文档库 最新最全的文档下载
当前位置:文档库 › 固体电介质真空沿面闪络研究进展

固体电介质真空沿面闪络研究进展

固体电介质真空沿面闪络研究进展
固体电介质真空沿面闪络研究进展

2017年4月电工技术学报Vol.32 No. 8 第32卷第8期TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Apr. 2017

固体电介质真空沿面闪络研究进展

李盛涛聂永杰闵道敏潘绍明

(电力设备电气绝缘国家重点实验室(西安交通大学)西安 710049)

摘要针对真空中复合绝缘体系的耐电强度受到沿面闪络现象限制问题,综述了国内外真空沿面闪络相关的研究进展。研究发现,真空中固体绝缘介质的沿面闪络性能受老练方式、介质的表面特性及体特性、介质表面沉积电荷、绝缘体系的电场分布等因素影响。机理分析认为真空中的沿面闪络现象实质上是高场下电荷在气-固界面的输运行为,其过程涉及到介质表层中的电荷捕获/脱陷特性、二次电子的发射特性、以及气相中的气体(或解吸附气体)分子的碰撞电离/电子倍增等过程,沿面闪络的发展和形成是以上几个因素相互耦合作用结果。基于以上分析及认识,认为可以从改变材料表面特性及体特性和改善整个绝缘体系的电场分布方面,来提升真空沿面闪络电压。

关键词:固体电介质真空沿面闪络电荷输运倍增耦合

中图分类号:TM853

Research Progress on Vacuum Surface Flashover of

Solid Dielectrics

Li Shengtao Nie Yongjie Min Daomin Pan Shaoming

(State Key Laboratory of Electrical Insulation and Power Equipment

Xi’an Jiaotong University Xi’an 710049 China)

Abstract The issue of surface flashover limiting the electrical strength of composite insulating system in vacuum has received many attentions. This paper reviews the research progress of surface flashover in the recent years. Research results indicate that surface flashover performance of solid dielectrics in vacuum is influenced by many factors, such as the way of conditioning, surface and bulk properties of materials, the deposited charges in surface layer, electric field distribution of insulating system, etc. Mechanism implies that the essence of surface flashover is the charge transport behavior across gas-solid interface under high electric field, which involves charge trapping and de-trapping properties in dielectric surface layer, secondary electron emission properties, impact ionization of gas molecules and electron multiplication properties in gaseous phase (or desorbed gas). The development process and formation of surface flashover is a coupling effect of the above factors. Based on the above analysis, it is concluded that the improvement of surface flashover voltages can be achieved by changing the surface and bulk properties of materials as well as improving the electric field distribution of the whole insulation system.

Keywords:Solid dielectrics, vacuum surface flashover, charge transport, multiplication, coupling

国家自然科学基金重点项目(51337008)、国家重点基础研究发展计划(973计划)(2015CB251003)、国家自然科学基金面上项目(11575140)和国家杰出青年科学基金项目(50625721)资助。

收稿日期 2016-06-03 改稿日期 2016-10-30

固体电介质的击穿特性

天津理工大学中环信息学院教案首页 题目:固体、液体和组合绝缘的电气强度 讲授内容提要: 1.固体电介质的击穿特性 2.液体电介质的击穿特性 教学目的:掌握固体液体电击穿、热击穿理论 教学重点:理解影响固体液体击穿电压的因素及提高击穿电压的方法教学难点:理解各种电场在不同电压下的击穿电压 采用教具和教学手段:多媒体及板书 授课时间:2014年9月1日授课地点:新教学楼1108 教室注:此页为每次课首页,教学过程后附;以每次(两节)课为单元编写教案。

第四章 固体、液体和组合绝缘的电气强度 本次课主要内容: 1. 固体电介质的击穿特性 2. 液体电介质的击穿特性 固体电介质击穿的机理 气、固、液三种电介质中,固体密度最大,耐电强度最高。 固体电介质的击穿过程最复杂,且击穿后是唯一不可恢复的绝缘。 普遍规律:任何介质的击穿总是从电气性能最薄弱的缺陷处发展起来的,这里的缺陷可指电场的集中,也可指介质的不均匀性。 1. 固体电介质击穿特性的划分 2. 电击穿 电击穿理论建立在固体电介质中发生碰撞电离基础上,固体电介质中存在少量传导电子,在电场加速下与晶格结点上的原子碰撞,从而击穿。 3. 热击穿 由于介质损耗的存在,固体电介质在电场中会逐渐发热升温,温度 10-1 1 101 102 103 104 105 106 107 108 109 1010 1011 1012时间(μs ) 500450400350300250200150100500击穿电压为一分钟耐压的百分比数(%)

升高导致固体电介质电阻下降,电流进一步增大,损耗发热也随之增大。在电介质不断发热升温的同时,也存在一个通过电极及其它介质向外不断散热的过程。如果同一时间内发热超过散热,则介质温度会不断上升,以致引起电介质分解炭化,最终击穿,这一过程称为电介质的热击穿过程。 影响固体介质击穿电压主要因素 电压的作用时间 温度 电场均匀度和介质厚度 电压频率 受潮度的影响 机械力的影响 多层性的影响 累积效应的影响 提高电介质击穿电压的方法 改进绝缘设计如采取合理的绝缘结构,使各部分绝缘的耐电强度能与共所承担的场强有适当的配合;改善电极形状及表面光洁度,尽可能使电场分布均匀,把边缘效应减到最小;改善电极与绝缘体的接触状态,消除接触处的气隙或使接触处的气隙不承受电位差。 改进制造工艺清除固体电介质中残留的杂质、气泡、水分等 改善运行条件注意防潮,加强散热冷却等。 固体电介质的老化

1、污秽绝缘沿面放电机理与模型

1、污秽绝缘沿面放电机理与模型 污秽闪络,是指外绝缘表面受到固体的、液体的和气体的导电物质的污染,在遇到雾、露、毛毛雨等湿润作用,污层电导增大、泄漏电流增加产生局部电弧,在运行电压下绝缘子表面的局部电弧发展成为电弧闪络。绝缘子的染污放电过程可分为四个阶段,即污秽的沉积、污秽的湿润、烘干区的形成及局部电弧的产生和局部电弧发展直至沿面完全闪络。因此,影响污秽绝缘子沿面闪络电压的因素也与以上四个过程有关。 局部电弧电流与外施电压满足以下关系式,即 U=U a +r n (L-L a )I 式中:U 为模型二端电压,Ua 为电弧压降,I 为通过局部电弧和剩余污层的电流,r n 为单位长度剩余污层的电阻率,L a =(x 1+x 2)为电弧长度,L 总爬电距离。 根据电弧具有下降型伏安特性的特点,电弧电压近似与电弧长度成正比,可表示为: U a =AI -n L a 式中:n 是与电弧电流和气压有关的常数,A 是与气体性质有关的常数,且与电弧冷却情况有关。 电弧的电场强度,即单位长度电弧上的电压降为: n a a a AI L U E -== 由此可得单位长度电弧的电阻为: n I A I Ea a r +==1 产生局部电弧后沿污秽绝缘子表面流过的电流为: )(n a a n r r L r U I -+= 只有当r a <r n 时,局部电弧的产生导致表面电阻减小和局部电弧电流的相应增加。由于电弧的下降型伏安特性,电流的增加将使得电弧单位长度的电阻r a 进一步减小,总电阻也就进一步减小,电流进一步上升。由式(3.7)可知,局部电弧的偶然伸长会使绝缘子总电阻进一步减小,沿面电流进一步加大,在r a <r n 的条件下出现电弧燃烧不稳定的状态,它不会妨碍局部电弧的任意伸长。当电弧伸长至整个爬电距离时,绝缘子发生污闪。 2、覆冰绝缘沿面闪络放电机理与模型

气体电介质的击穿 液体电介质的击穿 固体电介质的击穿

第5章电介质的击穿气体电介质的击穿 液体电介质的击穿 固体电介质的击穿

?电介质的击穿 介质发生击穿时,通过介质的电流剧烈地增加,通常以介质伏安特性斜率趋向于∞(即dI/dU=∞)——击穿发生的标志。 ?击穿电压 ?击穿场强: 电介质的击穿场强是电介质的基本电性能之一,它决定了电介质在电场作用下保持绝缘性能的极限能力。

5.1 气体电介质的击穿 ?正常气体中的载流子(离子和电子)在外电场作用下迁移,形成电流电流随电压增加而增加 电离产生的载流子来不及复合,全部到达电极 气体中出现碰撞电离,载流子浓度增大,电流不再保持恒定而迅速上升载流子数剧增,气体中的电流无限增大(dI/dU→∞)——丧失绝缘性能。 气体击穿(气体放电):气体由绝缘状态变为良导电 状态的过程。 击穿场强:均匀电场中击穿电压与气体间隙距离之比.

击穿场强反映了气体耐受电场作用的能力,即气体的电气强度。 平均击穿场强:不均匀电场中击穿电压与间隙距离之 比称 ?气体发生击穿时除电流剧增外,通常还伴随有发光及发热等现象。

5.1.1 均匀电场中气体击穿的理论 1.气体击穿的汤逊(Townsend)理论 电子崩形成过程(电子倍增过程)(1)电子崩与电流倍增 外界电离因子在阴极附近产生了一个初始电子,如果空间电场强度足够大,该电子在向阳极运动时就会引起碰撞电离,产生一个新的电子,初始电子和新电子继续向阳极运动,又会引起新的碰撞电离,产生更多的电子。

α 如电离系数为,则从阴极出发的一个电子,行经单位距离后增加为2α个电子。类似雪崩似地发展,这种急剧增大的空间电子流被称为电子崩。

沿面放电实验报告

沿面放电实验报告 (一)实验目的: 1.掌握沿面放电的基本概念。 2.研究介质沿面放电的基本现象及影响沿面放电的一些因素。(二)实验用仪器设备: 1.800kV无局放工频试验变压器 2.JJFB-1交流峰值电压表 3.圆柱形、平板式电极和玻璃板 (三)实验用详细线路图或其它示意图: 图1 沿面放电实验线路图 图2 电极布置

(四)实验原理及内容: 沿着气体与固体介质的分界面出现的放电现象称为沿面放电。沿面放电发展到贯穿两极,使整个气隙沿面击穿,称为闪络。沿面放电是一种气体放电现象,沿面闪络电压比气体或固体单独存在时的击穿电压都低。 沿面放电与固体介质表面的电场分别有很大关系。固体介质处于电极间电场中的形式,有以下三种典型的类型: 1、固体介质处于均匀电场中,固、气体介质分界面平行于电场线。这种情况在工程上较少遇到,但实际结构中常会遇到介质处于稍不均匀电场中的情况,此时的放电现象与上述均匀电场中的而又很多相似之处。 2、固体介质处于极不均匀电场中,且介质面电场具有弱垂直分量,即电场强度平行于介质表面的分量要比垂直分量要大的多。 3、固体介质处于极不均匀电场中,且介质面电场具有强垂直分量,即电场强度垂直于介质表面的分量要比平行于表面的分量要大的多。 本次沿面放电实验属于上述第3种类型,即固体介质――玻璃处于极不均匀电场中,且介质界面电场具有强垂直分量。其沿面放电过程大致可分为三个放电阶段:a、当所加电压还不高时,圆柱形电极附近首先出现淡蓝色的光环,即出现电晕放电(图3);b、随着所加电压的不断升高,放电区域逐渐变成由许多平行的火花细线组成的光带,即出现辉光放电(图4);c、火花细线的长度随着电压的升高而增大,当电压超过某一临界值后,放电性质发生变化,出现滑闪放电(图5)。当电压再升高一些,放电火花就将到达另一电极,发生沿面闪络。 (五)实验结果的计算及曲线: 图3 电晕放电阶段示意图图4 辉光放电阶段示意图图5 滑闪放电阶段示意图(六)对实验结果、实验中某些现象的分析讨论: 思考并回答下述问题: 1.进行高电压实验时为什么要特别注意安全?应采取那些安全措施? 答:因为高电压实验中所施加的电压都很高,危险性极大,如不特别注意安全,很容易发生事故。所以在试验前,必须预习本次实验内容,现场实验听从指导教师的指挥,严紧乱跑乱动。

影响固体介质击穿电压的主要因素

击穿电压的主要因素 影响固体介质击穿电压的因素甚多,下面介绍几种主要的影响因素。 电压作用时间 如果电压作用时间很短(例如以下),固体介质的击穿往往是电击穿,击穿电压当然也较高。随着电压作用时间的增长,击穿电压将下降,如果在加电压后数分钟到数小时才引起击穿,则热击穿往往起主要作用。不过二者有时很难分清,例如在工频交流耐压试验中的试品被击穿,常常是电和热双重作用的结果。电压作用时间长达数十小时甚至几年才发生击穿时,大多属于电化学击穿的范畴。 以常用的油浸电工纸板为例,在图中,以频击穿电压(峰值)作为基准值,纵坐标以标么值来表示。电击穿与热击穿的分界点时间约在之间,作用时间大于此值后,热过程和电化学作用使得击穿电压明显下降。不过击穿电压与更长时间(图中达数百小时)的击穿电压相差已不太大,所以通常可将频试验电压作为基础来估计固体介质在工频电压作用下长期工作时的热击穿电压。许多有机绝缘材料的短时间电气强度很高,但它们耐局部放电的性能往往很差,以致长时间电气强度很低,这一点必须予以重视。在那些不可能用油浸等方法来消除局部放电的绝缘结构中(例如旋转电机),就必须采用云母等耐局部放电性能好的无机绝缘材料。图油浸电工纸板的击穿电压与加电压时间的关系时电场均匀程度和介质的厚度处于均匀电场中的固体介质,其击穿电压往往较高,且随介质厚度的增加近似地成线性增大若在不均匀电场中,介质厚度增加将使电场更不均匀,于是击穿电压不再随厚度的增加而线性上升。当厚度增加使散热困难到可能引起热击穿时,增加厚度的意义就更小了。 高压电器稳定性试验新技术、新设备应用与操作及检验标准实务全书常用的固体介质一般都含有杂质和气隙,这时即使处于均匀电场中,介质内部的电场分布也是不均匀的,最大电场强度集中在气隙处,使击穿电压下降。如果经过真空干燥、真空浸油或浸漆处理,则击穿电压可明显提高。 频率在电击穿区域内,如果频率的变化不造成电场均匀度的改变,则击穿电压与频率几乎无关。在热击穿区域内,如果频率使和变化不大,则击穿电压将与频率的平方根成反比。如厚度为的玻璃,在工频时的击穿电压为(有效值),而在高频时击穿电压仅为(有效值)。这是因为频率上升使介质损耗上升,导致发热,促使热击穿过程的发展。 温度固体介质在某个温度范围内其击穿性质属于电击穿,这时的击穿场强很高,且与温度几乎无关。超过某个温度后将发生热击穿,温度越高热击穿电压越低如果其周围媒质的温度也高,且散热条件又差,热击穿电压将更低。因此,以固体介质作绝缘材料的电气设备,如果某处局部温度过高,在工作电压下即有热击穿的危险。不同的固体介质其耐热性能和耐热等级是不同的,因此它们由电击穿转为热击穿的临界温度一般也是不同的。 受潮受潮对固体介质击穿电压的影响与材料的性质有关。对不易吸潮的材料,如聚乙烯、聚四氟乙烯等中性介质,受潮后击穿电压仅下降一半左右容易吸潮的极性介质,如棉纱、纸等纤维材料,吸潮后的击穿电压可能仅为干燥时的百分之几或更低,这是因电导率和介质损耗大大增加的缘

固体电介质的击穿特性

题目:固体、液体和组合绝缘的电气强 讲授内容提要: 1.固体电介质的击穿特性 2.液体电介质的击穿特性 教学目的:掌握固体液体电击穿、热击穿理论 教学重点:理解影响固体液体击穿电压的因素及提高击穿电压的方法教学难点:理解各种电场在不同电压下的击穿电压 采用教具和教学手段:多媒体及板书 授课时间:2014年9月1日授课地点:新教学楼1108教室注:此页为每次课首页,教学过程后附;以每次(两节)课为单元编写教案。

第四章 固体、液体和组合绝缘的电气强度 本次课主要内谷: 1. 固体电介质的击穿特性 2. 液体电介质的击穿特性 固体电介质击穿的机理 气、固、液三种电介质中,固体密度最大,耐电强度最高。 固体电介质的击穿过程最复杂,且击穿后是唯一不可恢复的绝缘。 普遍规律:任何介质的击穿总是从电气性能最薄弱的缺陷处发展起 来的,这里的缺陷可指电场的集中,也可指介质的不均匀性。 1. 固体电介质击穿特性的划分 2. 电击穿 电击穿理论建立在固体电介质中发生碰撞电离基础上,固体电介质 中存在少量传导电子,在电场加速下与晶格结点上的原子碰撞,从而击 穿。 3. 热击穿 由于介质损耗的存在,固体电介质在电场中会逐渐发热升温,温度 升高导致固体电介质电阻下降,电流进一步增大,损耗发热也随之增大C 在电介质不断发热升温的同时,也存在一个通过电极及其它介质向外不 断散热的过程。如>%城比分百 的 压耐 钟 分 一 为 压 电 穿 击 00 时间(LS ) 5500550055005500550 44 3 3 2 2 1 1

果同一时间内发热超过散热,则介质温度会不断上升, 以致引起电介质分解炭化,最终击穿,这一过程称为电介质的热击穿过程。 影响固体介质击穿电压主要因素 电压的作用时间 温度 电场均匀度和介质厚度 电压频率 受潮度的影响 机械力的影响 多层性的影响 累积效应的影响 提高电介质击穿电压的方法 改进绝缘设计如采取合理的绝缘结构,使各部分绝缘的耐电强度能与共所承担的场强有适当的配合;改善电极形状及表面光洁度,尽可能使电场分布均匀,把边缘效应减到最小;改善电极与绝缘体的接触状态, 消除接触处的气隙或使接触处的气隙不承受电位差。 改进制造工艺清除固体电介质中残留的杂质、气泡、水分等 改善运行条件注意防潮,加强散热冷却等。 固体电介质的老化 老化一一电气设备的绝缘在长期运行过程中会发生一系列物理变化(如固体介质软化或熔解,低分子化合物及增塑剂的挥发)和化学变化(如氧化,电解,电离,生成新物质),致使其电气,机械及其他性能逐渐劣化。 1.环境老化:光氧老化(主要)、臭氧老化、盐雾酸碱等污染性化学老

尖-板放电和沿面放电

试验二 尖-板放电和沿面放电 一、实验目的 1.掌握尖-板放电和沿面放电的基本概念。 2.观察尖-板气隙放电击穿、气体沿面放电等现象及其特点。 3.了解气体放电的原理和气体放电的现象和形式、影响因素及伴随的效应。 4.认识其发展过程及影响击穿电压的各主要因素,加深对气体放电理论的理解。 二、实验预习 概念:电离;撞击电离;光电离;电晕;电子崩;流注;先导放电;自持放电;滑闪放电; 沿面放电;电击穿;热击穿,雷电放电。 判断:空气是绝缘介质;电晕放电的现象;尖板放电是不均匀电场造成的;沿面放电是特殊的气体放电,沿面放电的三个阶段;沿面闪络电压小于气隙击穿电压。 相关知识点:电场、介质极化、偶极子、介电常数、气隙击穿、帕邢定律、汤森德放电理论、流注放电理论、电晕放电、伏秒特性、大气过电压、内部过电压。 三、实验内容 1.测量尖-板放电中不同气隙间距的击穿电压,并观察气隙击穿的现象及伴随的效应。 2.观察固体绝缘介质(玻璃)表面气隙击穿实验现象、实验特性和伴随的实验效应。 1)刷状放电的观察 2)滑闪放电的观察 3)沿面闪络的观察 四、实验仪器 1.实验开关指示操作台。 2.量程(0—600)V电压表。 3.接触调压器TDGC-10/0.5,输入220V,输出(0-250)V。 4.试验变压器YDJ-10(100/0.22)kV。 5.50cm绝缘水电阻。 6.交流尖—板放电装置:尖极、板极、塑料屏障、滑轨、标尺。

7.沿面放电实验装置:圆柱电极一对、玻璃板。 8.接地线。 五、尖-板放电和沿面放电实验原理 1.气体带电质点的产生 纯净的中性状态的气体是不导电的,只有在气体中出现了带电质点(电子、离子等)以后,才能导电,并在电场的作用下,发展成各种形式的气体放电现象。 气体中带电质点的来源为:一是气体分子本身发生电离;二是气体中的固体或液体金属发生表面电离。 当外界加入的能量很大,使电子具有的能量超过最远轨道的能量时,电子就跳出原子轨道之外,成为自由电子。这样,就使原来的一个中性原子变成一个自由电子和一个带正电荷的离子,这种现象称为电离。达到电离所需要的最小能量称为电离能。 电离的形式有:撞击电离;光电离;热电离;表面电离;负离子的形成。 2.电子崩的形成 在气隙电场作用下,电子向阳极方向加速运动,动能增加。同时,电子在其运动过程中不断和气体分子碰撞。当电场很强,电子所积累的能量达到能产生撞击电离时,就能引起撞击电离。分子电离后新产生的电子和离子又将从气隙电场获得动能,继续参与到撞击电离过程中,电离过程就像雪崩似地增长起来, 电子数目激增,形成电子崩,放电电流也随之有较大的增长。 由于电子的迁移速率要比正离子的大两个数量级,因此在电子崩发展过程中,正离子相对于电子来说可看成是静止的。同时由于电子的扩散用,电子崩在其发展过程中半径逐渐增大。这样电子崩中出现了大量的空间电荷,崩头最前面集中着电子,其后直到尾部则是正离子,形成球头状的锥体,如图4-1 所示: 图4-1 电子崩形成示意图

提高固体电介质击穿电压的方法

提高固体电介质击穿电压的方法 【摘要】文章介绍提高固体电介质击穿电压的方法。通过功能概述、要点归纳,掌握提高固体电介质击穿电压常用方法和措施。 【关键词】介质击穿;绝缘 在强电场作用下,固体电介质丧失电绝缘能力而由绝缘状态突变为良导电状态。导致击穿的最低临界电压称为击穿电压。均匀电场中,击穿电压与固体电介质厚度之比称为击穿电场强度(简称击穿场强,又称介电强度),它反映固体电介质自身的耐电强度。不均匀电场中,击穿电压与击穿处固体电介质厚度之比称为平均击穿场强,它低于均匀电场中固体电介质的介电强度。 1 击穿形式 根据击穿的发展过程,固体电介质的击穿可分为3种形式:电击穿、热击穿和电化学击穿,同一种电介质中发生何种形式的击穿,取决于不同的外界因素。随着击穿过程中固体电介质内部的变化,击穿过程可以从一种形式转变为另一种形式。 1.1 电击穿 取决于固体电介质中碰撞电离的一种击穿形式。电场使电介质中积聚起足够数量和足够能量的带电质点,导致电介质丧失绝缘性能。对于电击穿有以下几种不同的理论解释:本征击穿、电子崩击穿和电致机械应力击穿,通常以本征击穿代表电击穿,所以电击穿有时又称本征击穿。本征击穿过程所需时间为10-8s数量级,击穿场强大于1MV/cm。 1.2 热击穿 在电场作用下,固体电介质承受的电场强度虽不足以发生电击穿,但因电介质内部热量积累、温度过高而导致失去绝缘能力,从而由绝缘状态突变为良导电状态。 1.3 电化学击穿 在电场、温度等因素作用下,固体电介质发生缓慢的化学变化,性能逐渐劣化,最终丧失绝缘能力,从而由绝缘状态突变为良导电状态。电化学击穿过程包括两部分:因固体电介质发生化学变化而引起的电介质老化;与老化有关的击穿过程。 固体电介质发生缓慢化学变化的原因多种多样。直流电压下,固体电介质因离子电导而发生电解,结果在电极附近形成导电的金属树枝状物,甚至从一个电

电介质击穿

电介质击穿 dielectric breakdown 在强电场作用下,电介质丧失电绝缘能力的现象。分为固体电介质击穿、液体电介质击穿和气体电介质击穿3种。 固体电介质击穿导致击穿的最低临界电压称为击穿电压。均匀电场中,击穿电压与介质厚度之比称为击穿电场强度(简称击穿场强,又称介电强度)。它反映固体电介质自身的耐电强度。不均匀电场中,击穿电压与击穿处介质厚度之比称为平均击穿场强,它低于均匀电场中固体介质的介电强度。固体介质击穿后,由于有巨大电流通过,介质中会出现熔化或烧焦的通道,或出现裂纹。脆性介质击穿时,常发生材料的碎裂,可据此破碎非金属矿石。固体电介质击穿有3种形式:电击穿、热击穿和电化学击穿。电击穿是因电场使电介质中积聚起足够数量和能量的带电质点而导致电介质失去绝缘性能。热击穿是因在电场作用下,电介质内部热量积累、温度过高而导致失去绝缘能力。电化学击穿是在电场、温度等因素作用下,电介质发生缓慢的化学变化,性能逐渐劣化,最终丧失绝缘能力。固体电介质的化学变化通常使其电导增加,这会使介质的温度上升,因而电化学击穿的最终形式是热击穿。温度和电压作用时间对电击穿的影响小,对热击穿和电化学击穿的影响大;电场局部不均匀性对热击穿的影响小,对其他两种影响大。 液体电介质击穿纯净液体电介质与含杂质的工程液体电介质的击穿机理不同。对前者主要有电击穿理论和气泡击穿理论,对后者有气体桥击穿理论。沿液体和固体电介质分界面的放电现象称为液体电介质中的沿面放电。这种放电不仅使液体变质,而且放电产生的热作用和剧烈的压力变化可能使固体介质内产生气泡。经多次作用会使固体介质出现分层、开裂现象,放电有可能在固体介质内发展,绝缘结构的击穿电压因此下降。脉冲电压下液体电介质击穿时,常出现强力气体冲击波(即电水锤),可用于水下探矿、桥墩探伤及人体内脏结石的体外破碎。 气体电介质击穿在电场作用下气体分子发生碰撞电离而导致电极间的贯穿性放电。其影响因素很多,主要有作用电压、电板形状、气体的性质及状态等。气体介质击穿常见的有直流电压击穿、工频电压击穿、高气压电击穿、冲击电压击穿、高真空电击穿、负电性气体击穿等。空气是很好的气体绝缘材料,电离场强和击穿场强高,击穿后能迅速恢复绝缘性能,且不燃、不爆、不老化、无腐蚀性,因而得到广泛应用。为提供高电压输电线或变电所的空气间隙距离的设计依据(高压输电线应离地面多高等),需进行长空气间隙的工频击穿试验。

绝缘子的爬距、泄露比距、沿面放电、闪络、波纹形

绝缘子基础知识问答 1. 绝缘子的结构如何 ? 它的作用是什么 ? 答 :绝缘子 ( 俗称瓷瓶 ) 由瓷质部分和金具两部分组成 , 中间用水泥粘合剂胶合。瓷质部分是保证绝缘子有良好的电气绝缘强度 , 金具是固定绝缘子用的。绝缘子的作用有两个方面 : 一是牢固地支持和固定载流导体 , 二是将载流导体与地之间形成良好的绝缘。 它应具有足够的绝缘强度和机械强度 , 同时对化学杂质的侵蚀具有足够的抗御能力 , 并能适应周围大气条的变化 , 如温度和湿度变化对它本身的影响等。 变电站及架空线路上所使用的绝缘子有针式绝缘子、支柱绝缘子、瓷横担绝缘子以及高压穿墙套管。 2. 什么叫爬距 ? 什么叫泄露比距 ? 答 :爬距和泄露比距都是外绝缘特有的参数。沿外绝缘表面放电的距离即为电的泄露距离 , 也称爬电距离 , 简称爬距。泄露距离乘以有效系数再除以线电压即为泄露比距 , 即λ=KL/U 式中 : λ为泄露比距 ;K 为有效系数 ;L 为泄露距离 ;U 为线电压。 3. 什么是沿面放电 ? 答 :电力系统中有很多悬式和针式绝缘子、变压器套管和穿墙套管等 , 他们很多是处在空气中 , 当这些设备的电压达到一定值时 , 这些瓷质设备表面的空气发生放电 , 叫做沿固体介质表面放电 , 简称沿面放电。当沿面放电贯穿两极间时 , 形成沿面闪络。沿面放电比空气中的放电电压低。沿面放电电压和电场的均匀程度、固体介质的表面状态及气象条件有关。 4. 什么叫闪络 ? 引起污闪的原因是什么 ? 答 :固体绝缘周围的气体或液体电介质被击穿时 , 沿固体绝缘表面放电的现象 , 称为闪络。 在脏污地区的瓷质绝缘子表面落有很多工业污秽颗粒 , 这些污秽颗粒遇潮湿会在瓷表面形成导电液膜 , 使瓷质绝缘的耐压显著下降 , 闪络电压变得很低 , 这是瓷质绝缘在污湿条件下极易闪络的原因。污和潮是污闪的必要条件 , 瓷绝缘只脏不湿不会引起闪络。 5. 如何防止变电站的绝缘子污闪 ? 答 :(1) 增加基本绝缘。如增加绝缘子的片数、增大沿面放电的距离 , 满足污秽分级规定的泄漏比距。

电介质的老化和击穿

2.1电介质老化及其类型 2.1.1概述 1.电介质老化的定义 电气设备在制造,运输,安装和运行过程中难免会产生绝缘缺陷,同时在长期的运行过程中,由于电场,温度,机械力,湿度,周围环境等因素的长期作用,使电气设备产生绝缘性能不可逆性劣化,结构逐渐损坏的现象,称为电介质老化。 2.电介质老化的原因 通常老化的原因大致有电介质中的绝缘缺陷和性能劣化。 电介质的结缘缺陷包括集中缺陷和分布性缺陷。集中缺陷指缺陷集中在绝缘的某一个或几个部分,如局部受潮、绝缘内部气泡、局部机械损伤或裂纹等,该类缺陷的发展速度快,具有较大的危险性;分布性缺陷指因受潮,过热,动力负荷及长时间过电压作用导致电气设备整体绝缘性能下降,是一种普遍性的缓慢演化的劣化。 电介质在运行过程中会产生特性劣化,其中有些经过处理可以得到恢复的称为可逆性,不可恢复原有特性的称为不可逆性,不可逆性是导致绝缘老化的直接原有。 3.电介质老化的特征量 电介质老化是时间和老化因子(如电,热,机械应力,环境因素等)的函数,其老化的程度需根据其性能的变化来确定。 电介质老化的特征量指表征绝缘材料劣化的程度。它包括表征绝缘剩余寿命的直接特征量(如耐电强度,机械强度等)和间接特征量(如绝缘电阻、介质损耗角正切、漏电电流、局部放电量、油中气体含量、油中微水含量等)。 随着研究的深入,也提出了一些新的特征量,如第二电流激增点、直流分量、超高频放电频谱、超声振动特性等。 2.1.2电介质老化的类型 根据老化机理和不同的老化因子,导致电介质老化的主要因素有电、热、化学、机械力、温度等。 1.电老化 电老化指电气设备绝缘在运行过程中长期受到高电压或高电场强度的作用而引起的老化,主要来源于局部放电,除此之外电晕放电、电弧放电、火花放电、电树枝化等都是引起电老化的不同形式。因放电产生的带电质点直接轰击绝缘材料,使绝缘材料分解,同时在放电点会产生很高的温度。使绝艳材料发生热裂解或碳化。 2.热老化 3.化学老化 4.机械力老化 5.温度老化 2.1.3固体电介质的老化 1.故土电介质的热老化 1)热降解 2)氧化降解 3)交联 2.固体绝缘材料的电老化 1)交联聚乙烯电缆的电老化 2)油浸纸绝缘的电老化 3)电机绝缘的电老化 2.1.4液体电介质的老化

相关文档