文档库 最新最全的文档下载
当前位置:文档库 › 压电效应也压电材料论文

压电效应也压电材料论文

压电效应也压电材料论文
压电效应也压电材料论文

压电效应与压电材料

摘要:06年是居里皮尔与杰克斯发现压电效应(piezoelectric effect)的一百周年。压电效应是指某些电介质当沿着一定方向对其施力使它变形其内部就会产生极化现象,同时在它的两个表面上产生符号相反的电荷,当外力去掉后,它又重新恢复到不带电的状态的现象。压电材料就是指受到压力作用时会在两端面间出现电压的晶体材料,利用压电材料的特性可实现机械振动(声波)和交流电的相互转换。压电材料在生活中广泛应用,为人民服务,创造美好的生活。

关键词:压电效应,压电晶体,压电陶瓷,换能器

引言:当您将钮轻轻一拧,煤气灶迅速燃起蓝色火焰,您可曾意识到是什么带给您的这份便利呢?将一块看起来平淡无奇的陶瓷接上导线和电流表,用手在上面一摁,电流表的指针也跟着发生摆动,竟然产生了电流,岂非咄咄怪事?其实,这是压电陶瓷,一种能将机械能和电脑相互转换的功能陶瓷材料。这种奇妙的材料已经被科学家应用在与人们生活密切相关的许多领域,以实现能量转换、传感、驱动、频率控制等功能。

1、压电效应概述

1.1压电效应的定义:某些电介质当沿着一定方向对其施力使它变形其内部就会产生极化现象,同时在它的两个表面上产生符号相反的电荷,当外力去掉后,它又重新恢复到不带电的状态。我们把这种现象称为压电效应。

1.2压电效应分类压电效应分为正压电效应和负压电效应。正压电效应当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷,当外力撤去后晶体又恢复到不带电的状态当外力作用方向改变时电荷的极性也随之改变晶体受力所产生的电荷量与外力的大小成正比。通过此过程把机械能转化成电能的现象称为正压电效应负压电效应。当在电介质极化方向施加电场引起晶体机械变形的现象称为负压电效应。它是压电效应的逆效应。

其产生的原因是压电晶体中的晶格在电场力的作用下产生较强的内应力而导致变形。压电晶体在交变电场的作用下 其内应力和形变都会发生周期性变化从而产生机械振动。也称为电致伸缩效应。

1.3压电效应的特性与作用 由压电效应原理可知,当作用力的方向改变时,电荷的极性也随之改变。因此压电材料可实现机械能—电能量的相互转换。

1.4压电效应的历史和发展压电效应是1880年由法国著名物理学家,放射学先去皮埃尔?居里先生和雅克?保罗?居里发现的。他们发现某些晶体特别是石英等受到挤压或者拉伸力的作用后,会在相对的两个平面上产生异号电荷,且密度与电压成正比。一旦电荷出现,放点过程的发光便相伴而生。由此可知,当石英晶质体绵延几公里的时候,震前上百巴的应力变化足以造成百万伏的触发电压,低空的放点发光便在情理之中。经过一百多年的研究,人们发现压电效应有两种机械能转变为电能是正效应,相反为逆效应。而且有20多种晶体均含有压电效应。人工已经合成了大量的性能更佳的压电陶瓷材料,不仅发现压电材料在机械能 电能、热能、光能之间有相互转换的良好关系,还发现人体组织、毛发和骨骼都有生物压电效应。我们日常使用的打火机、音响、手机、电子表等等都使用了压电材料。目前这种材料制成的产品已广布于各个领域。

2、压电晶体

2.1什么是压电晶体 有一类十分有趣的晶体,当你对它挤压或拉伸时,它的两端就会产生不同的电荷。这种效应被称为压电效应。能产生压电效应的晶体就叫压电晶体。水晶 α-石英 是一种有名的压电晶体。

2.2晶体有无压电效应的判断 晶体不受外力作用时,晶体的正负电荷中心相重合,单位体积中的电矩极化强度等于零,晶体对外不呈现极性。而在外力作用下晶体变形时,正负电荷的中心发生分离,此时单位体积中的电矩不再为零,晶体表现出极性另外一些晶体由于具有中心对称的结构。无论外力如何作用,晶体正负电荷的中心总是重合在一起,因此这些晶体不会出现压电效应。

2.3压电晶体的功能 (1)压电效应 当外力加于晶体上时 晶体发生形变 导致在受力的两个晶面上出现等量异号的电荷。压力产生的极化电荷与拉力产生的极化电荷的方向相反。极化电荷的多少与外力引起的形变程度有关。压电效应产生的原因是 在外力作用的方向上 由于晶体发生形变造成晶格间距的变化 使得晶粒的正负电荷中心发生分离 从而产生极化现象。(2)电致伸缩效应 压电晶体在电场力的作用下发生形变的现象 叫做电致伸缩效应。它是压电效应的逆效应。其产生的原因是 压电晶体中的晶格在电场力的作用下产生较强的内应力而导致变形。压电晶体在交变电场的作用下 其内应力和形变都会发生周期性变化 从而产生机械振动。(3)热电效应 某些压电晶体通过温度的变化可以改变极化状态 从而在某些相对应的表面上产生极化电荷 这种现象叫做热释电效应。反之 这种晶体在外电场作用下 其温度会发生显著变化 这种现象叫做电生热效应。热释电效应的发生源于晶体的各向异性 是由于晶体在不同方向上的线膨胀系数不同而引起的。

2.4常见压电晶体材料 闪锌矿 zincblende 、钠氯酸盐 sodiumchlorate 、电气石 tourmaline 、石英 quartz 、酒石酸 tartaricacid 、蔗糖 canesuger 、方硼石 boracite 、异极矿 calamine 、黄晶 topaz 及若歇尔盐 Rochellesalt 。这些晶体都具有非晶方性 anisotropic 结构 晶方性 isotropic 材料是不会产生压电性的。

2.5压电晶体的常见应用

2.5.1 压电陶瓷 压电陶瓷是功能陶瓷中应用极广的一种。日常生活中很多人使用的“电子打火机”和煤气灶上的电子点火器 就是压电陶瓷的一种应用。点火器就是利用压电陶瓷的压电特性 向其上施加力 使之产生十几kV的高电压 从而产生火花放电 达到点火的目的。压电陶瓷实际上是一种经过极化处理的、具有压电效应的铁电陶瓷。它是能够将机械能和电能互相转换的功能陶瓷材料。它是在1946年当有人证实了钛酸钡陶瓷有铁电性之后开始问世的 差不多十年之后 贾菲 Jaffe 等又发现PbTi03-PbZrO2系 即所谓PZT系 及后来又发现的mPZT为基的三元系压电陶瓷和铌酸盐系压电陶瓷。使压电陶瓷的性能和可应用性有了极大的提高。特别是三元系压电陶瓷的出现 使压电陶瓷在选择一定耦合系数、温度特性方面有了较大的余地 能满足多种电子仪器的要求 从而使压电陶瓷的应用范围大大增加了。例如陶瓷滤波器和陶瓷鉴频器 电声换能器 水声换能器 声表的波器件 电光器件 红外探测器件和压电陀螺等 都是压电陶瓷在现代电子技术中的应用。

2.5.2 压电性特异的多元单晶压电体 传统的压电陶瓷较其它类型的压电材料压电效应要强 从而得到了广泛应用。但作为大应边 高能换能材料 传统压电陶瓷的压电效应仍不能满足要求。于是近几年来 人们为了研究出具有更优异压电性的新压电材料做了大量工作 现已发现并研制出了Pb(A1/3B2/3)PbTiO3单晶 A=Zn2+,Mg2+ 。这类单晶的d33最高可达2600pc/N(压电陶瓷d33最大为850pc/N),k33可高达0.95 压电陶瓷K33最高达0.8 其应变>1.7% 几乎比压电陶瓷应变高一个数量级。储能密度高达130J/kg 而压电陶瓷储能密度在10J/kg以内。铁电压电学者们称这类材料的出现是压电材料发展的又一次飞跃。现在美国、日本、俄罗斯和中国已开始进行这类材料的生产工艺研究 它的批量生产的成功必将带来压电材料应用的飞速发展。

参考文献:

[1] 许小红,武海顺,2002,压电薄膜的制备,结构与应用,北京,科学出版社。

[2] 张福学,2001,现代压电学(上册),北京,科学出版社

[3] 三思科学杂志,2005年第3期,15-18

新型陶瓷材料论文陶瓷装饰材料论文:电子陶瓷材料的发展现状与趋势

新型陶瓷材料论文陶瓷装饰材料论文:电子陶瓷材料的发 展现状与趋势 电子陶瓷材料的发展现状与趋势 材料学院 080201班李金霖 摘要本文对电子陶瓷系统中的绝缘质、介电质、压电质与离子导体的现状进行了综合评述。指出了电子陶瓷材料及其生产工艺的研究动向和发展趋势。 关键词电子陶瓷,材料,研究和开发 1引言 电子陶瓷材料主要指具有电磁功能的一类功能陶瓷,它具有较大的禁带宽度,可以在很宽的范围内调节其介电性能和导电性能。它以电、磁、光、热和力学等性能及其相互转换为 [1]主要特征,广泛应用于电子、通讯、自动控制等众多高科技领域。 近年来,电子陶瓷的研究和开发十分引入注目,其新材料、新工艺和新器件已在诸多方面取得了成果。 2电子陶瓷材料研究现状及其应用前景 2.1 高导热、电绝缘陶瓷 2.1.1高导热、电绝缘陶瓷的研究现状 绝缘陶瓷又称装置瓷,它具有高电绝缘性、优异的高频特性、良好的导热性以及高化学稳定性和机械强度等特性。 [2] AlN于1862年首次合成,20世纪50年代后期,随着非氧化物陶瓷受到重视,人们开始将AlN陶瓷作为一种新材料进行研究,侧重于将其作为结构材料应用。近10年来,AlN陶瓷的研究热点是提高热传导性能,应用对象是电路基板和

封装材料。最新研究通过采用有效的烧结助剂如CaO和Y0生产出了高纯度、高热导率的AlN。 23 BeO陶瓷是一种高导热率、电绝缘性能良好的材料,它对微电子集成电路的发展作出 [3]了巨大的贡献,但因其有剧毒,已逐渐被停止使用。 近30年来,由于人们的重视和工业应用的需要,高导热电绝缘陶瓷逐渐发展壮大,研究方向也有了一些变化,主要表现在: (1) 新材料的开发。一方面,在原有材料的基础上开发新的材料,如在SiC中添加 [4]2%BeO,获得SiC-BeO高导热电绝缘材料,性能优于BeO;另一方面,独立开发新材料, ,[56]正在开发中的有氮氧化硅(SiON)、SiC纤维、氮化硅系列纤维等。 22 (2) 除原料配方外,成形和烧成工艺研究也取得了较大的进展。1966年Bergmann和Barrington提出了陶瓷粉末的冲击波活化烧结新工艺的概念。在成形工艺上,20世纪90年代开发出两种泥浆原位凝固的成形工艺:凝胶浇注和直接凝聚浇注工艺。在国外的一些实验室已成功地利用这两种工艺制备出形状复杂的氧化铝、氮化硅、碳化硅等制品。 (3) 近年来,针对高导热电绝缘陶瓷制备成本高的问题,一些科技工作者着重研究如何降低制造成本,以期改变应用落后的现状。 2.1.2高导热、电绝缘陶瓷的应用前景 高导热、电绝缘陶瓷具备优良的综合性能,在多方面都有着广泛的应用前景,如高温结构材料、金属熔液的浴槽、电解槽衬里、熔融盐类容器、金属基复合材料增强体和主动装甲材料等。尤其是其导热性良好、电导率低、介电常数和介电损耗

陶瓷材料论文

湖南科技大学专业课程论文 论文题目:对介电功能陶瓷性能的研究 学生姓名:付国良 学院:机电工程学院 专业班级:09级金属材料工程二班 学号:0903050201 指导教师:徐红梅 2011年12月20日

对介电功能陶瓷性能的研究 付国良 (09级金属材料工程二班学号:093050201) 【摘要】随着材料科学技术的飞速发展,电功能陶瓷材料的低位变得日益重要,其特性方面发挥的优越性是其他材料不可代替的。电功能材料作为一种精细陶瓷,采用高度精选的原料,通过精密调配的化学组成和严格控制的制造工艺合成的陶瓷材料。近年来,电子元件随科技发展和市场需求不断向片式化、小型化、多功能化等趋势发展,其中,片式化是小型化、多功能化发展的基础。因此,片式化材料和器件的研究成为热点。在片式化多层结构中,为了使用银、铜内电极,降低元件制作成本,低温共烧陶瓷技术成为近年来兴起的一种令人瞩目的多学科交叉的整合组件技术。从介电材料的低温烧结和掺杂改性入手,通过调节成型压力,成型方式,叠层结构,以及采用零收缩技术,零收缩差技术,加入中间层等工艺技术和结构的改变,来研究层状共烧体的收缩率匹配,界面反应,界面扩散和介电性能,最终解决两种材料之间的共烧兼容问题,获得可低温烧结的无翘曲变形,无开裂等缺陷且界面结合良好的叠层共烧体。介电陶瓷和绝缘陶瓷在本质上属于同一类陶瓷,但是与绝缘陶瓷不同的是,主要利用介电性能的陶瓷称为介电陶瓷或者说,介电陶瓷是通过控制陶瓷的介电性质,使之具有较高的介电常数、较低的介质损耗和适当的介电常数温度系数的一类陶瓷。 【关键词】陶瓷功能系数介电 【引言】介电陶瓷对人类的生活影响涉及方方面面,但是人类对功能陶瓷的利用在一些方面的利用还是个空白,我设想如果我们把介电陶瓷用在谐振器、耦合器、滤波器、电容器、半导体、变压器等生活电器中时,这些电器将在工作效率和工作寿命上有很大的提高。为了加强对介电功能陶瓷的功能的广泛利用,我对介电功能陶瓷材料的介电特性做了深入研究。通过对材料性质的分析,我采用实验分析法,设计了周密的实验方案,同时我对介电功能陶瓷的理论基础做了研究设想,设计了研究方法和实验设计。如果电功能陶瓷得到很好的利用,我们的电器和各种电子设备间的工作效率将大大提高,设备制造成本也将大大降低。所以,研究介电功能陶瓷有很深远的意义。 【正文】 一、节电功能陶瓷的定义。 陶瓷材料特有的高强度、耐热性、稳定性等特点,被人们普遍看好用作集成电路板的制造材料。目前作为集成电路基板的陶瓷材料主要有氧化铝、氧化铍、碳化硅及氮化铝等,其中以氧化铝应用最为普遍。

压电效应及其应用

压电效应及其应用 电介质在电场中可以极化,某些电介质,当沿着一定方向对它施力而使其变形时,在它的端面上产生符号相反的电荷。这种没有电场作用,只是由于形变而产生的极化电荷现象称为压电效应。能产生压电效应的晶体,称为压电晶体, 常见的压电晶体有石英晶体()、压电陶瓷、钛 2SiO 酸钡()、锆钛酸铅等。 3a B TiO 压电晶体具有以下功能: (1)压电效应:当外力加于晶体上时,晶体发生 形变,导致在受力的两个晶面上出现等量异号的电 荷。压力产生的极化电荷与拉力产生的极化电荷的方向相反,如图7-64所示。极化电荷的多少与外力引起的形变程度有关。压电效应产生的原因是,在外力作用的方向上,由于晶体发生形变造成晶格间距的变化,使得晶粒的正负电荷中心发生分离,从而产生极化现象。 (2)电致伸缩效应:压电晶体在电场力的作用下发生形变的现象,叫做电致伸缩效应。它是压电效应的逆效应。其产生的原因是,压电晶体中的晶格在电场力的作用下产生较强的内应力而导致变形。压电晶体在交变电场的作用下,其内应力和形变都会发生周期性变化,从而产生机械振动。 (3)热电效应:某些压电晶体通过温度的变化可以改变极化状态,从而在某些相对应的表面上产生极化电荷,这种现象叫做热释电效应。反之,这种晶体在外电场作用下,其温度会发生显著变化,这种现象叫做电生热效应。热释电效应的发生源于晶体的各向异性,是由于晶体在不同方向上的线膨胀系数不同而引起的。 由于压电晶体具有以上的特殊功能,因而在现代科技中有着广泛的应用,诸如压电晶体振荡器、压电电声换能器、压电变压器、压电传感器等。现举例说明如下: 压电晶体振荡器压电晶体振荡器是将机械振动变为同频率的电振荡的器件,由夹在两个电极之间的压电晶片构成。由于压电晶片的机械振动 有一个确定的固有频率,所以它对频率非常敏感。石英 晶体振荡器是目前应用最多的一种压电晶体振荡器,由 于它制造容易、性能稳定、精度高、体积小。因此广泛 应用于军事通讯和精密电子设备、小型电子计算机、微 处理机以及石英钟表内作为时间或频率的标准。有恒温 控制的石英晶体振荡器,频率稳定度可达量级,可 1310?作为原子频率标准而用于原子钟内。 石英晶体振荡器由信号源和石英晶体组成,如图7-65所示。 其中石英晶片是将石英晶

关于材料导论的论文范文

篇一:关于材料导论的论文范文 虽然我已经进大材料专业两个多月,却由于种种原因,不能对材料这门基础学科有清楚的认识,甚至对于别人问我材料是干什么的,我也是尴尬地不能回答。在这10来次的课程中,我终于进一步认识到了材料学科的优势和发展前景,对于自己的未来也有了更多自信和期许。 材料共分为金属材料,无机非金属材料和高分子材料三大类。在这些课程中,教授们着重强调了无机非金属材料中的陶瓷材料。以前,我总认为陶瓷无非就是瓷碗,花瓶之类,却没想到它还会有那么多的化学特性和功能。实际上,陶瓷是瓷器和陶器的统称,它采用天然原料如长石、粘土和石英等烧结而成,是典型的硅酸盐材料,主要组成元素是硅、铝、氧,这三种元素占地壳元素总量的90%,普通陶瓷来源丰富、成本低、工艺成熟。这类陶瓷按性能特征和用途又可分为日用陶瓷、建筑陶瓷、电绝缘陶瓷、化工陶瓷等。大多数陶瓷具有良好的电绝缘性,因此大量用于制作各种电压的绝缘器件。陶瓷材料在高温下不易氧化,并对酸、碱、盐具有良好的抗腐蚀能力。此外,它在防辐射方面也发挥着至关重要的作用在所有的材料中,最令我感兴趣的是功能材料。功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,有着十分广阔的市场前景和极为重要的战略意义。 其中,太阳能电池材料是新能源材料研究开发的热点。随着能源日益紧缺和环保压力的不断增大,石油的枯竭几乎像一个咒语,给人类带来了不安。各国都开始力推可再生能源,其中开发和利用太阳能已成为可再生能源中最炙热的“新宠”,太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能资源丰富,而且免费使用,又无需运输,对环境无任何污染。正是因为这些优点,太阳能光伏产业才蓬勃发展起来。相信在未来,太阳能电池会发挥越来越重要的作用。 尽管我国非常重视功能材料的发展取得了一批接近或达到国际先进水平的研究成果,在国际上占有了一席之地,却依旧和发达国家存在着、较大的差距。因此发达国家企图通过功能材料领域形成技术垄断,并试图占领中国广阔的市场。例如,高铁的一些关键材料还需从国外进口,每年都得花高达千亿的资金去购买这些材料,还必须满足他们各种要求,这对拥有万千专家学者的中国来说,这不能不说是一种悲哀。特别是我国国防用关键特种功能材料是不可能依靠进口来解决的,必须要走独立自主、自力更生的道路。如军事通信、航空、航天、激光武器等,都离不开功能材料的支撑。 如何在毕业后成为一位优秀的材料人,这是我们每个人都需要思考的问题,未来充满着未知,这一切都有待于我们的努力。首先,我们要有勤勉、认真、踏实的学习作风,我们所学的基础课程都是很朴实无华的内容,这就要求我们能静下心来,从一砖一瓦打基础做起,不可心浮气躁。其次,我们需要动手实验的实 践能力,任何的成果都要依靠理论和实验,用实验来验证理论,这就要求我们要有一定的动手能力,对于实验的操作、各种仪器的使用要有相当的了解。而且我们一定要有举一反三的创新能力,我们的目标就是在于如何研发出不同于前人的材料,制作新工艺和新方法,这样人类才能更好地利用科学来造福众生,才能使我们的世界越来越丰富多彩。另外,我们还要学习一定的软件知识。课上,老师教我们如何用软件来模拟物质结构,引起了我们极大的兴趣,如果我们将想要在材料方面大展身手,软件将是我们研究学习不可或缺的帮手。

新型陶瓷材料论文陶瓷装饰材料论文:电子陶瓷材料的发展现状与趋势

电子陶瓷材料的发展现状与趋势 材料学院080201班李金霖 摘要本文对电子陶瓷系统中的绝缘质、介电质、压电质与离子导体的现状进行了综合评述。指出了电子陶瓷材料及其生产工艺的研究动向和发展趋势。 关键词电子陶瓷,材料,研究和开发 1引言 电子陶瓷材料主要指具有电磁功能的一类功能陶瓷,它具有较大的禁带宽度,可以在很宽的范围内调节其介电性能和导电性能。它以电、磁、光、热和力学等性能及其相互转换为主要特征,广泛应用于电子、通讯、自动控制等众多高科技领域[1]。 近年来,电子陶瓷的研究和开发十分引入注目,其新材料、新工艺和新器件已在诸多方面取得了成果。 2电子陶瓷材料研究现状及其应用前景 2.1 高导热、电绝缘陶瓷 2.1.1高导热、电绝缘陶瓷的研究现状 绝缘陶瓷又称装置瓷,它具有高电绝缘性、优异的高频特性、良好的导热性以及高化学稳定性和机械强度等特性。 AlN于1862年首次合成[2],20世纪50年代后期,随着非氧化物陶瓷受到重视,人们开始将AlN陶瓷作为一种新材料进行研究,侧重于将其作为结构材料应用。近10年来,AlN 陶瓷的研究热点是提高热传导性能,应用对象是电路基板和封装材料。最新研究通过采用有效的烧结助剂如CaO和Y203生产出了高纯度、高热导率的AlN。 BeO陶瓷是一种高导热率、电绝缘性能良好的材料,它对微电子集成电路的发展作出了巨大的贡献,但因其有剧毒,已逐渐被停止使用[3]。 近30年来,由于人们的重视和工业应用的需要,高导热电绝缘陶瓷逐渐发展壮大,研究方向也有了一些变化,主要表现在: (1) 新材料的开发。一方面,在原有材料的基础上开发新的材料,如在SiC中添加 2%BeO,获得SiC-BeO高导热电绝缘材料,性能优于BeO[4];另一方面,独立开发新材料,正在开发中的有氮氧化硅(Si2ON2)、SiC纤维、氮化硅系列纤维等[5~6]。 (2)除原料配方外,成形和烧成工艺研究也取得了较大的进展。1966年Bergmann 和Barrington提出了陶瓷粉末的冲击波活化烧结新工艺的概念。在成形工艺上,20世纪90年代开发出两种泥浆原位凝固的成形工艺:凝胶浇注和直接凝聚浇注工艺。在国外的一些实验室已成功地利用这两种工艺制备出形状复杂的氧化铝、氮化硅、碳化硅等制品。 (3) 近年来,针对高导热电绝缘陶瓷制备成本高的问题,一些科技工作者着重研究如何降低制造成本,以期改变应用落后的现状。 2.1.2高导热、电绝缘陶瓷的应用前景 高导热、电绝缘陶瓷具备优良的综合性能,在多方面都有着广泛的应用前景,如高温结构材料、金属熔液的浴槽、电解槽衬里、熔融盐类容器、金属基复合材料增强体和主动装甲材料等。尤其是其导热性良好、电导率低、介电常数和介电损耗低等特性,使其成为高密度集成电路基板和封装的理想材料。同时也可用作电子器件的封装材料、散热片以及高温炉的发热件等。

陶瓷材料论文压电陶瓷

智能陶瓷材料 ——压电陶瓷 段涛2009107204 摘要:陶瓷材料分为普通陶瓷和特殊陶瓷两大类。特殊材料中的智能材料是指能够接受外部环境的信息而自动改变自身状态的一种新型陶瓷,主要有压电陶瓷、形状记忆陶瓷和电流变陶瓷。 前言:陶瓷材料是国民经济和人民生活中不可缺少的重要组成部分。随着科学技术的不断发展,对材料的性能提出了越来越高的要求。陶瓷材料分为普通陶瓷和特殊陶瓷两大类。由于陶瓷具有优良的耐热性、耐磨性、耐腐蚀性、以及高强度和高硬度等优点,因此在国防、机械、冶金、化工、建筑、电子、生物等领域得到了广泛的应用。智能陶瓷是指能够接受外部环境的信息而自动改变自身状态的一种新型陶瓷,主要有压电陶瓷、形状记忆陶瓷和电流变陶瓷。这里我想研究的是压电陶瓷的情况。 正文:所谓压电效应是指某些介质在力的作用下,产生形变,引起介质表面带电,这是正压电效应。反之,施加激励电场,介质将产生机械变形,称逆压电效应。这种奇妙的效应已经被科学家应用在与人们生活密切相关的许多领域,以实现能量转换、传感、驱动、频率控等功能。在能量转换方面,利用压电陶瓷将机械能转换成电能的特性,可以制造出压电点火器、移动X光电源、炮弹引爆装置。电子打火机中就有压电陶瓷制作的火石,打火次数可在100万次以上。用压电陶瓷把电能转换成超声振动,可以用来探寻水下鱼群的位置和形状,对

金属进行无损探伤,以及超声清洗、超声医疗,还可以做成各种超声切割器、焊接装置及烙铁,对塑料甚至金属进行加工。 压电陶瓷材料的发现:某些材料在机械应力作用下,引起内部正负电荷中心相对位移而发生极化,导致材料两端表面出现符号相反的束缚电荷的现象,称为压电效应。具有这种性能的陶瓷称为压电陶瓷,它的表面电荷的密度与所受的机械应力成正比。反之,当这类材料在外电场作用下,其内部正负电荷中心移位,又可导致材料发生机械变形,形变的大小与电场强度成正比。1946年美国麻省理工学院绝缘研究室发现,去电场后仍能保持一定的剩余极化,使它具有压电效应,从此诞了压电陶瓷。在钛酸钡铁电陶瓷上施加直流高压电场,使其自发极化沿电场方向择优取向,除 常用的压电陶瓷有钛酸钡系、钛酸铅-锆酸铅二元系及在二元系中添加第三种ABO3(A表示二价金属离子,B表示四价金属离子或几种离子总和为正四价)型化合物,如:Pb(Mn1/3)Nb2/3)O3和Pb(CO1/3Nb2/3)O3等组成的三元系。如果在三元系统上再加入第四种或更多的化合物,可组成四元系或多元系压电陶瓷。此外,还有一种铌酸盐系压电陶瓷,如氧化钠(钾)·氧化铌(Na0.5·K0.5·NbO3)和氧化钡(锶)·氯化铌(Bax·Sr1-x·Nb2O5)等,它们不含有毒的铅,对环境保护有利。 压电陶瓷的制造特点:是在直流电场下对铁电陶瓷进行极化处理,使之具有压电效应。一般极化电场为3~5kV/mm,温度100~150°C,时间5~20min。这三者是影响极化效果的主要因素。性能较好的压电陶瓷,如锆钛酸铅系陶瓷,其机电偶合系数可高达0.313~0.694。 压电陶瓷主要用于制造超声换能器、水声换能器、电声换能器、陶瓷滤波器、陶瓷变压器、陶瓷鉴频器、高压发生器、红外探测器、声表面波器件、电光器件、引燃引爆装置和压电陀螺等。 压电陶瓷的特性:压电陶瓷具有敏感的特性,可以将极其微弱的机械振动转换成电信号,可用于声纳系统、气象探测、遥测环境保护、家用电器等。地震是毁灭性的灾害,而且震源始于地壳深处,以前很难预测,使人类陷入了无计可施的尴尬境地。压电陶瓷对外力的敏感使它甚至可以感应到十几米外飞虫拍打翅膀对空气的扰动,用它来制作压电地震仪,能精确地测出地震强度,指示出地震的方位和距离。这不能不说是压电陶瓷的一大奇功。 压电陶瓷在电场作用下产生的形变量很小,最多不超过本身尺寸的千万分之一,别小看这微小的变化,基于这个原理制做的精确控制机构--压电驱动器,对于精密仪器和机械的控制、微电子技术、生物工程等领域都是一大福音。 谐振器、滤波器等频率控制装置,是决定通信设备性能的关键器件,压电陶瓷在这方面具有明显的优越性。它频率稳定性好,精度高及适用频率范围宽,而且体积小、不吸潮、寿命长,特别是在多路通信设备中能提高抗干扰性,使以往的电磁设备无法望其项背而面临着被替代的命运。 压电陶瓷的发展前景:在航天领域,压电陶瓷制作的压电陀螺,是在太空中飞行的航天器、人造卫星的"舵"。依靠"舵",航天器和人造卫星,才能保证其既定的方位和航线。传统的机械陀螺,寿命短,精度差,灵敏度也低,不能很好满足航天器和卫星系统的要求。而小巧玲珑的压电陀螺灵敏度高,可靠性好。 在医学上,医生将压电陶瓷探头放在人体的检查部位,通电后发出超声波,

压电陶瓷及其应用

压电陶瓷及其应用 一. 概述 压电陶瓷是一种具有压电效应的多晶体,由于它的生产工艺与陶瓷的生产工艺相似(原料粉碎、成型、高温烧结)因而得名。 某些各向异性的晶体,在机械力作用下,产生形变,使带电粒子发生相对位移,从而在晶体表面出现正负束缚电荷,这种现象称为压电效应。晶体的这种性质称为压电性。压电性是J·居里和P·居里兄弟于1880年发现的。几个月后他们又用实验验证了逆压电效应、即给晶体施加电压时,晶体会产生几何形变。 1940年以前,只知道有两类铁电体(在某温度范围内不仅具有自发极化,而且自发极化强度的发向能因外场强作用而重新取向的晶体):一类是罗息盐和某些关系密切的酒石酸盐;一类是磷酸二氢钾盐和它的同品型物。前者在常温下有压电性,技术上有使用价值,但有易溶解的缺点;后者要在低温(低于—14 C)下才有压电性,工程使用价值不大。 1942-1945年间发现钛酸钡(BaTiO)具有异常高的介电常数,不久又发现它具有压电性,BaTi O压电陶瓷的发现是压电材料的一个飞跃。这以前只有压电单晶材料,此后出现了压电多晶材料——压电陶瓷,并获得广泛应用。1947年美国用BaTiO陶瓷制造留声机用拾音器,日本比美国晚用两年。BaTiO存在压电性比罗息盐弱和压电性随温度变化比石英晶体大的缺点。 1954年美国B·贾菲等人发现了压电PbZrO-PbTiO(PZT)固溶体系统,这是一个划时代大事,使在BaTiO时代不能制作的器件成为可能。此后又研制出PLZT透明压电陶瓷,使压电陶瓷的应用扩展到光学领域。

迄今,压电陶瓷的应用,上至宇宙开发,下至家庭生活极其广泛。 我国对压电陶瓷的研究始于五十年代末期,比国外晚10年左右,目前在压电陶瓷的试制、工业生产等方面都已有相当雄厚力量,有不少材料已达到或接近国际水平。 二. 压电陶瓷压电性的物理机制 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释,晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象、因此压电性与极化,形变等有密切关系。 1. 极化的微观机理 极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间互相吸引力的暂时平衡统一的状态。极化机理主要有三种。 (1)电子位移极化——电介质的原子或离子在电场力作用下,带正电原子核与壳层电子的负电荷中心出现不重合。 (2)离子位移极化——电介质正、负离子在电场力作用下发生相对位移,从而产生电偶极矩。 (3)取向极化——组成电介质的有极分子,有一定的本征(固有)电矩,由于热运动,取向无序,总电矩为零,当外加电场时,电偶极矩沿电场方向排列,出现宏观电偶极矩。 对于各向异性晶体,极化强度与电场存在有如下关系 m,n=1,2,3 式中为极化率,或用电位移写成:

压电效应论文

中南大学 材料科学与工程学院 课程设计论文 题目:压电效应简析专业:材料加工 班级:1010 姓名:商伦阳 学号:0607101031 指导教师:余琨 二○一二年十一月

压电效应简析 一、压电效应(piezoelectric effect)概述 1.1 压电效应的定义 某些电介质,当沿着一定方向对其施力使它变形,其内部就会产生极化现 象,同时在它的两个表面上产生符号相反的电荷,当外力去掉后,它又重新恢复 到不带电的状态,我们把这种现象称为压电效应。 1.2 压电效应分类 压电效应分为正压电效应和负压电效应。 正压电效应:当晶体受到某固定方向外力的作用时,内部就产生电极化现象, 同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电 的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电 荷量与外力的大小成正比。通过此过程把机械能转化成电能的现象,称为正压电 效应 负压电效应:当在电介质极化方向施加电场,引起晶体机械变形的现象,称为负压电效应。它是压电效应的逆效应。其产生的原因是,压电晶体中的晶格在电场力的作用下产生较强的内应力而导致变形。压电晶体在交变电场的作用下,其内应力和形变都会发生周期性变化,从而产生机械振动。也称为电致伸缩效应。 1.3 压电效应的特性与作用:由压电效应原理可知,当作用力的方向改变时,电荷的极性也随之改变。因此,压电材料可实现机械能—电能量的相互转换。

1.4 压电效应的历史和发展 压电效应是1880年由法国著名物理学家,放射学先去皮埃尔?居里先生和雅克?保罗?居里发现的。他们发现某些晶体特别是石英等受到挤压或者拉伸力的作用后,会在相对的两个平面上产生异号电荷,且密度与电压成正比。一旦电荷出现,放点过程的发光便相伴而生。由此可知,当石英晶质体绵延几公里的时候,震前上百巴的应力变化足以造成百万伏的触发电压,低空的放点发光便在情理之中。 经过一百多年的研究,人们发现压电效应有两种,机械能转变为电能是正效应,相反为逆效应,而且有20多种晶体均含有压电效应。人工已经合成了大量的性能更佳的压电陶瓷材料,不仅发现压电材料在机械能,电能,热能,光能之间有相互转换的良好关系,还发现人体组织,毛发和骨骼都有生物压电效应。我们日常使用的打火机,音响,手机,电子表等等都使用了压电材料。目前这种材料制成的产品已广布于各个领域。 二、压电晶体 2.1 什么是压电晶体:有一类十分有趣的晶体,当你对它挤压或拉伸时,它的两端就会产生不同的电荷。这种效应被称为压电效应。能产生压电效应的晶体就叫压电晶体。水晶(α -石英)是一种有名的压电晶体。 2.2 晶体有无压电效应的判断:晶体不受外力作用时,晶体的正负电荷中心相重合,单位体积中的电矩(极化强度)等于零,晶体对外不呈现极性,而在外力作用下晶体变形时,正负电荷的中心发生分离,此时单位体积中的电矩不再为零,晶体表现出极性;另外一些晶体由于具有中心对称的结构,无论外力如何作用,晶体正负电荷的中心总是重合在一起,因此这些晶体不会出现压电效应。 具有压电效应的晶体 不具有压电效应的晶体

陶瓷材料论文:电子陶瓷材料的发展现状与趋势

陶瓷材料论文:电子陶瓷材料的发展现状与趋势 摘要本文对电子陶瓷系统中的绝缘质、介电质、压电质与离子导体的现状进行了综合评述。指出了电子陶瓷材料及其生产工艺的研究动向和发展趋势。 关键词电子陶瓷,材料,研究和开发 1引言 电子陶瓷材料主要指具有电磁功能的一类功能陶瓷,它具有较大的禁带宽度,可以在很宽的范围内调节其介电性能和导电性能。它以电、磁、光、热和力学等性能及其相互转换为主要特征,广泛应用于电子、通讯、自动控制等众多高科技领域[1]。 近年来,电子陶瓷的研究和开发十分引入注目,其新材料、新工艺和新器件已在诸多方面取得了成果。 2电子陶瓷材料研究现状及其应用前景 2.1 高导热、电绝缘陶瓷 绝缘陶瓷又称装置瓷,它具有高电绝缘性、优异的高频特性、良好的导热性以及高化学稳定性和机械强度等特性。 AlN于1862年首次合成[2],20世纪50年代后期,随着非氧化物陶瓷受到重视,人们开始将AlN陶瓷作为一种新材料进行研究,侧重于将其作为结构材料应用。近10年来,AlN 陶瓷的研究热点是提高热传导性能,应用对象是电路基板和封装材料。最新研究通过采用有效的烧结助剂如CaO和Y203生产出了高纯度、高热导率的AlN。 BeO陶瓷是一种高导热率、电绝缘性能良好的材料,它对微电子集成电路的发展作出了巨大的贡献,但因其有剧毒,已逐渐被停止使用[3]。 近30年来,由于人们的重视和工业应用的需要,高导热电绝缘陶瓷逐渐发展壮大,研究方向也有了一些变化,主要表现在: (1) 新材料的开发。一方面,在原有材料的基础上开发新的材料,如在SiC中添加 2%BeO,获得SiC-BeO高导热电绝缘材料,性能优于BeO[4];另一方面,独立开发新材料,正在开发中的有氮氧化硅(Si2ON2)、SiC纤维、氮化硅系列纤维等[5~6]。 (2)除原料配方外,成形和烧成工艺研究也取得了较大的进展。1966年Bergmann 和Barrington提出了陶瓷粉末的冲击波活化烧结新工艺的概念。在成形工艺上,20世纪90年代开发出两种泥浆原位凝固的成形工艺:凝胶浇注和直接凝聚浇注工艺。在国外的一些实验室已成功地利用这两种工艺制备出形状复杂的氧化铝、氮化硅、碳化硅等制品。 (3) 近年来,针对高导热电绝缘陶瓷制备成本高的问题,一些科技工作者着重研究如何降低制造成本,以期改变应用落后的现状。 高导热、电绝缘陶瓷具备优良的综合性能,在多方面都有着广泛的应用前景,如高温结构材料、金属熔液的浴槽、电解槽衬里、熔融盐类容器、金属基复合材料增强体和主动装甲材料等。尤其是其导热性良好、电导率低、介电常数和介电损耗低等特性,使其成为高密度集成电路基板和封装的理想材料。同时也可用作电子器件的封装材料、散热片以及高温炉的发热件等。 2.2 介电陶瓷 钛酸钡陶瓷由于具有高介电常数、良好的铁电、介电及绝缘性能,主要用于制备电容器、多层基片、各种传感器等。钛酸钡粉体的制备方法很多,其中液相合成法因具有高纯、超细、均匀等优点而倍受青睐。美国主要以草酸盐法和其它化学合成法为主[8~10];日本则主要采用350℃以下的水热法来合成[11];朱启安用氢氧化钡和偏钛酸为原料,制备了纯度高、粒径小的钛酸钡粉体,能满足电子工业对高质量钛酸钡粉体的需求。此外,以偏钛酸、氯化钡、碳

陶瓷基复合材料论文 (1)

陶瓷基复合材料在航天领域的应用 概念:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。其最高使用温度主要取决于基体特征。 一、陶瓷基复合材料增强体 用于复合材料的增强体品种很多,根据复合材料的性能要求,主要分为以下几种 纤维类增强体 纤维类增强体有连续长纤维和短纤维。连续长纤维的连续长度均超过数百。纤维性能有方向性,一般沿轴向均有很高的强度和弹性模量。 颗粒类增强体 颗粒类增强体主要是一些具有高强度、高模量。耐热、耐磨。耐高温的陶瓷等无机非金属颗粒,主要有碳化硅、氧化铝、碳化钛、石墨。细金刚石、高岭土、滑石、碳酸钙等。主要还有一些金属和聚合物颗粒类增强体,后者主要有热塑性树脂粉末 晶须类增强体

晶须是在人工条件下制造出的细小单晶,一般呈棒状,其直径为~1微米,长度为几十微米,由于其具有细小组织结构,缺陷少,具有很高的强度和模量。 金属丝 用于复合材料的高强福、高模量金属丝增强物主要有铍丝、钢丝、不锈钢丝和钨丝等,金属丝一般用于金属基复合材料和水泥基复合材料的增强,但前者比较多见。 片状物增强体 用于复合材料的片状增强物主要是陶瓷薄片。将陶瓷薄片叠压起来形成的陶瓷复合材料具有很高的韧性。 二、陶瓷基的界面及强韧化理论 陶瓷基复合材料(CMC)具有高强度、高硬度、高弹性模量、热化学稳定性等优异性能,被认为是推重比10以上航空发动机的理想耐高温结构材料。界面作为陶瓷基复合材料重要的组成相,其细观结构、力学性能和失效规律直接影响到复合材料的整体力学性能,因此研究界面特性对陶瓷基复合材料力学性能 的影响具有重要的意义。 界面的粘结形式 (1)机械结合(2)化学结合 陶瓷基复合材料往往在高温下制备,由于增强体与基体的原子扩散,在界面上更易形成固溶体和化合物。此时其界面是具有一定厚度的反应区,它与基体和增强体都能较好的

压电陶瓷

学业设计(论文) 压电陶瓷 系别:应用化学与环境工程系专业(班级):14级应用化学(升本)班作者(学号):陈云飞(51432221018)指导教师:李宗群(硕士) 完成日期: 2015年5月4日 蚌埠学院教务处

1 引言 ............................................................................................................... - 1 - 1.1 概况................................................................................................................. - 1 - 1.2 压电效应......................................................................................................... - 1 - 1.3压电性能.......................................................................................................... - 2 - 1.4 压电陶瓷材料主要参数的确定..................................................................... - 4 - 1.5 压电陶瓷的极化工艺..................................................................................... - 4 - 1.6 压电陶瓷材料................................................................................................. - 5 - 参考文献................................................................................................................ - 12 -

压电效应及应用

压电效应应用及现状 [编辑本段] 一、原理: 压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。如果压力是一种高频震动,则产生的就是高频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。 压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。 二、应用: 压电材料的应用领域可以粗略分为两大类:即振动能和超声振动能-电能换能器应用,包括电声换能器,水声换能器和超声换能器等,以及其它传感器和驱动器应用。 1、换能器 换能器是将机械振动转变为电信号或在电场驱动下产生机械振动的器件 压电聚合物电声器件利用了聚合物的横向压电效应,而换能器设计则利用了聚合物压电双晶片或压电单晶片在外电场驱动下的弯曲振动,利用上述原理可生产电声器件如麦克风、立体声耳机和高频扬声器。目前对压电聚合物电声器件的研究主要集中在利用压电聚合物的特点,研制运用其它现行技术难以实现的、而且具有特殊电声功能的器件,如抗噪声电话、宽带超声信号发射系统等。 压电聚合物水声换能器研究初期均瞄准军事应用,如用于水下探测的大面积传感器阵列和监视系统等,随后应用领域逐渐拓展到地球物理探测、声波测试设备等方面。为满足特定要求而开发的各种原型水声器件,采用了不同类型和形状的压电聚合物材料,如薄片、薄板、叠片、圆筒和同轴线等,以充分发挥压电聚合物高弹性、低密度、易于制备为大和小不同截面的元件、而且声阻抗与水数量级相同等特点,最后一个特点使得由压电聚合物制备的水听器可以放置在被测声场中,感知声场内的声压,且不致由于其自身存在使被测声场受到扰动。而聚合物的高弹性则可减小水听器件内的瞬态振荡,从而进一步增强压电聚合物水听器的性能。 压电聚合物换能器在生物医学传感器领域,尤其是超声成像中,获得了最为成功的应用、PVDF薄膜优异的柔韧性和成型性,使其易于应用到许多传感器产品中。 2、压电驱动器 压电驱动器利用逆压电效应,将电能转变为机械能或机械运动,聚合物驱动器主要以聚合物双晶片作为基础,包括利用横向效应和纵向效应两种方式,基于聚合物双晶片开展的驱动器应用研究包括显示器件控制、微位移产生系统等。要使这些创造性设想获得实际应用,还需要进行大量研究。电子束辐照P (VDF-TrFE)共聚合物使该材料具备了产生大伸缩应变的能力,从而为研制新型聚合物驱动器创造了有利条件。在潜在国防应用前景的推动下,利用辐照改性共聚物制备全高分子材料水声发射装置的研究,在美国军方的大力支持下正在系统地进行之中。除此之外,利用辐照改性共聚物的优异特性,研究开发其在医学超声、减振降噪等领域应用,还需要进行大量的探索。

特种陶瓷压电陶瓷的性能与结构

结课论文开题报告 2014 年 4 月 13日 特种陶瓷的力学性能与压电陶瓷的结构原理和性能参数 引言: 随着新技术革命的,功能陶瓷愈来愈受到世界各国的重视,品种日益增多,应用也愈来愈普遍。几乎在工业、宇航、军工等所有的领域都可以找到特种题 目: 特种陶瓷的力学性能与压电陶瓷的结构原理和性能参数 学 院: 化学工程学院 专业班级: 材料化学112班 学生姓名: 顾鹏 学 号: 2011121272 指导教师:

陶瓷的应用。应该指出,许多陶瓷都具有十分优异的综合性能。 摘要:特种陶瓷是发展高新技术的物质基础,也是改造传统产业的必备条件,因 此材料科学被列为对世纪六大高科技领域之一。特种陶瓷是新材料的一个组成部分,由于它具有其他材料所没有的各种优良性能,耐高温、高强度、重量轻、耐磨、耐腐蚀、优异的电、磁、声、光等物理特点,它在国民中的能源、电子、航空航天、机械、汽车、冶金和生物等各方面都有广阔的应用前景,成为各工业技术特别是尖端技术中不可缺少的关键材料,在国防现代化建设中,武器装备的发展也离不开特种陶瓷材料。除此之外,在当今世界各国把环境保护作为重要的问题来考虑时,以环境保护、生活优化为背景的环境净化功能陶瓷的研究与开发也必然对改善人类生存环境,实施可持续发展战略起到积极的推动作用。 Abstract: special ceramics is the material basis for the development of high technology, is the transformation of traditional industries essential condition, so the materials science is listed as the six major high-tech fields. Special ceramics is a part of the new material, because it has excellent resistance to various other materials do not have, high temperature resistance, high strength, light weight, corrosion resistance, wear resistance, excellent electrical, magnetic, acoustic, optical and other physical characteristics, it is in the national energy, electronics, aerospace, machinery, automobile, metallurgy and biological aspects have broad application prospects, has become the industry technology is the key technology in the essential material, in the modernization of national defense construction, the development of weapons and equipment also cannot do without special ceramic materials. In addition, the environmental protection as an important consideration in the world, with environmental protection, life optimization as the background of the environmental research and development of functional ceramics are bound to improve human living environment, implementing the strategy of sustainable development plays a positive role in promoting. 关键词:特种陶瓷、压电陶瓷、性能 1特种陶瓷定义 特种陶瓷又称精细陶瓷,按其应用功能分类,大体可分为高强度、耐高温和复合结构陶瓷及电工电子功能陶瓷两大 ... 在陶瓷坯料中加入特别配方的无机材料,经过1360度左右高温烧结成型,从而获得稳定可靠的防静电性能,成为一种新型特种陶瓷,通常具有一种或多种功能。如:电、磁、光、热、声、化学、生物等功能,以及耦合功能。如压电、热电、电光、声光、磁光等功能。

压电效应及其应用

压电效应及其应用叶传忠 接触了这么多的实验,我始终对压电效应这个实验最感兴趣。因为我认为这个世界压力资源太丰富了,由于重力的存在,水平运动的物体都会产生压力。压力是一种能源,但是目前无法对压力直接进行利用,只有通过压电的转换对压力进行利用。但是压电转换的效率太低,这是一个问题。我对压力资源感兴趣,应先对压电效应进行思考! 压电材料会有压电效应是因晶格内原子间特殊排列方式,使得材料有应力场与电场耦合的效应。根据材料的种类,压电材料可以分成压电单晶体、压电多晶体(压电陶瓷)、压电聚合物和压电复合材料四种。根据具体的材料形态,则可以分为压电体材料和压电薄膜两大类。 压电效应可分为正压电效应和逆压电效应。 正压电 是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。 逆压电 是指对晶体施加交变电场引起晶体机械变形的现象。 这里再介绍一下电致伸缩效应。电致伸缩效应,即电介质在电场的作用下,由于感应极化作用而产生应变,应变大小与电场平方成正比,与电场方向无关。压电效应仅存在于无对称中心的晶体中。而电致伸缩效应对所有的电介质均存在,不论是非晶体物质,还是晶体物质,不论是中心对称性的晶体,还是极性晶体。依据电介质压电效应研制的一类传感器称为为压电传感器。 打火机 目前流行的一次性塑料打火机,有相当一部分是采用压电陶瓷器件来打火的。取出其中的压电打火元件,

压电晶体 有一类十分有趣的晶体,当你对它挤压或拉伸时,它的两端就会产生不同的电荷。这种效应被称为压电效应。能产生压电效应的晶体就叫压电晶体。水晶(α-石英)是一种有名的压电晶体。 压电高分子 压电现象是由于应力作用于材料,在材料表面诱导产生电荷的过程,一般这一过程是可逆的,即当材料受到电参数作用,材料也会产生形变能。木材纤维素、腱胶原和各种聚氨基酸都是常见的高分子压电性材料,但是其压电率太低,而没有使用价值。在有机高分子材料中聚偏氟乙烯等类化合物具有较强的压电性质。压电率的大小取决于分子中含有的偶极子的排列方向是否一致。除了含有具有较大偶极矩的C-F键的聚偏氟乙烯化合物外,许多含有其他强极性键的聚合物也表现出压电特性。如亚乙烯基二氰与乙酸乙烯酯、异丁烯、甲基丙烯酸甲酯、苯甲酸乙烯酯等的共聚物,均表现出较强的压电特性。而且高温稳定性较好。主要作为换能材料使用,如音响元件和控制位移元件的制备。前者比较常见的例子是超声波诊断仪的探头、声纳、耳机、麦克风、电话、血压计等装置中的换能部件。将两枚压电薄膜贴合在一起,分别施加相反的电压,薄膜将发生弯曲而构成位移控制元件。利用这一原理可以制成光学纤维对准器件、自动开闭的帘幕、唱机和录像机的对准件。 压电陶瓷 压电陶瓷实际上是一种经过极化处理的、具有压电效应的铁电陶瓷。 在航天领域,压电陶瓷制作的压电陀螺,是在太空中飞行的航天器、人造卫星的“舵”。依靠“舵”,航天器和人造卫星,才能保证其既定的方位和航线。传统的机械陀螺,寿命短,精度差,灵敏度也低,不能很好满足航天器和卫星系统的要求。而小巧玲珑的压电陀螺灵敏度高,可靠性好。 在潜入深海的潜艇上,都装有人称水下侦察兵的声纳系统。它是水下导航、通讯、侦察敌舰、清扫敌布水雷的不可缺少的设备,也是开发海洋资源的有力工具,它可以探测鱼群、勘查海底地形地貌等。在这种声纳系统中,有一双明亮的“眼睛”——压电陶瓷水声换能器。

相关文档
相关文档 最新文档