文档库 最新最全的文档下载
当前位置:文档库 › 异面直线距离的一种求法

异面直线距离的一种求法

异面直线距离的一种求法
异面直线距离的一种求法

求异面直线间距离的几种常用方法

求异面直线间距离的几种常用方法 1 辅助平面法 (1)线面垂直法,用于两条异面直线互相垂直情况.若已知两条异面直线互相垂直,那么可以寻找一个辅助平面,使它过其中一条直线且垂直于另一条直线,在辅助平面上,过垂足引前一条直线的垂线,就得到这两条异面直线的公垂线,并求其长度. 例1 如图1所示正三棱锥V-ABC的底面边长为a,侧棱为b,求AB与VC的距离. 解:在正三棱锥V-ABC中,△AVC≌△BVC,作BE⊥VC,连AE,则AE⊥VC,且AE =BE, ∴VC⊥平面AEB ∴VC⊥AB 取AB中点D,连DE,则DE⊥AB,又VC⊥DE. ∴DE是异面直线AB与VC的公垂线. 分析:这样求异面直线间距离就化为平面几何中求点到直线的距离了. 作VF⊥BC,则有

(2)线面平行法,用于一般情况.其用法为:过其中一条直线作与另一条直线平行的平面,这样可把求异面直线间的距离转化为求点到面的距离. 例2 如图2所示,长方体ABCD-A1B1C1D1中,AB=a,BB1=a,BC=b,试求异面直线AB与A1C之间的距离. 解:∵AB∥A B,∴AB∥平面A B C,于是AB与平面A B C间的距离即为异面 直线AB与A C之间的距离. (3)面面平行法,求两异面直线的距离,除了上面(2)介绍的转化为线面的距离外,还可以转化为面面的距离,即作两平行的辅助平面,分别过其中的一条,两平行平面间的距离就为此两异面直线的距离. 例3 如图3所示,夹在两平行平面α和β间的异面直线AB、CD,在平面β的射影分别是12cm和2cm,它们与平面β的交角之差是45°,求AC与BD之间的距离.

异面直线所成的角求法总结加分析

异面直线所成的角求法 总结加分析 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

异面直线所成的角 一、平移法: 常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。 直接平移法 1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF = 3 ,求AD 、BC 所成角的大小. 解:设BD 的中点G ,连接FG ,EG 。在△EFG 中 EF = 3 FG =EG =1 ∴∠EGF=120° ∴AD 与BC 成60°的角。 2.正?ABC 的边长为a ,S 为?ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC 和AB 的中点.求异面直线SA 和EF 所成角. 答案:45° 3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA = 2 π ,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值. 证明:连结CM ,设Q 为CM 的中点,连结QN 则QN∥SM ∴∠QNB 是SM 与BN 所成的角或其补角

A B C D A 1 B 1 C 1 D 1 E F 连结BQ ,设SC =a ,在△BQN 中 BN = a 25 NQ =2 1SM = 4 2 a BQ = a 4 14 ∴COS∠QNB= 5 10 2222= ?-+NQ BN BQ NQ BN 4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA=90°,M 、N 分别是A 1B 1和A 1C 1的中点,若 BC =CA =CC 1,求BM 与AN 所成的角. 解:连接MN ,作NG∥BM 交BC 于G ,连接AG , 易证∠GNA 就是BM 与AN 所成的角. 设:BC =CA =CC 1=2,则AG =AN = 5 ,GN =BM = 6 , cos∠GNA= 10 30 5 62556= ??-+。 5.如图,在正方体1111D C B A ABCD -中,E 、F 分别是1BB 、CD 的中点.求AE 与F D 1所 成的角。 证明:取AB 中点G ,连结A 1G ,FG , 因为F 是CD 的中点,所以GF ∥AD , 又A 1D 1∥AD ,所以GF ∥A 1D 1, 故四边形GFD 1A 1是平行四边形,A 1G∥D 1F 。 设A 1G 与AE 相交于H ,则∠A 1HA 是AE 与D 1F 所成的角。

如何求异面直线所成的角

如何求异面直线所成的角 立体几何在中学数学中有着重要的地位,求异面直线所成的角是其中重的内容之一,也是高考的热点,求异面直线所成的角常分为三个步骤:作→证→求。其中“作”是关键,那么如何作两条异面直线所成的角呢?本文就如何求异面直线所成的角提出了最常见的几种处理方法。 Ⅰ、用平移法作两条异面直线所成的角 一、端点平移法 例1、在直三棱柱111C B A ABC -中,090CBA ∠=,点D ,F 分别是11A C ,11A B 的中点,若 1AB BC CC ==,求CD 与AF 所成的角的余弦值。 解:取BC 的中点E ,连结EF ,DF , //DF EC Q 且DF EC = ∴四边形DFEC 为平行四边形 //EF DC ∴ EFA ∴∠(或它的补角)为CD 与AF 所成的角。 设2AB =, 则EF = AF = EA = 故2222EF FA EA EFA EF FA +-∠==g arccos 10 EFA ∴∠= 二、中点平移法 例2、在正四面体ABCD 中, M ,N 分别是BC ,AD 的中点,求AM 与CN 所成的角的余弦值。 解:连结MD ,取MD 的中点O ,连结NO , Q O 、N 分别MD 、AD 为的中点, ∴NO 为DAM ?的中位线, ∴//NO AM , ONC ∴∠(或它的补角)为AM 与CN 所成的角。 设正四面体ABCD 的棱长为2 ,则有2NO = ,CN = ,2CO =, 故2222 cos 23 NO CN CO ONC NO CN +-∠= =g 2 arccos 3 ONC ∴∠= 1 B D C

异面直线间的距离(高中全部8种方法详细例题)

异面直线间的距离 求异面直线之间距离的常用策略:求异面直线之间的距离是立体几何重、难点之一。常有利用图形性质,直接找出该公垂线,然后求解;或者通过空间图形性质,将异面直线距离转化为直线与其平行平面间的距离,或转化为分别过两异面直线的平行平面间的距离,或转为求一元二次函数的最值问题,或用等体积变换的方法来解。 常用方法有: 1、定义法 2、垂直平面法(转化为线面距) 3、转化为面面距 4、代数求极值法 5、公式法 6、射影法 7、向量法 8、等积法 1 定义法就是先作出这两条异面直线的公垂线,然后求出公垂线的长,即异面直线之间的距离。

例1 已知:边长a 为的两个正方形ABCD 和CDEF 成1200的二面角,求异面直线CD 与AE 间的距离。 思路分析:由四边形ABCD 和CDEF 是正方形,得 CD ⊥AD ,CD ⊥DE ,即CD ⊥平面ADE ,过D 作DH ⊥AE 于H ,可得DH ⊥AE ,DH ⊥CD ,所以DH 是异面直线AE 、CD 的公垂线。在⊿ADE 中,∠ADE=1200,AD=DE=a ,DH=2 a 。即异面直线CD 与AE 间的距离为2 a 。 2 垂直平面法:转化为线面距离,若a 、b 是两条异面直线,过b 上一点A 作a 的平行线a /,记a /与b 确定的平面α。从而,异面直线a 、b 间的距离等于线面a 、α间的距离。 例1 如图,BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,和棱分别成α、β角,又它们和棱的交点间的距离为d ,求两条异面直线BF 、AE 间的距离。 思路分析:BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,∠EAB=α,∠FAB=β,AB=d ,在平面Q 内,过B 作BH ‖AE ,将异面直线BF 、AE 间的距离转化为AE 与平面BCD 间的距离,即为A 到平面BCD 间的距离,又因二面角P-AB-Q 是直二面角,过A 作

面间距的计算

面间距的计算 该文主要探讨三个方面的问题: 1 面指数为(123h h h )的晶面族的面间距的计算 2 密勒指数指数为(h k l )的晶面族的面间距的计算 3 复式格子中指定的两族相互平行的晶面之间面间距的多值性分析 第一个问题的分析 同老师课堂上所讲,正格子中的一族晶面(123 h h h )与一个倒格矢点 123112233h h h K h b h b h b =++ 相对应;正格子中的一族晶面(123h h h ) 与倒格矢 1 2 311 22 33h h h K h b h b h b =++ 正交;并且正格子(123h h h )晶面系的面间距为123 123 2h h h h h h d K π=。 第二个问题的分析 首先明确密勒指数与面指数的区别。两者均可以用来标志不同族的晶面,且标志方法相 同。即取定原点和坐标轴,找出晶面族中任一晶面在轴矢上的截距,截距取倒数,再化为互质的整数。两者的区别在于表示晶面时的参考坐标系不同,即选取坐标轴的基矢不同:面指数取原胞的基矢方向为坐标轴的方向,密勒指数取晶胞的基矢方向为坐标轴的方向。原胞是晶体的最小重复单元,而晶胞则是对称性较高的单元,通常比原胞大。同一个晶面,参考坐标系不同,面指数与密勒指数一般不相同。例如对于面心立方晶格,密勒指数为(100)和(001)的面,其面指数分别为(101)和(110)。相同的指数,不同的参考坐标系,晶面一般不同,面间距也有差别。 对于简单格子,它的晶胞即原胞,所以密勒指数(h k l )的晶面族的面间距的计算即面指数(h k l )的晶面族的面间距计算,此时可用公式2hkl hkl d K π= 来计算。 然而对于非简单格子(即体心,面心,底心格子),晶胞除顶角位置(可设想为基元的位置)有原子外,非顶角的面心(体心,底心)还有原子。所有原子的位置不能全用 R h a k b lc =++ (h, k, l 取整数)去概括。这样再用公式2hkl hkl d K π=来计算就会出现问题。 从图一可以很清楚地说明这个问题。 如果晶体是简立方晶体,则在一个立方体内(即在一个晶胞内)只能画出一个(110)面ABCD , 这时的面间距为 110 2a K π=个(110)晶面A ’B ’C ’D ’和A ”B ”C ”D ”,这时其面间距仅是前者的1/2 ,即/a

异面直线所成的角的求法

异面直线所成的角的求法 法一:平移法 在正方体 ABCD A i B i C i D i 中,求下列各对异面直线所成的角。 恵,求直线AB 与CD 所成的角。 习题1?在空间四边形ABCD 中,AD = BC = 2, E, F 分别为AB 、CD 的中点,EF =为, 求AD 、BC 所成角的大小. 例1: (1) AA 1 与 BC ; (2) DD 1 与 AB ; (3) A i B 与 A C 。 法二: 例2: 求直线AB 与MN 所成的角。 中位线 在空间四边形 ABCD 中,AB = CD ,且AB CD ,点M 、N 分别为BC 、AD 的中点, 变式:在空间四边形 ABCD 中,点M 、N 分别为 BC 、AD 的中点,AB = CD = 2,且 MN =

正 ABC 的边长为a , S 为 ABC 所在平面外的一点,SA = SB = SC = a, E , F 分别 是SC 和AB 的中点.求异面直线 SA 和EF 所成角. S 是正三角形 ABC 所在平面外的一点,如图 SA = SB = SC ,且 ASB = BSC = CSA = - , M 、N 分别是AB 和SC 的中点.求异面直线 SM 与BN 所成的角的 余弦值. 如图,在直三棱柱 ABC — A i B i C i 中,/ BCA = 90° M 、N 分别是 A i B i 和A i C i 的中 点, 若BC = CA = CC i ,求BM 与AN 所成的角. 5.如图1 — 28的正方体中,E 是A D 勺中点 (1) 图中哪些棱所在的直线与直线 BA 成异面直线? (2) 求直线 (3) 求直线 (4) 求直线 2. 3. 4 . BA 和CC 所成的角的大小; AE 和CC 所成的角的正切值; AE 和BA 所成的角的余弦值 B A (图 1— 28)

异面直线所成的角求法 答案

异面直线所成的角的两种求法 初学立几的同学,遇到的第一个难点往往便是求异面直线所成的角。难在何处?不会作! 下面介绍两种求法 一.传统求法--------找、作、证、求解。 求异面直线所成的角,关键是平移点的选择及平移面的确定。 平移点的选择:一般在其中一条直线上的特殊位置,但有时选在空间适当位置会更简便。 平移面的确定:一般是过两异面直线中某一条直线的一个平面,有时还要根据平面基本性质将直观图中的部分平面进行必要的伸展,有时还用“补形”的办法寻找平移面。 例1 设空间四边形ABCD ,E 、F 、G 、H 分别是AC 、BC 、DB 、DA 的中点,若AB =122,CD =4 2,且四边形EFGH 的面积为12 3, 求AB 和CD 所成的角. 解? 由三角形中位线的性质知,HG∥AB,HE∥CD, ∴ ∠EHG 就是异面直线AB 和CD 所成的角. ∵? EFGH 是平行四边形,HG =2 1 AB =62, H G F E D C B A

HE =2 1 ,CD =23, ∴? S EFGH =HG·HE·sin∠EHG=126 sin∠EHG,∴ 12 6sin∠EHG=123. ∴? sin∠EHG= 2 2 ,故∠EHG=45°. ∴? AB 和CD 所成的角为45° 注:本例两异面直线所成角在图中已给,只需指出即可。 例2.点A 是BCD 所在平面外一点,AD=BC ,E 、F 分别是AB 、CD 的中点,且EF=2 2 AD ,求异面直线AD 和BC 所成的角。(如图) 解:设G 是AC 中点,连接DG 、FG 。因D 、F 分别是AB 、CD 中点,故EG∥BC 且EG= 2 1 BC ,FG∥AD,且FG=2 1 AD ,由异面直线所成角定义可知EG 与FG 所成锐角或直角为异面直线AD 、BC 所成角,即∠EGF 为 所求。由BC=AD 知EG=GF=2 1 AD ,又EF=AD ,由余弦定理可得cos∠EGF=0,即∠EGF=90°。 注:本题的平移点是AC 中点G ,按定义过G 分别作出了两条异面直线的平行线,然后在△EFG 中求角。通常在出现线段中点时,常取另一线段中点,以构成中位线,既可用平行关系,又可用线段的倍半关系。 例3.已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 与CN 所成的角的余弦值; A B C G F E D

异面直线所成角求法-总结加分析

异面直线所成的角 一、平移法: 常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。 直接平移法 1.在空间四边形ABCD 中,AD =BC =2,E ,F 分别为AB 、CD 的中点,EF =3,求AD 、BC 所成角的大小. 解:设BD 的中点G ,连接FG ,EG 。在△EFG 中 EF =3 FG =EG =1 ∴∠EGF=120° ∴AD 与BC 成60°的角。 2.正?ABC 的边长为a ,S 为?ABC 所在平面外的一点,SA =SB =SC =a ,E ,F 分别是SC 和 AB 的中点.求异面直线SA 和EF 所成角. 答案:45° 3.S 是正三角形ABC 所在平面外的一点,如图SA =SB =SC ,且∠ASB =∠BSC =∠CSA =2 π ,M 、N 分别是AB 和SC 的中点.求异面直线SM 与BN 所成的角的余弦值. 证明:连结CM ,设Q 为CM 的中点,连结QN 则QN∥SM ∴∠QNB 是SM 与BN 所成的角或其补角 连结BQ ,设SC =a ,在△BQN 中 BN = a 25 NQ =2 1SM = 4 2a BQ = a 4 14 ∴COS∠QNB=5 10 2222= ?-+NQ BN BQ NQ BN 4.如图,在直三棱柱ABC -A 1B 1C 1中,∠BCA=90°,M 、N 分别是A 1B 1和A 1C 1的中点,若BC = CA =CC 1,求BM 与AN 所成的角. 解:连接MN ,作NG∥BM 交BC 于G ,连接AG , 易证∠GNA 就是BM 与AN 所成的角. 设:BC =CA =CC 1=2,则AG =AN =5,GN =BM =6 , cos∠GNA= 10 305 62556=??-+。 B M A N C S

点面距离的几种求法

点面距离的几种求法 距离的计算是历年高考的重点与热点,求距离问题可以和多种知识相结合,是诸多知识的交汇点。而点到平面的距离是是距离问题中的重中之重,线到面的距离及面到面的距离都转化为点到面的距离,线面角、二面角,多面体的体积等都可以借助点面距离使之得以解决。 求点到面的距离方法多而且灵活,可以根据定义从改点作平面的 垂线,有时直接利用已知点求距离比较困难,我们可以把点到平面的距离转化到其它点到面的距离或用空间向量法、或利用三棱锥等体积法等。下面通过几道例题介绍常用的点到面的距离求法: 1、 利用定义作垂线,解三角形。 例1, 在棱长为1的正方体1111D C B A ABCD -中,点P 在棱1CC 上,且 1CC =4CP ,求点P 到平面1ABD 的距离。 解: ∵!DC //AB ,∴平面1ABD 与平面D ABC 1是一个平面,∴点P 到平面11D ABC 的距离即为所求。过点P 作PM ⊥!BC 于M ,∵AB ⊥面 C C BB 11,PM ?面C C BB 11,∴AB ⊥PM 。AB 1C B ?=B , 1 C 1 D 1 A P M D A B C 1 B ,

∴PM ⊥1!D ABC ,∴PM 就是所求的距离,又∵ 0!45=∠BCC ,4 3!= P C ,在PM C R t !?中, 8 2 343224510= ?=?= PM P C PM Sin . 2、 转化成其它点到面的距离: 2 C A A

、向量法: 例3、 在棱长为1的正方体1111D C B A ABCD -中,点E, F 分别是 11,D A BC 的中点,求点A 到平面EDF B 1的距离。∥⊥ 解: 建系,如图,设点A 到平面EDF B 1的距离为 d , 平面EDF B 1的法 向量 =(x,y,z),则: AB → →?, y n → )1,2 1,0(),0,2 1,1(=→-=→DF DE

补充构造异面直线所成角的几种方法

一. 异面直线所成角的求法 1、正确理解概念 (1)在异面直线所成角的定义中,空间中的点O 是任意选取的,异面直线a 和b 所成角的大小,与点O 的位置无关。 (2)异面直线所成角的取值范围是(0°,] 90? 2、熟练掌握求法 (1)求异面直线所成角的思路是:通过平移把空间两异面直线转化为同一平面内的相交直线,进而利用平面几何知识求解,整个求解过程可概括为:一作二证三计算。 (2)求异面直线所成角的步骤: ①选择适当的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊点。 ②求相交直线所成的角,通常是在相应的三角形中进行计算。 ③因为异面直线所成的角θ的范围是0°<θ≤90°,所以在三角形中求的角为钝角时,应取它的补角作为异面直线所成的角。 3、“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。 例1如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线B 1E 与GF 所成角的余弦是 。 E F 1 A 1 B 1 C 1 D A B C D G E F 1 A 1 B 1 C 1 D A B C D G

例 2 已知 S 是正三角形ABC所在平面外的一点,如图SA=SB=SC, 且∠ASB=∠BSC=∠CSA= 2 π ,M、N分别是AB和SC的中点. 求异面直线SM与BN所成的角的余弦值. 例3长方体ABCD—A1B1C1D1中,若AB=BC=3,AA1=4,求异面直线B1D与BC1所成角的大小。 B M A N C S B M A N C S B M A N C S

求两条异面直线之间距离的两个公式

求两条异面直线之间距离的两个公式 王文彬 (抚州一中 江西 344000) 本文介绍求异面直线距离的两个简捷公式,以及如何定量地确定异面直线公垂线的方法. 1.公式一 如图1,1l 、2l 是异面直线,2l ?平面α,1l A α?=,1l 在α内的射影为l ,设2l l B ?=,且12,l l 与l 所成的角分别为12,θθ,AB m =,则1l 与2l 之间的距离为 d = (1) 证明:设1l 与2l 的公垂线为MN ,如 图1所示,过M 作MH l ⊥于H ,由于1l 在平面α内的射影为l ,故MH ⊥平面α, NM 在α内的射影为NH .由2MN l ⊥知 2NH l ⊥. 在Rt BNH ?中 22cos ()cos BN BH AB AH θθ==- 12(cos )cos m AM θθ=-……………………………① 同理21(cos )cos AM m BN θθ=-…………………② 联立①②解得 212 22 12cos sin 1cos cos m AM θθθθ=- (1.1) 221 22 12 cos sin 1cos cos m BN θθθθ=- (1.2) 图1

从而 212 1122 12cos sin sin sin 1cos cos m MH AM θθθθθθ==?- 221 222212 cos sin tan tan 1cos cos m NH BN θθθθθθ==?- () () 2 2 2 2 2 4 22421 212122 2 2 1 2 cos sin sin cos sin tan 1cos cos m MN MH NH θθθθθθθθ∴=+= +- () () 2 2 4242 12112 2 2212sin sin cos sin sin 1cos cos m θθθθθθθ= +- () ()2 22222 121212 2 2 1 2 sin sin cos sin sin 1cos cos m θθθθθθθ= ?+- () ()2 2222221212122 2 2221212sin sin sin sin sin sin sin sin sin sin m θθθθθθθθθθ= ?+-+- 22212 2222 1212sin sin sin sin sin sin m θθθθθθ=+-22212csc csc 1m θθ=+-. 即有公式(1)成立. 运用公式(1)求1l 与2l 之间的距离时,无需知道它们公垂线的位置,但如果要确定公垂线的位置,则可根据公式(1.1)和公式(1.2)分别计算出AM 和BN 的值,进而确定公垂线MN 具体位置. 2.公式二 如图2,1l 、2l 是异面直线,1A l ∈,2AH l ⊥于H ,1l 与AH ,1l 与2l 所成的角分别为,αθ, AH m =,则1l 与2l 之间的距离为 d = (2) 证明:过A 作2//l l ,设由l 与2l 确定的

“点面距离”的常用解法(文科)

“点面距离”常见求法(文科) ------南安新营中学李志参 背景: 在学生全面复习点、线、面的关系下讲,也是其它距离的基础,求点到平面的距离是立体几何教学中一个非常重要的基本问题,也是近几年文科高考的热点、难点。 教学目标:掌握点面距离常见求法 教学重、难点:点面距离的定义,求点面距离几种常见方法的综合运用 教学过程: 一:复习求点面距离常见求法 1:直接法(本质特征是证线面垂直,步骤是:找------证------求) 2:间接法(1)线面法 (2)等体积法(3)比例法 (4)面面法 二:典例分析 已知四边形ABCD 是边长为4的正方形,四边形ABCD 的对角线相交于点O ,AC 与EF 交于H ,E 、F 分别是AB 、AD 的中点,GC ⊥平面ABCD ,GC=2,求 (1)点E 到平面CHG 的距离(2)点O 到平面 EFG 的距离. (3)点B 到平面EFG 的距离 .(4)点A 到平面EFG 的距离. 解: (1) 直接法:证EH ⊥平面CHG 即可,∴EH 为 点E 到平面CHG 的距离,易求EH=2 (2) 直接法:∵ EG=FG , ∴ GH ⊥EF. 又ABCD 是正方形,故BD ⊥AC ,从而EF ⊥AC. 所以EF ⊥平面GHO. 在平面GHO 内,过点O 作OK ⊥GH 于点K ,则由EF ⊥平面GHO 得EF ⊥OK ,从而OK ⊥平面EFG , ∴OK 为点O 至平面E FG 的距离 在△GHO 中,OH ×GC=GH ×OK , 得即点O 到平面EFG 的距离为 (3) 解法1:(线面法) ∵ EF ∥BD , ∴ BD ∥平面EFG , ∴ 点B 到平面EFG 的距离等于点O 到平面EFG 的距离,由上知为 解法2:(等体积法) 设四边形ABCD 的对角线相交于点O ,AC 与EF 交于H ,则H 是EF 的中点. C G B D E F H O

异面直线所成角的几种求法(最新编写)

异面直线所成角的几种求法 异面直线所成角的大小,是由空间一点分别引它们的平行线所成的锐角(或直角)来定义的。因此,通常我们要求异面直线所成的角会要求学生通过平移直线,形成角,然后在某个三角形中求出角的方法来得到异面直线所成角的大小。在这一方法中,平移直线是求异面直线所成角的关键,而如何平移直线要求学生有良好的空间观和作图能力。 一、向量法求异面直线所成的角 例1:如图,在正方体ABCD-A 1B 1C 1D 1中,E 、F 分别是相邻两侧面BCC 1B 1及CDD 1C 1的中心。求A 1E 和B 1F 所成的角的大小。 解法一:(作图法)作图关键是平移直线,可平移其中一条直线,也可平移两条直线 到某个点上。作法:连结B 1E ,取B 1E 中点G 及A 1B 1中点H , 连结GH ,有GH//A 1E 。过F 作CD 的平行线RS ,分别交CC 1、DD 1于点R 、S ,连结SH ,连结GS 。 由B 1H//C 1D 1//FS ,B 1H=FS ,可得B 1F//SH 。在△GHS 中,设正方体边长为a 。GH=a (作直线GQ//BC 交BB 1于点Q ,46连QH ,可知△GQH 为直角三角形),HS=a (连A 1S ,可知△HA 1S 为直角三角形),2 6GS=a (作直线GP 交BC 于点P ,连PD ,可知四边形GPDS 为直角梯形)。426∴Cos ∠GHS=。6 1所以直线A 1E 与直线B 1F 所成的角的余弦值为。61解法二:(向量法)分析:因为给出的立体图形是一个正方体, 所以可以在空间建立直角坐标系,从而可以利用点的坐标表示出空间中每一个向量,从而可以用 向量的方法来求出两条直线间的夹角。 以B 为原点,BC 为x 轴,BA 为y 轴,BB 1为z 轴,设BC 长度为2。 B A C D F E B 1A 1D 1C 1 G H S R P Q 1

立体几何——求异面直线距离

异面直线距离 一. 直接法 直接法就是根据定义,直接找出公垂线段,再求其长,这是解题时首先要考虑的方法。 例1. 如图1所示,已知正四棱柱ABCD —A 1B 1C 1D 1,点E 在棱D 1D 上,截面EAC//D 1B ,且平面EAC 与底面ABCD 所成的角为45°,AB=a ,求异面直线A B 11与AC 之间的距离。 解:连结DB ,设DB 交AC 于点O 由题设知ABCD A B C D -1111是正四棱柱 则A A ABCD A A AC A A A B 11111⊥⊥⊥底面,即,而 所以A A 1是异面直线A B 11与AC 的公垂线段 由题意分析知∠为平面与底面DOE EAC ABCD 所成的角 则∠DOE=45° 又∵截面EAC//D 1B ,且平面D 1BD 与平面EAC 的交线为EO ∴D 1B//EO ,∠DBD 1=∠DOE=45° ∴D 1D=DB=2a ∵AA 1=D 1D ∴异面直线A 1B 1与AC 之间的距离为2a

二. 间接法 间接法就是当采用直接法不便于求解或证明时,可利用已知条件进行间接求解或证明的方法。 (1)线面距离法 线面距离法就是选择异面直线中的一条,过它作另一条直线的平行平面,则此直线与平行平面的距离即为异面直线间的距离。 例2. 在长方体ABCD—A1B1C1D1中,AB=2,AD=3,AA1=4,求异面直线AB与A1C间的距离。 解:如图2所示,连结A1D 由AB//DC,得AB//平面A1DC 故AB到平面A1DC的距离即为AB与A1C间的距离 又平面A1D⊥平面A1DC及平面A1D⊥AB 故可在平面A1D内过A作AE⊥A1D于点E 则AE为AB到平面A1DC的距离即为异面直线AB与A1C间的距离。 由AD AA A D AE ·· 11 = 可得AE=12 5 图2 (2)面面距离法 面面距离法就是把所求异面直线间的距离转化为分别过两条异面直线的两个平行平面间的距离。 例3. 如图3所示,正方体ABCD A B C D - 1111 的棱长为1,求异面直线A1D与

立体几何异面直线成角求法习题

构造异面直线所成角的几种方法 异面直线所成角的大小,是由空间任意一点分别引它们的平行线所成的锐角(或直角)来定义的.准确选定角的顶点,平移直线构造三角形是解题的重要环节.本文举例归纳几种方法如下,供参考. 一、抓异面直线上的已知点 过一条异面直线上的已知点,引另一条直线的平行线(或作一直线并证明与另一直线平行),往往可以作为构造异面直线所成角的试探目标. 例1(2005年全国高考福建卷)如图,长方体ABCD —A 1B 1C 1D 1中,AA 1=AB =2,AD =1,点E 、F 、G 分别是DD 1、AB 、CC 1的中点,则异面直线A 1E 与GF 所成的角是( ) 二、抓异面直线(或空间图形)上的特殊点 考察异面直线上的已知点不凑效时,抓住特殊点(特别是中点)构造异面直线所成角是一条有效的途径. 例2(2005年全国高考浙江卷)设M 、N 是直角梯形ABCD 两腰的中点,DE ⊥AB 于E (如图).现将△ADE 沿DE 折起,使二面角A -DE -B 为45°,此时点A 在平面BCDE 内的射影恰为点B ,则M 、N 的连线与AE 所成角的大小等于_________. 三、平移(或构造)几何体 有些问题中,整体构造或平移几何体,能简化解题过程. 例3(2005年全国高考天津卷)如图,PA ⊥平面ABC ,90ACB ∠=?且 PA AC BC a ===,则异面直线PB 与AC 所成角的正切值等于_____. 1. 解:连B 1G ,则A 1E ∥B 1G ,知∠B 1G F 就是异面直线A 1E 与GF 所成的角.在 △B 1GF 中,由余弦定理,得 cos B 1GF =2221112B G GF B F B G GF +-= ?=0, 故∠ B 1 G F = ,应选(D). 2评注:本题是过异面直线FG 上的一点G ,作B 1G ,则A 1E ∥B 1G ,知∠B 1G F 就是所求的 角,从而纳入三角形中解决. 解:取AE 中点G, 连结GM 、BG ∵GM ∥ED ,BN ∥ED ,GM =21ED ,BN =2 1 ED . ∴ GM ∥BN ,且GM =BN . ∴BNMG 为平行四边形,∴MN//BG ∵A 的射影为B . ∴AB ⊥面BCDE . P B C A

求异面直线之间距离的常用策略

求异面直线之间距离的常用策略 求异面直线之间的距离是立体几何重、难点之一。常有利用图形性质,直接找出该公垂线,然后求解;或者通过空间图形性质,将异面直线距离转化为直线与其平行平面间的距离,或转化为分别过两异面直线的平行平面间的距离,或转化为求一元二次函数的最值问题,或用等体积变换的方法来解。 1 定义法 就是先作出这两条异面直线的公垂线,然后求出公垂线的长,即异面直线之间的距离。 例1 已知:边长a 为的两个正方形ABCD 和CDEF 成1200的二面角,求异面直线CD 与AE 间的距离。 思路分析:由四边形ABCD 和CDEF 是正方形,得 CD ⊥AD ,CD ⊥DE ,即CD ⊥平面ADE ,过D 作DH ⊥AE 于H ,可得DH ⊥AE ,DH ⊥CD ,所以DH 是异面直线AE 、CD 的公垂 线。在⊿ADE 中,∠ADE=1200 ,AD=DE=a ,DH=2a 。即异面直线CD 与AE 间的距离为2 a 。 2 转化为线面距离 若a 、b 是两条异面直线,过b 上一点A 作a 的平行线a /,记a /与b 确定的平面α。从而,异面直线a 、b 间的距离等于线面a 、α间的距离。 例2 如图,BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,和棱分别成α、β角,又它们和棱的交点间的距离为d ,求两条异面直线BF 、AE 间的距离。 思路分析:BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,∠EAB=α,∠FAB=β,AB=d ,在平面Q 内,过B 作BH ‖AE ,将异面直线BF 、AE 间的距离转化为AE 与平面BCD 间的距离,即为A 到平面BCD 间的距离,又因二面角P-AB-Q 是直二面角,过A 作 AC ⊥AB 交BF 于C ,即AC ⊥平面ABD ,过A 作AD ⊥BD 交于D ,连结CD 。设A 到平面BCD 的距离为h 。由体积法V A-BCD =V C-ABD , 得 h= β αβα2 2 cos cos 1sin sin -d 3转化为面面距离 若a 、b 是两条异面直线,则存在两个平行平面α、β,且a ∈α、b ∈β。求a 、b 两条异面直线的距离转化为平行平面α、β间的距离。 例3已知:三棱锥S-ABC 中,SA=BC=13,SB=AC=14,SC=AB=15,求异面直线AD 与BC 的距离。 思路分析:这是一不易直接求解的几何题,把它补成一个易求解的几何体的典型例子,常常有时还常把残缺形体补成完整形体;不规则形体补成规则形体;不熟悉形体补成熟悉形体等。所以,把三棱锥的四个面联想到长方体割去四个直三棱锥所得,因此,将三棱锥补形转化为长方体, 设长方形的长、宽、高分别为x 、y 、z ,

等体积法求点到平面距离

等体积法求点到平面距离 用等体积法求点到平面的距离主要是一个转换的思想,即要将所要求的垂线段置于一个四面体中,其中四面体的一个顶点为所给点,另外三点位于所给点射影平面上,这里不妨将射影平面上的三点构成的三角形称为底面三角形。先用简单的方法求出四面体的体积,然后计算出底面三角形的面积,再根据四面体体积公式 1 3 V Sh =求出点到平面的距离h 。在常规方法不能轻松获得结果的情况下,如果能用 到等体积法,则可以很大程度上提高解题效率,达到事半功倍的效果。特别是遇到四面体的有一条棱垂直于其所相对的底面时,首选此方法。下面用等体积法求解例子. 例:所示的正方体ABCD A B C D ''''- 棱长为a ,求点A '到平面ABD ''的距离 解法(等体积法):如图所示,作AH '垂直于平面ABD ''于点H ,则AH '长度为所求。对于四面体AABD ''',易见底面ABD ''的高为AH ',底面ABD '''的高为AA '。对四面体AABD '''的体积而言有: A A B D A AB D V V ''''''--= 即有: 1133A B D AB D AA S A H S '''''??''?=?,也即: A B D AB D AA S A H S ''' ?'' ?'?'= 由AB B D D A ''''===,从而ABD ''?为正三角形,060AB D ''∠=,进而可求得 202 11sin )sin60222 AB D S AB AD AB D a ''?''''= ?∠==

又易计算得到Rt A B D '''?的面积为212 A B D S a '''?= 所以2 13A B D AB D a a AA S A H a S ''' ?'' ??'?'= = 从上面的解答过程知道,我们在使用等体积法求点到平面距离时使用的点与平面间的垂线段只是概念上的,并不一定要知道点在平面射影的具体位置,从而也就不需要使用几何方法寻找或者求作垂线段,垂线段的长度在这种方法上只是作为几何体高的意义而存在的。 练习:1、如图所示,棱长均为a 的正三棱柱中,D 为AB 中点,连结 A 1D ,DC ,A 1C . (1) 求BC 1到面A 1DC 的距离. 2、如图所示,在三棱锥P -ABC 中,AC =BC =2,∠ACB =90°,AP =BP =AB ,PC ⊥AC .求点C 到平面APB 的距离. 3、如图,在长方体1111ABCD ABC D -,中,11 ,2AD AA AB ===,E 为AB 的中点,求

(完整版)异面直线间的距离(全部方法详细例题)

异面直线间的距离 求异面直线之间的距离是立体几何重、难点之一。常有利用图形性质,直接找出该公垂线,然后求解;或者通过空间图形性质,将异面直线距离转化为直线与其平行平面间的距离,或转化为分别过两异面直线的平行平面间的距离,或转为求一元二次函数的最值问题,或用等体积变换的方法来解。 常用方法有: 1、 定义法 2、 垂直平面法(转化为线面距) 3、 转化为面面距 4、 代数求极值法 5、 公式法 6、 射影法 7、 向量法 8、 等积法 1 定义法 就是先作出这两条异面直线的公垂线,然后求出公垂线的长,即异面直线之间的距离。 例1 已知:边长a 为的两个正方形ABCD 和CDEF 成1200的二面角,求异面直线CD 与AE 间的距离。 思路分析:由四边形ABCD 和CDEF 是正方形,得 CD ⊥AD ,CD ⊥DE ,即CD ⊥平面ADE ,过D 作DH ⊥AE 于H ,可得DH ⊥AE ,DH ⊥CD ,所以DH 是异面直线AE 、CD 的公垂线。在⊿ADE 中,∠ADE=1200 ,AD=DE=a ,DH= 2 a 。即异面 直线CD 与AE 间的距离为 2 a 。 2 垂直平面法:转化为线面距离,若a 、 b 是两条异面直线,过b 上一点A 作a 的平行线a /,记a /与b 确定的平面α。从而,异面直线a 、b 间的距离等于线面a 、α间的距离。 例1 如图,BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,和棱分别成α、β角,又它们和棱的交点间的距离为d ,求两条异面直线BF 、AE 间的距离。 思路分析:BF 、AE 两条异面直线分别在直二面角P-AB-Q 的两个面内,∠EAB=α,∠FAB=β,AB=d ,在平面Q 内,过B 作BH ‖AE ,将异面直线BF 、AE 间的距离转化为AE 与平面BCD 间的距离,即为A 到平面BCD 间的距离,又因二面角P-AB-Q 是直二面角,过A 作 AC ⊥AB 交BF 于C ,即AC ⊥平面ABD ,过A 作AD ⊥BD 交于D , 连结CD 。设A 到平面BCD 的距离为h 。由体积法V A-BCD =V C-ABD , 得 h= β αβα2 2 cos cos 1sin sin -d 3转化为面面距离 若a 、b 是两条异面直线,则存在两个平行平面α、β,且a ∈α、b ∈

空间两异面直线距离的 若干求法

存档编号 赣南师范学院科技学院学士学位论文 空间两异面直线距离的 若干求法 系别数学与信息科学系 届别 2014届 专业数学与应用数学 学号 1020151224 姓名刘禹伟 指导老师陈海莲 完成日期

目录 内容摘要 (1) 关键字 (1) Abstract (1) Key words (1) 1、引言 (2) 2、空间两异面直线的相关概念 (2) 2.1、空间两异面直线的概念 (2) 2.2、空间两异面直线间距离的概念 (2) 3、求异面直线距离的常用方法 (3) 3.1、直接法 (3) 3.2、线面距离法 (4) 3.3、面面距离法 (4) 3.4、等体积法 (5) 4、求解异面直线间距离的其他方法 (6) 4.1、运用极值法 (6) 4.2、公式法 (7) 4.3、射影面积法 (9) 5、分析比较求解方法 (10) 6、结语 (11) 致谢 (12) 参考文献 (13)

内容摘要:立体几何中的异面直线间距离( 即两条异面直线的公垂线在这两条异面直线间的线段的长度) 问题是教材中的一个难点, 学生普遍反映困难, 主要由于学生思维不全面和认识上的不足, 又由于学生由平面几何到立体几何思维上的转化存在着问题, 从而导致解题和学习上困难。本文我们来着重讲解空间两异面直线间的距离的求法,即直接或利用转换和利用体积来求解。在其基础上再深入研究,利用解析几何的思想来探讨求解异面直线间距离。比较各种求法,让学生在求异面直线间距离方面简单。 关键字:异面直线间距离直接法转化法体积法解析几何 Abstract:The differences between the three-dimensional geometry of the surface linear distance (ie two different male faces straight vertical line in these two segments of different lengths between straight face) problem is a difficult textbook. Students generally reflect difficulties, Mainly due to the students' thinking is not comprehensive and lack of understanding, Also due to the transformation of the students from the plane geometry on the three-dimensional geometry of thinking there is a problem, resulting in the problem-solving and learning difficulties. In this paper, we explain the space to focus on the distance between the two different method for finding straight face, that directly or using the conversion and use of volume to solve. The basis of its further in-depth study to explore solving linear distance between the different faces of the use of analytic geometry ideas. Comparative method for finding a variety of students in terms of a simple distance between divergent straight face. Key words:The distance between lines in different planes The direct method Volume method Transformation method Analytic geometry

相关文档
相关文档 最新文档