文档库 最新最全的文档下载
当前位置:文档库 › 手机RF校准原理

手机RF校准原理

手机RF校准原理
手机RF校准原理

手机原理与故障维修技巧与实例习题答案

《手机原理与故障维修技巧与实例》习题答案 思考与练习1 1、什么是通信?移动无线通信系统由什么构 成? 答通信是指信息的传递。 移动无线电通信系统由移动通信系统一般由移动台(MS)、基地站(BS)、移动业务交换中 心(MSC)、市话网(PSTN)、中继线等组成。 2、数字移动通信采用什么分区方式,为什么?答:数字移动通信是采用小区制方式,因为数字移动通信要求容纳更多的用户,需要提供数字化的信息服务。 3、越区切换在数字通信中有什么作用? 答越区切换的作用是在数字蜂窝移动通信 中,当移动台从一个小区移动到另一个小区时,为了保持继续正常通话,不至中断,需要进行 越区切换,即由移动服务交换中心(MSC)命令移 动台从一个小区的无线频道上的通话转接到另 —小区的无线频道上。 4、双频手机的两个频段的频率范围是多少? 5、双工间隔是指什么?移动通信的双工间隔 是多少?信道间隔是指什么?

6、手机中时钟的晶体类型有那些?时钟晶体 损坏将引起那些故障?主时钟晶体电路的构成有那些类型? 答手机的时钟晶体有开机时钟晶体和时间显示时间晶体。主时钟晶体损坏将引起不能开机或不能入网的故障。时间晶体损坏将引起不能显示时间的故障,有的手机时间晶体损坏也会引起手机不开机。主时晶体电路构成有现两种,即MOTOROLA、ERICSSON基本采用26MHz晶体、中频芯片中的正反馈放大器、变容二极管组成的,而SAMSUNG及NOKIA采用晶体及芯片构成的。这两种时钟信号振荡器的区别是:前者需要AFC控制信号加到中频电路外围变容二极管的负极上上,控制变容二极管的电压,从而改变电路的谐振频率,并且还需要振荡三极管、电感、电容来构成时钟振荡器电路;后者由中频电路、晶体、AFC控制信号构成,不需要外加振荡三极管、变容二极管等元件。 7、什么是APC电路?有何作用,试画出简图说明APC电路的控制过程?答 APC电路的作用是自动功率控制电路,控制手机的发射

国家开放大学 机电控制工程基础 第6章 控制系统的校正与综合自测解析

信息文本 单项选择题(共20道题,每题4分,共90分) 题目1 标记题目 题干 在采用频率法设计校正装置时,串联超前校正网络是利用它()。 选择一项: A. 相位超前特性 B. 低频衰减特性 C. 相位滞后特性

D. 高频衰减特性 反馈 恭喜您,答对了。 正确答案是:相位超前特性 题目2 标记题目 题干 闭环系统因为有了负反馈,能有效地抑制()中参数变换对系统性能的影 响。 选择一项: A. 正向及反馈通道

B. 反馈通道 C. 前馈通道 D. 正向通道 反馈 恭喜您,答对了。 正确答案是:正向及反馈通道 题目3 标记题目 题干 从下图所示的系统对数幅频特性来看,该系统需要校正是因为()。

选择一项: A. 系统的抗干扰能力差,需要改变高频段特性。 B. 系统虽然稳定,但稳态和动态响应都不能满足要求,整个特性都需要改变。 C. 系统是稳定的,而且具有满意的动态性能,但稳态误差过大,应改变特性的低 频段。 D. 系统是稳定的,且具有满意的稳态性能,但动态响应较差,应改变特性的中频 段和高频段。 反馈 恭喜您,答对了。 正确答案是:系统是稳定的,而且具有满意的动态性能,但稳态误差过大, 应改变特性的低频段。 题目4

正确 获得4.00分中的4.00分 标记题目 题干 从下图所示的系统对数幅频特性来看,该系统需要校正是因为()。 选择一项: A. 系统是稳定的,且具有满意的稳态性能,但动态响应较差,应改变特性的中频 段和高频段。 B. 系统是稳定的,而且具有满意的动态性能,但稳态误差过大,应改变特性的低 频段。 C. 系统虽然稳定,但稳态和动态响应都不能满足要求,整个特性都需要改变。

射频参数解析

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 射频参数 1.回波损耗 又称反射损耗,是电缆线路由于阻抗不匹配所产生的反射,是一对线自身的反射。 不匹配主要发生在连接器的地方,但也可能发生于电缆中特性阻抗发生变化的地方。 回波损耗是传输线端口的反射功率与入射波功率之比,以对数形式来表示,单位是dB,一般是负值,其绝对值可以成为反射损耗。 回波损耗= -10 lg [(反射功率)/(入射功率)] 2.反射系数 反射波和入射波电压之比 回波损耗= 20|lg(反射系数Γ)| 3.驻波比 全称电压驻波比,又名VSWR或SWR,英文Voltage Standing Wave Ratio的简写。指驻波波腹电压与波谷电压幅度之比,又称驻波系数、驻波比。驻波比为1时,表示馈线和天线的阻抗完全匹配,此时高频能量全部被天线辐射出去,没有能量的反射损耗;驻波比为无穷大时表示全反射,能量完全没有辐射出去。 驻波比会随着频率而改变 在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波谷。 其它各点的振幅值则介于波腹与波谷之间。这种合成波称为行驻波。驻波比是驻波波腹处的电压幅值Vmax与波谷处的电压幅值Vmin之比 驻波比就是一个数值,用来表示天线和电波发射台是否匹配。如果SWR 的值等于

1,则表示发射传输给天线的电波没有任何反射,全部发射出去,这是最理想的情况。 如果SWR 值大于1,则表示有一部分电波被反射回来,最终变成热量,使得馈线升温 驻波比反射率: 1.00.00% 1.10.23% 1.20.83% 1.3 1.70% 1.5 4.00% 1.7 6.72% 1.88.16% 2.011.11% 2.518.37% 3.025.00% 4.036.00% 5.044.44% 7.056.25% 1066.94% 1576.56% 2081.86% 4.天线增益 天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。 增益与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。 一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。 表示天线增益的参数有dBd和dBi,dBi是相对于点源天线的增益,在各方向上的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。相同条件下,增益越高,电波传播的距离越远

手机自动化测试的原理与框架

手机自动化测试的原理与框架 近年来,随着智能手机的大范围普及以及移动互联网的迅猛发展,使得人们的工作、生活、娱乐重心逐渐从PC端转移到了移动端,而作为移动端最重要的成员之一,手机无疑受到更多的关注。伴随着移动通讯技术由2G到3G直至现在4G技术的发展,人们对手机的使用也早已从简单的电话短信转变为更为广泛的应用。 随着生产制造技术的快速发展,手机的制作周期不断地变短,但是目前的上市手机中有一部分也存在一些相应的问题。在从手机设计之初到最终的投产上市,手机测试在其中所占的比重也在不断变大。传统的测试中,手动人工测试一直占很大的比重。但是手工测试在某些方面还是存在一定的弊端,例如在资源冲突测试方面,精确度有限,同时对于常规的压力测试,存在人力消耗过大等弊端,基于此,手机自动化测试必然会成为未来的一个重要发展点。 手机自动化测试的总体硬件框架:PC 端将测试指令发送给被测手机,被测手机响应PC 端发送过来的指令,执行动作,然后返回需要的测试结果数据。测试系统的本质就是通过PC 控制相应的手机执行相应的各种动作,完成测试的目的。 进行自动化测试时,主要流程如下:按照初始定制好的测试用例进行首轮测试,然后根据测试结果再进行相应的具有针对性的测试,最后定位具体的问题所在,提交可供开发人员参考的测试报告。首轮测试的测试用例是根据具体的被测机型以及通用功能设计来制定的,该测试用例在已经既定好的测试用例中基本上都可以找到。在首轮测试进行完成之后,具体的功能模块的问题基本上就可以定位了。然后根据测试结果制定具有较强针对性的测试用例,主要是针对第一轮测试中出现问题的功能模块进行测试,根据在首轮测试中的测试报告,进行自定义测试。在这轮的测试中,测试报告重点要定位具体问题的表征以及详细的软、硬件现场。本轮自动化测试系统的测试报告较为详细,在查出bug 后可以连同测试报告提交给开发人员,在测试报告中可以具体看到较为详细的软、硬件的现场环境,具体的模块执行可以定位到具体的函数执行情况。 当然手机自动化测试系统有它的优缺点,在批量测试任务上具有较大优势。例如对通话模块的测试,拨打一个或几个电话是不能断定该模块是否达到设计标准的。通常情况是要连续拨打上百个电话。在这种情况下,手工测试可能需要较多的时间,同时同样的反复性测试

安规综合测试仪校准方法及注意事项

安规综合测试仪校准方法及注意事项 一、概述 安规综合测试仪(以下简称安规测试仪)是用来测试产品安全性能的主要仪器,一般有:耐压测试,漏电流测试,接地电阻测试,绝缘电阻测试,等等。为了保证安规仪测试的准确性,相应地要对高压输出、漏电流测量、接地电阻测量和绝缘电阻测量等进行校准。 二、高压输出准确度的校准 1. 校准方法 安规综合测试仪输出的高压有交流电压和直流电压之分,电压高达5000V 以上。交流电压一般为工频50Hz或60Hz,校准包括交流电压输出准确度和电压波形失真。直流电压校准包括直流电压输出准确度和电压纹波大小。校准原理图如图1 所示: 安规综合测试仪输出的高压通过1000:1 标准高压分压器接入数字多用表的电压输入端或 失真仪输入端。如果是交流电压,利用数字多用表的交流电压测试功能,测得的值再乘1000 与安规仪指示值进行比较;利用失真仪测量电压波形失真,失真大小不能超过规定值。如果是直流电压,利用数字多用表的直流电压测试功能,测得的值再乘1000 与安规仪指示值进行比较;再利用数字多用表的交流电压测试功能,测得的值再乘1000 即为纹波,纹波大小不能超过规定值。 2. 注意事项 1000:1 标准高压分压器一般为高压电阻R1 与电阻R2 串联,再配合10MΩ输入阻抗的数字

多用表,构成1000:1的电压分压器(如:999MΩ与1.11MΩ串联,再配合10MΩ输入阻抗的数字多用表,1.11MΩ与10MΩ的并联电阻约为1MΩ,正好构成1000:1的电压分压器)。如果数字多用表的输入阻抗大于或小于10MΩ,就会影响标准高压分压器的分压比,测量也就失去了准确性。为了安全起见,电压应从低往高校准。测量交流电压波形失真和直流电压纹波大小时,应在输出电压接近满度位置测量。 三、漏电流测量准确度的校准 1. 校准方法 安规仪漏电流测试也有交流和直流之分,与输出的电压一致。当加交流高压时,就测交流漏电流,是直流高压就测直流漏电流。安规仪漏电流的设定一般为标称值:0.5mA、1mA、2mA、5mA、10mA、20mA、50mA 和100mA,等等。当被测试件加到规定的高压时,由于被测试件所承受耐压的能力,会有一些漏电流,当电流超过安规仪漏电流的设定时,仪器报安规综合测试仪报警,并切断高压,表示被测试件耐压测试不合格。有些安规仪具有实时显示漏电流的功能。漏电流校准原理图如图2所示: 安规综合测试仪输出的高压通过高压限流电阻(根据所测漏电流的不同,阻值作相应的改变,电流大,阻值小;电流小,阻值大)接入数字多用表的电流输入端,利用数字多用表的交流电流或直流电流测试功能,测试交流漏电流或直流漏电流。电压从低往高调节,当数字多用表显示的电流接近设定的漏电流值时,慢慢的调高电压,同时观察数字多用表显示的电流值,直到安规仪报警,此时显示的电流值即为漏电流的实测值。对于具有实时显示漏电流功能的安规仪,还要校准漏电流的显示准确度,这时只要把安规仪显示的漏电流值与数字多用表显示的电流值进行比较即可。

_MTK校准配置文件参数详细说明

4.1 INI 文件的介绍: 4.1.1[射频功能组的复位] 下面是setup INI文件中定义的项目。 GSM900 Sig = 1 GSM1800 Sig = 1 GSM1900 Sig = 1 GSM900 NSig = 1 GSM1800 NSig = 1 GSM1900 NSig = 1 通常设置为1,指在对CMU200设置之前对设备进行复位,为0时不复位。 4.1.2 系统设置: setup INI文件中定义的项目: External Reference Clock = 0 默认值为0,指使用CMU200输出的参考时钟,为1时使用外部参考时钟。 CMU Base GPIB Address = 20 CMU的GPIB地址的设置,要与软件对应。 Instrument = "CMU200" 使用的设备为CMU200 Power Supply Address = GPIB0::5::INSTR 电源地址的设置 使用Kei230x时,应为Power Supply Address = 5 CMU RF Port = 2 CMU200使用的射频端口设置 Test Mode = 0 设为0指需要手动对设备进行初始化,1指在综测时软件将自动对设备进行初始化,2指在校准时软件将自动对设备进行初始化,3指在校准和综测联合测试时软件将自动对设备进行初始化 FDM database file = "c:\\Program Files\\MTK_atedemo\\report\\BPLGUInfoCustom" Database文件的存放路径,必须与手机软件对应 Calibration file = "c:\\Program Files\\MTK_atedemo\\MTKCAL_6205B.INI" 校准初始默认值设置文件的路径 Config file = "c:\\Program Files\\MTK_atedemo\\meta_6205B.CFG" 关于校准的设置,如校准的信道,限制的最大、最小值 Report file path = "c:\\Program Files\\MTK_atedemo\\report_6218B" 测试报告的存储路径 Database file = "c:\\Program Files\\MTK_atedemo\\Report_Statistics\\6218B_statistics.xls" 测试结果文件的存放路径 IMSI = "001010123456789" SIM卡中的IMSI号的设置 POWER ON AFTER CHANGE = 1 联合测试时,如果设备改变不同状态时较慢,则设置为1 Stability Count = 1 循环测试的次数设置 Fixture COM port = 1 串口地址设置 System Cable Loss Calibration = 0 校准系统的线损选择 4.1.3呼叫建立设置 Setup Network = 1 建立呼叫时的网络设置,1指GSM频段,2指DCS频段,3指PCS频段 GSM Call Setup Channel = 1 建立呼叫的信道号设置

射频电路的设计原理及应用

射频电路的设计原理及应用 普通手机射频电路由接收通路、发射通路、本振电路三大电路组成。其主要负责接收信号解调;发射信息调制。早期手机通过超外差变频(手机有一级、二级混频和一 本、二本振电路),后才解调出接收基带信息;新型手机则直接解调出接收基带信息(零中频)。更有些手机则把频合、接收压控振荡器(RX—VCO)也都集成 在中频内部。 射频电路方框图 一、接收电路的结构和工作原理 接收时,天线把基站发送来电磁波转为微弱交流电流信号经滤波,高频放大后,送入中频内进行解调,得到接收基带信息(RXI-P、RXI-N、RXQ-P、RXQ-N);送到逻辑音频电路进一步处理。 1、该电路掌握重点 (1)、接收电路结构。 (2)、各元件的功能与作用。 (3)、接收信号流程。 2、电路分析 (1)、电路结构。 接收电路由天线、天线开关、滤波器、高放管(低噪声放大器)、中频集成块(接收解调器)等电路组成。早期手机有一级、二级混频电路,其目的把接收频率降低后再解调(如下图)。 接收电路方框图

(2)、各元件的功能与作用。 1)、手机天线: 结构:(如下图)由手机天线分外置和内置天线两种;由天线座、螺线管、塑料封套组成。 作用: a)、接收时把基站发送来电磁波转为微弱交流电流信号。 b)、发射时把功放放大后的交流电流转化为电磁波信号。 2)、天线开关: 结构:(如下图)手机天线开关(合路器、双工滤波器)由四个电子开关构成。 图一、图二 作用:其主要作用有两个: a)、完成接收和发射切换; b)、 完成900M/1800M信号接收切换。 逻辑电路根据手机工作状态分别送出控制信号(GSM-RX-EN;DCS- RX-EN;GSM-TX-EN;DCS- TX-EN),令各自通路导通,使接收和发射信号各走其道,互不干扰。 由于手机工作时接收和发射不能同时在一个时隙工作(即接收时不发射,发射时不接收)。因此后期新型手机把接收通路的两开关去掉,只留两个发射转换开关;接收切换任务交由高放管完成。 3)、滤波器: 结构:手机中有高频滤波器、中频滤波器。 作用:其主要作用:滤除其他无用信号,得到纯正接收信号。后期新型手机都为零中频手机;因此,手机中再没有中频滤波器。 4)、高放管(高频放大管、低噪声放大器): 结构:手机中高放管有两个:900M高放管、1800M高放管。都是三极管共发射极放大电路;后期新型手机把高放管集成在中频内部。

手机校准的详细分析-1

1.手机校准测试的项目内容有哪些? 手机校准主要是针对RF参数的校准,比如AFC、AGC、APC,另外,还有电池ADC 的校准、温度校准,要看不同平台的要求,校准的项目也不同,但是大体相同。 AFC校准是为了保证手机的时钟频率能正确的与网络同步。 AGC校准手机从天线端接收到的信号强度大约在–110dBm至–10dBm之间(这可能会稍微超出GSM05.05定义的范围),但BBC(BaseBand Converter)输入信号的可接受动态范围没有这么大,AGC校准是为了保证输入到手机BBC的信号强度在BBC的可操作范围内。 APC校准影响功率的一般有两个参数,一个是Power Ramp(时间包络) 它表现了一个时隙的打开和关闭是否合理,另一个是PA Offset。前者会对输出频谱和TimeMask(时隙)产生影响,因此,在研发阶段就要调好Power Ramp; 而后者,在Power Ramp固定的情况下,直接影响输出功率的大小。APC校准就是调整PA Offset,保证手机的发射功率在各频段,各功率等级都能满足GSM05.05规范。 ADC的校准在我们的Windows Mobile设备上,锂离子电池的电量都是以“电量计”的形式显示的。从电量计中,我们可以准确的读出设备中的电池还有多少剩余电量,精确到以1%为单位。Windows Mobile设备长久以来一直以这种方式显示电池的电量信息。 很多人可能都遇到过在设备出现低电量报警之后软启动,电量计又显示还剩20-30%电量的问题,或者是系统提示已经充满电,但是电池电量计只显示到90%,而不是100%。这时,我们就需要动手对电池的电量进行重新校准了。也就是电池电量的显示与实际不符合。 2.校准的原理\算法是怎样的? 校准的简单原理就是:由于器件不一致、温度变化、器件老化等因素的影响,即使是基于同样的平台同样的设计,也会表现出不同的电性能。为了消除这种影响,每个手机在出厂之前都要对这些参数进行测量计算得到一些参数误差数据,并把这些误差数据存储到一定的存储介质(一般为EEPROM)里,在手机正常使用过程中,CPU会读取这些数据并利用一定的算法对需要补偿的参数进行补偿。在生产测试过程中,对需要补偿校正的数据测量计算并存入EEPROM里的过程,称之为校准。 3.选择哪些信道\功率级校准? 校准的算法:每个平台都不一样,各有各的算法,但是大体的方法都是和仪器进行交互,利用仪器测量的一些数值调整DAC或ADC的参数,把这些参数存成表存储到EEPROM里。具体到某个指标的算法,要根据平台提供上的建议,另外,编程序的时候还有些技巧和算法使得程序高效快速。 4.除这些RF部分之外还有哪些关于电性能方面的校准测试? 至于APC或AGC测试那些信道和功率等级。通常情况下不需要每个等级和信道都校准,那样太慢了,因为无论APC还是AGC,他们和功率的关系是基本线性的,或分段线性的,是可以预测的,一般会选择几个功率等级点,然后进行内插。当然,也不会每个信道都校准,一般校准中间信道的APC或AGC,然后只对最大功率进行信道间补偿,非中间信道的其他功率等级可以按照中间信道的线性关系进行预测。

手机射频系统工作原理和无信号、不发射等故障的检修

天线感应接收到1900MHz~1915MHz的高频信号,经过L101、C103、L105选频网络选择相应频率的高频信号,XFl01滤波器对信号提纯,进入功放ICl01的7脚,功放内部的奉线开关在CPU的控制下,自动闭合到接收通路,信号经过天线开关从20脚输出,由C117、L1 10耦合到ICl01的22脚。信号在ICl01内部,进行第一次的高频放在,然后进行第一次混频。 1900MHz~1915MHz的高频信号和1659.5MHz~1674.02MHz的一本振信号混频后(1C101的1脚输入),输出一个243.95MHz的中频信号,经过一级放大后,由ICl01的26脚输出。 该中频信号通过电容C123、C102耦合,中频滤波器XFl02滤波,输出信号再经过C130、C104、C132、L117耦合,从40脚进入中频ICl02内部,开始第二次混频。二本振信号频率为233.15MHz,经过混频后,从ICl02的38脚输出10.8MHz低频信号,低滤波器XFl03对该信号滤波后,再从36脚进入ICl02的内部进行二次中频放大,最后从31脚输出已放大的低频信号RXDATA,送入到逻辑电路进行解调(D/A转换,解码,放大)恢复为音频信号。 一本振、二本振信号由相应的本地振荡电路产生。 发射电路工作原理 CPU的8脚、9脚、11脚、12脚分别输出HQ+、HQ-、HI+、HI-四路已编码的模拟信号,分别从3脚、4脚、1脚、2脚进入中频ICl02,在中频ICl02内部经过三次混频电路、加法运算电路、运放电路调制后,低频率信号提升到1900MHz的频率,然后从46脚输出一路已经调制好的高频载波信号。 已调制的高频载波信号通过电感L105、L114、电阻R1、电容C128、C125耦合到高通滤波器XFl04,滤波后再次经过L121、Rll0耦合后,由14脚送入到功放ICl01内部进行功率电平放大,完成功率计整,天线开关闭合到发射通路,高频发射信号经过天开关XFl01滤波后,从天线发射出去。 中频ICl02内部三次混频电路所需的本振信号有两个,一是由接收二本振信号(223.15MH z)在中频ICl02内部的倍频器倍频后提供的,二是由一本振信号(1659.05MHz~1674.02MHz)提供,它作为本振信号直接参与最后一次混频。 总的看来,本机的收发混频都共用同样的本振信号,只不过是发射状态时本振信号还需要在ICl02的内部进行具体的频率变化的处理。 一、接收机电路工作原理与无接收信号、电话不能打入故障的检修 1、一本振电路原理 无论是接收信号,还是发射信号,都是要共用一本振电路提供混频时所需要的本振信号。 X102是压控振荡器(VC01),4脚是输入脚,l脚是输出脚,6脚是供电脚,2脚、3脚、5脚接地。 工作电平送入X102的4脚后,X102发生振荡频率。1脚输出振荡信号,其一部分反馈送回IC102的27脚,在中频ICl02的内部进行鉴相,和原来的工作电平进行比较,产生频率误差控制电压。然后从25脚输出、C22、R205、C223组成的环路滤波器,送X102的4脚。该误差控制电压改变X102内部的变容二极管的电容量,使得输出振荡信号的频率变化较小,从而稳定振荡信号的频率。 VCO PS为VCO启动允许电平,高电平有效(3V脉冲),由CPU的34脚送出。VCC_SYN为中频供电电压。Q103在VCO_PS高电平时导通,集电极输出3V电压作为VCO(X102)工作电压。 X102的1脚输出的振荡信号频率为1659.05MHz~1674.02MHz,它通过C150、R135耦合,从1脚输入到高频信号放大ICl06,4脚输出的就是一个已放大的一本振信号。ICl06的6脚为电压脚,2脚、3脚、5脚接地。

校准综测配置文件以及ATE工具使用说明

一.概要: 此工具适用于MTK平台的智能机项目的校准与综测测试操作。 二.工具使用说明: 1.安装智能机测试工具包之后,电脑桌面上会有US_MTK SmartPhone_BT_FT_Tool快捷图标,我们只要双击这个快捷图标,来运行此工具。此工具的主界面如下图1所示: 图1 其中Login部分的Username有3个登录用户名,分别为:User, Admin, Administrator。SMT在首次使用此工具的时候,请先选择Administrator用户名,然后Password编辑框中输入:ustest,此时上述图1的界面将变成如下图2所示: 图2 此时,需要在左边的列表框选择要测试的项目名称,再在右边的列表框里选择测试项。以S12为例,因为它是GSM+EDGE+WCDMA项目,所以我们给出来3种配置,1是GSM+EDGE+WCDMA,一气呵成的测试;1是GSM+EDGE测试,1是WCDMA测试。其中GSM+EDGE+WCDMA配置,如果工厂仪器都能支持GSM+WCDMA的话,那使用此配置比较好;如果工厂仪器能同时支持GSM+WCDMA的比较少,那还是将GSM与WCDMA分开测试比较好,此时工具的要求是先选择GSM+EDGE配置的来测试,测试OK后,才可选择WCDMA的配置来测试。

主界面如下图图3所示: 图3 接着再需要点击按钮,进入配置界面,工厂所做的,主要进去配置data base文件,因为现在智能机的项目,每个软件所自带的data base文件都不一样,一般不能通用,故需要我们手动到手机软件包里面去选择一下。选择database文件的界面如下图所示: Database文件包含2个,第1个叫modem端的DATABASE文件,其名称一般带有SrcP字样。另外1个叫AP端的DATABASE文件,其名称一般带有APDB字样,我们对应进行选择即可。选择好DATABASE文件之后,请点击 按钮,进行保存一下设置的内容。注意:其它的一些配置,工厂不用去管,因为在你运行图1所示的工具时,相关的配置都已经自动配置好了。只有database文件没有配置而已。测试仪器,默认使用的是CMU200,其地址是20,默认的电源是安捷伦型号,其地址为5。保存设置后,会回到上面的图3中去。此时需要关闭一下,退出此程序,然后再重新运行图1所示的工具,此时界面会变成如下图4所示的状态:

射频参数解析

射频参数 1.回波损耗 又称反射损耗,是电缆线路由于阻抗不匹配所产生的反射,是一对线自身的反射。 不匹配主要发生在连接器的地方,但也可能发生于电缆中特性阻抗发生变化的地方。 回波损耗是传输线端口的反射功率与入射波功率之比,以对数形式来表示,单位是dB,一般是负值,其绝对值可以成为反射损耗。 回波损耗= -10 lg [(反射功率)/(入射功率)] 2.反射系数 反射波和入射波电压之比 回波损耗= 20|lg(反射系数Γ)| 3.驻波比 全称电压驻波比,又名VSWR或SWR,英文Voltage Standing Wave Ratio的简写。指驻波波腹电压与波谷电压幅度之比,又称驻波系数、驻波比。驻波比为1时,表示馈线和天线的阻抗完全匹配,此时高频能量全部被天线辐射出去,没有能量的反射损耗;驻波比为无穷大时表示全反射,能量完全没有辐射出去。 驻波比会随着频率而改变 在入射波和反射波相位相同的地方,电压振幅相加为最大电压振幅Vmax ,形成波腹;在入射波和反射波相位相反的地方电压振幅相减为最小电压振幅Vmin ,形成波谷。 其它各点的振幅值则介于波腹与波谷之间。这种合成波称为行驻波。驻波比是驻波波腹处的电压幅值Vmax与波谷处的电压幅值Vmin之比 驻波比就是一个数值,用来表示天线和电波发射台是否匹配。如果SWR 的值等于

1,则表示发射传输给天线的电波没有任何反射,全部发射出去,这是最理想的情况。 如果SWR 值大于1,则表示有一部分电波被反射回来,最终变成热量,使得馈线升温驻波比反射率: 1.00.00% 1.10.23% 1.20.83% 1.3 1.70% 1.5 4.00% 1.7 6.72% 1.88.16% 2.011.11% 2.518.37% 3.025.00% 4.036.00% 5.044.44% 7.056.25% 1066.94% 1576.56% 2081.86% 4.天线增益 天线增益是指:在输入功率相等的条件下,实际天线与理想的辐射单元在空间同一点处所产生的信号的功率密度之比。它定量地描述一个天线把输入功率集中辐射的程度。 增益与天线方向图有密切的关系,方向图主瓣越窄,副瓣越小,增益越高。天线增益是用来衡量天线朝一个特定方向收发信号的能力,它是选择基站天线最重要的参数之一。 一般来说,增益的提高主要依靠减小垂直面向辐射的波瓣宽度,而在水平面上保持全向的辐射性能。 表示天线增益的参数有dBd和dBi,dBi是相对于点源天线的增益,在各方向上的辐射是均匀的;dBd相对于对称阵子天线的增益dBi=dBd+2.15。相同条件下,增益越高,

手机电路原理,通俗易懂

第二部分原理篇 第一章手机的功能电路 ETACS、GSM蜂窝手机是一个工作在双工状态下的收发信机。一部移动电话包括无线接收机(Receiver)、发射机(Transmitter)、控制模块(Controller)及人机界面部分(Interface)和电源(Power Supply)。 数字手机从电路可分为,射频与逻辑音频电路两大部分。其中射频电路包含从天线到接收机的解调输出,与发射的I/Q调制到功率放大器输出的电路;逻辑音频包含从接收解调到,接收音频输出、发射话音拾取(送话器电路)到发射I/Q调制器及逻辑电路部分的中央处理单元、数字语音处理及各种存储器电路等。见图1-1所示 从印刷电路板的结构一般分为:逻辑系统、射频系统、电源系统,3个部分。在手机中,这3个部分相互配合,在逻辑控制系统统一指挥下,完成手机的各项功能。 图1-1手机的结构框图 注:双频手机的电路通常是增加一些DCS1800的电路,但其中相当一部分电路是DCS 与GSM通道公用的。 第二章射频系统 射频系统由射频接收和射频发射两部分组成。射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路主要完成语音基带信号的调制、变频、功率放大等功能。手机要得到GSM系统的服务,首先必须有信号强度指示,能够进入GSM网络。手机电路中不管是射频接收系统还是射频发射系统出现故障,都能导致手机不能进入GSM网络。 对于目前市场上爱立信、三星系列的手机,当射频接收系统没有故障但射频发射系统有故障时,手机有信号强度值指示但不能入网;对于摩托罗拉、诺基亚等其他系列的手机,不管哪一部分有故障均不能入网,也没有信号强度值指示。当用手动搜索网络的方式搜索网络时,如能搜索到网络,说明射频接收部分是正常的;如果不能搜索到网络,首先可以确定射频接收部分有故障。 而射频电路则包含接收机射频处理、发射机射频处理和频率合成单元。 第一节接收机的电路结构 移动通信设备常采用超外差变频接收机,这是因为天线感应接收到的信号十分微弱,而鉴频器要求的输人信号电平较高,且需稳定。放大器的总增益一般需在120dB以上,这么大的放大量,要用多级调谐放大器且要稳定,实际上是很难办得到的,另外高频选频放大器的通带宽度太宽,当频率改变时,多级放大器的所有调谐回路必须跟着改变,而且要做到统一调谐,

MTK校准综测作业指导校准功能测试指导书

MTK-atedemo校准/综测作业指导 一.目的: 规范我公司主板校准/综测操作方法,保证产品质量。 二. 计算机的配置要求 生产用计算机应采用运行稳定的工控机,CPU在PIII800以上,内存256M,Windows2000 以上。预装Agilent 或着NI 的GPIB 卡及其驱动。 三. 系统硬件的连接 该测试系统的硬件由手机综测仪、程控直流电源和工控机组成。手机综合 测试仪支持Agilent 8960 和CMU200。程控直流电源支持Agilent663XX 系列, 和Keithley23XX 系列电源。程控直流电源为可选件,如不提供,则可采用假电 池的方式给主板供电。连接如下图所示: 四.安装软件 先将港利发布的安装包解压到本地目录后,运行其中的setup.exe 文件,安装过程中会提示选择适当的安装路径,默认的安装路径是C:\Program Files\MTK-atedemo\ 五.打开软件 在软件安装路径下点击MTK_atedemo即可运行该综合测试软件。打开后的界面如下图一所示

点击上图Report system选项,出现下图 选择测试选项,综合测试仪地址,电源地址,CPU型号,电脑端口(我司会根据不同机型,在给出校准参数的同时会抓配置图片告知测试选项). 六.校准参数配置 A.

B. C.

D. 出。回到初始界面下图

Initial Final Test 只综测 Initial Calibration 只校准 Initial Cal and Final 校准加综测 根据我司要求选择不同选项初始化仪器,OK后出现下图界面 接上待测试主板,接上RF射频线,电击Calibration Test开始测试作业。 测试通过,出现绿色PASS,测试不能通过出现红色FALL.

手机射频知识

GSM手机射频测试指导

目录 序言 (2) 第一章测试条件 (3) 1.1 正常测试条件 (3) 1.2 极限测试条件 (3) 1.3 震动条件 (3) 1.4 其它测试条件及规定 (4) 1.5 附件要求 (5) 第二章发射机指标及其测试 (6) 2.1 发射载波峰值功率 (6) 2.2 发射载频包络 (11) 2.3调制频谱(Spectrum Due to Modulation) (15) 2.4开关频谱(Spectrum Due to Switching) (18) 2.5频率误差(Frequency Error) (20) 2.6相位误差(Phase Error) (22) 2.7传导杂散骚扰(Conduct Spurious Emissions) (24) 2.8发射峰值电流和平均电流 (27) 第三章接收机指标及其测试 (29) 3.1接收灵敏度(Rx Sensitivity) (29) 3.2接收信号指示电平(RX Level) (33) 3.3接收信号指示质量(RX Quality) (35) 第四章其余测试补充 (38) 4.1 RC滤波电路对PA-RAMP的影响 (38) 4.2 PA匹配调整 (42) 4.3天线开关指标测试 (42) 第五章附录 (44)

序言 目前国家对手机的质量问题越来越重视,对于手机质量的客户满意度和返修率也一致关注。其中,GSM手机的射频问题仍然是一个影响手机质量、开发进度和生产效率的重要因素。为了保证产品的品质和性能符合GSM规范和国家标准,需要在手机测试方面建立一套完整、科学的测试体系。为此我们参照GSM规范欧洲标准、国家邮电部移动通信技术规范、国家信息产业部通信行业标准以及日常积累的测试经验编写了这份射频测试规程。 本规范的目的是针对研发阶段的GSM手机提供一个较全面测试和校准的指标依据,尽量保证研发阶段GSM手机的点测指标满足FTA、CTA与批量生产点测指标要求,使手机的射频问题尽可能在研发阶段暴露出来并在量产前解决,同时为评估手机的RF点测性能、指标余量、一致性、稳定性提供参考依据,另外为不熟悉测试的新员工提供一些指导。本文主要内容包括射频指标术语解释,发射机和接收机部分射频指标的测试方法,测试结果,测试参考标准等,最后还给出了指标超标的一般分析。 由于我们射频知识与经验有限,不足之处请指导。

校准终测的基本原理

1.1 校准终测的基本原理 1.1.1校准、终测的目的 现在生产的相同型号手机虽然使用都是相同器件,但这相同器件还是有的一定的偏差,由此组合 的手机就必然存在着差异,但这差异是在一定的范围,超出了就视为手机不良。因此校准的目的就是将手机的这种差异调整在符合国标的范围,而终测是对于校准的检查,因为校准无法对手机的每个信道,每个功率级都进行调整,只能选择有代表性的(试验经验点)进行,所以校准通过的手机并不能肯定它是良品,只有通过终测检验合格的才算是,我们现在生产线上的校准终测测试程序都是将这两个部分合并(除了DA8和EMP平台)。 1.1.2手机的基本校准、测试项的介绍 1、Battcal(电池校准):是对手机的电池模拟使用的调整,分两种情况(4.2V和3.5V)。 恒9系列和Florence平台的校准相似,先调整手机电池处在4.2V时的偏置值,使其冲手机读取的电压表示值在4.2±0.1v的范围,然后将电池的电压调至3.5v,看电压是否还处于3.5±0.1v的范围,是就将这偏置值存入手机。 2、TxCal(发射机校准):不同的平台有不同的校准方法,但其大致的原理是一样的。就是通过一定的方法调整在一个或者几个试验经验点(全部功率级)的功率值的表示值,使其符合国标的要求。这表示值可以是一个单一的数字,也可以是一组,像A6/A8系列的就是多个经验点(GSM900有 10,60,105,1000这4个信道,DCS1800有570,700,800这3个信道)全功率级(即GSM900有5-19,DCS1800有0-15)单一的数值,而恒9系列和Florence平台则是单个经验点(GSM900有62,DCS1800有698)的全功率级代表该功率级的一组功率曲线的表示值。 在这就目前使用的两种PA将校准做个详细的介绍 一)RFMD a)、发射机及其校准原理 在发射机中,从CSP产生的已调信号,经过HD155148的混频、射频放大,再经功率放大器(PA)放大、滤波后从天线发送出去。发送信号的功率和形状(burst shape)由PA决定,这里采取功率控制环来控制发送信号的功率和形状。Tx校准原理就是通过测量计算得到一系列TXP值,去控制PA的增益,使得不同PCL的发射信号满足规范的要求(绝对功率大小、相连PCL的功率、切换频谱、Burst Shape 等)。如图Figure 1 所示。 校准时,我们先根据写入手机的TXP值和测量得到的功率值PM,计算得到TXP和PM的关系曲线

手机射频校准错误代码表

手机射频校准错误代码表(适用于展讯,MTK) Lacation update Fail = 101;位置更新错误 MT Call Fail = 102;手机呼叫失败 Call Drop = 103;掉线 Average Burst Power Fail = 104;平均突发功率超出模板 Peak Burst Power Fail = 105;峰值突发功率超出模板 PVT Match Fail = 106; PVT超出模板 Timing Error Fail = 107;时序偏差超出模板 Phase Error Peak Fail = 108;峰值相位误差超出模板 Phase Error RMS Fail = 109;均值相位误差超出模板 Frequency Error Fail = 110;频率误差超出范围 Spectrum due to Modulation Fail = 111;调制频谱超出模板 Spectrum due to Switching Fail = 112;开关频谱超出模板 Rx Quality Fail = 113;接收灵敏度超出范围 Rx Level Fail = 114;接收电平超出范围 BER Fail = 115;误码率超出范围 BLER Fail = 116;误块率超出范围 METAAPP_GET_A V AILABLE_HANDLE_FAIL = 201;Meta可用到的操作失败 METAAPP_OPEN_UART_FAIL = 202;Meta打开Uart口失败 METAAPP_CLOSE_UART_FAIL = 203;Meta关闭Uart口失败 METAAPP_BOOT_FAIL = 204;Meta连通串口失败 METAAPP_BOOT_STOP_FAIL = 205;Meta终止连通串口失败 METAAPP_INIT_FAIL = 206;Meta初始化失败 METAAPP_W AIT_FOR_TARGET_READY_FAIL = 207;Meta等待被测件准备失败 METAAPP_COMM_SET_BAUD_RA TE_FAIL = 208;Meta命令设置波特率失败 METAAPP_COMM_START_FAIL = 209;Meta命令开始失败 METAAPP_COMM_STOP_FAIL = 210;Meta命令终止失败 METAAPP_CONNECT_WITH_TARGET_FAIL = 211;Meta连接被测件失败 METAAPP_DISCONNECT_WITH_TARGET_FAIL = 212;Meta断开被测件失败 METAAPP_RF_SELECT_BAND_FAIL = 213;Meta选择射频频段失败 METAAPP_RF_SELECT_BAND_CNF_FAIL = 214 METAAPP_RF_AFC_MEASURE_FAIL = 215;Meta测量AFC失败 METAAPP_RF_AFC_MEASURE_CNF_FAIL = 216;Meta测量AFC配置失败 METAAPP_RF_AFC_SET_DAC_V ALUE_FAIL = 217;Meta设置数模转换电压失败 METAAPP_RF_AFC_SET_DAC_V ALUE_CNF_FAIL = 218;Meta设置数模转换电压配置失败METAAPP_RF_CRYSTALAFC_SET_CAPID_FAIL = 219;Meta控制晶体设置CAPID失败METAAPP_RF_PM_FAIL = 220;Meta控制电源管理失败 METAAPP_RF_NB_TX_FAIL = 221;Meta控制邻道发射失败 METAAPP_RF_NB_TX_CNF_FAIL = 222;Meta控制邻道发射配置失败 METAAPP_RF_SET_APC_LEVEL_DAC_FAIL = 223;Meta设置APC等级数模转换控制失败METAAPP_RF_SET_APC_LEVEL_DAC_CNF_FAIL = 224;Meta设置APC等级数模转换配置失败METAAPP_RF_STOP_FAIL = 225;Meta终止失败 METAAPP_RF_STOP_CNF_FAIL = 226;Meta终止配置失败 METAAPP_RF_BBTXAUTOCAL_FAIL = 227;Meta控制基带发射自动校准失败 METAAPP_RF_GETBBTXCFG2_FAIL = 228 METAAPP_RF_SETBBTXCFG2_FAIL = 229

相关文档