文档库 最新最全的文档下载
当前位置:文档库 › 2015届高三物理二轮专题复习讲义(人教版):专题9:电磁感应

2015届高三物理二轮专题复习讲义(人教版):专题9:电磁感应

2015届高三物理二轮专题复习讲义(人教版):专题9:电磁感应
2015届高三物理二轮专题复习讲义(人教版):专题9:电磁感应

高考定位

电磁感应是电磁学部分的重点之一,是高考的重要考点.考查的重点有以下几个方面:①楞次定律的理解和应用;②电磁感应图象;③电磁感应过程中的动态分析;④综合应用电路知识和能量观点解决电磁感应问题.应考策略:复习应注意“抓住两个定律,运用两种观点”.两个定律是指楞次定律和法拉第电磁感应定律;两种观点是指动力学观点和能量观点.

考题1 对楞次定律和电磁感应图象问题的考查

例1 如图1所示,直角坐标系xOy 的二、四象限有垂直坐标系向里的匀强磁场,磁感应强度大小均为B ,在第三象限有垂直坐标系向外的匀强磁场,磁感应强度大小为2B .现将半径为L 、圆心角为90°的扇形闭合导线框OPQ 在外力作用下以恒定角速度绕O 点在纸面内沿逆时针方向匀速转动.t =0时刻线框在图示位置,设电流逆时针方向为正方向.则下列关于导线框中的电流随时间变化的图线,正确的是( )

图1

审题突破 根据转动闭合线框切割磁感线产生的感应电动势公式E =1

2Bl 2ω求出每条半径切

割磁感线时产生的感应电动势,分段由闭合电路欧姆定律求出感应电流,由楞次定律判断感应电流的方向,即可选择图象.

解析 根据楞次定律,线框从第一象限进入第二象限时,电流方向是正方向,设导线框的电

阻为R ,角速度为ω,则电流大小为BωL 2

2R

,从第二象限进入第三象限时,电流方向是负方向,

电流大小为3BωL 22R ,从第三象限进入第四象限时,电流方向是正方向,电流大小是3BωL 2

2R

,线

框从第四象限进入第一象限时,电流方向是负方向,电流大小为BωL 2

2R ,B 选项正确.

答案 B

1.(2014·江苏·7)如图2所示,在线圈上端放置一盛有冷水的金属杯,现接通交流电源,过了几分钟,杯内的水沸腾起来.若要缩短上述加热时间,下列措施可行的有( )

图2

A .增加线圈的匝数

B .提高交流电源的频率

C .将金属杯换为瓷杯

D .取走线圈中的铁芯 答案 AB

解析 当电磁铁接通交流电源时,金属杯处在变化的磁场中产生涡电流发热,使水温升高.要缩短加热时间,需增大涡电流,即增大感应电动势或减小电阻.增加线圈匝数、提高交变电流的频率都是为了增大感应电动势,瓷杯不能产生涡电流,取走铁芯会导致磁性减弱.所以选项A 、B 正确,选项C 、D 错误.

1.楞次定律的理解和应用

(1)“阻碍”的效果表现为:①阻碍原磁通量的变化——增反减同;②阻碍物体间的相对运动——来拒去留;③阻碍自身电流的变化——自感现象.

(2)解题步骤:①确定原磁场的方向(分析合磁场);②确定原磁通量的变化(增加或减少);③确定感应电流磁场的方向(增反减同);④确定感应电流方向(安培定则). 2.求解图象问题的思路与方法

(1)图象选择问题:求解物理图象的选择题可用“排除法”,即排除与题目要求相违背的图象,留下正确图象.也

可用“对照法”,即按照要求画出正确的草图,再与选项对照.解决此类问题的关键是把握图象特点,分析相关物理量的函数关系,分析物理过程的变化或物理状态的变化.

(2)图象分析问题:定性分析物理图象,要明确图象中的横轴与纵轴所代表的物理量,弄清图象的物理意义,借助有关的物理概念、公式、不变量和定律作出相应判断.在有关物理图象的定量计算时,要弄清图象所揭示的物理规律及物理量间的函数关系,善于挖掘图象中的隐含条件,明确有关图象所包围的面积、斜率,以及图象的横轴、纵轴的截距所表示的物理 意义.

考题2 对电磁感应中动力学问题的考查

例2 如图3所示,间距为L 的两条足够长的光滑平行金属导轨MN 、PQ 与水平面夹角为30°,导轨的电阻不计,导轨的N 、Q 端连接一阻值为R 的电阻,导轨上有一根质量一定、电阻为r 的导体棒ab 垂直导轨放置,导体棒上方距离L 以上的范围存在着磁感应强度大小为B 、方向与导轨平面垂直向下的匀强磁场.现在施加一个平行斜面向上且与棒ab 重力相等的恒力,使导体棒ab 从静止开始沿导轨向上运动,当ab 进入磁场后,发现ab 开始匀速运动,求:

图3

(1)导体棒的质量;

(2)若进入磁场瞬间,拉力减小为原来的一半,求导体棒能继续向上运动的最大位移. 审题突破 (1)由牛顿第二定律求出导体棒的加速度,由匀变速运动的速度位移公式求出速度,由安培力公式求出安培力,然后由平衡条件求出导体棒的质量.(2)应用牛顿第二定律、安培力公式分析答题.

解析 (1)导体棒从静止开始在磁场外匀加速运动,距离为L ,其加速度为 F -mg sin 30°=ma F =mg

得a =12

g

棒进入磁场时的速度为v =2aL =gL

由棒在磁场中匀速运动可知F 安=1

2

mg

F 安=BIL =B 2L 2v

R +r

得m =2B 2L 2R +r

L g

(2)若进入磁场瞬间使拉力减半,则F =1

2mg

则导体棒所受合力为F 安

F 安=BIL =B 2L 2v

R +r

=ma

v =Δx

Δt 和a =Δv Δt 代入上式

B 2L 2

Δx Δt R +r

=m Δv Δt

即B 2L 2Δx R +r

=m Δv 设导体棒继续向上运动的位移为x ,则有 B 2L 2x

R +r

=m v 将v =gL 和m =2B 2L 2R +r L

g

代入得x =2L

答案 (1)

2B 2L 2

R +r

L

g

(2)2L

2.如图4所示,光滑斜面PMNQ 的倾角为θ,斜面上放置一矩形导体线框abcd ,其中ab 边长为l 1,bc 边长为l 2,线框质量为m 、电阻为R ,有界匀强磁场的磁感应强度为B ,方向垂直于斜面向上,ef 为磁场的边界,且ef ∥MN .线框在恒力F 作用下从静止开始运动,其ab 边始终保持与底边MN 平行,F 沿斜面向上且与斜面平行.已知线框刚进入磁场时做匀速运动,则下列判断正确的是( )

图4

A .线框进入磁场前的加速度为F -mg sin θ

m

B .线框进入磁场时的速度为(F -mg sin θ)R

B 2l 21

C .线框进入磁场时有a →b →c →d 方向的感应电流

D .线框进入磁场的过程中产生的热量为(F -mg sin θ)l 1 答案 ABC

解析 线框进入磁场前,对整体,根据牛顿第二定律得:F -mg sin θ=ma ,线框的加速度为

a =F -mg sin θm

,故A 正确.设线框匀速运动的速度大小为v ,则线框受力平衡,F =F 安+mg sin

θ,而F 安=B ·Bl 1v R ·l 1=B 2l 21v

R ,解得v =(F -mg sin θ)R B 2l 21,选项B 正确;根据右手定则可知,线

框进入磁场时有a →b →c →d 方向的感应电流,选项C 正确;由能量关系,线框进入磁场的过程中产生的热量为力F 做的功与线框重力势能增量的差值,即Fl 2-mgl 2sin θ,选项D 错误,故选A 、B 、C.

3.如图5甲所示,MN 、PQ 是相距d =1.0 m 足够长的平行光滑金属导轨,导轨平面与水平

面间的夹角为θ,导轨电阻不计,整个导轨处在方向垂直于导轨平面向上的匀强磁场中,金属棒ab 垂直于导轨MN 、PQ 放置,且始终与导轨接触良好,已知金属棒ab 的质量m =0.1 kg ,其接入电路的电阻r =1 Ω,小灯泡电阻R L =9 Ω,重力加速度g 取10 m/s 2.现断开开关S ,将棒ab 由静止释放并开始计时,t =0.5 s 时刻闭合开关S ,图乙为ab 的速度随时间变化的图象.求:

图5

(1)金属棒ab 开始下滑时的加速度大小、斜面倾角的正弦值; (2)磁感应强度B 的大小.

答案 (1)6 m/s 2 3

5

(2)1 T

解析 (1)S 断开时ab 做匀加速直线运动

由图乙可知a =Δv

Δt =6 m/s 2

根据牛顿第二定律有:mg sin θ=ma

所以sin θ=3

5

.

(2)t =0.5 s 时S 闭合,ab 先做加速度减小的加速运动,当速度达到最大v m =6 m/s 后做匀速直线运动

根据平衡条件有mg sin θ=F 安 又F 安=BId E =Bd v m I =E

R L +r

解得B =1 T.

在此类问题中力现象和电磁现象相互联系、相互制约,解决问题前首先要建立“动—电—动”的思维顺序,可概括为:

(1)找准主动运动者,用法拉第电磁感应定律和楞次定律求解感应电动势的大小和方向. (2)根据等效电路图,求解回路中的感应电流的大小及方向.

(3)分析安培力对导体棒运动速度、加速度的影响,从而推出对电路中的感应电流有什么影响,最后定性分析导体棒的最终运动情况. (4)列牛顿第二定律或平衡方程求解.

考题3 对电磁感应中能量问题的考查

例3 如图6所示,平行金属导轨与水平面间夹角均为37°,导轨间距为1 m ,电阻不计,导轨足够长.两根金属棒ab 和以a ′b ′的质量都是0.2 kg ,电阻都是1 Ω,与导轨垂直放置

且接触良好,金属棒和导轨之间的动摩擦因数为0.25,两个导轨平面处均存在着垂直轨道平面向上的匀强磁场(图中未画出),磁感应强度B 的大小相同.让a ′b ′固定不动,将金属棒ab 由静止释放,当ab 下滑速度达到稳定时,整个回路消耗的电功率为8 W .求:

图6

(1)ab 下滑的最大加速度;

(2)ab 下落了30 m 高度时,其下滑速度已经达到稳定,则此过程中回路电流的发热量Q 为多大?

(3)如果将ab 与a ′b ′同时由静止释放,当ab 下落了30 m 高度时,其下滑速度也已经达到稳定,则此过程中回路电流的发热量Q ′为多大?(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8) 审题突破 (1)当ab 棒刚下滑时,v =0,没有感应电流,此时加速度最大.(2)ab 棒达到最大速度后做匀速运动,其重力功率等于整个回路消耗的电功率,求出v m ,根据能量守恒列式求回路电流的发热量Q .(3)a ′b ′和ab 受力平衡时稳定,求出稳定速度,根据能量守恒列式求回路电流的发热量Q ′.

解析 (1)当ab 棒刚下滑时,ab 棒的加速度有最大值: a =g sin θ-μg cos θ=4 m/s 2.(2分) (2)ab 棒达到最大速度时做匀速运动,有 mg sin θ=BIL +μmg cos θ,(2分) 整个回路消耗的电功率

P 电=BIL v m =(mg sin θ-μmg cos θ)v m =8 W ,(2分) 则ab 棒的最大速度为:v m =10 m/s(1分)

由P 电=E 22R =(BL v m )

2

2R (2分)

得:B =0.4 T .(1分)

根据能量守恒得: mgh =Q +12m v 2m +μmg cos θ·h

sin θ(2分) 解得:Q =30 J .(1分)

(3)由对称性可知,当ab 下落30 m 稳定时其速度为v ′,a ′b ′也下落30 m ,其速度也为v ′,ab 和a ′b ′都切割磁感线产生电动势,总电动势等于两者之和. 根据共点力平衡条件,对ab 棒受力分析, 得mg sin θ=BI ′L +μmg cos θ(2分)

又I ′=2BL v ′2R =BL v ′

R

(2分)

代入解得v ′=5 m/s(1分)

由能量守恒2mgh =12×2m v ′2+2μmg cos θh

sin θ+Q ′(3分)

代入数据得Q ′=75 J .(1分) 答案 (1)4 m/s 2 (2)30 J (3)75 J

4.在倾角为θ足够长的光滑斜面上,存在着两个磁感应强度大小相等的匀强磁场,磁场方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L ,如图7所示.一个质量为m 、电阻为R 、边长也为L 的正方形线框在t =0时刻以速度v 0进入磁场,恰好做匀速直线运动,若经过时间t 0,线框ab 边到达gg ′与ff ′中间位置时,线框又恰好做匀速运动,则下列说法正确的是( )

图7

A .当ab 边刚越过ff ′时,线框加速度的大小为g sin θ

B .t 0时刻线框匀速运动的速度为v 0

4

C .t 0时间内线框中产生的焦耳热为32mgL sin θ+15

32m v 20

D .离开磁场的过程中线框将做匀速直线运动

答案 BC

解析 当ab 边进入磁场时,F A =B 2L 2v 0

R

=mg sin θ.当ab 边刚越过f ′f 时,线框的感应电动势

和电流均加倍,4B 2L 2v 0R -mg sin θ=ma ,加速度向上为3g sin θ,A 错误;t 0时刻,4B 2L 2v

R =mg sin

θ,解得v =v 04,B 正确;线框从进入磁场到再次做匀速运动过程,沿斜面向下运动距离为3

2

L ,

则由功能关系得t 0时间内线框中产生的焦耳热为Q =3mgL sin θ2+12m v 20-12m v 2=3

2

mgL sin θ+

1532m v 2

,C 正确;线框离开磁场时做加速运动,D 错误. 5.如图8所示,水平放置的足够长的平行金属导轨MN 、PQ 的一端接有电阻R 0,不计电阻的导体棒ab 静置在导轨的左端MP 处,并与MN 垂直.以导轨PQ 的左端为坐标原点O ,建立直角坐标系xOy ,Ox 轴沿PQ 方向.每根导轨单位长度的电阻为r .垂直于导轨平面的非匀强磁场磁感应强度在y 轴方向不变,在x 轴方向上的变化规律为:B =B 0+kx ,并且x ≥0.现在导体棒中点施加一垂直于棒的水平拉力F ,使导体棒由静止开始向右做匀加速直线运动,加速度大小为a .设导体棒的质量为m ,两导轨间距为L .不计导体棒与导轨间的摩擦,导体棒

与导轨接触良好,不计其余部分的电阻.

图8

(1)请通过分析推导出水平拉力F 的大小随横坐标x 变化的关系式;

(2)如果已知导体棒从x =0运动到x =x 0的过程中,力F 做的功为W ,求此过程回路中产生的焦耳热Q ;

(3)若B 0=0.1 T ,k =0.2 T /m ,R 0=0.1 Ω,r =0.1 Ω/m ,L =0.5 m ,a =4 m/s 2,求导体棒从x =0运动到x =1 m 的过程中,通过电阻R 0的电荷量q .

答案 (1)F =ma +(B 0+kx )2L 22ax

R 0+2rx (2)W -max 0

(3)0.5 C

解析 (1)设导体棒运动到坐标为x 处的速度为v ,由法拉第感应定律得产生的感应电动势为: E =BL v ①

由闭合电路欧姆定律得回路中的电流为:

I =BL v R 0+2rx ② 由于棒做匀加速度直线运动,所以有: v =2ax ③

此时棒受到的安培力:F A =BIL ④

由牛顿第二定律得:F -F A =ma ⑤

由①②③④⑤联立解得:F =ma +(B 0+kx )2L 22ax

R 0+2rx

(2)设导体棒在x =x 0处的动能为E k ,则由动能定理得:E k =max 0⑥ 由能量守恒与转化定律得:W =Q +E k ⑦ 将⑥式代入⑦式解得:Q =W -max 0

(3)由①②两式得:I =(B 0+kx )L v

R 0+2rx

因为v =at ,将题中所给的数值代入⑧式得:I =2t (A)⑨

可知回路中的电流与时间成正比,所以在0~t 时间内,通过R 0的电荷量为:

q =I

2

t =t 2 (C) 由匀加速直线运动规律得:t =2x

a

当x =1 m 时,有q =2x

a

=0.5 C

1.明确安培力做的功是电能和其他形式的能之间相互转化的“桥梁”,用框图表示如下: 电能

W 安>0W 安<0

其他形式的能

2.明确功能关系,确定有哪些形式的能量发生了转化.如有摩擦力做功,必有内能产生;有重力做功,重力势能必然发生变化;安培力做负功,必然有其他形式的能转化为电能. 3.根据不同物理情景选择动能定理、能量守恒定律或功能关系列方程求解问题.

例4 (20分)如图9甲所示,MN 、PQ 是相距d =1 m 的足够长平行光滑金属导轨,导轨平面与水平面成某一夹角,导轨电阻不计;长也为1 m 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,ab 的质量m =0.1 kg 、电阻R =1 Ω;MN 、PQ 的上端连接右侧电路,电路中R 2为一电阻箱;已知灯泡电阻R L =3 Ω,定值电阻R 1=7 Ω,调节电阻箱使R 2=6 Ω,

重力加速度g =10 m/s 2.现断开开关S ,在t =0时刻由静止释放ab ,在t =0.5 s 时刻闭合S ,同时加上分布于整个导轨所在区域的匀强磁场,磁场方向垂直于导轨平面斜向上;图乙所示为ab 的速度随时间变化图象.

图9

(1)求斜面倾角α及磁感应强度

B 的大小;

(2)ab 由静止下滑x =50 m(此前已达到最大速度)的过程中,求整个电路产生的电热; (3)若只改变电阻箱R 2的值.当R 2为何值时,ab 匀速下滑中R 2消耗的功率最大?消耗的最大功率为多少?

解析 (1)S 断开时,ab 做匀加速直线运动,从图乙得a =Δv

Δt =6 m/s 2(1分)

由牛顿第二定律有mg sin α=ma ,(1分)

所以有sin α=3

5

,即α=37°,(1分)

考题4 综合应用动力学观点和能量观点分析电磁感应问题

t =0.5 s 时,S 闭合且加了磁场,分析可知,此后ab 将先做加速度减小的加速运动,当速度达到最大(v m =6 m/s)后接着做匀速运动. 匀速运动时,由平衡条件知mg sin α=F 安,(1分)

又F 安=BId I =Bd v m

R 总(1分)

R 总=R +R 1+R L R 2

R L +R 2

=10 Ω(1分)

联立以上四式有mg sin α=B 2d 2v m

R 总(2分)

代入数据解得B =

mg sin αR 总

d 2v m

=1 T(1分)

(2)由能量转化关系有mg sin αx =1

2m v 2m +Q (2分)

代入数据解得Q =mg sin αx -12m v 2

m =28.2 J(1分)

(3)改变电阻箱R 2的值后,ab 匀速下滑时有 mg sin α=BdI (1分)

所以I =mg sin α

Bd

=0.6 A(1分)

通过R 2的电流为I 2=R L

R L +R 2I (1分)

R 2的功率为P =I 22R 2(1分)

联立以上三式可得

P =I 2R 2

L R 2(R L +R 2)2=I 2

R 2L (R L R 2

+R 2)2

(1分) 当R L R 2=R 2时,即R 2=R L =3 Ω,功率最大,(1分)

所以P m =0.27 W .(2分)

答案 (1)37° 1 T (2)28.2 J (3)3 Ω 0.27 W

(2014·安徽·23)(16分)如图10甲所示,匀强磁场的磁感应强度B 为0.5 T ,其方向垂直于倾角θ为30°的斜面向上.绝缘斜面上固定有“∧”形状的光滑金属导轨MPN (电阻忽略不计),MP 和NP 长度均为2.5 m ,MN 连线水平,长为3 m .以MN 中点O 为原点、OP 为x 轴建立一维坐标系Ox .一根粗细均匀的金属杆CD ,长度d 为3 m 、质量m 为1 kg 、电阻R 为0.3 Ω,在拉力F 的作用下,从MN 处以恒定速度v =1 m /s 在导轨上沿x 轴正向运动(金属杆与导轨接触良好).g 取10 m/s 2.

图10

(1)求金属杆CD 运动过程中产生的感应电动势E 及运动到x =0.8 m 处电势差U CD ; (2)推导金属杆CD 从MN 处运动到P 点过程中拉力F 与位置坐标x 的关系式,并在图乙中画出F -x 关系图像;

(3)求金属杆CD 从MN 处运动到P 点的全过程产生的焦耳热. 答案 (1)1.5 V -0.6 V

(2)F =12.5-3.75x (0≤x ≤2) 见解析图 (3)7.5 J

解析 (1)金属杆CD 在匀速运动中产生的感应电动势

E =Bl v (l =d ) E =1.5 V(D 点电势高)当x =0.8 m 时,金属杆在导轨间的电势差为零.设此时杆在导轨外的长度为l 外,则

l 外=d -OP -x OP d OP = MP 2-(MN

2)2=2 m

得l 外=1.2 m

由楞次定律判断D 点电势高,故C 、D 两端电势差 U CD =-Bl 外v =-0.6 V .

(2)杆在导轨间的长度l 与位置x 的关系是 l =OP -x OP d =3-32

x

对应的电阻R 1=l

d

R

电流I =Bl v

R 1

杆受的安培力为F 安=BIl =7.5-3.75x 根据平衡条件得F =F 安+mg sin θ F =12.5-3.75x (0≤x ≤2) 画出的F -x 图象如图所示.

(3)外力F 所做的功W F 等于F -x 图线下所围的面积.

即W F =5+12.5

2

×2 J =17.5 J

而杆的重力势能增加量ΔE p =mgOP sin θ 故全过程产生的焦耳热Q =W F -ΔE p =7.5 J.

知识专题练 训练9

题组1 楞次定律和电磁感应图象问题

1.法拉第发明了世界上第一台发电机——法拉第圆盘发电机.如图1所示,紫铜做的圆盘水平放置在竖直向下的匀强磁场中,圆盘圆心处固定一个摇柄,边缘和圆心处各与一个黄铜电刷紧贴,用导线将电刷与电流表连接起来形成回路.转动摇柄,使圆盘逆时针匀速转动,电流表的指针发生偏转.下列说法正确的是( )

图1

A .回路中电流大小变化,方向不变

B .回路中电流大小不变,方向变化

C .回路中电流的大小和方向都周期性变化

D .回路中电流方向不变,从b 导线流进电流表 答案 D

解析 铜盘转动产生的感应电动势为:E =12BL 2ω,B 、L 、ω不变,E 不变,电流:I =E R =BL 2ω

2R ,

电流大小恒定不变,由右手定则可知,回路中电流方向不变,从b 导线流进电流表,故A 、B 、C 错误,D 正确.

2.如图2所示,虚线右侧存在匀强磁场,磁场方向垂直纸面向外,正方形金属框电阻为R ,边长是L ,自线框从左边界进入磁场时开始计时,在外力作用下由静止开始,以垂直于磁场边界的恒定加速度a 进入磁场区域,t 1时刻线框全部进入磁场.若外力大小为F ,线框中电功率的瞬时值为P ,线框磁通量的变化率为ΔΦ

Δt ,通过导体横截面的电荷量为q ,(其中P —t

图象为抛物线)则这些量随时间变化的关系正确的是( )

图2

答案 BD

解析 线框做匀加速运动,其速度v =at ,感应电动势E =BL v

线框进入磁场过程中受到的安培力F 安=BIL =B 2L 2v R =B 2L 2at

R

由牛顿第二定律得:F -B 2L 2at

R

=ma

则F =ma +B 2L 2a

R

t ,故A 错误;

感应电流I =E R =BLat

R

线框的电功率P =I 2

R =(BLa )2R

t 2,故B 正确;

线框的位移x =12at 2,ΔΦΔt =B ·ΔS Δt =B ·L ·12at 2t =1

2

BLat ,故C 错误;

电荷量q =I Δt =E R ·Δt =ΔΦΔt R ·Δt =ΔΦR =BLx R =BL ·1

2at 2

R =BLa 2R t 2

,故D 正确.

题组2 电磁感应中动力学问题

3.如图3所示,两根足够长的平行金属导轨倾斜放置,导轨下端接有定值电阻R ,匀强磁场方向垂直导轨平面向上.现给金属棒ab 一平行于导轨的初速度v ,使金属棒保持与导轨垂直并沿导轨向上运动,经过一段时间金属棒又回到原位置.不计导轨和金属棒的电阻,在这一过程中,下列说法正确的是(

)

图3

A .金属棒上滑时棒中的电流方向由b 到a

B .金属棒回到原位置时速度大小仍为v

C .金属棒上滑阶段和下滑阶段的最大加速度大小相等

D .金属棒上滑阶段和下滑阶段通过棒中的电荷量相等 答案 AD

解析 金属棒上滑时,根据右手定则判断可知金属棒中感应电流的方向由b 到a ,故A 正确.金属棒运动过程中产生感应电流,受到安培力作用,根据楞次定律可知安培力总是阻碍金属棒相对于导轨运动,所以金属棒的机械能不断减小,则金属棒回到原位置时速度大小必小于v ,故B 错误.根据牛顿第二定律得:对于上滑过程:mg sin θ+F 安=ma 上;对于下滑过程:mg sin θ-F 安′=ma

下.

可知:a 上>a 下,故C 错误.金属棒上滑阶段和下滑阶段中回路磁通量的变

化量相等,根据q =ΔΦ

R

可知通过金属棒的电荷量相等,故D 正确.

4.如图4所示,螺线管横截面积为S ,线圈匝数为N ,电阻为R 1,管内有水平向右的磁场,磁感应强度为B .螺线管与足够长的平行金属导轨MN 、PQ 相连并固定在同一平面内,与水平

面的夹角为θ,两导轨间距为L .导轨电阻忽略不计.导轨处于垂直斜面向上、磁感应强度为B 0的匀强磁场中.金属杆ab 垂直导轨,杆与导轨接触良好,并可沿导轨无摩擦滑动.已知金属杆ab 的质量为m ,电阻为R 2,重力加速度为g .忽略螺线管磁场对金属杆ab 的影响,忽略空气阻力.

图4

(1)螺线管内方向向右的磁场B 不变,当ab 杆下滑的速度为v 时,求通过ab 杆的电流的大小和方向;

(2)当ab 杆下滑的速度为v 时,螺线管内方向向右的磁场才开始变化,其变化率ΔB

Δt =k (k >0).讨

论ab 杆加速度的方向与k 的取值的关系.

答案 (1)B 0L v R 1+R 2

,方向为b →a (2)k

v -mg (R 1+R 2)sin θ

B 0LNS ,加速度方向向上;

k >B 20L 2v -mg (R 1+R 2)sin θB 0LNS ,加速度方向向下

解析 (1)切割磁感线产生的感应电动势E 1=B 0L v

则电流的大小I =E 1

R 1+R 2=B 0L v R 1+R 2

根据右手定则知,通过ab 的电流方向为b →a .

(2)根据法拉第电磁感应定律得,螺线管中磁场变化产生的感应电动势

E 2=N ΔBS Δt =kNS

产生的感应电动势方向与ab 切割产生的感应电动势方向相反.

则感应电流的大小I =E 1-E 2

R 1+R 2

当mg sin θ

R 1+R 2

时,加速度方向向上.

即k

,加速度方向向上.

当mg sin θ>B 0IL =B 0L (B 0L v -kNS )

R 1+R 2

时,加速度方向向下.

即k >B 20L 2v -mg (R 1+R 2)sin θB 0LNS ,加速度方向向下

题组3 电磁感应中能量问题

5.如图5所示,空间存在一有边界的条形匀强磁场区域,磁场方向与竖直平面(纸面)垂直,磁场边界的间距为L .一个质量为m 、边长也为L 的正方形导线框沿竖直方向运动,线框所在平面始终与磁场方向垂直,且线框上、下边始终与磁场的边界平行.t =0时刻导线框的上边

恰好与磁场的下边界重合(图中位置Ⅰ),导线框的速度为v 0.经历一段时间后,当导线框的下边恰好与磁场的上边界重合时(图中位置Ⅱ),导线框的速度刚好为零.此后,导线框下落,经过一段时间回到初始位置Ⅰ(不计空气阻力),则( )

图5

A .上升过程中合力做的功与下降过程中合力做的功相等

B .上升过程中线框产生的热量比下降过程中线框产生的热量多

C .上升过程中,导线框的加速度逐渐减小

D .上升过程克服重力做功的平均功率小于下降过程重力的平均功率 答案 BC

解析 线框在运动过程中要克服安培力做功,消耗机械能,故返回原位置时速率减小,由动能定理可知,上升过程动能变化量大,合力做功多,所以选项A 错误;分析线框的运动过程可知,在任一位置,上升过程的安培力大于下降过程中的安培力,而上升、下降位移相等,故上升过程克服安培力做功大于下降过程中克服安培力做的功,故上升过程中线框产生的热量多,所以选项B 正确;以线框为对象分析受力可知,在上升过程做减速运动,有F 安+mg

=ma ,F 安=B 2L 2v R ,故有a =g +B 2L 2

mR v ,所以上升过程中,速度减小,加速度也减小,故选

项C 正确;在下降过程中的加速度小于上升过程的加速度,而上升、下降的位移相等,故可知上升时间较短,下降时间较长,两过程中重力做功大小相同,由功率公式可知,上升过程克服重力做功的平均功率大于下降过程重力做的平均功率,所以选项D 错误.

6.(2014·新课标Ⅱ·25)半径分别为r 和2r 的同心圆形导轨固定在同一水平面内,一长为r 、质量为m 且质量分布均匀的直导体棒AB 置于圆导轨上面,BA 的延长线通过

圆导轨中心O ,装置的俯视图如图6所示.整个装置位于一匀强磁场中,磁感应强度的大小为B ,方向竖直向下.在内圆导轨的C 点和外圆导轨的D 点之间接有一阻值为R 的电阻(图中未画出).直导体棒在水平外力作用下以角速度ω绕O 逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略.重力加速度大小为g .求:

图6

(1)通过电阻R 的感应电流的方向和大小;

(2)外力的功率.

答案 (1)方向为C →D 大小为3Bωr 2

2R

(2)9B 2ω2r 44R +3μmgωr 2

解析 (1)根据右手定则,得导体棒AB 上的电流方向为B →A ,故电阻R 上的电流方向为C →D .

设导体棒AB 中点的速度为v ,则v =v A +v B

2

而v A =ωr ,v B =2ωr

根据法拉第电磁感应定律,导体棒AB 上产生的感应电动势E =Br v

根据闭合电路欧姆定律得I =E R ,联立以上各式解得通过电阻R 的感应电流的大小为I =3Bωr 2

2R .

(2)根据能量守恒定律,外力的功率P 等于安培力与摩擦力的功率之和,即P =BIr v +F f v ,而F f =μmg

解得P =9B 2ω2r 44R +3μmgωr

2

.

电磁感应专题练习

电磁感应专题练习 【四川省成都外国语学校2019-2020学年高二(下)5月物理试题】如图所示,竖直平面 内有一半径为r、电阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与距离为2r、电 阻不计的平行光滑金属导轨ME、NF相接,E、F之间接有电阻R2,已知R1=12R,R2=4R。在MN上方及CD下方有水平方向的匀强磁场Ⅰ和Ⅱ,磁感应强度大小均为B。现有质量 为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒 始终保持水平,与半圆形金属环及轨道接触良好,设平行导轨足够长。已知导体棒下落r 2时的速度大小为v1,下落到MN处时的速度大小为v2。 (1)求导体棒ab从A处下落r 2时的加速度大小a; (2)若导体棒ab进入磁场Ⅱ后棒中电流大小始终不变,求磁场Ⅰ和Ⅱ之间的距离h; (3)当ab棒通过MN以后将半圆形金属环断开,同时将磁场Ⅱ的CD边界略微上移,导体棒ab刚进入磁场Ⅱ时的速度大小为v3,设导体棒ab在磁场Ⅱ下落高度H刚好达到匀速,则导体棒ab在磁场Ⅱ下落高度H的过程中电路所产生的热量是多少? 【安徽省舒城中学2019-2020学年高二(下)第三次月考物理试题】如图所示,固定在水平面上间距为l的两条平行光滑金属导轨,垂直于导轨放置的两根金属棒MN和PQ长度也为l、电阻均为R,两棒与导轨始终接触良好。MN两端通过开关S与电阻为R的单匝金属线圈相连,面积为S0,线圈内存在竖直向下均匀增加的磁场,磁通量变化率为常量k。

图中两根金属棒MN和PQ均处于垂直于导轨平面向下的匀强磁场,磁感应强度大小为B。MN、PQ的质量都为m,金属导轨足够长,电阻忽略不计。 (1)闭合S,若使MN、PQ保持静止,需在其上各加多大的水平恒力F,并指出其方向; (2)断开S,去除MN上的恒力,PQ在上述恒力F作用下,经时间t,PQ的加速度为a, 求此时MN、PQ棒的速度各为多少; (3)断开S,固定MN,PQ在上述恒力作用下,由静止开始到速度大小为v的加速过程中安 培力做的功为W,求流过PQ的电荷量q。 【重庆市主城区七校2019-2020学年高二(下)期末联考物理试题】如图所示,两条固定 的光滑平行金属导轨,导轨宽度为L=1m,所在平面与水平面夹角为θ=30°,导轨电阻忽略不计。虚线ab、cd均与导轨垂直其间距为l=1.6m,在ab与cd之间的区域存在垂直于 导轨所在平面的匀强磁场B=2T。将两根质量均为m=1kg电阻均为R=2Ω的导体棒PQ、MN先后自导轨上同一位置由静止释放,其时间间隔为Δt=0.1s。两者始终与导轨垂直且 接触良好。已知PQ进入磁场时加速度恰好为0。当MN到达虚线ab处时PQ仍在磁场区 域内。求: (1)导体棒PQ到达虚线ab处的速度v; (2)当导体棒PQ到达虚线cd的过程中导体棒MN上产生的热量Q; (3)当导体棒PQ刚离开虚线cd的瞬间,导体棒PQ两端的电势差U PQ。

高考专题复习-电磁感应专题

电磁感应专题 1. (20分)(电磁感应)如图甲所示,光滑且足够长的平行金属导轨 MN PQ 与水平面间的倾 角二=30°,两导轨间距L=0.3m 。导轨电阻忽略不计, 开始时,导轨上固定着一质量 m=0.1kg 、电阻r=0.2 Q 的金属杆ab ,整个装置处于磁感应强 度B=0.5T 的匀强磁场中,磁场方向垂直导轨面向下。 现拆除对金属杆ab 的约束,同时用一 平行金属导轨面的外力 F 沿斜面向上拉金属杆 ab ,使之由静止开始向上运动。电压采集器 可将其两端的电压 U 即时采集并输入电脑,获得的电压 U 随时间t 变化的关系如图乙所示。 2. (20分)(电磁感应?改编) 如图所示,相距0.5m 足够长的两根光滑导轨与水平面成 37° 角,导轨电阻不计,下端连接阻值为 2 Q 的电阻R,导轨处在磁感应强度 B =2T 的匀强 磁场中,磁场方向垂直导轨平面斜向上. ab 、cd 为水平金属棒且与导轨接触良好,它 们的质量均为0.5kg 、电阻均为2Q . ab 棒与一绝缘水平细绳相连处于静止状态,现让 cd 棒从 静止开始下滑,直至与 ab 相连的细绳刚好被拉断,在此过程中电阻 R 上产生的 热量为0.5J ,已知细线能承受的最大拉力为 5N.求细绳被 拉断时:(g =10m/s 2, sin37 ° =0.6) (1) ab 棒中的电流大小; (2) cd 棒的速度大小;(3) cd 棒下滑的距离. 其间连接有阻值R=0.4 Q 的固定电阻。 求: (1 )在t=2.0s 时通过金属杆的感 应电流的大小和方向; (2) 金属杆在2.0s 内通过的位移; (3) 2s 末拉力F 的瞬时功率。

精选高考物理易错题专题复习法拉第电磁感应定律含答案

一、法拉第电磁感应定律 1.如图甲所示,两根足够长的水平放置的平行的光滑金属导轨,导轨电阻不计,间距为L ,导轨间电阻为R 。PQ 右侧区域处于垂直纸面向里的匀强磁场中,磁感应强度大小为B ;PQ 左侧区域两导轨间有一面积为S 的圆形磁场区,该区域内磁感应强度随时间变化的图象如图乙所示,取垂直纸面向外为正方向,图象中B 0和t 0都为已知量。一根电阻为r 、质量为m 的导体棒置于导轨上,0?t 0时间内导体棒在水平外力作用下处于静止状态,t 0时刻立即撤掉外力,同时给导体棒瞬时冲量,此后导体棒向右做匀速直线运动,且始终与导轨保持良好接触。求: (1)0~t 0时间内导体棒ab 所受水平外力的大小及方向 (2)t 0时刻给导体棒的瞬时冲量的大小 【答案】(1) ()00=BB SL t F R r + 水平向左 (2) 00 mB S BLt 【解析】 【详解】 (1)由法拉第电磁感应定律得 : 010 B S BS E t t t ?Φ?= ==?? 所以此时回路中的电流为: () 1 00B S E I R r R r t = =++ 根据右手螺旋定则知电流方向为a 到b. 因为导体棒在水平外力作用下处于静止状态,故外力等于此时的安培力,即: () 00==BB SL F F BIL R t r = +安 由左手定则知安培力方向向右,故水平外力方向向左. (2)导体棒做匀速直线运动,切割磁感线产生电动势为: 2E BLv = 由题意知: 12E E = 所以联立解得:

00 B S v BLt = 所以根据动量定理知t 0时刻给导体棒的瞬时冲量的大小为: 00 0mB S I mv BLt =-= 答:(1)0~t 0时间内导体棒ab 所受水平外力为() 00= BB SL t F R r +,方向水平向左. (2)t 0时刻给导体棒的瞬时冲量的大小 00 mB S BLt 2.如图所示,在垂直纸面向里的磁感应强度为B 的有界矩形匀强磁场区域内,有一个由均匀导线制成的单匝矩形线框abcd ,线框平面垂直于磁感线。线框以恒定的速度v 沿垂直磁场边界向左运动,运动中线框dc 边始终与磁场右边界平行,线框边长ad =l ,cd =2l ,线框导线的总电阻为R ,则线框离开磁场的过程中,求: (1)线框离开磁场的过程中流过线框截面的电量q ; (2)线框离开磁场的过程中产生的热量 Q ; (3)线框离开磁场过程中cd 两点间的电势差U cd . 【答案】(1)22Bl q R =(2) 234B l v Q R =(3)43cd Blv U = 【解析】 【详解】 (1)线框离开磁场的过程中,则有: 2E B lv = E I R = q It = l t v = 联立可得:2 2Bl q R = (2)线框中的产生的热量: 2Q I Rt =

天津市静海区物理第十三章 电磁感应与电磁波精选测试卷专题练习

天津市静海区物理第十三章电磁感应与电磁波精选测试卷专题练习 一、第十三章电磁感应与电磁波初步选择题易错题培优(难) 1.分子运动看不见、摸不着,不好研究,但科学家可以通过研究墨水的扩散现象认识它,这种方法在科学上叫做“转换法”,下面是小红同学在学习中遇到的四个研究实例,其中采取的方法与刚才研究分子运动的方法相同的是() A.研究电流、电压和电阻关系时,先使电阻不变去研究电流与电压的关系;然后再让电压不变去研究电流与电阻的关系 B.用磁感线去研究磁场问题 C.研究电流时,将它比做水流 D.电流看不见、摸不着,判断电路中是否有电流时,我们可通过电路中的灯泡是否发光去确定 【答案】D 【解析】 【分析】 【详解】 A.这种研究方法叫控制变量法,让一个量发生变化,其它量不变,A错误; B.用磁感线去研究磁场问题的方法是建立模型法,使抽象的问题具体化,B错误 C.将电流比做水流,这是类比法,C错误 D.判断电路中是否有电流时,我们可通过电路中的灯泡是否发光去确定,即将电流的有无转化为灯泡是否发光,故是转化法,D正确。 故选D。 2.如图,在直角三角形ACD区域的C、D两点分别固定着两根垂直纸面的长直导线,导线中通有大小相等、方向相反的恒定电流,∠A=90?,∠C=30?,E是CD边的中点,此时E 点的磁感应强度大小为B,若仅将D处的导线平移至A处,则E点的磁感应强度() A.大小仍为B,方向垂直于AC向上 B.大小为 3 2 B,方向垂直于AC向下 C 3 ,方向垂直于AC向上 D3,方向垂直于AC向下【答案】B 【解析】

【分析】 【详解】 根据对称性C 、D 两点分别固定着两根垂直纸面的长直导线在E 点产生的磁感应强度 02B B = 由几何关系可知 AE =CE =DE 所以若仅将D 处的导线平移至A 处在E 处产生的磁感应强度仍为B 0,如图所示 仅将D 处的导线平移至A 处,则E 点的磁感应强度为 032cos302 B B B '=?= 方向垂直于AC 向下。 A .大小仍为B ,方向垂直于AC 向上 与上述结论不相符,故A 错误; B 3,方向垂直于A C 向下 与上述结论相符,故B 正确; C .大小为32 B ,方向垂直于A C 向上 与上述结论不相符,故C 错误; D 3,方向垂直于AC 向下 与上述结论不相符,故D 错误; 故选B 。 3.正三角形ABC 在纸面内,在顶点B 、C 处分别有垂直纸面的长直导线,通有方向如图所示、大小相等的电流,正方形abcd 也在纸面内,A 点为正方形对角线的交点,ac 连线与BC 平行,要使A 点处的磁感应强度为零,可行的措施是

2015年高三电磁感应专题复习(附答案)

图3 2015年高考电磁感应专题复习(附答案) 一、选择题 1、(2014上海)如图,匀强磁场垂直于软导线回路平面,由于磁场发生变化,回路变为圆形。则磁场:( ) A .逐渐增强,方向向外 B .逐渐增强,方向向里 C .逐渐减弱,方向向外 D .逐渐减弱,方向向里 2、(2014·新课标全国卷Ⅰ) 在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是:( ) A .将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化 B .在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化 C .将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化 D .绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化 3、如图3所示,小灯泡正常发光,现将一与螺线管等长的软铁棒沿管的轴线迅速插入螺线管内,小灯泡的亮度如何变化:( ) A .不变 B .变亮 C .变暗 D .不能确定 4、(2014·江苏卷)如图所示,一正方形线圈的匝数为n ,边长为a ,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt 时间内,磁感应强度的方向不变,大小由B 均匀地增大到2B .在此过程中,线圈中产生的感应电动势为:( ) A.Ba 22Δt B.nBa 22Δt C.nBa 2Δt D.2nBa 2 Δt 5、(2014·山东卷)如图所示,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好,在向右匀速通过M 、N 两区的过程中,导体棒所受安培力分别用F M 、F N 表示.不计轨道电阻.以下叙述正确的是:( ) A .F M 向右 B .F N 向左 C .F M 逐渐增大 D .F N 逐渐减小 6、(2014·四川卷) 如图所示,不计电阻的光滑U 形金属框水平放置,光滑、竖直玻璃挡板H 、P 固定在框上,H 、P 的间距很小.质量为0.2 kg 的细金属杆CD 恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1 m 的正方形,其有效电阻为0.1 Ω.此时在整个空间加方向与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B =(0.4-0.2t ) T ,图示磁场方向为正方向.框、挡板和杆不计形变.则:( ) A .t =1 s 时,金属杆中感应电流方向从C 到D B .t =3 s 时,金属杆中感应电流方向从D 到C C .t =1 s 时,金属杆对挡板P 的压力大小为0.1 N D .t =3 s 时,金属杆对挡板H 的压力大小为0.2 N 7、(2014·安徽卷) 英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场.如

电磁感应解题技巧及练习

电磁感应专题复习(重要) 基础回顾 (一)法拉弟电磁感应定律 1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比 E=nΔΦ/Δt(普适公式) 当导体切割磁感线运动时,其感应电动势计算公式为E=BLVsinα 2、E=nΔΦ/Δt与E=BLVsinα的选用 ①E=nΔΦ/Δt计算的是Δt时间内的平均电动势,一般有两种特殊求法 ΔΦ/Δt=BΔS/Δt即B不变ΔΦ/Δt=SΔB/Δt即S不变 ② E=BLVsinα可计算平均动势,也可计算瞬时电动势。 ③直导线在磁场中转动时,导体上各点速度不一样,可用 V平=ω(R1+R2)/2代入也可用E=nΔΦ/Δt 间接求得出 E=BL2ω/2(L为导体长度, ω为角速度。) (二)电磁感应的综合问题 一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的 电源,求出电源参数E和r。再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。然后进行“力”的分析--------要分析 力学研究对象(如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。【常见题型分析】 题型一楞次定律、右手定则的简单应用 例题(2006、广东)如图所示,用一根长为L、质量不计的细杆与一个上弧长为L0 、下弧 长为d0的金属线框的中点连接并悬挂于o点,悬点正下方存在一个弧长为2 L0、下弧长为 2 d0、方向垂直纸面向里的匀强磁场,且d0 远小于L先将线框拉开到图示位置,松手后让线 框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是 A、金属线框进入磁场时感应电流的方向为a→b→c→d→ B、金属线框离开磁场时感应电流的方向a→d→c→b→ C、金属线框d c边进入磁场与ab边离开磁场的速度大小总是相等 D、金属线框最终将在磁场内做简谐运动。 题型二法拉第电磁感应定律的简单应用 例题(2000、上海卷)如图所示,固定于水平桌面上的金属框架cdef,处在坚直向下的匀 强磁场中,金属棒ab搁在框架上,可无摩擦滑动,此时abcd构成一个边长为L的正方形,棒的电阻力为r,其余部分电阻不计,开始时磁感强度为B。 (1)若从t=0时刻起,磁感强度均匀增加,每秒增量为K,同时保持棒静止,求棒中的感 应电流,在图上标出感应电流的方向。 (2)在(1)情况中,始终保持棒静止,当t=t1 秒未时需加的垂直于棒的水平拉力为多大?(3)若从t=0时刻起,磁感强度逐渐减小,当棒以速度v向右做匀速运动时,若使棒中不 产生感应电流,则磁感强度怎样随时间变化(写出B与t的关系式)? d a c B0

专题电磁感应高考真题汇编

专题十 电磁感应高考真题汇编(学生版) 1.(单选)(2017?新课标Ⅰ卷T18)扫描对到显微镜(STM)可用来探测样品表面原子尺寸上的形貌.为了有效隔离外界振动对STM 的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示,无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及其左右振动的衰减最有效的方案是( ) 答案:A 解析:当加恒定磁场后,当紫铜薄板上下及其左右振动时,导致穿过板的磁通量变化,从而产生感应电流,感应磁场进而阻碍板的运动,因此只有A 选项穿过板的磁通量变化,A 正确,BCD 错误. 2.(多选) (2017?新课标Ⅱ卷T20)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直.边长为0.1m 、总电阻为0.005Ω的正方形导线框abcd 位于纸面内,cd 边与磁场边界 平行,如图a 所示.已知导线框一直向右做匀速直线 运动,cd 边于t=0时刻进入磁场.线框中感应电动势 随时间变化的图线如图b 所示(感应电流的方向为顺 时针时,感应电动势取正).下列说法正确的是 ( ) A.磁感应强度的大小为0.5T B.导线框运动速度的大小为0.5m/s C.磁感应强度的方向垂直于纸面向外 D.在t=0.4s 至t=0.6s 这段时间内,导线框所受的安培力大小为0.1N 答案:BC 解析:由图象可以看出,0.2~0.4s 没有感应电动势,说明从开始到ab 进入用时0.2s ,导 线框匀速运动的速度为v=L t =0.10.2m/s=0.5m/s ,由E=BLv 可得B=E Lv =0.010.1×0.5 T=0.2T ,A 错误,B 正确;由b 图可知,线框进磁场时,感应电流的方向为顺时针,由楞次定律可知磁感应强 度的方向垂直纸面向外,C 正确;在0.4~0.6s 内,导线框所受的安培力F=ILB=B 2L 2v R =0.22×0.12×0.50.005 N=0.04N ,D 错误. 3.(单选) (2017?新课标Ⅲ卷,T15)如图所示,在方向垂直于纸面向里的匀强磁场中有一U 形金属导轨,导轨平面与磁场垂直,金属杆PQ 置于导轨上并与导轨形成闭合回路PQRS ,一圆环形金属框T 位于回路围成的区域内,线框与导轨共面.现让金属杆PQ 突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是( ) A.PQRS 中沿顺时针方向,T 中沿逆时针方向 B.PQRS 中沿顺时针方向,T 中沿顺时针方向 C.PQRS 中沿逆时针方向,T 中沿逆时针方向 D.PQRS 中沿逆时针方向,T 中沿顺时针方向 答案:D 解析:PQ 向右运动,导体切割磁感线,由右手定则可知电流由Q 流向P ,即逆时针方向,再

高中物理专项练习:电磁感应

高中物理专项练习:电磁感应 一.选择题 1. (高三考试大纲调研卷10)如图所示,空间存在一有边界的条形匀强磁场区域,磁场方向与竖直平面(纸面)垂直,磁场边界的间距为L。一个质量为m、边长也为L的正方形导线框沿竖直方向运动,线框所在平面始终与磁场方向垂直,且线框上、下边始终与磁场的边界平行。t=0时刻导线框的上边恰好与磁场的下边界重合 (图中位置Ⅰ),导线框的速度为v0。经历一段时间后,当导线框的下边恰好与磁场的上边界重合时(图中位置Ⅱ),导线框的速度刚好为零。此后,导线框下落,经过一段时间回到初始位置Ⅰ(不计空气阻力),则 A. 上升过程中合力做的功与下降过程中合力做的功相等 B. 上升过程中线框产生的热量与下降过程中线框产生的热量相等 C. 上升过程中,导线框的加速度逐渐增大 D. 上升过程克服重力做功的平均功率大于下降过程重力的平均功率 【答案】D 【解析】线框运动过程中要产生电能,根据能量守恒定律可知,线框返回原位置时速率减小,则上升过程动能的变化量大小大于下降过程动能的变化量大小,根据动能定理得知,上升过程中合力做功较大,故A错误;线框产生的焦耳热等于克服安培力做功,对应与同一位置,上升过程安培力大于下降过程安培力,上升与下降过程位移相等,则上升过程克服安培力做功等于下降过程克服安培力做功,上升过程中线框产生的热量比下降过程中线框产生的热量的多,故B错误;上升过程中,线框所受的重力和安培力都向下,线框做减速运动。设加速度大小为a,根据牛顿第二定律得:,,由此可知,线框速度v减小时,加速度a也减小, 故C错误;下降过程中,线框做加速运动,则有:,,,由此可知,下降过程加速度小于上升过程加速度,上升过程位移与下降过程位移相等,则上升时间短,下降时

2020届高考物理二轮复习 专题四 电路与电磁感应 提升训练15 电磁感应的综合问题

提升训练15 电磁感应的综合问题 1.一实验小组想要探究电磁刹车的效果。在遥控小车底面安装宽为L、长为 2.5L的N匝矩形线框,线框电阻为R,面积可认为与小车底面相同,其平面与水平地面平行,小车总质量为m。其俯视图如图所示,小车在磁场外行驶时的功率保持P不变,且在进入磁场前已达到最大速度,当车头刚要进入磁场时立即撤去牵引力,完全进入磁场时速度恰好为零。已知有界磁场PQ和MN间的距离为2.5L,磁感应强度大小为B,方向竖直向上,在行驶过程中小车受到地面阻力恒为F f。求: (1)小车车头刚进入磁场时,线框的感应电动势E; (2)电磁刹车过程中产生的焦耳热Q; (3)若只改变小车功率,使小车刚出磁场边界MN时的速度恰好为零,假设小车两次与磁场作用时间相同,求小车的功率P'。 2.(2017浙江义乌高三模拟)如图所示,固定在上、下两层水平面上的平行金属导轨MN、M'N'和OP、O'P'间距都是l,二者之间固定有两组竖直半圆形轨道PQM和P'Q'M',它们是用绝缘材料制成的,两轨道间距也均为l,且PQM和P'Q'M'的竖直高度均为4R,两组半圆形轨道的半径均为R。轨道的QQ'端、MM'端的对接狭缝宽度可忽略不计,图中的虚线为绝缘材料制成的固定支架。下层金属导轨接有电源,当将一金属杆沿垂直导轨方向搭接在两导轨上时,将有电流从电源正极流出,经过导轨和金属杆流回电源负极。此时金属杆将受到导轨中电流所形成磁场的安培力作用而运动。运动过程中金属杆始终与导轨垂直,且接触良好。当金属杆由静止开始向右运动4R到达水平导轨末端PP'位置时其速度大小v P=4。已知金属杆质量为m,两轨道间的磁场可视为匀强磁场,其磁感应强度与电流的关系为B=kI(k为已知常量),金属杆在下层导轨的运动可视为匀加速运动,运动中金属杆所受的摩擦阻力、金属杆和导轨的电阻均可忽略不计。 (1)求金属杆在下层导轨运动过程中通过它的电流大小。

2020高考电磁感应专题

2020高考电磁感应专题 1.磁通量公式: (B与S )注:磁通量有大小也有方向,但是标量,遵从代数运算法则 也可以这样理解:穿过某面积的磁感线的条数叫做穿过这一面积的磁通量 2.电磁感应现象:在磁场中的导体产生或的现象。 3.产生感应电流的条件:(1)(2) 4.楞次定律:感应电流的方向,感应电流的磁场总是引起感应电流的。 5.简单判断法:(1)电流方向可用判断; (2)受力方向可用判断; (3)面积变化可用判断。 注:导体切割磁感线产生感应电流的方向用来判断较为简便。 专题训练: 1.【2017·新课标Ⅲ卷】如图在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直。金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面。现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感 应电流的方向,下列说法正确的是() A.PQRS中沿顺时针方向,T中沿逆时针方向 B.PQRS中沿顺时针方向,T中沿顺时针方向 C.PQRS中沿逆时针方向,T中沿逆时针方向 D.PQRS中沿逆时针方向,T中沿顺时针方向 2.(2018·高考全国卷Ⅰ)(多选)如图,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路.将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态.下列说法正确的是( ) A.开关闭合后的瞬间,小磁针的N极朝垂直纸面向里的方向转动 B.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向里的方向 C.开关闭合并保持一段时间后,小磁针的N极指向垂直纸面向外的方向 D.开关闭合并保持一段时间再断开后的瞬间,小磁针的N极朝垂直纸面向外的方向转动

电磁感应中的图像问题专题练习

电磁感应中的图像问题专题练习

电磁感应中的图像问题专题练习 1.(2016武汉模拟)如图(甲)所示,矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂直.规定磁场的正方向垂直纸面向里,磁感应强度B随时间变化的规律如图(乙)所示.若规定顺时针方向为感应电流i的正方向,图中正确的是( ) 2.(2016山西康杰中学高二月考)如图所示,两条平行虚线之间存在 匀强磁场,磁场方向垂直纸面向里,虚线间的距离为L.金属圆环的直径也是L.自圆环从左边界进入磁场开始计时,以垂直于磁场边界的 恒定速度v穿过磁场区域.规定逆时针方向为感应电流i的正方向,则圆环中感应电流i随其移动距离x的变化的i x图像最接近( )

3.如图(甲)所示,光滑导轨水平放置在竖直方向的匀强磁场中,匀强磁场的磁感应强度B随时间的变化规律如图(乙)所示(规定向下为正方向),导体棒ab垂直导轨放置,除电阻R的阻值外,其余电阻不计,导体棒ab在水平外力F的作用下始终处于静止状态.规定a→b的方向为电流的正方向,水平向右的方向为外力的正方向,则在0~2t0时间内,能正确反映流过导体棒ab的电流与时间或外力与时间关系的图线是( ) 4.如图所示,有一个等腰直角三角形的匀强磁场区域其直角边长为L,磁场方向垂直纸面向外,磁感应强度大小为B.边长为L、总电阻为R 的正方形导线框abcd,从图示位置开始沿x轴正方向以速度v匀速穿过磁场区域.取沿abcda的感应电流方向为正,则表示线框中电流i 随bc边的位置坐标x变化的图像正确的是( )

5.如图所示,EOF和E′O′F′为空间一匀强磁场的边界,其中EO∥E′O′,FO∥F′O′,且EO⊥OF,OO′为∠EOF的角平分线,OO′间的距离为l,磁场方向垂直于纸面向里,一边长为l的正方形导线框ABCD 沿O′O方向匀速通过磁场,t=0时刻恰好位于图示位置.规定导线框中感应电流沿逆时针方向时为正,则在图中感应电流i与时间t的关系图线可能正确的是( ) 6.如图所示,用导线制成的矩形框长2L,以速度v穿过有理想界面的宽为L的匀强磁场,那么,线框中感应电流和时间的关系可用下图中的哪个图表示( )

高考物理专题 电磁感应(含答案)

专题十一电磁感应 考纲解读 分析解读本专题主要内容有电磁感应现象的描述、感应电流方向的判断(楞次定律、右手定则)、感应电动势大小的计算、自感现象和涡流现象等。这部分是高考考查的重点内容。在高考中,电磁感应现象多与磁场、电路、力学、能量等知识结合,综合性较高,因此,在复习时应深刻理解各知识点内容、注重训练和掌握综合性题目的分析思路和方法,还要研究与实际生活、生产科技相结合的实际应用问题,便于全面提高分析解决综合性问题和实际应用问题的能力。 命题探究

(1)设两导线的张力大小之和为T,右斜面对ab棒的支持力的大小为N1,作用在ab棒上的安培力的大小为F,左斜面对cd棒的支持力大小为N2。对于ab棒,由力的平衡条件得 2mgsinθ=μN1+T+F① N1=2mgcosθ② 对于cd棒,同理有 mgsinθ+μN2=T③ N2=mgcosθ④ 联立①②③④式得 F=mg(sinθ-3μcosθ)⑤ (2)由安培力公式得 F=BIL⑥ 这里I是回路abdca中的感应电流。ab棒上的感应电动势为 ε=BLv⑦ 式中,v是ab棒下滑速度的大小。由欧姆定律得 I=⑧ 联立⑤⑥⑦⑧式得 v=(sinθ-3μcosθ)⑨

五年高考考点一楞次定律

1.(2017课标Ⅲ,15,6分)如图,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直。金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属线框T位于回路围成的区域内,线框与导轨共面。现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是() A.PQRS中沿顺时针方向,T中沿逆时针方向 B.PQRS中沿顺时针方向,T中沿顺时针方向 C.PQRS中沿逆时针方向,T中沿逆时针方向 D.PQRS中沿逆时针方向,T中沿顺时针方向 答案 D 2.(2017天津理综,3,6分)如图所示,两根平行金属导轨置于水平面内,导轨之间接有电阻R。金属棒ab与两导轨垂直并保持良好接触,整个装置放在匀强磁场中,磁场方向垂直于导轨平面向下。现使磁感应强度随时间均匀减小,ab始终保持静止,下列说法正确的是() A.ab中的感应电流方向由b到a B.ab中的感应电流逐渐减小 C.ab所受的安培力保持不变 D.ab所受的静摩擦力逐渐减小 答案 D 3.(2016课标Ⅱ,20,6分)(多选)法拉第圆盘发电机的示意图如图所示。铜圆盘安装在竖直的铜轴上,两铜片P、Q分别与圆盘的边缘和铜轴接触。圆盘处于方向竖直向上的匀强磁场B中。圆盘旋转时,关于流过电阻R的电流,下列说法正确的是()

电磁感应专项训练(含答案)

电磁感应训练题 一、选择题(本题共52分。在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确,全部选对得4分,选对但不全的得2分,有选错或不选的得0分) 1.电磁感应现象揭示了电和磁之间的在联系,根据这一发现,发明了许多电器设备。下列用电器中,没有利用电磁感应原理的是 A .动圈式话筒 B .日光灯镇流器 C .磁带录音机 D .白炽灯泡 2.关于电磁感应,下列说确的是 A .穿过线圈的磁通量越大,感应电动势越大 B .穿过线圈的磁通量为零,感应电动势一定为零 C .穿过线圈的磁通量变化越大,感应电动势越大 D .穿过线圈的磁通量变化越快,感应电动势越大 3.如图所示,等腰直角三角形OPQ 区域存在匀强磁场,另有一等腰直角三角形导线框ABC 以恒定的速度沿垂直于磁场方向穿过磁场,穿越过程中速度方向始终与AB 边垂直,且保持AC 平行于OQ 。关于线框中的感应电流,以下说确的是 A .开始进入磁场时感应电流最小 B .开始穿出磁场时感应电流最大 C .开始进入磁场时感应电流沿顺时针方向 D .开始穿出磁场时感应电流沿顺时针方向 4.如图,闭合线圈上方有一竖直放置的条形磁铁,磁铁的N 极朝下。当磁铁向下运动时(但未插入线圈部),则 A .线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互吸引 B .线圈中感应电流的方向与图中箭头方向相同,磁铁与线圈相互排斥 C .线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互吸引 D .线圈中感应电流的方向与图中箭头方向相反,磁铁与线圈相互排斥 5.在一个较长的铁钉上,用漆包线绕上两个线圈A 、B ,将线圈B 的两端接在一起,并把CD 段直漆包线南北方向放置在静止的小磁针的上方,如图所示。下列判断正确的是A .开关闭合时,小磁针不发生转动 B .开关闭合时,小磁针的N 及垂直纸面向里转动 C .开关断开时,小磁针的N 及垂直纸面向里转动 D .开关断开时,小磁针的N 及垂直纸面向外转动 6.如图所示,在蹄形磁铁的两极间有一可以自由转动的铜盘(不计各种摩擦),现让铜盘转动。下面对观察到的现象描述及解释正确的是 A .铜盘中没有感应电动势、没有感应电流,铜盘将一直转动下去 B .铜盘中有感应电动势、没有感应电流,铜盘将一直转动下去 C .铜盘中既有感应电动势又有感应电流,铜盘将很快停下 D .铜盘中既有感应电动势又有感应电流,铜盘将越转越快 7.在如图所示的电路中,灯A 1和A 2是规格相同的两盏灯。当开关闭合后达到稳定状态时,A 1和A 2两灯一样亮。下列判断正确的是 A .闭合开关时,A 1、A 2同时发光 B .闭合开关时,A 1逐渐变亮,A 2立刻发光 S N ω

电磁感应典型例题和练习

电磁感应 课标导航 课程容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析 知识:安培力的大小与方向 例1. (09年物理)13.如图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef有一半径很小的金属圆环L,圆环与导轨在同一平面当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩)趋势,圆环产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电

北京市高三物理二轮复习 电磁感应专题教学案

一、电磁感应现象:一切电磁感应现象都可以归结为磁通量的变化引起的: 如: 二、感应电流的方向判断: 楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化 对于导体切割磁感线时的感应电动势方向的判断,也可以利用右手定则:伸开右手,让磁场穿过掌心,大拇指指向运动方向,四指指向导体内感应电流方向或导体内感应电动势的正极。 三、法拉第电磁感应定律: (1)在电磁感应现象中产生的感应电动势大小,跟穿过这一回路的磁通变化率成正比。 表达式:——平均值 (2)导体在磁场中切割磁感线产生电动势。

表达式:ε=BLv(垂直切割)——瞬时值 若v不与B垂直,则可以将v分解为垂直于B和平行于B,其中垂直分量产生感应电动势。 (3)自感现象:由于通过导体本身电流发生变化而引起的电磁感应现象。 自感电动势,即与电流的变化率成正比,式中L为自感系数由线圈本身的长度、横截面积、匝数以及有无铁芯决定。 [例题分析] 例1、通电直导线与闭合金属框彼此绝缘,它们处于同一平面内,导 线位置与线框轴重合。为了使线框中产生如图所示方向的感应电流,可 以采取的措施是: A、减弱直导线中的电流强度 B、线框以直导线为轴转动 C、线框向右平动 D、线框向左平动 分析:通电直导线产生磁场的磁感线是以电流为圆心的同心圆。闭 合线框在如图所示状态下磁通量j为零。当直导线中电流强度发生变化或线框以直导线为轴转动时,通过线框的磁通量j始终是零,Δj=0,故无感应电流产生。 当线框向右或向左平动时,通过线框的磁通量j都要增加。向右平动原磁场方向为“x”,向左平动原磁场方向为“·”为了阻碍磁通量的增加产生题目中要求感生电流的方向。由楞次定律可判断线框应向左平动,故D选项是正确的。 例2、如图所示,用金属导线变成闭合正方形导线框边长为L,电阻 为R,当它以速度v匀速地通过宽也为L的匀强磁场区过程中,外力需做 功W,则该磁场磁感应强度应为多大?若仍用此种导线变成边长为2L的正 方形导线框,以相同速度通过同一磁场区,外力应做功为原来的几倍? 解:正方形线框匀速通过磁场ΣF=0,当进入磁场时,cd边切割磁感 线产生ε→产生I→受F安:F外=F安。当出磁场时ab边切割磁感线产生ε→产生I→受F安,则F外=F安。 外力功W=F外·2L=F安×2L=BIL×2L=2BL2× 。 则磁感应强度。 当线框边长为2L时,此时真正产生感应电流的时候是当cd、ab边在磁场中运动时,外力功W'为:(此时电阻为原来的2倍) W'=F外'×2L= F安'×2L=BI'×2L×2L =4BL2×

2020年高考物理原创专题卷:《电磁感应》

原创物理专题卷 专题电磁感应 考点29 电磁感应现象楞次定律 (1、3、5、12) 考点30 法拉第此电磁感应定律自感(2、8、14) 考点31电磁感应中的电路问题(7、9、18) 考点32 电磁感应中的图象问题(11、13、16) 考点33 电磁感应中的动力学与能量问题(4、6、10、15、17、19、20) 第I卷(选择题 68分) 一、选择题(本题共17个小题,每题4分,共68分。每题给出的四个选项中,有的只有一个选项符合题意,有的有多个选项符合题意,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分) 1.【2017·辽宁省本溪市高三联合模拟考试】考点29 易 如图是电子感应加速器的示意图,上、下为电磁铁的两个磁极,磁极之间有一个环形真空室,电子在真空室中做圆周运动,上图为侧视图,下图为真空室的俯视图,电子从电子枪右端逸出(不计初速度)后,在真空室中沿虚线被加速,然后击中电子枪左端的靶,下列说法中正确的是() A.俯视看,通过电磁铁导线的电流方向为逆时针方向,且电流应逐渐增大 B.俯视看,通过电磁铁导线的电流方向为顺时针方向,且电流应逐渐减小 C.俯视看,通过电磁铁导线的电流方向为逆时针方向,且电流应逐渐减小 D.俯视看,通过电磁铁导线的电流方向为顺时针方向,且电流应逐渐增大2.【2017·黑龙江省大庆中学高三上学期期末考试】考点30易 在半径为r、电阻为R的圆形导线框内,以直径为界,左右两侧分别存在着方向如图甲所示的匀强磁场,以垂直纸面向外的磁场为正,两部分磁场的磁感应强度B随时间t的变化规律分别如图乙所示.则0?t0时间内,导线框中()

A.感应电流方向为顺时针 B.感应电流方向为逆时针 C.感应电流大小为 2 3r B t R π D.感应电流大小为 2 2r B t R π 3.【2017年全国普通高等学校招生统一考试物理(全国3卷正式版)】考点29 中 如图,在方向垂直于纸面向里的匀强磁场中有一U形金属导轨,导轨平面与磁场垂直.金属杆PQ置于导轨上并与导轨形成闭合回路PQRS,一圆环形金属框T位于回路围成的区域内,线框与导轨共面.现让金属杆PQ突然向右运动,在运动开始的瞬间,关于感应电流的方向,下列说法正确的是() A.PQRS中沿顺时针方向,T中沿逆时针方向 B.PQRS中沿顺时针方向,T中沿顺时针方向 C.PQRS中沿逆时针方向,T 中沿逆时针方向 D.PQRS中沿逆时针方向,T中沿顺时针方向 4.【2017·开封市高三第一次模拟】考点33中 如图(甲)所示,平行光滑金属导轨水平放置,两轨相距L=0.4 m,导轨一端与阻值R=0.3Ω的电阻相连,导轨电阻不计.导轨x>0一侧存在沿x方向均匀增大的磁场,其方向与导轨平面垂直向下,磁感应强度B随位置x变化如图(乙)所示。一根质量m=0.2 kg、电阻r=0.1 Ω的金属棒置于导轨上,并与导轨垂直,棒在外力F作用下从x=0处以初速度v0=2m/s沿导轨向右变速运动,且金属棒在运动过程中受到的安培力大小不变.下列说法中正确的是 () A.金属棒向右做匀减速直线运动 B.金属棒在x=1 m处的速度大小为1.5m/s C.金属棒从x=0运动到x=1m过程中,外力F所做的功为-0.175 J D.金属棒从x=0运动到x=2m过程中,流过金属棒的电量为2C

电磁感应中的电路问题专题练习(含答案)

电磁感应中的电路问题专题练习 1.用均匀导线做成的正方形线圈边长为l,正方形的一半放在垂直于纸面向里的匀强磁场中,如图所示,当磁场以的变化率增强时,则下列说法正确的是( ) A.线圈中感应电流方向为adbca B.线圈中产生的电动势E=· C.线圈中a点电势高于b点电势 D.线圈中a,b两点间的电势差为· 2.如图所示,用粗细相同的铜丝做成边长分别为L和2L的两只闭合线框a和b,以相同的速度从磁感应强度为B的匀强磁场区域中匀速地拉到磁场外,不考虑线框的重力,若闭合线框的电流分别为I a,I b,则I a∶I b为( ) A.1∶4 B.1∶2 C.1∶1 D.不能确定 3.在图中,EF,GH为平行的金属导轨,其电阻不计,R为电阻,C为电容器,AB为可在EF和GH上滑动的导体棒,有匀强磁场垂直于导轨平面.若用I1和I2分别表示图中该处导线中的电流,则当AB棒( D )

A.匀速滑动时,I1=0,I2=0 B.匀速滑动时,I1≠0,I2≠0 C.加速滑动时,I1=0,I2=0 D.加速滑动时,I1≠0,I2≠0 4.如图所示,导体棒在金属框架上向右做匀加速运动,在此过程中( ) A.电容器上电荷量越来越多 B.电容器上电荷量越来越少 C.电容器上电荷量保持不变 D.电阻R上电流越来越大 5.用相同导线绕制的边长为L或2L的四个闭合导体线框,以相同的速度进入右侧匀强磁场,如图所示.在每个线框进入磁场的过程中,M,N 两点间的电压分别为U a,U b,U c和U d.下列判断正确的是( ) A.U a

高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合及答案解析

高考物理压轴题专题复习—电磁感应现象的两类情况的推断题综合及答案解析一、电磁感应现象的两类情况 1.如图所示,竖直放置、半径为R的圆弧导轨与水平导轨ab、在处平滑连接,且轨道间距为2L,cd、足够长并与ab、以导棒连接,导轨间距为L,b、c、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B的匀强磁场,均匀的金属棒pq和gh垂直导轨放置且与导轨接触良好。gh静止在cd、导轨上,pq从圆弧导轨的顶端由静止释放,进入磁场后与gh没有接触。当pq运动到时,回路中恰好没有电流,已知pq的质量为2m,长度为2L,电阻为2r,gh的质量为m,长度为L,电阻为r,除金属棒外其余电阻不计,所有轨道均光滑,重力加速度为g,求: (1)金属棒pq到达圆弧的底端时,对圆弧底端的压力; (2)金属棒pq运动到时,金属棒gh的速度大小; (3)金属棒gh产生的最大热量。 【答案】(1) (2) (3) 【解析】【分析】金属棒pq下滑过程中,根据机械能守恒和牛顿运动定律求出对圆弧底端的压力;属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,根据动量定理求出金属棒gh的速度大小;金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,根据能量守恒求出金属棒gh产生的最大热量; 解:(1)金属棒pq下滑过程中,根据机械能守恒有: 在圆弧底端有 根据牛顿第三定律,对圆弧底端的压力有 联立解得 (2)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,此时有 对于金属棒pq有 对于金属棒gh有

相关文档 最新文档