文档库 最新最全的文档下载
当前位置:文档库 › 一维GaN纳米结构的制备、表征及其特性研究

一维GaN纳米结构的制备、表征及其特性研究

一维GaN纳米结构的制备、表征及其特性研究
一维GaN纳米结构的制备、表征及其特性研究

38

德州学院学报第24卷

的结果一致.

2.3

SEM和HRTEM分析

图3给出了氨化温度为950℃时得到的GaN

纳米棒样品的扫描电镜(SEM)图,放大倍数分别为

5000和20000.这些纳米棒相互交错,任意地覆盖

了几乎整个衬底表面,大部分纳米棒长度可达几微

米。其直径在200nm左右,具有较高地纵横比,合

成的纳米棒大部分平直光滑,纳米棒表面并没有附着GaN颗粒或其它东西,少部分呈弯曲的形貌.表明在该条件下得到了较高质量的GaN纳米棒.

图3氨化温度为950度时得到的GaN纳米棒的SEM图像:a)5000;b)20

000

图4900℃时反应生成的一维GaN纳米线的SEMI墨l像:a)800;b)5

000

通过扫描电镜观察发现,除未溅射薄膜区域外,微米,其直径在30~120nm,具有较高地纵横比.

整个样品表面全部被一维纳米结构覆盖.图4为

通过透射电镜观测发现:900℃时硅衬底上的浅900℃时反应生成的样品的SEM照片,放大倍数分

黄色样品主要由基本平直光滑的纳米线组成,其顶

别为800和5000.如图4所示,样品表面分布着大端或底端并不存在任何纳米颗粒,大部分直径在30

量的一维线状结构,这些纳米线相互无序的交叉堆~120nm范围之内,最长的纳米线接近几十微米,叠在一起,平铺或斜铺在薄膜表面.这些纳米线大多与前面的扫描电镜观察结果一致;图5a)所示为一

沿平行于衬底的方向生长,其底端、顶端、表面并不根典型的直GaN纳米线的TEM图像(箭头所指),存在任何纳米颗粒,表明在该条件下得到了较高质

其直径约为90nm.它同时说明反应生成的GaN纳

量的GaN纳米线.大多数纳米线非常平直,表面比米线是实心的而不是中空的管状结构.图5b)是图较光滑,沿主轴方向粗细均匀.通过对多根纳米线进

5a)中所示直GaN纳米线的HRTEM图像,清晰的行观察统计,结果显示大部分纳米线长度可达十几

晶格像证明合成了GaN单晶纳米线.纳米线的晶面

第4期薛守斌,等:一维GaN纳米结构的制备、表征及其特性研究39

图5a)900"C时反应生成的单根直GaN纳米线的TEM图像

b)相应的高分辨电镜HRTEM晶格像和选区电子衍射SAED模式

间距约为0.260nlTl,与六方GaN体单晶(002)晶面间距(0.259rim)相近,表明此纳米线的生长方向平行于(002)晶面.其中插图是该纳米线的选区电子衍射(SAED)模式,衍射斑点排列十分规则,与六方GaN[ooi]的衍射对应一致,进一步说明该纳米线为六方结构的单晶GaN.

2.4光致发光谱(PL)分析

图6给出了样品在氨化温度为900℃下所得到的OaN纳米线、纳米棒的PL谱.从图中可以看出。样品在375.6nm处有一强的发光峰,在436.6nm和473.3rim处有一弱的发光峰.对于中心位于375.6nlTl发光峰对应于六方GaN纳米结构的近带边发射H71;由于合成的大部分纳米结构的直径均大于GaN的玻尔激子半径(11rim),超出了量子限制效应起作用的范围,因此,对于375.6nm处的带边

Wavelength/nm

图6~维(;-aN纳米线、纳米棒的光致发光谱发光峰,与文献报道的GaN体材料的发光峰相比,没有发生蓝移.对于位于436.6rim处的发光峰可能归因于C杂质取代N原子造成的深受主能级到导带的跃迁所致ll8|.位于473.3rim处的发光峰,是由于在氨化过程中和GaN重组过程中产生的缺陷或表面态所致。19,20].

2.5GaN生长机制的探索

在本工作中由于没有使用任何催化剂,制备的GaN纳米结构的表层也没发现非晶层的存在,因此所得一维GaN纳米结构的生长机制应该归结为气一固(VS)生长机制,其过程可能是:

首先在硅衬底上生长ZnO缓冲层,然后在氧气气氛下退火。得到较高质量的缓冲层。这将有利于随后溅射生长平整致密Ga。0。薄膜.在高温氨气氛围下对Ga20。/ZnO退火的过程中,在ZnO与Ga20。的交界面,由于存在原子间隙,氨气与二者反应[2¨,一层一层的进行.在高温下由于表面能降低,上层的Ga。O。和GaN就会降落在ZnO下一层上,同时在Si与ZnO的交界面,也会反应,ZnO一层挥发掉,另一层又沉积在Si衬底上,随着时间的推移(需要15rain的氨化时间),最终完全形成GaN落在Si衬底上(当然,Ga。O。上表面也会与氨气反应).虽然在氨化过程中ZnO会挥发,不可避免地产生缺陷和位错,形成了一些自组装纳米尺寸微孔,但在形成GaN的过程中仍能起到缓冲层的作用,能为随后的GaN纳米结构晶核的形成提供了模板和生长点.高温下氨气分解成NH:、NH、H:、N:等产物,固态Ga:O。与H:反应生成中间产物Ga:O,随后与体系中氨气反应首先得到GaN晶核,,反应方程式如

下‘22]

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

材料表征

填空题: 1、电子波长比可见光波长短的多,随着加速电压的升高,电子波长将减少。其电镜图像清晰度增大。 2、多级电磁镜组成的电子显微镜的放大倍数等于各级透镜放大倍数的积。 3、背散射电子除了与样品形貌有关外,还与样品成分有密切关系,平均原子序数高的物相背散射能力强。 4、随电磁透镜孔径角的减小,球差散焦斑半径将会减小,但衍射引起的埃里斑半径却增大。 5、电镜的有效放大率与仪器的分辨率相对应。 6、背散射电子比二次电子,俄歇电子能量都大一些。溢出深度也多的多,成像的色差较大,所以背散射电子图像分辨率较差。然而背散射电子的成像即代表形貌相也代表成分的像。 7、随着原子序数的减小,非弹性散射所占的比例越大,利用散射电子成像时,由于轻元素试样成像的色差较大,因此图像清晰度下降。 8、理想的单晶体试样产生周期规律排列的电子衍射斑点,多晶试样产生同心环状衍射花样,无定形的试样产生弥散状的衍射花样。 9、X射线能量色谱仪利用特征X射线能量的不同,对试样进行定性和定量分析。 10、扫描隧道显微镜检测的是探针和样品之间隧道电流,它与探针和样品之间距离有强烈的依赖关系。原子力显微镜与它相比最大的优点是可用来研究有较厚氧化层的样品和不要求样品表面导电。 11、透射电子显微镜分析要求样品对电子束是透明的,它的放大倍数比一般的扫描电子显微镜的大。 12、原子力显微镜检测的是探针和样品之间的作用力,它与探针和样品之间的距离有强烈的依赖关系。 13、衍射衬度的明场像是透射电子透过光栏孔,暗场像是衍射电子透过光栏孔。 14、电子束与物质相互作用时,随着特征X射线产生的同时常常也产生俄歇电子。 15、透射电镜的电子光学系统由照明系统,成像系统,图像观察和记录系统和样品室四部分组成。 16、电镜的能量谱仪利用透射电子能量的不同,对试样进行定性、定量分析。 17、电子显微镜是利用电子束流作光源使物体成像。电子束流的波长随着加速电压的增大而减小。 18、电磁透镜的分辨率一定时,它的景深随孔径半角的减小而增大,它的焦长除了与分辨率和孔径半角有关外还与透镜的放大倍数有关。

一维纳米材料的制备概述

学年论文 ` 题目:一维纳米材料的制备方法概述 学院:化学学院 专业年级:材料化学2011级 学生姓名:龚佩斯学号:20110513457 指导教师:周晴职称:助教

2015年3月26日 成绩 一维纳米材料制备方法概述 --气相法、液相法、模板法制备一维纳米材料 材料化学专业2011级龚佩斯 指导教师周晴 摘要:一维纳米材料碳纳米棒、碳纳米线等因其独特的用途成为国内外材料科学家的研究热点。然而关于如何制备出高性能的一维纳米材料正是各国科学家所探究的问题。本文概述了一维纳米材料的制备方法:气相法、液相法、模板法等。 关键词:一维纳米材料;制备方法;气相法;液相法;模板法 Abstract: the nanoscale materials such as carbon nanorods and carbon nanowires have become the focus of intensive research owing to their unique applications. but the question that how to make up highqulity one-dimentional nanostructure is discussing by Scientists all around the world. This parper has reviewed the preparation of one dimention nanomaterials ,such as vapor-state method, liqulid -state method ,template method and so on. Key words: one-dimention nanomaterials ; preparatinal method ; vapor-state method liqulid-state method ; template method 纳米材料是基本结构单元在1nm ~100nm之间的材料,按其尺度分类包括零维、一维、二维纳米材料。自80年代以来,零维纳米材料不论在理论上和实践中均取得了很大的进展;二维纳米材料在微型传感器中也早有应用。[1]一维纳米材料因其特殊的结构效应在介观物理、纳米级结构方面具有广阔的应用前景,它的制备研究为器件的微型化提供了材料基础。本文主要概述了近年来文献关于一维纳米材料的制备方法。 1 一维纳米材料的制备方法 近几年来,文献报导了制备一维纳米材料的多种方法,如溶胶-凝胶法、气相-溶液-固相法、声波降解法、溶剂热法、模板法、化学气相沉积法等。然而不同制备方法的纳米晶体生长机制各异。本文按不同生长机制分类概述,主要介绍气相法、液相法、模板法三大类制备方法。 1.1 气相法 在合成一维纳米结构时,气相合成可能是用得最多的方法。气相法中的主要机

结构动力特性测试方法及原理

结构动力特性的测试方法及应用(讲稿) 一. 概述 每个结构都有自己的动力特性,惯称自振特性。了解结构的动力特性就是进行结构抗震设 计与结构损伤检测的重要步骤。目前,在结构地震反应分析中,广泛采用振型叠加原理的反应谱分析方法,但需要以确定结构的动力特性为前提。n 个自由度的结构体系的振动方程如下: [][][]{}{})()()()(...t p t y K t y C t y M =+??????+?????? 式中[]M 、[]C 、[]K 分别为结构的总体质量矩阵、阻尼矩阵、刚度矩阵,均为n 维矩阵;{} )(t p 为外部作用力的n 维随机过程列阵;{})(t y 为位移响应的n 维随机过程列阵;{})(t y &为速度响应的n 维随机过程列阵;{})(t y && 为加速度响应的n 维随机过程列阵。 表征结构动力特性的主要参数就是结构的自振频率f (其倒数即自振周期T )、振型Y(i)与阻尼比ξ,这些数值在结构动力计算中经常用到。 任何结构都可瞧作就是由刚度、质量、阻尼矩阵(统称结构参数)构成的动力学系统,结构一旦出现破损,结构参数也随之变化,从而导致系统频响函数与模态参数的改变,这种改变可视为结构破损发生的标志。这样,可利用结构破损前后的测试动态数据来诊断结构的破损,进而提出修复方案,现代发展起来的“结构破损诊断”技术就就是这样一种方法。其最大优点就是将导致结构振动的外界因素作为激励源,诊断过程不影响结构的正常使用,能方便地完成结构破损的在线监测与诊断。从传感器测试设备到相应的信号处理软件,振动模态测量方法已有几十年发展历史,积累了丰富的经验,振动模态测量在桥梁损伤检测领域的发展也很快。随着动态测试、信号处理、计算机辅助试验技术的提高,结构的振动信息可以在桥梁运营过程中利用环境激振来监测,并可得到比较精确的结构动态特性(如频响函数、模态参数等)。目前,许多国家在一些已建与在建桥梁上进行该方面有益的尝试。 测量结构物自振特性的方法很多,目前主要有稳态正弦激振法、传递函数法、脉动测试法与自由振动法。稳态正弦激振法就是给结构以一定的稳态正弦激励力,通过频率扫描的办法确定各共振频率下结构的振型与对应的阻尼比。 传递函数法就是用各种不同的方法对结构进行激励(如正弦激励、脉冲激励或随机激励等),测出激励力与各点的响应,利用专用的分析设备求出各响应点与激励点之间的传递函数,进而可以得出结构的各阶模态参数(包括振型、频率、阻尼比)。脉动测试法就是利用结构物(尤其就是高柔性结构)在自然环境振源(如风、行车、水流、地脉动等)的影响下,所产生的随机振动,通过传感器记录、经谱分析,求得结构物的动力特性参数。自由振动法就是:通过外力使被测结构沿某个主轴方向产生一定的初位移后突然释放,使之产生一个初速度,以激发起被测结构的自由振动。 以上几种方法各有其优点与局限性。利用共振法可以获得结构比较精确的自振频率与阻尼比,但其缺点就是,采用单点激振时只能求得低阶振型时的自振特性,而采用多点激振需较多的设备与较高的试验技术;传递函数法应用于模型试验,常常可以得到满意的结果,但对于尺度很大的实际结构要用较大的激励力才能使结构振动起来,从而获得比较满意的传递函数,这在实际测试工作中往往有一定的困难。 利用环境随机振动作为结构物激振的振源,来测定并分析结构物固有特性的方法,就是近年来随着计算机技术及FFT 理论的普及而发展起来的,现已被广泛应用于建筑物的动力分析研究中,对于斜拉桥及悬索桥等大型柔性结构的动力分析也得到了广泛的运用。斜拉桥或悬索桥的环境随机振源来自两方面:一方面指从基础部分传到结构的地面振动及由于大气变化而影响到上部结构的振动(根据动力量测结果,可发现其频谱就是相当丰富的,具有不同的脉动卓越周期,反应了不同地区地质土壤的动力特性);另一方面主要来自过桥车辆的随机振动。

纳米材料与纳米结构21个题目+完整答案

1.简单论述纳米材料的定义与分类。 2.什么是原子团簇? 谈谈它的分类. 3.通过Raman 光谱中任何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径? 4.论述碳纳米管的生长机理。 5.论述气相和溶液法生长纳米线的生长机理。 6.解释纳米颗粒红外吸收宽化和蓝移的原因。 7.论述光催化的基本原理以及提高光催化活性的途径。 8.什么是库仑堵塞效应以及观察到的条件? 9.写出公式讨论半导体纳米颗粒的量子限域效应和介电限域效应对其吸收边,发光峰的影响。 10.纳米材料中的声子限域和压应力如何影响其Raman 光谱。 11.论述制备纳米材料的气相法和湿化学法。 12.什么是纳米结构,并举例说明它们是如何分类的,其中自组装纳米结构形成的条件是什么。 13.简单讨论纳米颗粒的组装方法 14.论述一维纳米结构的组装,并介绍2种纳米器件的结构。 15.论述一维纳米结构的组装,并介绍2种纳米器件的结构。 16.简单讨论纳米材料的磁学性能。 17.简述“尺寸选择沉淀法”制备单分散银纳米颗粒的基本原理 18.简述光子晶体的概念及其结构 19.目前人们已经制备了哪些纳米结构单元、复杂的纳米结构和纳米器件。并说明那些纳米结构应该具有增强物理和化学性 能。 20.简单论述单电子晶体管的原理。 21.简述纳米结构组装的工作原理。 1.简单论述纳米材料的定义与分类。 答:最初纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。 现在广义: 纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。 如果按维数,纳米材料可分为三大类: 零维:指在空间三维尺度均在纳米尺度,如:纳米颗粒,原子团簇等。 一维:指在空间有两处处于纳米尺度,如:纳米丝,纳米棒,纳米管等。 二维:指在三维空间中有一维处在纳米尺度,如:超薄膜,多层膜等。 因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元,分别又具有量子点,量子线和量子阱之称。

纳米材料的制备以及表征教学总结

纳米材料的制备以及表征 纳米科技作为21世纪的主导科学技术,将会给人类带来一场前所未有的新的工业革命。纳米科技使我们人类认识和改造物质世界的手段和能力延伸到原子和分子。纳米材料是目前材料科学研究的一个热点,纳米材料是纳米技术应用的基础。科学家们正致力于研究对纳米材料的组成、结构、形态、尺寸、排列等的控制,以制备符合各种预期功能的纳米材料。 低维纳米材料因其具有独特的物理化学特性以及在各个同领域的广泛应用 而受到国内外许多科研小组的广泛关注。钒氧化物纳米材料因为具有良好的催化性能、传感特性及电子传导特性而成为研究低维纳米材料物理化学现象的理想体系。尤其是对钒氧化合物纳米线、纳米带、纳米管的结构与性能的研究日益深入。另外,稀土正硼酸盐纳米材料因其独特的发光性能、电磁性能引起了广大科研小组的浓厚兴趣,是低维纳米材料领域研究的一个热点内容。 1.绪论 1.1纳米材料的发展概况 早在60年代,东京大学的久保良吾(Kubo)就提出了有名的“Kubo效应”, 认为金属超微粒子中的电子数较少,而不遵守Femri统计,并证实当结构单元变得比与其特性有关的临界长度还小时,其特性就会发生相应的变化。70年代末80年代初,随着干净的超微粒子的制取及研究,“Kubo效应”理论日趋完善, 为日后纳米技术理论研究打下了基础。人们对纳米颗粒的结构、形态和特性进行了比较系统的研究,描述金属微粒费密面附近电子能级状态的久保理论日趋完善,并且用量子尺寸效应成功地解释了超微粒子的某些特性[3]。最早使用纳米颗粒 制备三维块体试样的是德国萨尔兰大学教授H.Gletier,他于1984年用惰性气体蒸发、原位加压法制备了具有清洁表面的纳米晶Pd、cu、Fe等[4],并从理论及性能上全面研究了相关材料的试样,提出了纳米晶材料的概念,成为纳米材料的创始者。1987年美国Argon实验室sigeel博士课题组用相同方法制备了纳米陶 瓷TIOZ多晶体。纳米技术在80年代末和90年代初得到了长足发展,并逐步成为一个纳米技术体系。1990年7月,第一届国际纳米科技会议在美国巴尔的摩 召开,标志着纳米科学技术的正式诞生;正式提出了纳米材料学、纳米生物学、

二氧化锰纳米材料的制备与表征

二氧化锰纳米材料的制备与表征 [摘要] 研究以KMnO4为氧化剂用水热合成法制备MnO2不同纳米晶型的过程,并以X射线衍射(XRD),透射电镜(TEM)等方法对其进行了表征。结果表明,在水热反应过程中,反应时间改变会使MnO2晶型及其形貌发生转变。 [关键词] 二氧化锰晶型水热合成纳米结构α-MnO2 β-MnO2 1.引言 纳米结构无机材料因具有特殊的电、光、机械和热性质而越来越受到人们的重视。锰氧化合物不仅资源丰富、价格低廉、对环境无污染,而且具有多变的组成、复杂的结构、奇特的功能,因而在电子、电池、催化、高温超导、巨磁阻材料、陶瓷等领域显示出广阔的应用前景,所以其制备方法、结构表征、反应机理及应用的研究备受瞩目。其中MnO2作为一种重要的无机功能材料,在催化和电极材料等领域中已得到广泛的应用。 Xie 等证实空壳海胆结构的α-MnO2作为锂电池的阴极材料比实心海胆状α-MnO2和单分散α-MnO2 纳米棒更有效;Yang等报道氧化锰纳米棒对甲基蓝的氧化分解反应具有良好的催化效果;Ma等也证明了层状二氧化锰纳米带是充电锂电池理想的阴极材料。目前研究较多的是MnO2和锰酸盐,常用的制备方法有固相合成法、溶胶凝胶法、沉淀法等。 通常MnO2的活性随其所含结晶水的增加而增强,结晶水能促进质子在固体相中的扩散,因此γ- MnO2是各种晶型MnO2中活性最佳的。但在非水溶液中, MnO2 所含的结晶水反而会使它的活性下降。如在Li-MnO2电池正极材料中,以α-MnO2性能最差,含少量水分的γ-MnO2较差,无结晶水的β-MnO2较好,γβ-MnO2(混合)最好。所以γ-MnO2 在作为阴极材料之前,必须对其进行热处理,并且要除去水分,使晶型结构从γ-MnO2 转变为γβ-MnO2相(混合,以β相含量为65%~80%为最优)。再者,在固体二氧化锰有着较为复杂的晶型结构,如α、β、γ等5种主晶及30余种次晶,因此需要深入理解二氧化锰晶型转变机制。MnO2材料的微观形貌对于其应用有着重要的意义。 本实验以KMnO4和MnSO4·H2O为原料,采用水热合成法在高温反应釜条件下制备MnO2纳米晶型,并借助XRD、SEM、IR等技术对其进行了表征。 2.实验部分 2. 1 试剂与仪器 硫酸锰(分析纯),中国上海通亚精细化工厂;高锰酸钾(分析纯),宿州化学试剂厂;盐酸(分析纯),上海博河精细化学品有限公司。

某装备结构动态特性分析

技术篇 2007年 第十期 某装备结构动态特性分析 霍 红 (中北大学,太原 030051) 摘 要:利用试验模态分析法获得了某机枪结构的模态参数,分析了机枪的动态特性,并通过基于模态试验的灵敏度分析方法,获得了影响该机枪动态特性的敏感部位,为改善机枪动态特性提供了依据. 关键词:机枪;灵敏度分析;动态特性;分析 中图分类号:TP302.7 文献标识码:A 文章编号:1005 8354(2007)10 0001 02 Analysis on structural dyna m ic characteristics for certai n equi p m e nt HUO H ong (N orth U n i ve rs i ty o f Ch i na ,T a i yuan 030051,Chi na) Abstract :A ccor ding to modal analysism etho d,modal parametersw ere derived and structural dynam ic charac teristics were analyzed.U sing sensitivit y analysis of model test ,t he dyna m ic characteristics and sensitive p oints of a m achine gun were obt ained.These woul d be used to i m prove dyna m ic propert y of t hemachine gun. K ey words :machine gun;sensitivity analysis ;struct ural dyna m ic characteristics ;analysis 收稿日期:2007 08 22 作者简介:霍红(1968 ),女,实验师,研究方向:火炮、自动武器与弹药工程. 0 引 言 当今为提高自动武器的机动性,广泛采用弹性枪架,但随着重量的减轻,武器系统的振动加剧.而武器系统的振动又直接影响到射击精度,特别是弹丸出膛 口时的横向位移、横向速度以及弹丸初始扰动等对武器射击精度影响尤其明显 [1] .为此,需掌握武器系统 的固有特性,为分析和优化机枪的动力学特性提供依据,以提高其射击精度.而系统固有特性一般可由理论分析方法和试验方法获得,前者是利用有限元分析法,后者是利用试验模态分析法,随着试验技术的发展和测量仪器精度的提高,利用试验模态分析法得到的结果越来越受到重视,并且常常作为验证有限元模型正确性的主要依据,所以,常采用理论分析和试验两种方法相结合建立模型 [1,2] ,以获得接近实际的结 果,为进一步分析如结构修改设计及结构动力特性优化设计提供良好的基础.本文以某机枪为例,采用试验模态分析法识别机枪系统的模态参数和分析其动 态特性,并在此基础上进行了灵敏度分析,获得机枪动力学特性对各参数变化的灵敏度,为机枪的动力学特性优化设计提供依据. 1 机枪结构试验模态分析 1.1 模态测试系统 模态测试系统基本由以下几部分组成:激励部分、信号测量和数据采集部分、信号分析和频响函数 估计部分 [3] .其测试系统框图见图1所示. 图1 机枪模态试验系统框图 1

材料特性表征(课件总结)

1. 组织形貌分析仪器发展的三个阶段:光学显微镜、电子显微镜、扫描探针显微镜 光学显微镜: 2. 光学显微镜数值孔径公式各字母所代表的含义:NA= nsinα数值孔径(NA )是物镜前透镜与被检物体之间介质的折射率(n )和半孔径角(α)的正弦之乘积 3. ?r 。定义为透镜能分辨的最小距离, 及提高分辨率的方法:使用低波长光源,增大介质n 4. 光学透镜的像差包括:球面像差、色像差、像域弯曲 5. 焦深:焦点深度的简称,即在使用显微镜时,当焦点对准某一物体时,不仅位于该点平面上的各点都可以看清楚,而且在此平面的上下一定厚度内,也能看得清楚,这个清楚部分的厚度就是焦深。 6. 工作距离:也叫物距,即指物镜前透镜的表面到被检物体之间的距离。镜检时,被检物体应处在物镜的一倍至二倍焦距之间。 电子光学基础: 7. 电子显微分析的特点:(1) 可以在极高放大倍率下直接观察试样的形貌、结构,选择分析区域。分辨率高:0.2~0.3nm; 放大倍数高:20~30 万倍 (2) 是一种微区分析方法,具有高度分辨率,成像分辨率达到0.2~0.3mm,可直接分辨原子,能进行nm 尺度的晶体结构及化学 组成分析。(3) 各种电子显微镜分析仪器日益向多功能、综合性方向发展,可以进行形貌、物相、晶体结构和化学组成等的综合分析8.电子波波长与电子运动速度的关系: 9. 电磁透镜的聚焦原理: 它能造成一种轴对称不均匀分布的磁场。穿过线圈的电子在磁场的作用下将作圆锥螺旋近轴运动。而一束平行于主轴的入射电子通过电磁透镜时将被聚焦在主轴的某一点。 10. 电磁透镜的像差分成两类:第一是因为透镜磁场几何上的缺陷造成的,叫做几何像差,包括球面像差、像散和像畸变。第二是由于电子波长或者能量非单一性而引起的,与多色光相似,叫做色差。 11. 电磁透镜的场深或景深:在保持象清晰的前提下,试样在物平面上下沿镜轴可移动的距离,或者说试样超越物平面所允许的厚度。 12. 察屏或照相底版沿镜轴所允许的移动距离。 电子与固体物质相互作用 13. 电子与固体物质发生弹性散射特点:弹性散射:elastic scattering 如果在散射过程中入射电子只改变方向,但其总动能基本上无变化,则这种散射称为弹性散射。 弹性散射的电子符合布拉格定律。携带有晶体结构、对称性、取向和样品厚度等信息。在电子显微镜中用于分析材料的结构。 14. 电子与固体物质发生非弹性散射,原子被激发的类型有哪些:单电子激发(二次电子)、等离子激发、声子激发。 15. 二次电子的定义、特点及应用。二次电子:发生非弹性散射时,被入射电子轰击出来的

纳米ZnO的制备及表征

化学化工学院材料化学专业实验报告实验实验名称:纳米ZnO的制备及表征. 年级:2015级材料化学日期:2017/09/20 姓名:汪钰博学号:222015316210016同组人:向泽灵 一、预习部分 1.1氧化锌的结构 氧化锌(ZnO)晶体是纤锌矿结构,属六方晶系,为极性晶体。氧化锌晶体结构中,Zn原子按六方紧密堆积排列,每个Zn原子周围有4个氧原子,构成Zn-O4配位四面体结构,四面体的面与正极面C(00001)平行,四面体的顶角正对向负极面(0001),晶格常数a=342pm, c=519pm,密度为5.6g/cm3,熔点为2070K,室温下的禁带宽度为3.37eV. 如图1-1、图1-2所示: 图1-1 ZnO晶体结构在C (00001)面的投影 图1-2 ZnO纤锌矿晶格图

2 氧化锌的性能和应用 纳米氧化锌(ZnO)粒径介于1- 100nm 之间, 由于粒子尺寸小, 比表面积大, 因而, 纳米ZnO 表现出许多特殊的性质如无毒、非迁移性、荧光性、压电性、能吸收和散射紫外线能力等, 利用其在光、电、磁、敏感等方面的奇妙性能可制造气体传感器、荧光体、变阻器、紫外线遮蔽材料、杀菌、图象记录材料、压电材料、压敏电阻、高效催化剂、磁性材料和塑料薄膜等。同时氧化锌材料还被广泛地应用于化工、信息、纺织、医药行业。纳米氧化锌的制备是所有研究的基础。合成纳米氧化锌的方法很多, 一般可分为固相法、气相法和液相法。本实验采用共沉淀和成核/生长隔离技术制备纳米氧化锌粉。 3 氧化锌纳米材料的制备原理 不同方法制备的ZnO晶形不同,如: 3.1共沉淀和成核/生长隔离法 借助沉淀剂使目标离子从溶液中定量析出是材料制备领域液相法的重要技术。常规共沉淀制备是将盐溶液与碱溶液直接混合并通过搅拌的方式实现,由于混合不充分,反应界面小、存在浓度梯度、反应速度和扩散速度慢,先沉淀的粒子上形成新沉淀粒子,新旧粒子的同时存在,导致粒子尺寸分布极不均匀。使合成材料的粒子尺寸和均分散性能受到很大影响,其

纳米材料的制备方法与应用要点

纳米材料的制备方法与应用 贾警(11081002) 蒙小飞(11091001) 1引言 自从1984年德国科学家Gleiter等人首次用惰性气体凝聚法成功地制得。铁纳米微粒以来,由于纳米材料有明显不同于体材料和单个分子的独特性质—小尺寸效应、表面与界面效应、量子尺寸效应和宏观量子轨道效应等,以及其在电子学、光学、化工、陶瓷、生物和医药等诸多方面的重要价值。引起了世界各国科学家的浓厚兴趣。几十年来,对纳米材料的制备、性能和应用等各方面的研究取得了丰硕的成果。纳米材料指其基本组成颗粒尺寸为纳米数量级,处于原子簇和宏观物体交接区域的粒子。颗粒直径一般为1~100nm之间。颗粒可以是晶体,亦可以是非晶体。由于纳米材料具有其特殊的物理、机械、电子、磁学、光学和化学特性,可以预见,纳米材料将成为21世纪新一轮产业革命的支柱之一。 2纳米材料的制备方法 纳米材料有很多制备方法,在此只简要介绍其中几种。 2.1溶胶-凝胶法 溶胶-凝胶法是材料制备的是化学方法中的较为重要的一种,它提供一种再常温常压下合成无机陶瓷、玻璃、及纳米材料的新途径。溶胶-凝胶法制备纳米材料的主要步骤为选择要制备的金属化合物,然后将金属化合物在适当的溶剂中溶解,然后经过溶胶-凝胶过程而固化,在经过低温处理而得到纳米粒子。 2.2热合成法 热合成法制备纳米材料是在高温高压下、水溶液中合成,在经过分离和后续处理而得到纳米粒子,水热合成法可以制备包括金属、氧化物和复合氧化物在内的产物。主要集中在陶瓷氧化物材料的制备中。 2.3有机液相合成 有机液相合成主要采用在有机溶剂中能稳定存在金属、有机化合物及某些具有特殊性质的无机化合物为反应原料,在适当的反应条件下合成纳米材料。通常这些反应物都是对水非常敏感,在水溶剂中不能稳定存在的物质。最常用的反应方式就是在有机溶剂中进行回流制备。 2.4惰性气体冷凝法 惰性气体冷凝法是制备清洁界面的纳米粉体的主要方法之一。其主要过程是在真空蒸发室内充入低压惰性气体,然后对蒸发源采用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体。原料气体分子与惰性气体分子碰撞失去能量,凝集形成纳米尺寸的团簇,然后骤冷。该方法制备的纳米材料纯度高,工艺过程中无其它杂质污染,反应速度快,结品组织好,但技术设备要求高。 2.5反相胶束微反应器法

答案1 材料特性表征 第1篇 组织形貌分析

材料特性表征 第一篇 组织形貌分析 作业题 1. 光学显微镜的分辨本领和数值孔径? 光学显微镜的分辨率:样品上相应的两个物点间距离?r 。定义为透镜能分辨的最小距离,也就是透镜的分辨本领。 提高分辨率的方法:使用低波长光源, 提高对比度。 光学显微镜数值孔径NA= nsin α(n )和半孔径角(α)的正弦之乘积 2. 什么是电子显微分析?电子显微分析的特点是什么? 电子显微分析是利用聚焦电子束与试样物质相互作用产生的各种物理信号分析试样物质的微区形貌、晶体结构和化学组成。 电子显微分析的特点:(1) 可以在极高放大倍率下直接观察试样的形貌、结构,选择分析区域。分辨率高:0.2~0.3nm; 放大倍数高:20~30 万倍 (2) 是一种微区分析方法,具有高度分辨率,成像分辨率达到0.2~0.3mm,可直接分辨原子,能进行nm 尺度的晶体结构及化学组成分析。(3) 各种电子显微镜分析仪器日益向多功能、综合性方向发展,可以进行形貌、物相、晶体结构和化学组成等的综合分析 3. 电子波长由什么决定? 电子波波长与电子运动速度的关系:mv h =λ 所以电子波长由电子运动速度决定。 4. 什么是静电透镜和磁透镜?各有什么特点? 静电透镜:能使电子波折射聚焦的具有旋转对称等电位曲面簇的电极装置。 磁透镜:能使电子波聚焦的具有旋转对称非均匀的磁极装置。 5. 电磁透镜的像差有哪几种? 电磁透镜的像差分成两类:第一是因为透镜磁场几何上的缺陷造成的,叫做几何像差,包括球面像差、像散和像畸变。 第二是由于电子波长或者能量非单一性而引起的,与多色光相似,叫做色差。 6. 电磁透镜的场深? 电磁透镜的场深或景深:在保持象清晰的前提下,试样在物平面上下沿镜轴可移动的距离,或者说试样超越物平面所允许的厚度。 7. 电子的弹性散射有什么特点?用于什么分析? 如果在散射过程中入射电子只改变方向,但其总动能基本上无变化,则这种散射称为弹性散射。弹性散射的电子符合布拉格定律。携带有晶体结构、对称性、取向和样品厚度等信息。在电子显微镜中用于分析材料的结构。 8. 简述透射电镜的工作原理。 透射电子显微镜:是以波长极短的电子束作为照明源,用电子透镜聚焦成像的一种具有高分辨本领、高放大倍数的电子光学仪器。 9. 透射电镜光学成像系统的结构分为哪几部分? ααmin 22tan 2d X X D f =?=

纳米材料的制备及应用

本科毕业论文(设计) 题目:纳米材料的制备及应用 学院:物理与电子科学学院 班级: XX级XX班 姓名: XXX 指导教师: XXX 职称: 完成日期: 20XX 年 X 月 XX 日

纳米材料的制备及应用 摘要:近几年来,由于纳米材料有众多特殊性质,人们越来越关注纳米材料。科技的迅猛发展使纳米材料的制备变得更加成熟。本论文讲述纳米材料的制备,以及纳米技术在将来的应用。 关键词:纳米材料物理方法化学方法应用前景

目录 引言 (1) 1.纳米材料的物理制备方法 (1) 1.1物理粉碎法 (1) 1.2球磨法 (2) 1.3.蒸发—冷凝法 (2) 1.3.1.激光加热蒸发法 (2) 1.3.2.真空蒸发—冷凝法 (4) 1.3.3.电子束照射法 (4) 1.3.4.等离子体法 (5) 1.3.5.高频感应加热法 (5) 1.4.溅射法 (6) 2.纳米材料的化学制备方法 (7) 2.1化学沉淀法 (8) 2.2化学气相沉积法 (8) 2.3化学气相冷凝法 (10) 2.4溶胶--凝胶法 (10) 2.5水热法 (11) 3.纳米材料的其他制备方法 (12) 3.1分子束外延法 (12) 3.2静电纺丝法 (13) 4.纳米材料的应用前景 (14) 5.总结 (14) 参考文献 (15) 致谢 (16)

引言 纳米材料是指任一维空间尺度处于1—100nm之间的材料。它有着不同寻常的性质,如小尺寸效应可引起物理性质的突变,从而具有独特的性能;量子尺寸效应和表面与界面效应使其具有了一般大颗粒物不具备的性质,如对红外线、紫外线有很强的反射作用,应用到纺织品中有抗紫外线,隔热保温作用。纳米材料的这些特性使其在化工、物理、生物、医学方面都有非常重要的价值]1[。多年以来,通过科学家们的潜心研究,使纳米材料在其制备及其应用中得到了很大的发展。纳米材料将逐渐进入人们的日常生活,并将成为未来新工业革命的必备材料。 1.纳米材料的物理制备方法 1.1物理粉碎法 物理粉碎法就是用机械粉碎和电火花爆炸等方法得到纳米微粒]2[。此方法操作简单,成本较低,但得到的纳米微粒纯度不高,分布也不均匀。 图1. 机械粉碎法仪器图

一维纳米结构阵列的生长及其研究发展

一维纳米结构阵列的生长及其研究发展 摘要:随着纳米材料研究的不断深入,对性能的研究愈来愈迫切。但研究无序随机排列的纳米材料性能却非常困难,既便能获得一些结果,却由于试样之间的不统一与不均匀,使不同研究者获得的同类实验结果没有对比性。为此,我们发展了基于有序多孔氧化铝模板的纳米线有序阵列制备技术,实现了纳米线直径可控、密度可调。为纳米材料性能的研究提供了保障,为纳米材料的应用奠定了基础。 关键词:纳米阵列纳米材料纳米线纳米管纳米纤维等 正文部分: 1. 引言:一维纳米阵列是指在一定范围内具有一定排布规律,有序稳定的纳米结构。近十几年来, 一维硅纳米结构(纳米线、纳米管、纳米纤维等)因其与现代半导体技术的兼容性及独特的光学、电学性质引起了人们的广泛研究兴趣。一维硅纳米结构在纳米电子器件(如生物传感器、太阳能电池、红外可见发光、场效应晶体管、热电冷却器、光电探测器及其它光电器件等领域)有着广泛的应用前景。目前,我们的研究主要集中在单晶硅基体上利用化学腐蚀和气相沉积技术原位合成一维硅纳米结构,并探索其在光电器件、传感器和电子发射器件等领域的应用。 1.1 纳米线 1.1.1 纳米线的概念 纳米线是一种纳米尺度(10?9 米)的线。换一种说法,纳米线可以被定义为一种具有在横向上被限制在100纳米以下(纵向没有限制)的一维结构。这种尺度上,量子力学效应很重要,因此也被称作" 量子线"。根据组成材料的不同,纳米线可分为不同的类型,包括金属纳米线(如:Ni,Pt,Au等),半导体纳米线(如:InP,Si,GaN 等)和绝缘体纳米线(如:SiO2,TiO2等)。分子纳米线由重复的分子元组成,可以是有机的(如:DNA)或者是无机的(如:Mo6S9-xIx)。 作为纳米技术的一个重要组成部分,纳米线可以被用来制作超小电路。 典型的纳米线的纵横比在1000以上,因此它们通常被称为一维材料。纳米线具有许多在大块或三维物体中没有发现的有趣的性质。这是因为电子在纳米线中在横向受到量子束缚,能级不连续。 这种量子束缚的特性在一些纳米线中(比如碳纳米管)表现为非连续的电阻值。这种分立值是由纳米尺度下量子效应对通过纳米线电子数的限制引起的。这些孤立值通常被称为电阻的量子化.在电子,光电子和纳电子机械器械中,纳米线有可能起到很重要的作用。它同时还可以作为合成物中的

BiOBr纳米材料的制备与应用研究进展

2018年第18期广东化工 第45卷总第380期https://www.wendangku.net/doc/d415086534.html, ·235 ·BiOBr纳米材料的制备与应用研究进展 代弢1,汪露2 (1.西南民族大学化学与环境保护工程学院,四川成都610041;2.西南民族大学生命科学与技术学院,四川成都610041) Progress of Preparation and Application of BiOBr Nanomaterials Dai Tao1, Wang Lu2 (1. College of Chemistry & Environment Protection Engineering, Southwest Mizu University, Chengdu 610041; 2. College of Life Science & Technology, Southwest Mizu University, Chengdu 610041, China) Abstract: BiOBr nanomaterials have a unique electronic structure, a suitable band gap width and good catalytic performance. In this paper, the preparation and modification methods of BiOBr are summarized. And the application of BiOBr in energy and environment is expounded. We also described the prospect of BiOBr in photocatalysis. Keywords:BiOBr;nanomaterials;preparation and anapplication 近年来,由于环境和能源的问题不断突出,BiOBr纳米材料作为一种新型的光催化纳米材料,对解决能源和环境这一世界性的难题具有重要的意义。BiOBr具有独特的电子结构和良好的催化活性。目前纳米BiOBr材料已采用多种方法成功制备,本文重点归纳了BiOBr纳米光催化材料的制备以及在能源和环境领域的应用研究进展,为今后的研究提供方向和指导。 1 BiOBr的结构特性 BiOBr属于典型的横跨五、六、七三主族三原子复合半导体材料,它一般的结构通式是Bi l O m Br n[1]。一般来说,它的晶型属于四方氟氯铅矿(PbFCl-型)结构。Bi3+周围的O2-和Br-成反四方柱配位。对于Bi l O m Br n来说,其价带主要是通过O 2p和Br 4p态形成以及其导带主要是通过Bi 6p态形成。Bi l O m Br n的稳定性主要依赖于其制备条件、结构尺寸和反应环境等[2-4]。 2 BiOBr纳米材料的设计与合成 随着合成技术的迅速发展,纳米材料得到进一步发展。发展了众多BiOBr纳米材料的方法。现对近年来BiOBr纳米材料的合成方法进行归纳: 2.1 水解法 水解法是利用Bi3+的水解特性[5],利用BiBr3在碱性条件下合成BiOBr沉淀。该方法操作简单,可以规模化生产。但获得的BiOBr纳米材料尺寸不均一,活性较差。 2.2 水热法 水热法是在密闭的容器内高压条件下合成的方法。将Bi源和Br源在反应釜内反应合成BiOBr晶体。反应时间和温度会对催化剂的活性产生一定的影响。水热法可以获得结晶相对较好的BiOBr晶体。 2.3 溶剂热法 溶剂热法是水热法的发展,它与水热法的区别是使用有机溶剂。Wu等人通过调控溶剂乙醇和水的体积比合成出了9 nm厚的BiOBr薄片[6],当溶剂热反应温度为333 K,溶剂为纯水溶液时,得到约32 nm厚,当反应溶剂变为乙醇:水=4:3时,BiOBr纳米片的厚度变为9 nm左右,并且形貌均匀分布,同时表现出良好的结晶性。乙二醇,甘油和甘露醇等也常用作溶剂制备BiOBr。 2.4 离子液法 离子液体是在室温下呈液态的物质,具有蒸汽压低,难挥发,热稳定性高,溶解性好等优点。与水和溶解相比,离子液体可以看成是一种优良的溶剂。因此利用离子液辅助溶剂合成BiOBr纳米材料,在可见光下可以有效降解污染物。 2.5 共沉淀法 采用共沉淀法可得到粒径约500 nm的BiOBr纳米催化剂,这种先调配前驱体溶液再高温处理的合成方法,易于通过调控温度处理条件来调控产物形貌。且共沉淀法制备得到的BiOBr纳米材料的催化活性是水热法制备的材料活性的5倍左右[7]。 2.6 微波超声法 通过微波辅助方法可以获得具有优异可见光降解能力的BiOBr纳米材料。Li等人通过自组装过程[8],采用一种简单的微波合成法制备了一种均匀分散的多级结构的BiOBr纳米材料,其形貌为花状结构的BiOBr材料。该材料对Cr6+在较广pH值范围内表现出优异的吸附去除能力。与其他方法相比,微波加热的反应体系由于受热更均匀体系分散更好制备得到的BiOBr粒径更为均匀因而广泛应用于无机纳米材料BiOBr的合成制备。 2.7 静电纺丝法 Veluru等人通过静电纺丝的方法合成的BiOBr纳米纤维[9],通过调控溶剂的粘性得到不同长度的BiOBr以及不同直径的BiOBr纳米材料。同时对茜素红表现出极高的光催化降解活性。 3 BiOBr纳米材料在光催化中的应用进展 3.1 在能源问题中的应用 3.1.1 光解水制氢 目前,氢气是一种公认的最重要的清洁的新能源。所谓的氢经济的成功在很大程度上依赖于找到一种有效的实际批量生产氢气的途径。自1967年发现使用光电化学电池组成的单晶二氧化钛阳极和铂阴极在紫外光照射下可以使水裂解为氢气以来,光催化水裂解反应已被广泛认为是大量获得氢气最具发展前景的一种手段。利用Cr掺杂的Bi系纳米材料有效的降低了禁带宽度,从而提升了在可见光下催化剂产氢的效率[10-12]。 3.1.2 光催化合成氨 目前氮气的固定主要是通过Haber-Bosch反应,但是严苛的反应条件(Fe基催化剂、15-25 MPa、573-823 K )使得消耗极大的其他能源并且释放出大量的温室气体。人们在催化合成氨领域没有停下奋斗的脚步。Zhang等人通过向BiOBr进行表面改性使得在BiOBr材料表面产生氧空位,而氧空位极大的有利于N2的吸附,进而进一步促使光固氮这一过程的发生,从而极大地提升了固氮效率[13,14]。 3.1.3 光催化二氧化碳还原 光催化二氧化碳还原是指模拟太阳光的光合作用将CO2转换为其他的含碳燃料,比如甲醇、甲醛以及一些其他的精细化学品[15-19]。Chai等人通过向多级结构的BiOBr纳米材料引入表面氧空缺以提高CO2向CH4的转化效率差,同时进一步的比较了不含氧空位的BiOBr纳米材料其转化产物主要为CO。 3.2 在环境问题中的应用 随着工业化进程的不断加快,工业废水所造成的水体污染问题越来越严重。其中,一些抗生素类的药物和有机染料造成的废水因为具有高毒性、强致癌性等危害,对日常生活带来极大的安全隐患。近年来,大量的研究发现铋系半导体光催化材料由于具有较好的可见光响应并且能够使有机污染深度矿化而被广泛的应 [收稿日期] 2018-08-30 [作者简介] 代弢(1992-),男,博士,四川省雅安市人,讲师,主要研究方向为类贵金属催化剂的可控合成及在催化中的应用。

含针尖缺陷的XLPE电缆绝缘击穿行为的频率依赖特性研究

绝缘材料2014,47(2) 引言 交联聚乙烯(XLPE )电力电缆由于其优异的电气性能、力学性能和热性能在电力传输中得到广泛应用。虽然电缆制造技术近些年得到大幅度提升,但在电缆的运输和敷设过程中仍存在各种缺陷。 研究表明[1-4],缺陷附近的电场会畸变严重,特别由 于金属针尖缺陷的存在将注入空间电荷,严重情况下会导致电缆绝缘击穿。因此,研究缺陷对XLPE 电缆绝缘击穿特性的影响及其机理有特别重要的意义。 XLPE 电缆绝缘的击穿特性与其内部空间电荷的积累及电树枝的产生密切相关[5-6]。根据Bahder [7]的观点,空间电荷主要是以电子或电离气体分子的形式,被放电流注体注入到聚合物的自由体积网络内。如果这些自由体积成管状,电荷就会形成分支 —————————————收稿日期:2013-7-11 修回日期:2013-09-17 基金项目:国家自然科学基金(50977071、51177121);特高压工程技术(昆明、广州)国家工程实验室开放课题(NEL201207) 作者简介:李欢(1988-),男(汉族),陕西省汉中市人,博士生,研究方向为缺陷结构对XLPE 电缆绝缘介电性能和理化性能的影响。 含针尖缺陷的XLPE 电缆绝缘击穿行为的 频率依赖特性研究 李 欢1,李 欣1,李巍巍1,李建英1,王国利2 (1.西安交通大学电力设备电气绝缘国家重点实验室,西安710049; 2.特高压工程技术(昆明、广州)国家工程实验室,广州510045) 摘要:研究了在20~300Hz 频率范围内含针尖缺陷的电缆绝缘试样在变频电压和阻尼振荡波电压作用下的击穿特性,变频击穿采用连续升压和逐级升压两种方式。结果表明:连续升压下的变频击穿电压、逐级升压下的变频击穿电压和阻尼振荡波击穿电压分别在240Hz 、80Hz 和170Hz 附近出现最大值。电压形式和电场频率对含针尖缺陷电缆绝缘击穿特性的影响来源于空间电荷的注入及分布特性的差别,这种差别不仅导致击穿电压的不同,还导致击穿的微观路径产生显著变化。关键词:交联聚乙烯电缆;针尖缺陷;击穿;空间电荷中图分类号:TM855+.2 文献标志码:A 文章编号:1009-9239(2014)02-0071-06 Frequency Dependence Characteristic Study of Breakdown Behavior of XLPE Cable Insulation with Needle Defect Li Huan 1,Li Xin 1,Li Weiwei 1,Li Jianying 1,Wang Guoli 2 (1.State Key Laboratory of Electrical Insulation and Power Equipment,Xi ’an Jiaotong University,Xi ’an 710049,China;2.National Engineering Laboratory for Ultra High Voltage Engineering Technology(Kunming 、Guangzhou),Guangzhou 510045,China ) Abstract :The breakdown characteristic of XLPE cable insulation with needle defect in the range of 20~300Hz was studied under the effect of variable-frequency voltage and damped oscillation wave voltage respectively,in which the variable-frequency voltage used continuous rising mode and step by step rising mode.The results show that the breakdown voltage maximum under the continuous rising mode,step by step rising mode and damped oscillation wave voltage appears at 240Hz,100Hz and 200Hz respectively.The effects of voltage form and electric field frequency on the breakdown characteristic of XLPE insulation are from the injection and distribution of space charge,which lead to the obvious change of breakdown path. Key words :XLPE cable;needle defect;breakdown;space charge 李欢等:含针尖缺陷的XLPE 电缆绝缘击穿行为的频率依赖特性研究 71

相关文档
相关文档 最新文档