉动风。反映在荷载上,它可能是周期性荷载,也可能是随机性荷载,随着雷诺数的大小而定。 有的计算方法 根据现有的研究成果,风对结构作用的计算,分为以下三个不同的方面: (1)对于顺风向的平均风,采用静力计算方法 (2)对于顺风向的脉动风,或横风向脉动风,则应按随机振动理论计算(3)对于横风向的周期性风力,或引起扭转振动的外扭矩,通常作为稳定性荷 载,对结构进行动力计算 风荷载标准值的表达可有两种形式,其一为平均风压加上由脉动风引起导致结构风振的等效风压;另一种为平均风压乘以风振系数。由于在结构的风振计算中,一般往往是第1振型起主要作用,因而我国与大多数国家相同,采用后一种表达形式,即采用风振系数βz,它综合考虑了结构在风荷载作用下的动力响应,其中包括风速随时间、空间的变异性和结构的阻尼特性等因素。 WK=βzμsμZ W0 W0基本风压 WK 风荷载标准值 βz z高度处的风振系数 μs 风荷载体型系数

单层网壳结构等效静风荷载分布估计

第23卷第1期 Vol.23 No.1 工 程 力 学 2006年 1 月 Jan. 2006 ENGINEERING MECHANICS 57 ——————————————— 收搞日期:2004-04-12;修改日期:2004-06-16 基金项目:日本东京工艺大学21世纪COE 项目;国家自然科学基金项目(50508024) 作者简介:*李元齐(1971),男,湖北云梦人,副研究员,博士后,从事结构工程研究(liyq@https://www.wendangku.net/doc/dc7734271.html,); Yukio Tamura(1947),男,日本神奈川县大和市人,教授,博士,同济大学顾问教授,从事结构工程及风工程研究; 沈祖炎(1935),男,浙江杭州人,教授,博导,从事结构工程研究. 文章编号:1000-4750(2006)01-0057-05 单层网壳结构等效静风荷载分布估计 * 李元齐1 ,田村幸雄2,沈祖炎1 (1. 同济大学建筑工程系,上海 200092;2. 东京工艺大学风工程研究中心,日本 厚木 243-0297) 摘 要:单层网壳对外荷载分布极为敏感,且稳定问题是其结构设计中的主要问题,因此风荷载分布的估计对其结构静力抗风分析非常重要。但目前常采用的等效静风荷载分布并不能有效反映其脉动分量对结构稳定性的可能不利影响。首先简单回顾了目前单层网壳抗风分析的方法,并介绍了一种基于风洞试验的有效风荷载分布估计方案。随后从稳定分析角度提出了一种新方法,可用来简单高效地估计单层网壳的有效风荷载分布,同时还可就风荷载的影响进行保守分析。最后,分别采用单层球面和柱面网壳作为算例,基于风洞试验结果,比较了不同估计方法在分析这类结构极限承载能力及稳定性问题时的效率,表明了所提出方法在单层网壳稳定分析中估计有效风荷载分布时的优点。 关键词:单层网壳;稳定性;风荷载;风洞试验;有效风荷载分布;最不利风荷载分布 中图分类号:TU311.4; TU394 文献标识号:A ESTIMATION OF EQUIVALENT STATIC WIND LOAD DISTRIBUTION FOR SINGLE-LAYER RETICULATED SHELLS * LI Yuan-qi 1 , Tamura Yukio 2 , SHEN Zu-yan 1 (1. Tongji University, Shanghai 200092, China; 2. Tokyo Polytechnic University, Atsugi 243-0297, Japan) Abstract: Wind load estimation is very important to single-layer reticulated shells since this system is sensitive to external load distribution, and stability analysis is a main problem in structural design. However, the current estimated equivalent static wind load may not reflect the actual effect of fluctuating wind load on the stability of the shells. In this paper, existing methods used to estimate equivalent static wind load distribution are briefly reviewed. A framework to estimate the effective static wind load distribution for the single-layer reticulated shells based on wind tunnel tests is introduced. Then, a new simple method on the basis of stability analysis is presented to give a conservative estimation of wind load effects, and to improve the efficiency in estimating the effective static wind load distribution. Finally, by comparative analysis of a spherical and a cylindrical single-layer reticulated shell with different methods mentioned and wind tunnel tests, the efficiency of the present method for limit load-carrying capacity and stability analysis of single-layer reticulated shells is demonstrated. Key words: single-layer reticulated shells; stability; wind load; wind tunnel test; effective static wind load distribution; most unfavorable wind load distribution 网壳结构是一种同时具有杆系结构及薄壳结构优点的空间网格结构体系。在其结构设计中,结构变形及稳定性通常是主要问题,且有时必须考虑 其几何非线形特性[1,2]。同时,这种结构体系对初始缺陷的分布非常敏感。另一方面,结构使用阶段实际可能遭受的外荷载分布与设计阶段估计的荷载

一般情况下的风荷载计算

参考规范: 《建筑结构荷载规范》GB50009-2012 《高层建筑混凝土结构技术规程》JGJ3-2010 风荷载: 风荷载标准值 《荷载规范》8.1.1、《高规》4.2.1 0w w z s z k μμβ= (1)该风荷载标准值的计算公式适用于计算主要承重(主体)结构的风荷载; (2)所求的风荷载标准值为顺风向的风荷载; (3)风荷载垂直于建筑物的表面; (4)风荷载作用面积应取垂直于风向的最大投影面积; (5)适用于计算高层建筑的任意高度处的风荷载。 基本风压 《荷载规范》3.2.5第2款 对雪荷载和风荷载,应取重现期为设计使用年限…… 《荷载规范》8.1.2 基本风压应采用按本规范规定的方法确定的50年重现期的风压,但不得小于0.3kN/㎡。 《荷载规范》E.5 《高规》4.2.2 ……对风荷载比较敏感的高层建筑,承载力设计时应按基本风压的1.1倍采用。 (条文说明)……一般情况下,对于房屋高度大于60m 的高层建筑,承载力设计时风荷载计算可按基本风压的1.1倍采用…… 《烟规》5.2.1 ……基本风压不得小于0.35kN/㎡。对于安全等级为一级的烟囱,基本风压应按100年一遇的风压采用。 风压高度变化系数 《荷载规范》8.2.1 地面粗糙度 A 类 近海海面和海岛、海岸、湖岸及沙漠地区 B 类 田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇 C 类 密集建筑群的城市市区 D 类 密集建筑群且房屋较高的城市市区 《荷载规范》表8.2.1 对墙、柱的风压高度变化系数,均按墙顶、柱顶离地面距离作为计算高度z ,查表用插入法确定。 风压体型系数 《荷载规范》8.3.1 围墙:按第32项,取1.3 《高规》4.2.3 1 圆形平面建筑取0.8; 2 正多边形及截角三角形平面建筑,由下列计算:n s /2.18.0+=μ 3 高宽比H/B 不大于4的矩形、方形、十字形平面建筑取1.3; 4 下列建筑取1.4: 1)V 形、Y 形、弧形、双十字形、井字形平面建筑; 2)L 形、槽形和高宽比H/B 大于4的十字形平面建筑;

风荷载取值规范

3.1.3 风荷载 建筑物受到的风荷载作用大小,与建筑物所处的地理位置、建筑物的形状和高度等多种因素有关,具体计算按照《荷载规范》第7章执行。 1、风荷载标准值计算 垂直于建筑物主体结构表面上的风荷载标准值W K ,按照公式(3.1-2)计算: βz ——高度Z 处的风振系数,主要是考虑风作用的不规则性,按照《荷载规范》7.4要求取值。多层建筑,建筑物高度<30m ,风振系数近似取1。 (1)风荷载体型系数μS 风荷载体型系数,不但与建筑物的平面外形、高宽比、风向与受风墙面所成的角度有关,而且还与建筑物的立面处理、周围建筑物的密集程度和高低等因素有关,一般按照《荷载规 表3.1.10 建筑物体型系数取值表 注1:当计算重要且复杂的建筑物、及需要更细致地进行风荷载作用计算的建筑物,风荷载体型系数可按照《高层规程》中附录A 采用、或由风洞试验确定。 注4:当多栋或群集的建筑物相互间距离较近时,宜考虑风力相互干扰的群体作用效应。一般可将单体建筑的体型系数乘以相互干扰增大系数,该系数可参考类似条件的试验资料确定,必要时宜通过风洞试验确定。 注3:檐口、雨蓬、遮阳板、阳台等水平构件,计算局部上浮风荷载作用时,体型系数不宜小于2.0。 W W z s z k μμβ=)21.3(-

注4:验算表面围护结构及其连接的强度时,应按照《荷载规范》7.3.3规定,采用局部风压力体型系数。 (2)风压高度变化系数μz 设置风压高度变化系数,主要是考虑建筑物随着高度的增加风荷载的增大作用。 对于位于平坦或稍有起伏地形上的建筑物,其风压高度变化系数应根据场地粗糙程度按《荷载规范》7.2要求选用,表3.1.11中列出了常用风压高度变化系数的取值要求。 表3.1.11 风压高度变化系数 关于地面粗糙程度的分类: A类:近海海面、海岛、海岸、湖岸及沙漠地区; B类:田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇和城市郊区; C类:有密集建筑群的城市市区; D类:有密集建筑群和且房屋较高的城市市区。 (3)基本风压值W0 基本风压值W0,单位kN/m2,以当地比较空旷平坦场地上离地10m高、统计所得50年一遇10分钟平均最大风速为标准确定的风压值,各地的基本风压可按照《荷载规范》附录D 中的全国基本风压分布图查用,表3.1.12为浙江省主要城镇基本风压取值参考表。 2、基本风压的取值年限 《荷载规范》在附录D中分别给出了n=10年、n=50年、n=100年一遇的基本风压标准值,工程设计中根据建筑物的使用性质与功能要求,一般按照下列方法选用风压标准值的取值年限: ①临时性建筑物:取n=10年一遇的基本风压标准值; ②一般的工业与民用建筑物:取n=50年一遇的基本风压标准值; ③特别重要的建筑物、或对风压作用比较敏感的建筑物(建筑物高度大于60m):取 表3.1.12 浙江省主要城镇基本风压(kN/m2)取值参考表

高层建筑结构复习题

一、填空题 1、我国《高层建筑混凝土结构技术规程》规定:10层及10层以上或房屋高度 超过__28m_的住宅建筑和高度大于_24m__的其它民用建筑结构为高层建筑。 2、高层建筑常见的结构体系有_框架结构体系_、剪力墙结构体系、框架剪力墙 结构体系和_钢结构体系_。 3、在水平荷载作用下,高层框架结构以剪切变形为主,其整体位移曲线呈剪切 型,特点是结构层间位移随楼层增高而__增加__。 4、在水平荷载作用下,高层剪力墙结构以_弯曲变形为主,其整体位移曲线呈 弯曲型,特点是结构层间位移随楼层增高而___增加____。 5、在水平荷载作用下,框架的侧移曲线为剪切型,剪力墙结构的侧移曲线 为型,两种结构共同工作时的侧移曲线为弯剪型。 6、高层结构平面布置力求简单、规则、对称,竖向体型尽量避免外挑、内收, 力求刚度均匀渐变。 7、结构平面不规则类型包括扭转不规则、凹凸不规则和楼板局部不连 续。 8、结构竖向不规则类型包括刚度突变_ 、尺寸突变和楼层承载力突变。 9、高层建筑结构中常用的结构缝有_伸缩缝、沉降缝_和防震缝。 10、现浇框架结构当长度超过___55___米应设伸缩缝。 11、高层建筑的分析和设计比一般的多层建筑复杂得多,水平荷载是高层结构 的控制因素。 12、矩形、鼓形、十字形平面建筑(H/B≤4)风荷载体型系数为 1.4 。

13、高层建筑地震作用计算方法包括底部剪力法、震型分解反应谱法和弹性 时程分析法。 14、计算地震作用时,建筑结构的重力荷载代表值应取结构和构配件自重标准值和各可变荷载组合值之和。 15、地震作用影响系数应根据烈度、场地类别、设计地震分组和结构自震周期 及阻尼比确定。 16、抗震设防目标为小震不坏、中震可修、大震不倒。 17、框架结构在竖向荷载作用下的内力计算可近似的采用分层法。 18、框架结构在水平荷载作用下的内力计算可近似的采用反弯法和D值法。 19、采用分层法计算时,除低层以外其它各层柱的线刚度均乘0.9 的折减系数, 柱的弯矩传递系数数取为1/3 。 20、影响框架梁延性的因素主要有:纵筋配筋率、剪压力、跨高比和 塑性铰区的箍筋用量。 21、影响框架柱延性的因素主要有剪跨比、轴压比、箍筋配筋率和纵筋配筋率。 22、剪力墙按受力特性可分为:整体剪力墙、小口开整体剪力墙、双肢墙(多肢墙)和壁式框架 二、判断题 1、建筑物高度超过100m时,不论住宅建筑或公共建筑,均为超高层建筑。(√) 2、高层框架结构,在水平荷载作用下,其整体位移曲线呈弯曲型。(╳) 呈反S形的弯剪型位移曲线。 3、剪力墙结构比框架结构刚度大,空间整体性好,用钢量较省。(√) 4、框架-剪力墙结构中,主要利用剪力墙来承担大部分的水平向荷载。(√) 5、高层建筑结构布置时,楼电梯间宜设在凹角和结构端部。(╳)

相关文档