文档库 最新最全的文档下载
当前位置:文档库 › 费马大定理

费马大定理

费马大定理
费马大定理

费马大定理(Fermat's last theorem)

现代表述为:当n>2时,方程

xn+yn=zn

没有正整数解。

费马大定理的提出涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费马。

丢番图活动于公元250年左右,他以著作《算术》闻名于世,不定方程研究是他的主要成就之一。他求解了他这样表述的不定方程(《算术》第2卷第8题):

将一个已知的平方数分为两个平方数。(1)

现在人们常把这一表述视为求出不定方程

x2+y2=z2 (2)

的正整数解。因而,现在一般地,对于整系数的不定方程,如果只要求整数解,就把这类方程称为丢番图方程。有时把不定方程称为丢番图方程。

关于二次不定方程(1)的求解问题解决后,一个自然的想法是问未知数指数增大时会怎么样。费马提出了这一数学问题。

费马生前很少发表作品,一些数学成果常写在他给朋友的信中,有的见解就写在所读的书页的空白处。他去世后,才由后人收集整理出版。

1637年前后,费马在读巴歇校订注释的丢番图的《算术》第2卷第8题,即前引表述(1)时,在书的空白处写道:“另一方面,将一个立方数分成两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。关于此,我已发现一种美妙的证法,可惜这里空白的地方太小,写不下。” (3)

费马去世后,人们在整理他的遗物时发现了这一段话,却没有找到证明,这更引起了数学界的兴趣。

后来,表述(3)被理解为:当整数n>2时,方程

xn+yn=zn (4)

没有正整数解。

欧拉、勒让德、高斯等大数学家都试证过这一命题,但都没有证明出来,问题表述的简单和证明的困难,吸引了更多的人投入证明工作。

这一命题就被称为费马猜想,又叫做费马问题,但更多地被叫做“费马最后定理”,在我国,则一般称之为

费马大定理。

“费马最后定理”的来历可能是:费马一生提出过许多数论命题,后来经过数学界的不懈努力,到1840年前后,除了一个被反驳以外,大多数都被证明,只剩下这个费马猜想没有被证明,因此称之为“最后定理”。

称之为费马大定理是为了和“费马小定理”相区别,后者也是数论中的一个著名定理:设p为素数,而a与p 互素,则ap -a必为p的倍数。

从费马的时代起,人们就不断进行费马大定理的试证工作。巴黎科学院曾先后两次提供奖章和奖金,奖励证明费马大定理的人,布鲁塞尔科学院也悬赏重金,但都无结果。1908年,德国数学家佛尔夫斯克尔(F.Wolfskehl)将10万马克赠给格丁根皇家科学会,用以奖励证明费马大定理的人,悬赏期100年。

人们先对费马大定理作了一些探讨,得出只要证明n=4时以及n是任一奇素数p时定理成立,定理就得证。这为后来的证明指出了方向。

最初的证明是一个数一个数地进行的。

n=3的情形在公元972年已为阿拉伯人胡坚迪(al-Khujandi)所知,但他的证明有缺陷。1770年欧拉给出一个证明,但也不完善。后来,高斯给出完善的证明。

n=4的情形,费马本人已接近得出证明(见无穷递降法),后来欧拉等人给出了新证。

n=5的情形,1823年和1826年勒让德和狄利克雷各自独立地给出证明。1832年后者还证明了n=14的情形。

n=7的情形,1839年为拉梅(Lame)所证明。

后来,人们为研究的方便,对费马大定理作了进一步的分析。对于素数p,当p不能整除xyz之积时,不定方程

xp+yp=zp (5)

无正整数解(p>2),称之为费马大定理的第一种情形,这种情形似乎容易证一些。

法国数学家热尔曼证明:如果p是一个奇素数,使得2p+1也是素数,那么对于p,费马大定理的第一种情形成立;勒让德推广了热尔曼的结果,证明:如果p是素数,使4p+1,8p+1,l0p+1,14p+1,16p +1之一也是素数,则对于p,费马大定理的第一种情形成立。这实际上已经证明了对于所有素数p<l00,费马大定理的第一种情形成立。

德国数学家库默尔则从另一个角度分析了费马大定理,他引入理想数和分圆数,开创理想数论,他把素数分为正则素数和非正则素数两部分。他证明,对于正则素数,费马大定理成立。以100之内的奇素数为例,共有24个,除37,59,67外都是正则素数。1844年,库默尔证明了对于它们费马大定理成立。那么素数中到底有多少正则素数呢?这一问题却长期未得到解决。1915年,卡利茨证明非正则素数有无穷多,对于非正则素数怎么处理呢?还得回到一个一个证明的老路上来。1857年库默尔证明对于p=59,67,费马大

定理成立;1892年米里曼诺夫(D.Mirimanoff)证明对p=37费马大定理成立。电子计算机出现并广泛应用之后,对非正则素数情形的证明取得了新的进展:1978年证明,对125000以内的非正则素数,费马大定理成立;1987年这一上限推进到150000;1992年更推进到1000000。由于库默尔第一次“成批地”证明了定理的成立。人们视之为费马大定理证明的一次重大突破。1857年,他获得巴黎科学院的金质奖章。

对于第一种情形,进展更快一些。如1948年,日本的森岛太郎等证明对于P<57×109,第一种情形成立。1983年,人们证明了对于当时已知的最大的素数p=286243-1,第一种情形成立。1985年,英国的希斯-布朗(R.Heath-Brown)证明:存在无穷个素数p,使第一种情形成立。

前人直接证明费马大定理的努力取得了许多成果,并促进了一些数学分支的发展,但离定理的证明,无疑还有遥远的距离。怎么办呢?按数学家解决问题的传统,就是要作变换—把问题转化为已知的或易于解决的领域的“新”问题。

一个转化方向是把问题具体化,就是建立一个可由要证的命题推导出来的新命题(从逻辑的角度看,是要证命题的必要条件)。一般地,更具体的命题比原命题容易证明,如果证明了这个新命题,则把对原命题的证明推进了一大步。如果反驳了这个新命题,那就直接反驳了原命题:必要条件不成立的命题不成立。

具体化的方式取得了一批重要的成果。1909年,威费里希(A.Wieferich)证明,如果对指数p,费马大定理的第一种情形不成立,则p2可以整除2p-1-1。经过寻找,在3×109以下只有p=1093和p=3511满足这一条件,但这两个素数均已直接验证满足费马大定理。这实际上就证明了,对30亿以内的所有素数,第一种情形都成立。20世纪80年代人们更证明了费马大定理若有反例,即存在正整数x,y,z,当n>2时,使

xn+yn=zn

成立,则n>101800000。

另一个转化方向是使问题抽象化,就是建立一个可由之推导出要证明的命题的“新”命题(从逻辑的角度看,是要证命题的充分条件)。一般地说,更抽象的命题更难证明,但是一旦证明了,就能立即推出要证的命题,并且还能得出许多别的结果来。

抽象化的一个结果就是求解丢番图方程,方程(5)不过是丢番图方程的一个特例。经过一种代数几何学的转化,人们把丢番图方程的解与代数曲线上的有理点(坐标都是有理数的点)联系起来了。

对于平面中的一条曲线,人们首先注意到的一个数值不变量是它的次数,即定义这条曲线的方程的次数。次数为一次、二次的曲线都是有理曲线(在代数几何中,它们与直线同构),它们主要是解析几何的研究对象。代数几何是从19世纪上半叶关于三次或更高次的平面曲线的研究开始的。

定义代数曲线的方程一般可表示为

F(u,v)=0,(6)

左边为u,v的一个多项式。丢番图方程就是一种代数曲线的方程。人们发现,曲线上的有理点就是使等式成立的点,即定义曲线的方程的解。

对方程

xn+yn=zn

来说,两边除以zn,得

令u= ,v= ,则有

un+vn=1 (7)

(7)被称为费马方程,由它定义的曲线被称为费马曲线。于是,费马大定理转化为“在平面中,费马曲线在n>2时没有坐标都是非零有理数的点”。

黎曼在1857年引入了代数函数,使代数几何有了较大的发展。他把代数函数定义在一些互相适当联结的覆叠的复平面上,它们后来被称为黎曼曲面,代数函数在其黎曼曲面上得以单值化。若把代数曲线视为由方程(6)确定的一个代数函数的图象,则每个代数曲线都有一个自己的(一一对应的)黎曼曲面。这种黎曼曲面有一大特点:它们恒可以经连续变换成为球面或带有n个洞(贯通的洞)的球面。洞的个数被称为黎曼曲面的从而也是与它对应的代数曲线的亏格—这是一个重要的代数几何不变量,它决定了黎曼曲面从而代数曲线的许多性质,亏格可以作为划分代数曲线的一个标准,例如按亏格g的不同,有:

g=0:直线、圆、圆锥曲线;

g=1:椭圆曲线;

g≥2:其他曲线,如费马曲线等。

1922年,英国数学家莫德尔提出一个猜想——亏格g≥2的代数曲线上的有理点只有有限多个。按前述转化分析,由它立即可得出丢番图方程(由方程定义的代数曲线亏格g≥2的)的解只有有限多个;进而可推出,n>2时,方程(5)的正整数解(原始解)至多只有有限多个。

1983年,德国数学家法尔廷斯利用法国数学家格罗唐迪克所建立的概形理论证明了莫德尔猜想,从而证明了前述关于费马大定理的结论。人们认为这是费马大定理证明中的又一次重大突破,对许多数学分支都产生了重要的影响。为此,法尔廷斯获得1986年度菲尔兹奖。1985年,希斯-布朗利用法尔廷斯的结果,证明了对于几乎所有的素数p,费马大定理成立,即如果对某些素数p,定理不成立,那么这样的p的数目在整个素数中是微不足道的。

种种转化的方法既推进了所转化的领域的发展,也使费马大定理的证明取得进展。可以说,以上结论已十分接近费马大定理了,但它们毕竟不是原定理的证明,离原定理的证明尚有并非容易跨越的“一小步”。

1993年6月23日,星期三。英国剑桥大学新落成的牛顿数学研究所的大厅里正在进行例行的学术报告会。报告从上午8时整开始,报告人怀尔斯用了两个半小时就他关于“模形式、椭圆曲线和伽罗瓦表示”的研究

结果作了一个冗长的发言。10时30分,在他的报告结束时,他平静地宣布:“因此,我证明了费马大定理。”很快,这一消息轰动了全世界,许多一流的大众传播媒介迅速地报道了这一消息,并一致称之为“世纪性的科学成就”。

那么,怀尔斯是怎样完成费马大定理的最后一步证明的呢?他继续使用转化的方法,采用的则是椭圆函数参数化。

20世纪50年代,一些数学家发现椭圆函数与模函数有联系。模函数也是一种人们早有研究的复变数函数,它是定义在单位圆(或上半平面)内部且以其周界为自然边界的一种特殊解析函数。人们发现,构成模函数的种种反演变换生成一个变换群G,模函数是关于群G的自守函数。这是它与椭圆函数的联系之一。一些数学家猜测,椭圆曲线可由特殊的模函数单值化,这种曲线被称为模曲线。1967年韦伊发表了这一猜想,称为谷山-志村-韦伊猜想:所有椭圆曲线都是模曲线。

1971年,一位法国数学家指出椭圆函数可与费马大定理联系起来。椭圆曲线可由模函数单值化,这与代数曲线由其黎曼曲面单值化十分相似。是否也可以类比于黎曼曲面方法,从模函数中找出椭圆曲线的分类标准对其分类,使其中与费马大定理对应的一类中无有理点呢?

1986年,德国数学家符莱(G.Frey)真正把费马方程与椭圆曲线联系起来:如果u,v,w满足费马方程up+vp=wp(p≥5,是素数),

则可构造椭圆函数

y2=x(x一u p)(x+v p)(8)

与之对应,他要求v为偶数,u为4m+3型的奇数。因而(8)只是一种所谓“半稳定性”椭圆曲线。符莱进而猜想,按他所作的对应,从谷山-志村-韦伊猜想可以推出费马大定理。1990年,李贝(K.Ribet)证明了这一个猜想,即证明,如果谷山-志村-韦伊猜想真,那么费马大定理一定真(一个“抽象化”的转化)。

于是证明费马大定理的努力指向了谷山-志村-韦伊猜想。怀尔斯针对符莱引入的“半稳定性”椭圆曲线,他认为,只需对这一类椭圆曲线证明谷山-志村-韦伊猜想就行了(这又是一个“具体化”的转化)。当然这也是极困难的工作。为此,他写了200多页,1993年6月23日他的报告就是关于这一证明的。人们认为,怀尔斯取得费马大定理证明的第三次突破——最终证明了费马大定理。这一成就被列入1993年世界科学十大成就之一。

但怀尔斯的长达200多页的论文送交审查时,却被发现其证明有漏洞。许多传媒又迅速地报道了这一“爆炸性”新闻。

怀尔斯本人在挫折面前没有止步,从1993年7月起他就一直在修改论文,补正漏洞,这是一项十分困难的工作。1994年8月在瑞士苏黎世召开的国际数学家大会(ICM)上特邀怀尔斯作报告,在报告中他只字未提费马大定理。人们认为,他一定是遇到了难以克服的困难。

1994年9月,怀尔斯终于解决了困难,重新写出了一篇108页的论文,于1994年10月14日寄往美国《数学年刊》,论文顺利通过审查,1995年5月,《数学年刊》第41卷第3期登载了他的这一篇论文!这使得

怀尔斯获得1995-1996年度沃尔夫奖。这一成果被认为是“20世纪最重大的数学成就”。

费马猜想之证明.

费马猜想之证明 景光庭 引言:20世纪60年代初,笔者首次接触“费马猜想”。在以后的岁月中,笔者断断续续地研究它。直至1992年,才有机会在《潜科学》上相继发表过三篇论文,这次是最终的证明。 虽然美国数学家怀尔斯因发表论证“费马猜想”的文章,并于1997年荣膺国际上的沃尔夫斯克尔数学大奖,但并没有推开蒙在世界数学家心头上的阴云。笔者曾通过《美国教育交流中心》向怀尔斯寄去了总长仅一页的论文复印件,并明确指出,他在证明中将“费马方程”转化为椭圆曲线,而笔者转化为抛物线,这是不能共存的。何况笔者的转化过程,浅显得连中学生都能读懂,无懈可击,百分之百的正确。怀尔斯巨著难道不是沙滩上的一座摩天大厦?我也向德国马克斯普朗克研究所的学者法尔廷斯寄去了论文复印件,亦表述了上述观点,因为他是少数几个通读怀尔斯论文,并唯一肯定和帮助怀尔斯将论文从二百多页化减到一百三十页的学者 。遗憾的是至今未复。 如果怀尔斯不屑回答一个业余数学爱好者提出的疑问,对他就是一个绝妙的讽刺,因为他以毕生精力研究攻克和使他一举成名的“费马猜想”提出者费马是律师,而不是法兰西学院的院士。恰恰相反,数学只是他的业余爱好。他与人交流数学心得,往往是在通信中进行的,并不象今天这样只有在学术界认可的刊物上发表的文章才能被专家认可。如果当年的学术界也对费马这样苛求,那么今天根本不存在什么“费马猜想”这个问题了。 定理:2>p P P P Z Y X =+ (1) 中,p 为奇素数,X ,Y ,Z 无正整数解。 证:假设X ,Y ,Z 均有正整数解。 令 X=x ,Z = x +a (a 为正整数), Y = y 0+a (y 0为正整数),约定(x ,y 0,a )=1 ,则有: p p p a x a y x )()0+=++( (2) 即: 0 (1) 12221101120221010=----++++--------x a c x a c ax c y a c y a c ay c y p p p p p p p p p p p p p p p (3) 不失一般性,可设1),(0≥=d y x 1),(,,11101===y x dy y dx x ,以d 除 (3)式, 并令:10-=p d b ,,2 1 1-=p p ad c b ……,1 11---=p p p p a c b , 于是:0 (11212111111) 1 110=----+++-----x b x b x b y b y b y b p p p p p p 11 1 123122111 1 211110............s y b x b x b x b x b y b y b p p p p p p p =++++= +++------- 11221111011.......----=----p p p p b y b y b y b x s 11231221111.......----=----p p p p b x b x b x b y s

费马大定理证明

【法1】 等轴双曲线方程的通解与费尔玛大定理的证明 滕锡和 (河南鲁山 江河中学 邮编:467337) 摘 要: 由等轴双曲线方程与费尔玛方程的内在联系,寻找到一种费尔玛方程是否有正整数解 的充要条件,再由对此条件的否定,证明了费尔玛大定理,并且把费尔玛大定理与勾股定理有机地统一起来。 关键词: 完全+ Q 解;可导出+ Q 解;连环解 中图法分类号: 文献标识码:A 文章编号: 1 R +通解 本文所用数集:N ---自然数集,Q ---有理数集,R ---实数集。本文讨论不超出+R 的范围。 本文中方程n n n z y x =+及同类方程中的指数n ∈N ,以后不再说明。 引理1 方程 n n n z y x =+ (n ≥2) (1) 有N 解的充要条件是它有+ Q 解。 引理2 方程(1)n n n z y x =+(n ≥2)有N 解的充要条件是它有既约N 解。 这样,在以后的讨论中只需讨论+ Q 解及既约N 解的情形,可使过程简化。 引理3 方程(1)n n n z y x =+(n ≥2)有N 解的充要条件是方程 -1n n X Y = (n ≥2) (2) 有+ Q 解。 证明 充分性 如果方程(2)-1n n X Y =(n ≥2)有+ Q 解,设(v u v w ,)()u v w N ∈两两互素,,为其+ Q 解,则( v w )n -(v u )n =1,n n n w v u =+ 。于是方程(1)n n n z y x =+(n ≥2)有N 解()w v u ,,。 必要性 如果方程(1)n n n z y x =+(n ≥2)有N 解,设()w v u ,,() u v w N ∈两两互素,,

安德鲁怀尔斯的证明比我复杂一百倍

安德鲁怀尔斯的证明比我复杂一百倍 安德鲁怀尔斯的证明用了130页,并利用了连费马都没接触的理论来证明,充分说明他的证明并没有揭开费马所说的美妙证明的历史真相。真正理解费马原始思想的人是我。我只用了一页的版面通俗地透彻地严格地证明了这一结论。是真金还是铜大家可以验证。 揭开费马大定理真相 当整数n大于2时X n +Y n=Z n 没有正整数解。显然X、Y、Z都不会是零。 证明方法: 由于当n为大于2质数时证明X n +Y n=Z n 没有正整数解。与证明X1n+X2n+X3n =0没有非零的整数解道理一样。又由于当n=ab时X1 +X2n+X3n =0可写成(X1a)b+(X2a)b+(X3a)b=0; 因此只要证明当整数n为大于2的质数X1n+X2n+X3n =0没有非零的整数解,可类推X n +Y n=Z n 没有正整数解,而n=4没有整数解早已被人证明。现在我们需要证明当当n为大于2质数时X1n+X2n+X3n =0没有非零的整数解。 假设存在有整数解,会不会出现冲突呢,会的。 如果X1n+X2n+X3n =0存在有整数解,而n为大于2质数,因此必存: X1X2+X2X3+X3X1=d (d为整数更是有理数);X1X2X3=c(c为整数更是有理数)也就是说必存在这样的方程组; X1n+X2n+X3n =0 (1) X1X2+X2X3+X3X1=d (d为整数更是有理数) (2) X1X2X3=c(c为整数更是有理数) (3) 由方程组必可合成关于X的一元n次方程,又由于若X1=X2或X1=X3或X2=X3均不存在整数解,原因是2X1n+X3n=0没有非零整数解,因此倘若有非零整数解也只能是X1、X2、X3 互不相等。由于作为底的仅有X1、X2、X3且均要同时有理地合成为【f(X)】n 的形式现在的问其题在于,关于X的一元n次方程(n为质数)既要把未知数都配方成n次方内,又要表示出三个解的不相等。而d、b均为有理数,能做得到吗?做不到的,我们知道,当n 为质数时若将方程有理化成【f(X)】n =P;只能反映有一个实数解,其他是虚数解。说明X1、X2、X3取有理数解是不相容的。更谈不上整数解。也就是说要符合费马所规定条件的方程是不存在,因此我的假设是不成立的。 由于当n为大于2质数时证明X n +Y n=Z n 没有正整数解。与证明X1n+X2n+X3n =0没有非零的整数解道理一样。 当n为合数时,n可分解成质因素,可将一个质因数写成括号外的方次来证明,如果n 只含质因素2,n必可写成4m的形式,可当成4次方程来证明。而n=4时,费马本人已证明。至此费马定理证明完毕。

费尔马大定理及其证明

费尔马大定理及其证明 近代数学如参天大树,已是分支众多,枝繁叶茂。在这棵苍劲的大树上悬挂着不胜其数的数学难题。其中最耀眼夺目的是四色地图问题、费尔马大定理和哥德巴赫猜想。它们被称为近代三大数学难题。 300多年以来,费尔马大定理使世界上许多著名数学家殚精竭虑,有的甚至耗尽了毕生精力。费尔马大定理神秘的面纱终于在1995年揭开,被43岁的英国数学家维尔斯一举证明。这被认为是“20世纪最重大的数学成就”。 费尔马大定理的由来 故事涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费尔马。丢番图活动于公元250年前后。 1637年,30来岁的费尔马在读丢番图的名著《算术》的法文译本时,他在书中关于不定方程 x^2+ y^2 =z^2 的全部正整数解这页的空白处用拉丁文写道:“任何一个数的立方,不能分成两个数的立方之和;任何一个数的四次方,不能分成两个数的四次方之和,一般来说,不可能将一个高于二次的幂分成两个同次的幂之和。我已发现了这个断语的美妙证法,可惜这里的空白地方太小,写不下。” 费尔马去世后,人们在整理他的遗物时发现了这段写在书眉上的话。1670年,他的儿子发表了费尔马的这一部分页端笔记,大家才知道这一问题。后来,人们就把这一论断称为费尔马大定理。用数学语言来表达就是:形如x^n+y^n=z^n的方程,当n大于2时没有正整数解。 费尔马是一位业余数学爱好者,被誉为“业余数学家之王”。1601年,他出生在法国南部图卢兹附近一位皮革商人的家庭。童年时期是在家里受的教育。长大以后,父亲送他在大学学法律,毕业后当了一名律师。从1648年起,担任图卢兹市议会议员。

费马大定理的美妙证明

费马大定理的美妙证明 成飞 中国石油大学物理系 摘要:1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” 0、费马大定理: 当n>3时,X n +Y n=Z n,n次不定方程没有正整数解。 1、当n=1,X+Y=Z,有任意Z≥2组合的正整数解。任意a.b.c;只要满足方程X+Y=Z;a,b.c 由空间平面的线段表示,有 a b c 可见,线段a和线段b之和,就是线段c。 2、当n=2,X2+Y2=Z2,有正整数解,但不任意。 对于这个二次不定方程来说,解X=a,Y=b,Z=c,在空间平面中,a,b,c不能构成两线段和等于另外线段。 又因为,解要满足二次不定方程,解必然a+b>c且c>a,b。 可以知道,二次不定方程的解,a,b,c在空间平面中或许可以构成三角形, B c A 根据三角形余弦定理,有 c2=a2+b2-2ab× cosɑ( 0<ɑ< π)

此时,a,b,c,即构成了三角形,又要满足二次不定方程X2+Y2=Z2 ,只有当且仅当ɑ=900,cosɑ=0,a,b,c构成直角三角形时c2=a2+b2,既然X=a,Y=b,Z=c,那么二次不定方程X2+Y2=Z2有解。 3、当n=3,X3+Y3=Z3,假设有正整数解。a,b,c就是三次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。 此时,a,b,c也必构成三角形, B A 根据三角形余弦定理,有 c2 = a2+b2-2ab× cosɑ( 0<ɑ< π) 因为,a,b,c是三次不定方程X3+Y3=Z3的正整数解,cosɑ是连续函数,因此在[-1,1]内取值可以是无穷个分数。根据大边对大角关系,ɑ角度取值范围(60o,180o),由此我们cosɑ的取值分成两部分,(-1,0]和[0,?)范围内所有分数;而a+b>c,且c>a,b, 1、当cosɑ=(-1,0],三角形余弦定理关系式得到, c2 = a2+b2+mab m=[0,1)内正分数; 等式两边同乘以c,有 c3 = a2c + b2c + mabc 因为c>a,b,那么 c3 > a3+ b3 2、当cosɑ=?,三角形余弦定理关系式得到, c2 = a2+b2-ab 等式两边同乘以a+b,有 (a+b)c2 = a3+ b3 又因为a+b>c, 所以,c3 < a3+ b3 (根据三角形大角对大边,c>a,b,即ɑ不可能等于600) 那么,cosɑ=[0,?)时,更加满足c3 < a3+ b3 既然,a,b,c是三次不定方程X3+Y3=Z3的解,又a3+ b3≠ c3, 那么,X3+Y3≠Z3,得到结果与原假设相矛盾,所以,假设不成立。 即,n=3时,X3+Y3=Z3 ,三次不定方程没有正整数解。 4、n>3, X n +Y n=Z n,假设有正整数解。a,b,c就是n次不定方程的解,即X=a,Y=b,Z=c,a+b>c,且c>a,b。此时,a,b,c构成三角形,根据三角形余弦定理有,

我用概率证明了费马大定理

我用概率证明了费马大定理 章丘一职专马国梁 1637年,法国业余数学家费马在一本著名的古书——丢番图的《算术》中的一页上写了如下一段文字: “分解一个立方为两个立方之和,或分解一个四次方为两个四次方之和,或更一般地分解任一个高于二次方的幂为两个同次方的幂之和均不可能。对此我发现了一个奇妙的证明,但此页边太窄写不下。” 用数学语言表达就是说,当指数n > 2时,方程x^n + y^n = z^n 永远没有整数解。这就是著名的连小学生都能看懂的费马猜想。 可是在这个猜想提出后,那个重要的“奇妙证明”不论在费马生前还是死后始终没有被人见到,且后人也再没有找到,所以人们怀疑那个证明根本就不存在或者是在什么地方搞错了。费马生前只是证明了n = 4 的情况;直到1749年,才被欧拉证明了n = 3 的情况。 这个猜想看上去是如此的简单,让局外人根本无法想象证明它的艰难,所以曾经让不少人跃跃欲试。他们搜肠刮肚,绞尽脑汁,耗费了无数的精力。三百多年来,虽然取得了很大进展,显示了人类的智慧,但问题总是得不到彻底解决。直到1995年,才由英国数学家怀尔斯宣称完成了最后的证明。从此费马猜想变成了真正的“费马定理”。 对费马定理的证明之所以艰难,是因为在整数内部有着极其复杂微妙的制约机制,要想找到这些制约关系,必须深入到足够的程度进行细致的分析才行。所以三百多年来,虽然有不少数学大家还有广大业余爱好者不畏艰难,前赴后继,顽强奋斗,但怎奈山高路远,歧途太多,终归难免失败。 在这样的现实下,笔者明白自己也是局外之人,所以不可能去钻这个无底的黑洞。但是作为一种乐趣,我们不妨另外开辟一条渠道,进行旁证和展望。试用概率计算一下:看看费马猜想是否成立,又成立到什么程度。虽然这在数学界难以得到公认,但是我们歪打正着,乐在其中。因为对于决定性的现象,如果其决定因素和控制过程过于复杂,那么其结果是可以用概率理论进行推算的。 但是要证明费马猜想究竟应该从何处下手呢?对此笔者心中一直有一个强烈的直觉。 我们知道:当n = 1 时,x + y = z 可有无数组解。在正整数中,任何两个整数相加的结果必然也还是整数。 但是当n = 2 时,方程x^2 + y^2 = z^2 的解就没有那么随便了,它们必须是特定的一组组的整数。其组数大大减少。 而当n = 3 时,方程x^3 + y^3 = z^3 则根本就没有整数解了。那么其原因是什么呢? 对此笔者曾经思考了多年。但没想到只是在近几天才一下子开了窍,找到了问题的关键。原来是:指数越大,整数的乘幂z^n在数轴上的坐标点就越稀疏,从而使任意两整数的同次方幂之和x^n + y^n 落在坐标点上成为整数的可能性就越小。其概率是z^n 的导数的倒数。即每组x^n + y^n 能够成为整数的可能性只有 η= 1/[n z^(n-1)] = 1/ [n (x^n + y^n )^(1-1/n) ] 当x、y在平面直角坐标系的第一区间随意取值时,我们可以用积分的办法算出其中能够让z成为整数的组数。其公式为 N =∫∫ηdx dy =∫∫[(dx dy) / (n (x^n + y^n )^(1-1/n))] 因为在平面直角坐标系上,当z 一定时,由方程x^2 + y^2 = z^2 所决定的曲线是个正圆; 而由方程x^n + y^n = z^n 所决定的曲线则是一个近似的圆; 只有当n 趋于无穷大时,它的曲线才能成为一个正方形。 所以当n较小时,我们是可以把方程的曲线当作一个圆来处理的。这样以来,N的积分公式就变成了 N =∫[(0.5πz dz ) / (n z^(n-1))] ①当n = 1 时,由方程x + y = z 所决定的曲线是一条斜的直线。它在第一象限的长度是sqrt(2) z ,此时能够成为整数的概率是100%,即η= 1/[n z^(n-1)] = 1 所以N =∫sqrt(2) z dz = [1/sqrt(2)] z^2 即与z的平方成正比,这意味着在坐标系的第一象限中,遍地都是解。仔细想想这也可以理解。因为不论x还是y,都是可以取任意整数的;而正整数的数量是无穷多,所以它们的组合数将是无穷多的平方,为高一级的无穷多。 ②当n = 2 时,由方程x^2 + y^2 = z^2 所决定的曲线是一个正圆。在第一象限是一段1/4 的圆周,其长度是0.5πz ;此时η= 1/[2 z ] 所以N =∫(0.5πz dz / (2 z) ) = (π/4) z

《费马大定理》读后感800字

《费马大定理》读后感800字 费马大定理是17世纪法国数学家费马留给后世的一个不解之谜。即:当整数n>2时,关于x,y,z的不定方程x^n+y^n=z^n.无正整数解。 为证明这个命题,无数的大数学家们都在不懈努力,孜孜不倦的力求攻克。该问题的提出还在于毕达哥拉斯定理(在一个直角三角形中,斜边的平方等于两直角边的平方之和)的存在。而后欧拉用他的方式证明了x^3+y^3=z^3无正整数解。同理3的倍数也无解。费马也证明了n为4时成立。这样使得待证明的个数大大减少。终于在“谷山——志村猜想” 之后,被安德鲁·怀尔斯完全证明。 看过该书以后,一方面是对于费马大定理的证明过程的惊叹。这是一个如此艰辛的过程。阿瑟·爱丁顿爵士曾说,证明是一个偶像,数学家在这个偶像面前折磨自己。值得解决的问题会以反击来证明他的价

值。费马大定理的成功证明的实现在是它被提出后的300多年。经典数学的证明办法是从一系列公理、陈述出发,然后通过逻辑论证,一步接着一步,最后就可能得到某个结论。数学证明依靠这个逻辑过程,一经证明就永远是对的。数学证明是绝对的。也是一环扣一环的,没有索菲·热尔曼,柯西,欧拉等人在之前的研究,该定理并非能在个人的一次研究中就能得到证明。对于数学的研究是永无止境的。另一方面,我也认识到寻找一个数学证明就是寻找一种认识,这种认识比别的训练所积累的认识都更不容置疑。最近两千五百年以来,驱使着数学家们的正是这种以证明的方法发现最终真理的欲望。数学家有着不安分的想象与极具耐心的执拗。虽说当今计算机已经发展到一定地步了,它的计算速度再快,但是无法改变数学证明的需要。数学证明不仅回答了问题,还使得人们对为什么答案应该如此有所了解。 学数学能干什么?曾经也有学生这样问过欧拉,欧拉给他一些钱以后就让学生走了。培根也说过,数学使人周密。数学的证明最能培养严谨的态度。

费马大定理的3次、4次不可能的证明

A 试证:试证:x x 4+y 4=z 4在xy xy≠ ≠0时无整数解。证:假设原命题成立,则有: z 4-x 4=(z -x)(z 3+z 2x+z x 2+x 3)=(z -x)(z +x)(z 2+x 2)=y 4由x 、y 、z 都是大于0的正整数,所以有z >x 得:得:z z -x -x<<z +x +x< <z 2+x 2(其中若z +x +x≥≥z 2+x 2,则x(1-x)x(1-x)≥ ≥z (z -1)负数大于正数,不成立。)分两种情形讨论: ①y 是质数,得:是质数,得:y=z y=z -x y=z +x y 2=z 2+x 2由前两式得x =0(不成立)②y 是合数,得:是合数,得:(z (z -x)a=y (z -x)b=y z 2+x 2=aby 2稍微变换一下就可以得到:((a a 2b 2-1-1) )z 2=(a 2b 2+1)x 2即:即:a a 2 b 2-1=k 12a 2b 2+1=k 22但是在整数里,但是在整数里,m m 2-n 2≠1。故这种情形不成立。∴x 4+y 4=z 4在xy xy≠ ≠0时无整数解。B 试证:试证:x x 3+y 3=z 3在xy xy≠ ≠0时无整数解。证:假设原命题成立,则有: z 3-x 3=(z -x)-x)( (z 2+xz +x 2)=y 3>0则有:则有:z z >x z 2+xz +x 2>z -x 分两种情形讨论: ①y 是质数,得:是质数,得:y=z y=z -x y 2=z 2+xz +x 2即:即:z z 2+xz +x 2=y 2=(z -x)2整理得到:整理得到:xz xz =-2xz (不成立不成立) )②y 是合数,则有:是合数,则有:(z (z -x)a=y z 2+xz +x 2=ay 2整理得到:((a a 3-1-1) )z 2-(a 3+1)xz +(a 3-1)x 2=0若z 有解,需有解,需△≥△≥△≥00即:即:a a 3≤3由于a 是大于0的正整数,故a =1即:即:z z -x=y 回到第回到第① ①种情形,结果仍是不成立。 ∴x 3+y 3=z 3在xy xy≠ ≠0时无整数解。另外根据我的推到出勾股方程的满足条件或生成方法是: ((e 2-f 2)/2)2+(ef)2=((e 2+f 2)/2)2 其中e 、f 取大于0的同时为奇或偶的正整数(的同时为奇或偶的正整数(e e ≠ f )但是我在一本介绍数论的书上看到已经被人家找出来,只是形式和我的有点差异。故我通过上述方法找到了勾股方程成立的充足理由,及同样找到了其满足条件。乐哉!

费马大定理的证明

学院 学术论文 论文题目:费马大定理的证明 Paper topic:Proof of FLT papers 姓名 所在学院 专业班级 学号 指导教师 日期 【摘要】:本文运用勾股定理,奇偶性质的讨论,整除性的对比及对等式有解的分析将费马大

定理的证明由对N>2的情况转换到证明n=4,n=p 时方程n n n x y z +=无解。 【关键字】:费马大定理(FLT )证明 Abstract : Using the Pythagorean proposition, parity properties, division of the contrast and analysis of the solutions for the equations to proof of FLT in N > 2 by the situation to prove N = 4, N = p equation no solution. Keywords: Proof of FLT (FLT) 引言: 1637年,费马提出:“将一个立方数分为两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。”即方程 n n n x y z +=无正整数解。 当正整数指数n >2时,没有正整数解。当然xyz=o 除外。这就是费马大定理(FLT ),于1670年正式发表。费马还写道:“关于此,我确信已发现一种奇妙的证法,可惜这里的空白太小,写不下”。[1] 1992年,蒋春暄用p 阶和4n 阶复双曲函数证明FLT 。 1994年,怀尔斯用模形式、谷山—志村猜想、伽罗瓦群等现代数学方法间接证明FLT ,但是他的证明明显与费马设想的证明不同。 据前人研究,任何一个大于2的正整数n ,或是4的倍数,或是一个奇素数的倍数,因此证明FLT ,只需证明两个指数n=4及n=p 时方程没有正整数解即可。方程 444x y z +=无正整数解已被费马本人及贝西、莱布尼茨、欧拉所证明。方程 n n n x y z +=无正整数解,n=3被欧拉、高斯所证明;n=5被勒让德、狄利克雷所证明;n=7被拉梅所证明;特定条件下的n 相继被数学家所证明;现在只需继续证明一般条件下方程n n n x y z +=没有正整数解,即证明FLT 。[2] 本文通过运用勾股定理,对奇偶性质的讨论,整除性的对比及对等式有解的分析证明4n =,n p =时n n n x y z +=无正整数解。

费马大定理的简单证明

费马大定理的简单证明 李联忠 (营山中学 四川 营山 637700) 费马大定理:一个正整数的三次以上的幂不能分为两正整数的同次幂之和。即不定方程n n n y x z +=当n ≥3时无正整数解。 证明: 当n=2时,有 222y x z += ∴ ))((222y z y z y z x +-=-= (1) 令 22)(m y z =- 则 22m y z += 代入(1)得 222222222222)(2)22(2l m m y m m y m y z x =+=+=-= ∴ ml x 2= 22m l y -= 22m l z += 当n=3时,有 333y x z += ∴ ))((22333y zy z y z y z x ++-=-= (2) 令 323)(m y z =- 则 323m y z +=代入(2)得 ] [23223232333)3()3(3y y m y m y m y z x ++++=-= )3333(36432232m y m y m +?+=)33(36332233m y m y m ++= 若方程333y x z +=有正整数解,则)33(63322m y m y ++为某正整数的三次幂,即 363322)33(l m y m y =++ ∴ )33)(3(3)3(4222263332m l m l m l m l m y y ++-=-=+ 则必有 )33(3)3(4222322m l m l m y m l y ++=+-=和,而y,m,l 都取正整数时,这两等式是不可能同时成立的。所以363322)33(l m y m y =++不成立。即x 不可能取得正整数。所以,当n=3时,方程333y x z +=无正整数解。 当n>3时,同理可证方程n n n y x z +=无正整数解。 定理得证。

费马大定理是怎么证明的

费马大定理是怎么证明的 已故数学大师陈省身说道,20世纪最杰出的数学成就有两个,一个是阿蒂亚—辛格指标定理,另一个是费马大定理。当然,20世纪的重大数学成就远不止这两个,不过这两大成就却颇具代表性,特别是从科普的角度来看。 说实在的,数学虽然总是居于科学之首,可是一般人对数学可以说几乎一无所知,尤其是说到数学有什么成就、有什么突破的时候。理、化、天、地、生,门门都有很专门的概念、知识、技术,可不久之前的大成绩很容易就可以普及到寻常百姓家。激光器制造出来还不到50年,激光唱盘早已尽人皆知了,克隆出现不到10年,克隆这字眼已经满天飞了。即使人们不太懂黑洞的来龙去脉,一般人理解起来也不会有太大障碍。可是有多少人知道最新的数学成就呢?恐怕很难很难。数学隔行都难以沟通,更何况一般人呢。正因为如此,99%的数学很难普及,成百上千的基本概念就让人不知所云,一些当前的热门,如量子群、非交换几何、椭圆上同调,听起来就让人发晕。幸好,还有1%的数学还能对普通的人说清楚,费马大定理就是其中的一个。 费马大定理在世界上引起的兴趣就正如哥德巴赫猜想在中 国引起的热潮差不多。之所以受到许多人的关注,关键在于它们不需要太多的准备知识。对于费马大定理,人们只要知道数学中头一个重要定理就行了。这个定理在中国叫勾股定

理或商高定理,在西方叫毕达哥拉斯定理。它的内涵丰富,从数论的角度看就是求不定方程(即变元数多于方程数的方程)X2+Y2=Z2的正整数解。中国在很早已知(3,4,5)是这个方程的一个解,也就是32+42=52,其后也陆续得到其他解,最后知道它的所有解。这样,一个不定方程的问题得到圆满解决。 数学家的思想方向是推广,这个问题到了17世纪数学家费马的手中,就自然问,当指数变是3,4……时,又会怎样?这样费马的问题就变成不定方程Xn+Yn=Znn=3,4,……是否有正整数解的问题。费马误以为自己证明了对于所有n≥3的情形,这个方程(不妨称为费马方程)都没有正整数解,实际上,他的方法只证明n=4的情形。不过,这个他没有证明的定理还是被称为费马大定理。 这样一个叙述简单易懂的定理对于后来的数学家是一大挑战,其后200多年,数学家只是部分地解决了这个问题,可是却给数学带来丰富的副产品,最重要的是代数数论。原来的问题却成为一个难啃的硬骨头。20世纪初,有人悬赏10万德国马克,征求费马大定理的证明,成千上万的错误证明寄到评审机构那里,其中几乎没有什么真正的数学家。本书的第四章生动地描写了其中的故事。 有时我们把这些人称为业余数学爱好者,近来称之为民间科

费马点及其证明

费马点定义 在一个多边形中,到每个顶点距离之和最小的点叫做这个多边形的费马点。在平面三角形中: (1).三内角皆小于120°的三角形,分别以AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点. (2).若三角形有一内角大于或等于120度,则此钝角的顶点就是所求. (3)当△ABC为等边三角形时,此时外心与费马点重合 证明 (1)费马点对边的张角为120度。 △CC1B和△AA1B中,BC=BA1,BA=BC1,∠CBC1=∠B+60度=∠ABA1, △CC1B和△AA1B是全等三角形,得到∠PCB=∠PA1B 同理可得∠CBP=∠CA1P 由∠PA1B+∠CA1P=60度,得∠PCB+∠CBP=60度,所以∠CPB=120度 同理,∠APB=120度,∠APC=120度 (2)PA+PB+PC=AA1 将△BPC以点B为旋转中心旋转60度与△BDA1重合,连结PD,则△PDB为等边三角形,所以∠BPD=60度 又∠BPA=120度,因此A、P、D三点在同一直线上, 又∠APC=120度,所以A、P、D、A1四点在同一直线上,故PA+PB+PC=AA1。 (3)PA+PB+PC最短 在△ABC内任意取一点M(不与点P重合),连结AM、BM、CM,将△BMC以点B为旋转中心旋转60度与△BGA1重合,连结AM、GM、A1G(同上),则AA1

费马大定理的初等巧妙证明(完全版)

费马大定理的初等巧妙证明(完全版) pxt 费马大定理:一个正整数的三次以上的幂不能分为两正整数的同次幂之和。即不定方程n n n y x z +=当n ≥3时无正整数解。 证明: 当n=2时,有 222y x z += ∴ ))((222y z y z y z x +-=-= (1) 设 22)(m y z =- 则 22m y z += 代入(1)得 222222222222)(2)22(2l m m y m m y m y z x =+=+=-= ∴ ml x 2= 22m l y -= 22m l z += 当n=3时,有 333y x z += ∴ ))((2 2333y zy z y z y z x ++-=-= (2) 设 323)(m y z =- 则 323m y z +=代入(2)得 ][23223232333)3()3(3y y m y m y m y z x ++++=-= )3333(36432232m y m y m +?+=)33(36332233m y m y m ++= 设 363322)33(l m y m y =++ (3) 则 ml x 3= (4) 323m y z += (5) 若z,y 的公约数为k,即 (z,y)=k ,k>1时,方程333y z x -=两边可以除以3k ,下面 分析k=1 即(z,y )=1 , 方程333y z x -=的正整数解 因为(z,y )=1,分析(2),(3),(4),(5)式,只有m,l 为正整数时,x,y,z 可能有正整数解,由(3)得 )33)(3(3)3(4222263332m l m l m l m l m y y ++-=-=+ (6) ∵ y, m, l 都取正整数, ∴)3(32m y y +< )33()3(4 2222m l m l m l ++<-

费马大定理的美妙证明教学提纲

费马大定理的美妙证 明

费马大定理的美妙证明 成飞 中国石油大学物理系 摘要:1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” 0、费马大定理: 当n>3时,X n +Y n=Z n,n次不定方程没有正整数解。 1、当n=1,X+Y=Z,有任意Z≥2组合的正整数解。任意a.b.c;只要满足方程X+Y=Z; a,b.c 由空间平面的线段表示,有 a b c 可见,线段a和线段b之和,就是线段c。 2、当n=2,X2+Y2=Z2,有正整数解,但不任意。 对于这个二次不定方程来说,解X=a,Y=b,Z=c,在空间平面中,a,b,c不能构成两线段和等于另外线段。

又因为,解要满足二次不定方程,解必然a+b>c且c>a,b。 可以知道,二次不定方程的解,a,b,c在空间平面中或许可以构成三角形, B c A 根据三角形余弦定理,有 c2=a2+b2-2ab× cosɑ ( 0<ɑ< π) 此时,a,b,c,即构成了三角形,又要满足二次不定方程X2+Y2=Z2 ,只有当且仅当ɑ=900,cosɑ=0,a,b,c构成直角三角形时 c2=a2+b2,既然 X=a,Y=b,Z=c,那么二次不定方程X2+Y2=Z2有解。 3、当n=3,X3+Y3=Z3,假设有正整数解。a,b,c就是三次不定方程的解,即 X=a,Y=b,Z=c,a+b>c,且c>a,b。 此时,a,b,c也必构成三角形, 根据三角形余弦定理,有 c2 = a2+b2-2ab× cosɑ ( 0<ɑ< π) 因为,a,b,c是三次不定方程X3+Y3=Z3的正整数解,cosɑ是连续函数,因此在[-1,1]内取值可以是无穷个分数。根据大边对大角关系,ɑ角度取值范围(60o,180o),由此我们cosɑ的取值分成两部分,(-1,0]和[0,?)范围内所有分数;而a+b>c,且c>a,b, 1、当cosɑ=(-1,0],三角形余弦定理关系式得到,

费马最后的定理:费马大定理

费马最后的定理 费马大定理,又被称为“费马最后的定理”,由17世纪法国数学家皮耶·德·费玛提出。 它断言当整数n >2时,关于x, y, z的方程x^n + y^n = z^n 没有正整数解。 德国佛尔夫斯克曾宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。 被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯彻底证明。 大约1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” (拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.") 毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。 证明完成

定理到了最后攻关阶段,并且这刚好是他的研究领域,他开始放弃所有其它活动,精心疏理有关领域的基本理论,为此准备了一年半时间把椭圆曲线与模形式通过伽罗瓦表示方法“排队”。接下来的要将二种“排队”序列对应配对,这一步他二年无进展。此时他读博时学的岩泽理论一度取得实效,到1991年他之前的导师科茨告诉他有位叫弗莱切的学生用苏联数学家科利瓦金的方法研究椭圆曲线,这一方法使其工作有重大进展。 1993年6月在剑桥牛顿学院要举行一个名为“L函数和算术”的学术会议,组织者之一正是怀尔斯的博士导师科茨,于是在1993年6月21日到23日怀尔斯被特许在该学术会上以“模形式、椭圆曲线与伽罗瓦表示”为题,分三次作了演讲。听完演讲人们意识到谷山---志村猜想巳经证明。由此把法尔廷斯证明的莫德尔猜想、肯.里贝特证明的弗雷命题和怀尔斯证明的谷山---志村猜想联合起来就可说明费马大定理成立。其实这三个猜想每一个都非常困难,问题是怀尔斯最后证明,他变为完成费马大定理证明的最后一棒。 1993年6月23日从剑桥牛顿学院传出费马大定理被证明之后,世界媒体普天盖地般报道了该喜讯。 但此刻数学界反倒十分冷静,明确指论证还需仔细审核,因为历史上曾多少次宣布证明但后来被查证错误。怀尔斯的证明被分为6个部分分别由6人审查,其中第三部分由凯兹负责的查出关于欧拉系的构造有严重缺陷,使科利瓦金---弗莱切方法不能对它适用,怀尔斯对无能为力,1993年12月怀尔斯公开承认证明有问题,但表示很快会补正。一时间怀尔斯的证明被认为认为是历史上拉梅、柯西、勒贝格、里贝特(里贝特也曾称证明了谷山--志村猜想)错误证明的又一例子。1994年1月怀尔斯邀请剑桥大学讲师理查德.泰勒到普林斯顿帮他完善科利瓦金--弗莱切方法解决问题,但整整8个月过去,问题没有解决。泰勒准备再一个月回剑桥,然后怀尔斯正式公布手稿,承认证明失败,1994年9月19日怀尔斯想自己证明失败原因该怎么写,回顾自己是先用岩泽理论未能突破而后用科利瓦金---弗莱切方法,又该法对

费马最后的定理:费马大定理

费马最后的定理 费马大定理,又被称为“费马最后的定理”,由17世纪法国数学家皮耶·德·费玛提出。 它断言当整数n >2时,关于x, y, z的方程x^n + y^n = z^n 没有正整数解。 德国佛尔夫斯克曾宣布以10万马克作为奖金奖给在他逝世后一百年内,第一个证明该定理的人,吸引了不少人尝试并递交他们的“证明”。 被提出后,经历多人猜想辩证,历经三百多年的历史,最终在1995年被英国数学家安德鲁·怀尔斯彻底证明。 大约1637年左右,法国学者费马在阅读丢番图(Diophatus)《算术》拉丁文译本时,曾在第11卷第8命题旁写道:“将一个立方数分成两个立方数之和,或一个四次幂分成两个四次幂之和,或者一般地将一个高于二次的幂分成两个同次幂之和,这是不可能的。关于此,我确信已发现了一种美妙的证法,可惜这里空白的地方太小,写不下。” (拉丁文原文: "Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet.") 毕竟费马没有写下证明,而他的其它猜想对数学贡献良多,由此激发了许多数学家对这一猜想的兴趣。数学家们的有关工作丰富了数论的内容,推动了数论的发展。 证明完成 定理到了最后攻关阶段,并且这刚好是他的研究领域,他开始放弃所有其它活动,精心疏理有关领域的基本理论,为此准备了一年半时间把椭圆曲线与模形式通过伽罗瓦表示方法“排队”。接下来的要将二种“排队”序列对应配对,这一步他二年无进展。此时他读博时学的岩泽理论一度取得实效,到1991年他之前的导师科茨告诉他有位叫弗莱切的学生用苏联数学家科利瓦金的方法研究椭圆曲线,这一方法使其工作有重大进展。 1993年6月在剑桥牛顿学院要举行一个名为“L函数和算术”的学术会议,组织者之一正是怀尔斯的博士导师科茨,于是在1993年6月21日到23日怀尔斯被特许在该学术会上以“模形式、椭圆曲线与伽罗瓦表示”为题,分三次作了演讲。听完演讲人们意识到谷山---志村猜想巳经证明。由此把法尔廷斯证明的莫德尔猜想、肯.里贝特证明的弗雷命题和怀尔斯证明的谷山---志村猜想联合起来就可说明费马大定理成立。其实这三个猜想每一个都非常困难,问题是怀尔斯最后证明,他变为完成费马大定理证明的最后一棒。

费马大定理的初等证明方法

学院 学术论文 题目费马大定理的初等证明方法 姓名 所在学院 专业班级 学号 指导教师 日期 费马大定理的初等证明方法 摘要:本文通过介绍一个与不定方程有关的问题,既所谓“费马大定理”。阐述了费马大定理的基本知识和初等证明方法。 关键字:费马大定理互素

Abstract: this article introduces a volatile equation and the relevant problems, the so-called "FLT". FLT expounds the basic knowledge and elementary proof method. Key words : FLT mutually 一. 有关的基本知识 1.1 大约在1673年,法国数学家费尔马(Fermat ,1601-1665)指出, n >2 时,方程 n n n x y z += (1) 无正整数解。 1.2 对于正整数a 和b ,如果ka=b ,k 为正整数,则a 整除b ;k 不为正整数,则a 不整除b 。如果c 整除a 和b ,则对于任意正整数k 和s ,可有c 整除(ka+sb )。 如果d 是a ,b 的最大公约数,则记为(a ,b )= d 。在(a ,b )= 1时,则称a 和b 是互素(或互质)的。A ,b 和c 是彼此互素的,是指他们中间的任意两个都是互 素的。 如果(a ,b )=1.,在ab 为偶数是,a 和b 一个为偶数一个为奇数;而在ab 为 奇数是,a 和b 都为奇数。 1.3 如果a > b > 0 ,( a ,b ) = 1 ,则(a ,a+b )= 1,(b ,a + b )=1;在ab 为偶数时, (a+b ,a-b )=1,而在ab 为奇数时,(a+b ,a-b )=2。 在u>v>0,(u,v)=1,uv 为奇数时,设 u=a+b,v=a-b,则有 1()2 a u v = + (2) 1()2b u v =- (3) 这里,a>b>0,(a+b)=1,ab 为偶数。 如果p 为奇素数,(a ,b )=1。在p 不整除a 时,(a ,a+pb )=1, 而在p 整 除a 时,(a ,a+pb )=p 。 1.4 因为n>2 时,可有4整除n ,或者p 整除n ,所以只要证明n=4,n=p 时, 方 程(1)无解即可。 1.5 对于两个或两个以上方程,它们同时有解,是指在它们其中任意一个方程有解 的同时,其他的也同时有解;它们不同时有解,则是指在它们其中至少有一个方程 有解得同时,其它的至少有一个无解,或者它们全都无解。 1.6 无穷递降法:如果方程f (x )的解是若干个正整数,则在这其中必有一个最小 的正整数x ;如果可以得到另一个方程f (0x )也有一个解为正整数0x ,并且 0x <

相关文档