文档库 最新最全的文档下载
当前位置:文档库 › 第1章__半导体二极管及其应用习题解答

第1章__半导体二极管及其应用习题解答

第1章__半导体二极管及其应用习题解答
第1章__半导体二极管及其应用习题解答

第1章半导体二极管及其基本电路

自测题

判断下列说法是否正确,用“√”和“”表示判断结果填入空内

1. 半导体中的空穴是带正电的离子。()

2. 温度升高后,本征半导体内自由电子和空穴数目都增多,且增量相等。(√)

3. 因为P型半导体的多子是空穴,所以它带正电。()

4. 在N型半导体中如果掺入足够量的三价元素,可将其改型为P型半导体。(√)

5. PN结的单向导电性只有在外加电压时才能体现出来。(√)

选择填空

1. N型半导体中多数载流子是 A ;P型半导体中多数载流子是B。

<

A.自由电子B.空穴

2. N型半导体C;P型半导体C。

A.带正电B.带负电C.呈电中性

3. 在掺杂半导体中,多子的浓度主要取决于B,而少子的浓度则受 A 的影响很大。

A.温度B.掺杂浓度C.掺杂工艺D.晶体缺陷

4. PN结中扩散电流方向是A;漂移电流方向是B。

A.从P区到N区B.从N区到P区

5. 当PN结未加外部电压时,扩散电流C飘移电流。

A.大于B.小于C.等于

6. 当PN结外加正向电压时,扩散电流A漂移电流,耗尽层E;当PN 结外加反向电压时,扩散电流B漂移电流,耗尽层D。

A.大于B.小于C.等于

D.变宽E.变窄F.不变

7. 二极管的正向电阻B,反向电阻A。

A.大B.小

8. 当温度升高时,二极管的正向电压B,反向电流A。

A.增大B.减小C.基本不变

9. 稳压管的稳压区是其工作在C状态。

A.正向导通B.反向截止C.反向击穿有A、B、C三个二极管,测得它们的反向电流分别是2A、0.5A、5A;在外加相同的正向电压时,电流分别为10mA、30mA、15mA。比较而言,哪个管子的性能最好【解】:二极管在外加相同的正向电压下电流越大,其正向电阻越小;反向电流越小,其单向导电性越好。所以B管的性能最好。

~

题习题1

试求图所示各电路的输出电压值U O,设二极管的性能理想。

5V

VD

+

-3k Ω

U O

VD

7V

5V +

-3k Ω

U O

5V

1V

VD +-3k ΩU O

(a ) (b ) (c )

10V

5V

VD

3k Ω+

.

_O U 2k Ω6V

9V

VD VD +

-

12

3k Ω

U O

VD VD 5V

7V

+

-

12

3k Ω

U O

(d ) (e ) (f )

【解】:二极管电路,通过比较二极管两个电极的电位高低判断二极管工作在导通还是截止状态。方法是先假设二极管断开,求出二极管阳极和阴极电位,

电路中只有一个二极管:若阳极电位高于阴极电位(或二极管两端电压大于其导通电压U on ),二极管正偏导通,导通时压降为0(对于理想二极管)或U on (对于恒压源模型的二极管);若阳极电位低于阴极电位(或二极管两端电压小于其导通电压U on ),二极管反偏截止,流过二极管的电流为零。

% 如果电路中有两个二极管:若一个正偏,一个反偏,则正偏的导通,反偏的截止;若两个都反偏,则都截止;若两个都正偏,正偏电压大的优先导通,进而再判断另一只二极管的工作状态。

图(a)二极管VD 导通,U O =5V 图(b) 二极管VD 导通,U O = 7V 图? 二极管VD 截止,U O = 1V

图(d) 二极管VD 1导通,VD 2截止,U O =0V 图(e) 二极管VD 1截止,VD 2导通,U O = 9V 图(f) 二极管VD 导通,U O =0V 在图所示电路图中,试求下列几种情况下输出端Y 点的电位及流过各元件的电流。⑴U A =U B =0V ;⑵U A =3V ,U B =0V 。设二极管的导通电压U on =。 【解】:(1)二极管VD 1和VD 2均承受正向电压,且正向电压相等,都导通。所以输

出端Y 点电位:U Y =U on =。流过二极管VD 1和VD 2的电流:

mA 65.4k Ω

1V

7.0V 1021VD2VD1=-==I I

(2)二极管VD 1和VD 2均承受正向电压,但VD 2承受的正向电压大,VD 2优先导通。

所以输出端Y 点电位:U Y =U on =。将VD 1钳制在截止状态。流过二极管VD 1的电流

0VD1=I ,流过二极管VD 2的电流mA 3.9k Ω

1V

7.0V 10VD2=-=

I (

1k Ω

Y

A

B

VD VD 1

2

10V 1k Ω

Y

A

B

VD VD 1

2

图 图

分析图所示电路中各二极管的工作状态,试求下列几种情况下输出端Y 点的电位

及流过各元件的电流。⑴U A =U B =0V ;⑵U A =5V ,U B =0V ;⑶U A =U B =5V 。二极管的导通电压U on =。 【解】:(1)二极管VD 1和VD 2均处于零偏状态,所以都截止。输出端Y 点电位:U Y =0。流过二极管VD 1和VD 2的电流0VD2VD1==I I 。

(2)二极管VD 1正偏导通,所以输出端Y 点电位:U Y =U A -U on ==。将VD 2钳制在截止状态。流过二极管VD 1流过二极管VD 1和VD 2的电流mA 3.4k Ω

1V

3.4VD1==I ,流过二极管VD 2

的电流0VD2=I 。

(3)二极管VD 1和VD 2均承受正向电压,且正向电压相等,都导通。所以输出端Y 点电位:U Y =U A -U on ==。流过二极管VD 1和VD 2的电流mA 15.2k Ω

1V

3.421VD2VD1==

=I I 。 在图所示电路中,已知输入电压u i =5sin t (V ),设二极管的导通电压U on =。分别画出它们的输出电压波形和传输特性曲线u o =f (u i )。

3k Ω

VD VD 1

2

++-

-

u u i o 3k Ω

VD +

+-

-

u u i o 3k Ω

VD

++-

-

u u i o +

+

+

-

-

-

-

U VD

U VD

+

U VD1

U VD2

(a ) (b ) (c )

【解】:在(a )图所示电路中,当二极管断开时,二极管两端的电压U VD =u i 。当U VD U on ,即u i 时,二极管导通,输出电压u o =u i ;当U VD U on ,即u i 时,二极管截止,输出电压u o =0。输出电压的波形如图解(a )1所示,传输特性如图解(a )2所示。

在(b )图所示电路中,当二极管断开时,二极管两端的电压U VD =u i 。当U VD U on ,即u i 时,二极管导通,输出电压u o = ;当U VD U on ,即u i 时,二极管截止,输出电压u o =u i 。输出电压的波形如图解(b )1所示,传输特性如图解(b )2所示。

在(c )图所示电路中,当u i 时,二极管VD 1导通,输出电压u o =;当u i 时,二极管VD 2导通,输出电压u o =;当u i 时,VD 1、VD 2都截止,输出电压u o =u i 。输出电压的波形如图解(c )1所示,传输特性如图解(c )2所示。

u i 5t u o t

/V 0.7 4.3

u i 5t

u o

t

/V 0.70.7u i 5

t

u o

t

-0.7

/V 0.70.7-0.7

图解(a )1 图解(b )1 图解(c )1

0u u i o 0.7

4.35

/V

/V 0.7u u i o 0.7

5

/V

/V

-5

-5

0.7

u u i o 0.75

/V

/V

-0.7

-0.7

-5

图解(a )2 图解(b )2 图解(c )2

在图所示电路中,已知u i =10sin t (V ),二极管的性能理想。分别画出它们的输入、输出电压波形和传输特性曲线u o =f (u i )。

+_u o

VD VD 2

1

2k Ω

+_

u i

3V

+_u o VD VD 21

+

_

u i

2k Ω

5V

3V

+_u o

VD

2k Ω

+_

u i

5V

(a ) (b ) (c )

~

【解】:在(a )图所示电路中,当二极管断开时,二极管两端的电压U VD =5V u i 。当U VD 0,

即u i 5V 时,二极管导通,输出电压u o =5V ;当U VD 0,即u i 5V 时,二极管截止,输出电压u o =u i 。输出电压的波形如图解(a )1所示,传输特性如图解(a )2所示。

在(b )图所示电路中,当二极管断开时,二极管VD 1两端的电压U VD1=u i ,VD 2两端的电压U VD2=u i 3V 。当u i >3V 时,VD 2导通,输出电压u o =3V ;当u i 0时,VD 1导通,输出电压u o =0;当0u i 3V 时,VD 2、VD 1都截止,输出电压u o =u i 。输出电压的波形如图解(b )1所示,传输特性如图解(b )2所示。

在(b )图所示电路中,当二极管断开时,二极管VD 1两端的电压U VD1=5V u i ,

VD 2两端的电压U VD2=u i 3V 。当u i >3V 时,VD 2导通,输出电压u o =3V ;当u i 5V 时,VD 1导通,输出电压u o =5V ;当5V u i 3V 时,VD 2、VD 1都截止,输出电压u o =u i 。输出电压的波形如图解(c )1所示,传输特性如图解(c )2所示

u i 10t

u o t

/V /V 5105u i 10

t

u o t -0.7

/V 30

/V 3u i 10t

u o t

00/V 33/V

-5

-5

图解(a )1 图解(b )1 图解(c )1

u u i o 5

1010

/V

/V

5

-10

u u i o 310

/V

/V

0u u i o 10

/V

/V

-5

3-103-5

图解(a )2 图解(b )2 图解(c )2

图所示为一限幅电路,输入电压u i =10sin t (V ),试画出输出电压的波形和传输

特性曲线。设VD 1、VD 2的性能均理想。

+_u o

+_

u i 8V

10k Ω20k ΩR R 12VD VD 12

2V

+_u o

+_

u i 8V

10k Ω20k ΩR R 12VD VD 2V

i D1i D2i 1

i 2

]

图 图解 (a)

【解】:设流过VD 1、VD 2、R 1、R 2的电流分别为i D1、i D2、i 1、i 2,参考方向如图解(a)所示。当VD 1、VD 2均导通时

20

88i 2i 2D2u R u i i -=-=

=,2012

3)28()(i 1i 2i 2D 1D1-=-+--=+-=u R u R u i i i ,由此可得,VD 1导通的条

件是:u i 4V ;VD 2导通的条件是:u i 8V 。故u i 8V 时,VD 1导通,VD 2截止,输出电

压u o =8V ;

4V u i 8V 时,VD 1、VD 2都导通,输出电压u o =u i ;

u i 4V 时,VD 1截止,VD 2导通,输出电压V 421010

202

8o =+?+-=

u 。

输出电压的波形如图解((b )所示,传输特性如图解(c)所示。

u i o 10

/V

/V

-10

488

0i 10t

u o t

/V 4848

图解(b) 图解(c)

电路如图所示。输入电压u i =10sin t (mV ),二极管的导通电压U on =,电容C 对交流信号的容抗可忽略不计。试计算输出电压的交流分量。

【解】:只有直流电压作用时,电容C 开路,流过二极管的电流为

8.1m 1

.57

.010DQ =-=

A I mA , …

由此可估算出二极管VD 的动态电阻为:Ω4.14Ω8

.126

)mA ()mV (26Q D d ===

I r

在进行交流分析时,令直流电压和电容短路,二极管用交流等效电阻r d 代替,此时,电路可等效为图解。由图可求得输出电压的交流分量为

t r R r

u R r R r R R r R r u u d

d ω=+?≈+++?

=sin 65.3)/(1i 2d 2d 12d 2d i o (mV )

+_u o +_

u i

5.1k ΩR 2

10V

25Ω

R 1VD

C

+_u o +_

u i 5.1k ΩR 2

25Ω

R 1

r d

图 图解

有两个硅稳压管,VD Z1、VD Z2的稳定电压分别为6V 和8V ,正向导通电压为,稳

定电流是5mA 。求图各个电路的输出电压U O 。

20V

+

-2k Ω

U O

VD VD z1

z2

20V

+

-U O

VD VD z1

z2

2k Ω

20V

+

-U O VD VD z1

z2

2k Ω

(a ) (b ) (c )

20V

+

-U O VD VD z1

z2

2k Ω

20V

+

-U O VD VD z1

z2

2k Ω

20V

+

-U O VD VD z1

z2

2k Ω

(d ) (e ) (f )

|

【解】:图a U O =6V+8V=14V ;图b U O =6V+=;图c U O =+=;图d U O =;图e U O =;图f U O =6V 。

已知稳压管的稳定电压U Z =6V ,最小稳定电流I Zmin =5mA ,最大功耗P ZM =150mW 。 试求图所示电路中限流电阻R 的取值范围。

【解】:由题可知稳压管的最大稳定电流6

150

Z ZM Zm ax ==

U P I mA=25mA 流过稳压管的电流I Z 应满足:Zm ax Z Zm in I I I <<,又因为:R

R U U I V

6V 15Z I Z -=-=

,由此可得限流电阻R 的取值范围:R

图所示稳压管稳压电路中,稳压管的稳定电压U Z =6V ,最小稳定电流I Zmin =5mA ,最大功耗P ZM =125mW 。限流电阻R =1k ,负载电阻R L =500。

⑴ 分别计算输入电压U I 为12V 、35V 三种情况下输出电压U o 的值。 ⑵ 若输入电压U I =35V 时负载开路,则会出现什么现象为什么

VD Z

+

+_

U I U R L

R

_

]

【解】:⑴ 根据题意可知流过稳压管的最大稳定电流

mA 83.20mA 6

125

Z ZM Zm ax ===

U P I 当U I =12V 时,Z L L I

V 4V 5

.015.012U R R R U <=+?=+,稳压管未击穿。故V 4I L

L

O =?+=

U R R R U

当U I =35V 时,Z L L I V 67.11V 5

.015

.035U R R R U >=+?=+,稳压管反向击穿,流过稳压管的电流为

mA 175

.06

1635L O Z I Z =--=--=

R U R U U I 因为Zm ax Z Zm in I I I <<,所以稳压管能稳压,输出电压U O =U Z =6V

⑵ 当U I =35V ,负载开路时,流过稳压管的电流=-=R U U I )(Z I Z 29mA >I ZM =,稳压管将因功耗过大而损坏。

图所示的稳压管稳压电路中,如果稳压管选用2DW7B ,已知其稳定电压U Z =6V ,最大稳定电流I Zmax =30mA ,最小稳定电流I Zmin =10mA ,限流电阻R =200。

⑴ 假设负载电流I L =15mA ,则允许输入电压的变化范围为多大才能保证稳压电路正常工作

] ⑵ 假设给定输入直流电压U I =13V ,则允许负载电流I L 的变化范围为多大 ⑶ 如果负载电流也在一定范围变化,设I L =10~15mA ,此时输入直流电压U I 的最大允许变化范围为多大

【解】:解:⑴ 要保证电路正常工作,流过稳压管的电流L Z

I Z I R

U U I --=

应满足:Zm ax Z Zm in I I I ≤≤,即mA 30152

.06

mA 10I ≤--≤

U ,得允许输入电压的变化范围为V 15V 11I ≤≤U 。

⑵ 同理,电路应满足mA 302

.06

13mA 10L <--<

I ,得允许负载电流的变化范围mA 25mA 5L ≤≤I 。

⑶ 当负载电流最小(为I Lmin =10mA ),输入电压最大时,流过稳压管的电流最大,应满足

max Lmin Z

Imax Z I I R

U U ≤--

得允许输入电压的最大值为:V 14Im ax ≤U

当负载电流最大(为I Lmax =15mA ),输入电压最小时,流过稳压管的电流最小,应满足

min Lmax Z

Imin Z I I R

U U ≥-- 得允许输入电压的最小值为:V 11Im in ≥U

所以负载电流在10~15mA 范围内变化时,输入直流电压U i 的最大允许变化范围为

V 14V 11i ≤≤U

最新1半导体二极管及其应用汇总

1半导体二极管及其 应用

模拟电子技术 电子技术:研究电子器件、电子电路及其应用的科学技术。 第一代电子器件 电真空器件:电子管和离子管 电子管的结构和工作原理 A :有密封的管壳,内部抽到高真空。 B :在热阴极电子管中,有个阴极。 C:阴极由灯丝加热,使温度升高发射出电子 D:电子受外加电场和磁场的作用下在真空中运动形成电子管中的电流。 电子管的主要特点电子管 A 体积大重量重耗电大寿命短 B 目前在一些大功率发射装置中使用 离子管 A:与电子管类似,也抽成真空管。 B:管子中的电流,除了电子外也有正离子。 第二代电子器件----晶体管

晶体管是用半导体材料制成的,也称为半导体器件(semiconductor device)or 固体器件(solid-state device)。 晶体管的主要特点 A体积小、重量轻 B寿命长、功耗低 C 受温度变化影响大 D过载能力较差。 E 加电压不能过高 2. 电子电路 电子器件与电阻、电感、电容、变压器、开关等元件适当连接起来所组成的电路。 电子电路的主要特点 控制方便工作灵敏响应速度快。 电子电路与普通电路的主要区别 1 电子电路包含电子器件 2.电子器件的特性往往是非线性的 3.电子电路必须采用非线性电路的分析方法分析

电子电路:分立电路集成电路 分立电路-----由各种单个的电子器件和元件构成的电路 主要特点 1 把许多元件和器件焊接在印刷电路板上 2焊点多,容易造成虚焊。 3体积大功耗大可靠性低 集成电路----(IC-integrated circuit)-----把许多晶体管与电阻等元件制作在同一块硅片上的电路 集成电路的主要特点 1 体积小重量轻 2 功耗小 3 可靠性高 4 寿命长 世界上第一块集成电路在1959年美国的德州仪器公司和西屋电气公司诞生,电路上仅集成了四只晶体管。

第四章 半导体二极管和晶体管

第四章半导体二极管和晶体管 教学目标 本章课程通过对常用电子元器件、模拟电路及其系统的分析和设计的学习,使学生获得模拟电子技术方面的基础知识、基础理论和基本技能,为深入学习电子技术及其在专业中的应用打下基础。 1.掌握基本概念、基本电路、基本方法和基本实验技能。 2.具有能够继续深入学习和接受电子技术新发展的能力,以及将所学知识用于本专业的能力。 教学内容 1、半导体基础知识 2、PN结特性 3、晶体管 教学重点与难点 1、PN结的单向导电性、伏安特性 2、二极管的伏安特性及主要参数 3、三极管放大、饱和、截止三种模式的工作条件和性能特点 一、电子技术的发展 电子技术的发展很大程度上反映在元器件的发展上。

电子管→半导体管→集成电路 半导体元器件的发展: 1947年贝尔实验室制成第一只晶体管 1958年集成电路 1969年大规模集成电路 1975年超大规模集成电路 第一片集成电路只有4个晶体管,而1997年一片集成电路中有40亿个晶体管。有科学家预测,集成度还将按10倍/6年的速度增长,到2015或2020年达到饱和。 二、模拟信号与模拟电路 1、电子电路中信号的分类: 数字信号:离散性。 模拟信号:连续性。大多数物理量为模拟信号。 2、模拟电路 模拟电路是对模拟信号进行处理的电路。 最基本的处理是对信号的放大,有功能和性能各异的放大电路。模拟电路多以放大电路为基础。 3、数字电路 数字电路主要研究数字信号的存储、变换等内容,其主要包括门电路、组合数字电路、触发器、时序数字电路等。 数字电路的发展与模拟电路一样经历了由电子管、半导体分立器件到集成电路等几个时代。但其发展比模拟电路发展的更快。

肖特基光电二极管

肖特基势垒光电二极管原理及应用 引言 肖特基势垒光电二极管又称金属-半导体光电二极管,其势垒不再是p-n结,而是金属和半导体接触形成的阻挡层,即肖特基势垒。 1 肖特基势垒二极管结构原理及特性 1.1简述 图1 肖特基势垒二极管 肖特基二极管(如图1)是以其发明人肖特基博士(Schottky)命名的,SBD 是肖特基势垒二极管(Schottky Barrier Diode,缩写成SBD)的简称。SBD不是利用p型半导体与n型半导体接触形成p-n结原理制作的,而是利用金属与半导体接触形成的金属-半导体结原理制作的。因此,SBD也称为金属-半导体(接触)二极管或表面势垒二极管,它是一种热载流子二极管。是近年来问世的低功耗、大电流、超高速半导体器件。其反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右,而整流电流却可达到几千安培。这些优良特性是快恢复二极管所无法比拟的,中、小功率肖特基整流二极管大多采用封装形式。 1.2结构原理 图2 肖特基势垒二极管结构原理及等效电路

肖特基势垒二极管(也叫热载子二极管)在机械构造上与点接触二极管很相似,但它比点接触二极管要耐用,而且功率也更大。图2(a)给出了肖特基势垒二极管的基本构造。图2(b)是其等效电路。这种形式的电路是威廉姆·肖特基(William Schottky)在1938年研究多数载流子的整流现象时提出的。 肖特基二极管是贵金属(金、银、铝、铂等) A为正极,以N型半导体B为负极,利用二者接触面上形成的势垒具有整流特性而制成的金属-半导体器件。因为N型半导体中存在着大量的电子,贵金属中仅有极少量的自由电子,所以电子便从浓度高的B中向浓度低的A中扩散。显然,金属A中没有空穴,也就不存在空穴自A向B的扩散运动。随着电子不断从B扩散到A,B表面电子浓度逐渐降低,表面电中性被破坏,于是就形成势垒,其电场方向为B→A。但在该电场作用之下,A中的电子也会产生从A→B的漂移运动,从而削弱了由于扩散运动而形成的电场。当建立起一定宽度的空间电荷区后,电场引起的电子漂移运动和由于浓度不同引起的电子扩散运动达到相对的平衡,这时便形成了肖特基势垒。 典型的肖特基整流管的内部电路结构以N型半导体为基片,在上面形成用砷作掺杂剂的N-外延层。阳极(阻挡层)金属材料是钼。二氧化硅(SiO2)是用来消除边缘区域的电场,提高管子的耐压值。N型基片具有很小的通态电阻,其掺杂浓度较N-层要高100%倍。在基片下边形成N+阴极层,其作用是减小阴极的接触电阻。通过调整结构参数,可在基片与阳极金属之间形成合适的肖特基势垒,当加上正偏压E时,金属A和N型基片B分别接电源的正、负极,此时势垒宽度变窄。加负偏压-E时,势垒宽度就变宽。 综上所述,肖特基整流管的结构原理与PN结整流管有很大的区别,通常将PN 结整流管称作结整流管,而把金属-半导管整流管叫肖特基整流管。近年来,采用硅平面工艺制造的铝硅肖特基二极管也已问世,这不仅可以大量节省贵金属,而且还大幅度降低了成本,还改善了参数的一致性。 肖特基整流管仅用一种载流子(电子)输送电荷,在势垒外侧无过剩少数载流子的积累,因此,不存在电荷储存问题,使开关特性获得明显改善。其反向恢复时间已能缩短到10ns以内。但它的反向耐压值较低,一般不超过去时100V。因此适宜在低压、大电流情况下工作。利用肖特基二极管的低压降这一特点,从而能够提高其在低压、大电流整流(或续流)电路的效率。 1.3 肖特基势垒二极管特性及应用 肖特基势垒二极管属于一种低功耗、超高速半导体器件。最显著的特点为反向恢复时间极短(可以小到几纳秒),正向导通压降仅0.4V左右。其多用作高频、低压、大电流整流二极管、续流二极管、保护二极管,也有用在微波通信等电路中作整流二极管、小信号检波二极管使用。在通信电源、变频器等中比较常见。但是,它也有一些缺点:耐压比较低,漏电流稍大些。选用时要全面考虑。 1.3.1 性能比较

第1章__半导体二极管及其应用习题解答

第1章半导体二极管及其基本电路 自测题 判断下列说法是否正确,用“√”和“?”表示判断结果填入空内 1. 半导体中的空穴是带正电的离子。(?) 2. 温度升高后,本征半导体内自由电子和空穴数目都增多,且增量相等。(√) 3. 因为P型半导体的多子是空穴,所以它带正电。(?) 4. 在N型半导体中如果掺入足够量的三价元素,可将其改型为P型半导体。(√) 5. PN结的单向导电性只有在外加电压时才能体现出来。(√) 选择填空 1. N型半导体中多数载流子是 A ;P型半导体中多数载流子是B。 A.自由电子 B.空穴 2. N型半导体C;P型半导体C。 A.带正电 B.带负电 C.呈电中性 3. 在掺杂半导体中,多子的浓度主要取决于B,而少子的浓度则受 A 的影响很大。 A.温度 B.掺杂浓度 C.掺杂工艺 D.晶体缺陷 4. PN结中扩散电流方向是A;漂移电流方向是B。 A.从P区到N区 B.从N区到P区 5. 当PN结未加外部电压时,扩散电流C飘移电流。 A.大于 B.小于 C.等于 6. 当PN结外加正向电压时,扩散电流A漂移电流,耗尽层E;当PN结外加反向电压时,扩散电流B漂移电流,耗尽层D。 A.大于 B.小于 C.等于 D.变宽 E.变窄 F.不变 7. 二极管的正向电阻B,反向电阻A。 A.大 B.小 8. 当温度升高时,二极管的正向电压B,反向电流A。 A.增大 B.减小 C.基本不变 9. 稳压管的稳压区是其工作在C状态。 A.正向导通 B.反向截止 C.反向击穿有A、B、C三个二极管,测得它们的反向电流分别是2?A、0.5?A、5?A;在外加相同的正向电压时,电流分别为10mA、 30mA、15mA。比较而言,哪个管子的性能最好【解】:二极管在外加相同的正向电压下电流越大,其正向电阻越小;反向电流越小,其单向导电性越好。所以B管的性能最好。 题习题1 试求图所示各电路的输出电压值U O,设二极管的性能理想。

第一章 半导体二极管

第一章半导体二极管 内容提要:本章介绍半导体二极管的工作原理、特性曲线和参数。半导体器件的基础是PN结,为此对PN结的形成和电特性也给予了必要的介绍。 目前最基本的电子器件主要有三大类: 电子管 半导体器件 集成电路

本章主要介绍现代电子器件——集成电路的基础器件,半导体二极管和三极管的基本知识,工作原理,特性曲线和参数。 1.1 半导体的基本知识 物体有导体、半导体和绝缘体之分,它们是根据物体的导电能力来划分的。导电能力往往用电阻率来表示,单位是Ωcm。一般规定半导体的电阻率在10-3~109Ωcm之间。典型的半导体有硅Si和锗Ge,以及砷化镓GaAs等。硅和锗在元素周期表上是四价元素,砷化镓则属于半导体化合物。 1.1.1 本征半导体 1.1.1.1 本征半导体的定义 是化学成分纯净的半导体,它在物理结构上有多晶体和单晶体两种形态,制造半导体器件必须使用单晶体,即整个一块半导体材料是由一个晶体组成的。制造半导体器件的半导体材料纯度要求很高,要达到99.9999999%,常称为"九个9"。 1.1.1.2 本征半导体的共价键结构 硅和锗是四价元素,在原子最外层轨道上的四个电子称为价电子。根据化学的知识可以知道,最外层的价电子受原子核的束缚力最小,容易脱离原子核的束缚而参与导电。在半导体晶体中,最外层的价电子分别与周围的四个原子的价电子形成共价健。 1.1.1.2 电子空穴对 当半导体处于热力学温度0 K时,导体中没有自由电子。当温度升高大于0 K时,或受到光的照射时,价电子能量增高,有的价电子可以挣脱原子核的束缚,成为自由电子,从而可能参与导电。这一现象称为本征激发(也称热激发)。本征激发会产生如下物理过程:在自由电子产生的同时,在其原来的共价键中就出现了一个空位,原子的电中性被破坏,呈

半导体二极管及其应用

第1章半导体二极管及其应用 本章要点 ●半导体基础知识 ●PN结单向导电性 ●半导体二极管结构、符号、伏安特性及应用 ●特殊二极管 本章难点 ●半导体二极管伏安特性 ●半导体二极管应用 半导体器件是近代电子学的重要组成部分。只有掌握了半导体器件的结构、性能、工作原理和特点,才能正确地选择和合理使用半导体器件。半导体器件具有体积小、重量轻、功耗低、可靠性强等优点,在各个领域中得到了广泛的应用。半导体二极管和三极管是最常用的半导体器件,而PN结又是组成二极管和三极管及各种电子器件的基础。本章首先介绍有关半导体的基础知识,然后将重点介绍二极管的结构、工作原理、特性曲线、主要参数以及应用电路等,为后面各章的学习打下基础。 1.1 PN结 1.1.1 半导体基础知识 1. 半导体特性 自然界中的各种物质,按其导电能力划分为:导体、绝缘体、半导体。导电能力介于导体与绝缘体之间的,称之为半导体。导体如金、银、铜、铝等;绝缘体如橡胶、塑料、云母、陶瓷等;典型的半导体材料则有硅、锗、硒及某些金属氧化物、硫化物等,其中,用来制造半导体器件最多的材料是硅和锗。 半导体之所以用来制造半导体器件,并不在于其导电能力介于导体与绝缘体之间,而在于其独特的导电性能,主要表现在以下几个方面。 (1) 热敏性:导体的导电能力对温度反应灵敏,受温度影响大。当环境温度升高时,其导电能力增强,称为热敏性。利用热敏性可制成热敏元件。 (2) 光敏性:导体的导电能力随光照的不同而不同。当光照增强时,导电能力增强,称为光敏性。利用光敏性可制成光敏元件。 (3) 掺杂性:导体更为独特的导电性能体现在其导电能力受杂质影响极大,称为掺杂性。这里所说的“杂质”,是指某些特定的纯净的其他元素。在纯净半导体中,只要掺入极微量的杂质,导电能力就急剧增加。一个典型的数据是:如在纯净硅中,掺入百万分之

第一章半导体二极管极其电路

第一章 半导体二极管极其电路 1、 什么是本征半导体?什么是杂质半导体(N 型、P 型)? 本征半导体是非常纯净的半导体晶体,而在单晶半导体内,原子按晶体结构排列得非常 整齐。杂质半导体:掺入微量元素的本征半导体,例:N 型掺入五价元素磷,P 型掺入三价 元素硼。 2、在半导体中有几种载流子?半导体的导电方式与金属的导电方式有什么不同? 答:在半导体中有两种载流子,电子和空穴。而金属导体中只有自由电子参与导电。 3、如何理解电子-空穴对的产生和复合? 电子空穴对的产生与复合是由于自由电子的移动,空穴并不是真正存在的粒子,电子填充空穴位置即复合。电子离开空穴即产生。 4、在PN 结中什么是扩散电流?什么是漂移电流? 答:PN 结两侧的P 型半导体、N 型半导体掺入的杂质元素不同,其载流子浓度也不相同。由于存在载流子浓度的差异,载流子会从浓度高的区域向浓度低的区域运动,通常把这种运动称为扩散运动,把扩散运动产生的电流称为扩散电流。 在内电场的作用下,N 区的少数载流子(空穴)会向P 区做定向运动,同样P 区的少数载流子(自由电子)会向N 区做定向运动,这种运动称为漂移运动,由漂移运动产生的电流称为漂移电流。 5、说明扩散运动、漂移运动对空间电荷区(耗尽层)的影响。 答:扩散运动会使空间电荷区变宽、内电场加大;内电场的产生和加强又阻止了多子的扩散, 有助于少子的漂移,结果使空间电荷区变窄,削弱了内电场,如此反复,在P 区和N 区之间,多子的扩散和少子的漂移会形成动态平衡,扩散电流等于漂移电流,总电流等于零,空间电荷区宽度一定,内电场强度一定,PN 结呈电中性。 6、写出PN 结的伏安特性表达式并绘出响应的曲线。 答:PN 结的伏安特性可用下式描述:)1e (T D /s D -=nV v I i 7、 解释雪崩击穿、齐纳击穿、热击穿形成的原因,并说明热击穿与电击穿的异同。 雪崩击穿:当加在PN 结两端反向电压足够大时 PN 结内的自由电子数量激增导致反向电流迅速增大,导致击穿。 齐纳击穿:在PN 结两端加入高浓度的杂质,在不太高的反向电压作用下同样会使反向电流迅 迅增大产生击穿 热击穿:加在PN 结两端的电压和流过PN 结电流的乘积大于PN 结允许的耗散功率,PN 结会因为热量散发不出去而被烧毁

极管入门知识:二极管结构和工作原理

在自然界中,根据材料的导电能力,我们可以将他们划分导体、绝缘体和半导体。常见的导体如铜和铝、常见的绝缘体如橡胶、塑料等。什么是半导体呢半导体的导电能力介于导体和绝缘体之间,常见的半导体材料有硅(Si)和锗(Ge)。到此,请记住两种半导体材料:硅、锗。因为以后你会听说硅管、锗管。意思很明显,说明这种二极管或三极管是用硅或锗作为基材的。 半导体硅原子结构图 半导体有几个特性有必要了解一下:热敏性、光敏性和掺杂性; 半导体的热敏性:半导体的导电能力受温度影响较大,当温度升高时,半导体的导电能力大大增强,被称为半导体的热敏性。利用半导体的热敏性可制成热敏元件,在汽车上应用的热敏元件有温度传感器,如水温传感器、进气温度传感器等。 半导体硅的空穴和自由电子示意图 半导体的光敏性:半导体的导体的导电能力随光照的不同而不同。当光照增强时,导电能力增强,称为半导体光敏性。利用光敏性可制成光敏元件。在汽车上应用的光敏元件有汽车自动空调上应用的光照传感器。 半导体的掺杂性:当在导体中掺入少量杂质,半导体的导电性能增加。 什么是本征半导体、P型半导体和N型半导体,有哪些区别 本征半导体:纯净的半导体称为本征半导体。 P型半导体:在本征半导体硅或锗中掺入微量的三价元素硼(B)或镓,就形成P型半导体。 P型半导体示意图-空穴是多数载流子 N型半导体:在本征半导体硅或锗中掺入微量的五价元素磷(P)就形成N型半导体。 N型半导体中自由电子是多数载流子

PN结和二极管 在半导体硅或锗中一部分区域掺入微量的三价元素硼使之成为P型,另一部分区域掺入微量的五价元素磷使之成为N型半导体。在P型和N型半导体的交界处就形成一个PN 结。一个PN结就是一个二极管,P区的引线称为阳极,N区的引线称为阴极。 二极管结构图:P区引线成为阳极、N区引线成为阴极 二极管的单向导电性能 二极管具前单向导电性能, (1)正向导通:当PN结加上正向电压,即P区接蓄电池正级,N区接蓄电池负极时,PN结处于导通状态,如图所示,试灯有电流通过,点亮。 二极管正向导通示意图 注意二极管正向导通时存在着电压降,什么意思呢如果蓄电池电压是12V,则试灯上的电压一定小于12V,大约是吧,哪在那里呢在二极管上,这就是二极管的电压降。二极管的电压降取决于二极管采用的是锗管还是硅管:锗管的电压降是左右;而硅管的电压降是左右。如果蓄电池电压低于二极管正常导通的电压降,则二极管将不能导通。这个原理的重要性在二极管你可能体会不到,但是到了三极管就显的非常重要了。 (2)反向截止:当PN结加上反正电压,即P区接蓄电池负极,N区接蓄电池正极时,PN结处于截止状态,如图所示,试灯没有电流通过,不能点亮。 二极管反向截止示意图 二极管接反向电压时,存在着一个耐压的问题:如果加在二极管的反向电压过高,二极管受不了,就会击穿,此时二极管不在处于截止状态,而是处于导通状态。如果我们设定一个击穿电压,当达到反向击穿电压时,二极管会击穿导通。如果现在电压又小于了

半导体二极管及其应用习题解答

第1章半导体二极管及其基本电路 教学内容与要求 本章介绍了半导体基础知识、半导体二极管及其基本应用和几种特殊二极管。教学内容与教学要求如表所示。要求正确理解杂质半导体中载流子的形成、载流子的浓度与温度的关系以及PN结的形成过程。主要掌握半导体二极管在电路中的应用。 表第1章教学内容与要求 内容提要 1.2.1半导体的基础知识 1.本征半导体 高度提纯、结构完整的半导体单晶体叫做本征半导体。常用的半导体材料是硅(Si)和锗(Ge)。本征半导体中有两种载流子:自由电子和空穴。自由电子和空穴是成对出现的,称为电子空穴对,它们的浓度相等。 本征半导体的载流子浓度受温度的影响很大,随着温度的升高,载流子的浓度基本按指数规律增加。但本征半导体中载流子的浓度很低,导电能力仍然很差, 2.杂质半导体 (1)N型半导体本征半导体中,掺入微量的五价元素构成N型半导体,N型半导体中的多子是自由电子,少子是空穴。N型半导体呈电中性。 (2) P型半导体本征半导体中,掺入微量的三价元素构成P型半导体。P型半导体中的多子是空穴,少子是自由电子。P型半导体呈电中性。 在杂质半导体中,多子浓度主要取决于掺入杂质的浓度,掺入杂质越多,多子浓度就越大。而少子由本征激发产生,其浓度主要取决于温度,温度越高,少子浓度越大。 1.2.2 PN结及其特性

1.PN 结的形成 在一块本征半导体上,通过一定的工艺使其一边形成N 型半导体,另一边形成P 型半导体,在P 型区和N 型区的交界处就会形成一个极薄的空间电荷层,称为PN 结。PN 结是构成其它半导体器件的基础。 2.PN 结的单向导电性 PN 结具有单向导电性。外加正向电压时,电阻很小,正向电流是多子的扩散电流,数值很大,PN 结导通;外加反向电压时,电阻很大,反向电流是少子的漂移电流,数值很小,PN 结几乎截止。 3. PN 结的伏安特性 PN 结的伏安特性: )1(T S -=U U e I I 式中,U 的参考方向为P 区正,N 区负,I 的参考方向为从P 区指向N 区;I S 在数值上等于反向饱和电流;U T =KT /q ,为温度电压当量,在常温下,U T ≈26mV 。 (1) 正向特性 0>U 的部分称为正向特性,如满足U ??U T ,则T S U U e I I ≈,PN 结的正向电流I 随正向电压U 按指数规律变化。 (2) 反向特性 0>,则S I I -≈,反向电流与反向电 压的大小基本无关。 (3) 击穿特性 当加到PN 结上的反向电压超过一定数值后,反向电流急剧增加,这种现象称为PN 结反向击穿,击穿按机理分为齐纳击穿和雪崩击穿两种情况。 4. PN 结的电容效应 PN 结的结电容C J 由势垒电容C B 和扩散电容C D 组成。C B 和C D 都很小,只有在信号频率较高时才考虑结电容的作用。当PN 结正向偏置时,扩散电容C D 起主要作用,当PN 结反向偏置时,势垒电容C B 起主要作用。 1.2.3 半导体二极管 1. 半导体二极管的结构和类型 半导体二极管是由PN 结加上电极引线和管壳组成。 二极管种类很多,按材料来分,有硅管和锗管两种;按结构形式来分,有点接触型、面接触型和硅平面型几种。 2. 半导体二极管的伏安特性 半导体二极管的伏安特性是指二极管两端的电压u D 和流过二极管的电流i D 之间的关系。它的伏安特性与PN 结的伏安特性基本相同,但又有一定的差别。在近似分析时,可采用PN 结的伏安特性来描述二极管的伏安特性。 3. 温度对二极管伏安特性的影响 温度升高时,二极管的正向特性曲线将左移,温度每升高1o C ,PN 结的正向压降约减小(2~)mV 。 二极管的反向特性曲线随温度的升高将向下移动。当温度每升高10 o C 左右时,反向饱和电流将加倍。 4. 半导体二极管的主要参数 二极管的主要参数有:最大整流电流I F ;最高反向工作电压U R ;反向电流I R ;最高工作频率f M 等。由于制造工艺所限,即使同一型号的管子,参数也存在一定的分散性,因此手册上往往给出的是参数的上限值、下限值或范围。 5. 半导体二极管的模型 常用的二极管模型有以下几种:

第1章 半导体二极管及其应用习题解答教学文稿

第1章半导体二极管及其应用习题解答

第1章半导体二极管及其基本电路 1.1 教学内容与要求 本章介绍了半导体基础知识、半导体二极管及其基本应用和几种特殊二极管。教学内容与教学要求如表1.1所示。要求正确理解杂质半导体中载流子的形成、载流子的浓度与温度的关系以及PN结的形成过程。主要掌握半导体二极管在电路中的应用。 表1.1 第1章教学内容与要求 1.2 内容提要 1.2.1半导体的基础知识 1.本征半导体 高度提纯、结构完整的半导体单晶体叫做本征半导体。常用的半导体材料是硅(Si)和锗(Ge)。本征半导体中有两种载流子:自由电子和空穴。自由电子和空穴是成对出现的,称为电子空穴对,它们的浓度相等。 本征半导体的载流子浓度受温度的影响很大,随着温度的升高,载流子的浓度基本按指数规律增加。但本征半导体中载流子的浓度很低,导电能力仍然很差, 2.杂质半导体

(1) N 型半导体 本征半导体中,掺入微量的五价元素构成N 型半导体,N 型半导体中的多子是自由电子,少子是空穴。N 型半导体呈电中性。 (2) P 型半导体 本征半导体中,掺入微量的三价元素构成P 型半导体。P 型半导体中的多子是空穴,少子是自由电子。P 型半导体呈电中性。 在杂质半导体中,多子浓度主要取决于掺入杂质的浓度,掺入杂质越多,多子浓度就越大。而少子由本征激发产生,其浓度主要取决于温度,温度越高,少子浓度越大。 1.2.2 PN 结及其特性 1.PN 结的形成 在一块本征半导体上,通过一定的工艺使其一边形成N 型半导体,另一边形成P 型半导体,在P 型区和N 型区的交界处就会形成一个极薄的空间电荷层,称为PN 结。PN 结是构成其它半导体器件的基础。 2.PN 结的单向导电性 PN 结具有单向导电性。外加正向电压时,电阻很小,正向电流是多子的扩散电流,数值很大,PN 结导通;外加反向电压时,电阻很大,反向电流是少子的漂移电流,数值很小,PN 结几乎截止。 3. PN 结的伏安特性 PN 结的伏安特性: )1(T S -=U U e I I 式中,U 的参考方向为P 区正,N 区负,I 的参考方向为从P 区指向N 区;I S 在数值上等于反向饱和电流;U T =KT /q ,为温度电压当量,在常温下,U T ≈26mV 。

半导体发光二极管灯具介绍

半导体发光二极管灯具介绍 一、定义 半导体发光二极管灯具即LED(Light Emitting Diode)灯具,是一种半导体固体发光器件。它是利用固体半导体芯片作为发光材料,在半导体中通过载流子发生复合放出过剩的能量而引起光子发射,直接发出红、黄、蓝、绿、青、橙、紫、白色的光。LED照明产品就是利用LED作为光源制造出来的照明器具。 半导体发光二极管灯具 二、前景 当前全球能源短缺的忧虑再度升高的背景下,节约能源是我们未来面临的重要的问题,在照明领域,LED发光产品的应用正吸引着世人的目光,LED作为一种新型的绿色光源产品,必然是未来发展的趋势,二十一世纪将进入以LED为代表的新型照明光源时代。

LED灯具 LED被称为第四代照明光源或绿色光源,具有节能、环保、寿命长、体积小等特点,可以广泛应用于各种指示、显示、装饰、背光源、普通照明和城市夜景等领域。近年来,世界上一些经济发达国家围绕LED的研制展开了激烈的技术竞赛。美国从2000年起投资5亿美元实施“国家半导体照明计划”,欧盟也在2000年7月宣布启动类似的“彩虹计划”。我国科技部在“863”计划的支持下,2003年6月份首次提出发展半导体照明计划。 三、优点 高节能:节能能源无污染即为环保。直流驱动,超低功耗(单管 0.03-0.06瓦)电光功率转换接近100%,相同照明效果比传统光源节能80%以上。 LED灯泡 寿命长:LED光源有人称它为长寿灯,意为永不熄灭的灯。固体冷光源,环氧树脂封装,灯体内也没有松动的部分,不存在灯丝发光易烧、热沉积、光衰等缺点,使用寿命可达6万到10万小时,比传统光源寿命长10倍以上。 多变幻:LED光源可利用红、绿、蓝三基色原理,在计算机技术控制下使三种颜色具有256级灰度并任意混合,即可产生256×256×256=16777216种颜色,形成不同光色的组合变化多端,实现丰富多彩的动态变化效果及各种图像。 利环保:环保效益更佳,光谱中没有紫外线和红外线,既没有热量,也没有辐射,眩光小,而且废弃物可回收,没有污染不含汞元素,冷光源,可以安全触摸,属于典型的绿色照明光源。

半导体二极管及其应用习题解答

半导体二极管及其应用 习题解答 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第1章半导体二极管及其基本电路 教学内容与要求 本章介绍了半导体基础知识、半导体二极管及其基本应用和几种特殊二极管。教学内容与教学要求如表所示。要求正确理解杂质半导体中载流子的形成、载流子的浓度与温度的关系以及PN结的形成过程。主要掌握半导体二极管在电路中的应用。 表第1章教学内容与要求 内容提要 1.2.1半导体的基础知识 1.本征半导体 高度提纯、结构完整的半导体单晶体叫做本征半导体。常用的半导体材料是硅(Si)和锗(Ge)。本征半导体中有两种载流子:自由电子和空穴。自由电子和空穴是成对出现的,称为电子空穴对,它们的浓度相等。 本征半导体的载流子浓度受温度的影响很大,随着温度的升高,载流子的浓度基本按指数规律增加。但本征半导体中载流子的浓度很低,导电能力仍然很差, 2.杂质半导体

(1) N 型半导体 本征半导体中,掺入微量的五价元素构成N 型半导体,N 型半导体中的多子是自由电子,少子是空穴。N 型半导体呈电中性。 (2) P 型半导体 本征半导体中,掺入微量的三价元素构成P 型半导体。P 型半导体中的多子是空穴,少子是自由电子。P 型半导体呈电中性。 在杂质半导体中,多子浓度主要取决于掺入杂质的浓度,掺入杂质越多,多子浓度就越大。而少子由本征激发产生,其浓度主要取决于温度,温度越高,少子浓度越大。 1.2.2 PN 结及其特性 1.PN 结的形成 在一块本征半导体上,通过一定的工艺使其一边形成N 型半导体,另一边形成P 型半导体,在P 型区和N 型区的交界处就会形成一个极薄的空间电荷层,称为PN 结。PN 结是构成其它半导体器件的基础。 2.PN 结的单向导电性 PN 结具有单向导电性。外加正向电压时,电阻很小,正向电流是多子的扩散电流,数值很大,PN 结导通;外加反向电压时,电阻很大,反向电流是少子的漂移电流,数值很小,PN 结几乎截止。 3. PN 结的伏安特性 PN 结的伏安特性: )1(T S -=U U e I I 式中,U 的参考方向为P 区正,N 区负,I 的参考方向为从P 区指向N 区;I S 在数值上等于反向饱和电流;U T =KT /q ,为温度电压当量,在常温下,U T ≈26mV 。

半导体二极管培训讲学

课题 1.1 半导体二极管 课型 新课授课班级授课时数 2 教学目标 1.熟识二极管的外形和符号。 2.掌握二极管的单向导电性。 3.理解二极管的伏安特性、理解二极管的主要参数。 教学重点 二极管的单向导电性。 教学难点 二极管的反向特性。 学情分析 教学效果 教后记

新课 A.引入 自然界中的物质,按导电能力的不同,可分为导体和绝缘体。人们又发现还有一类物质,它们的导电能力介于导体和绝缘体之间,那就是 半导体。 B.新授课 1.1半导体二极管 1.1.1什么是半导体 1.半导体:导电能力随着掺入杂质、输入电压(电流)、温度和光照条件的不同而发生很大变化,人们把这一类物质称为半导体。 2.载流子:半导体中存在的两种携带电荷参与导电的“粒子”。 (1)自由电子:带负电荷。 (2)空穴:带正电荷。 特性:在外电场的作用下,两种载流子都可以做定向移动,形成电流。 3.N型半导体:主要靠电子导电的半导体。 即:电子是多数载流子,空穴是少数载流子。 4.P型半导体:主要靠空穴导电的半导体。 即:空穴是多数载流子,电子是少数载流子。 1.1.2PN结 1.PN结:经过特殊的工艺加工,将P型半导体和N型半导体紧密地结合在一起,则在两种半导体的交界面就会出现一个特殊的接触面,称为PN结。 2.实验演示 (1)实验电路 (2)现象 所加电压的方向不同,电流表指针偏转幅度不同。 (3)结论 PN结加正向电压时导通,加反向电压时截止,这种特性称为PN结的单向导电性。 3.反向击穿:PN结两端外加的反向电压增加到一定值时,反向电流急剧增大,称为PN结的反向击穿。 4.热击穿:若反向电流增大并超过允许值,会使PN结烧坏,称为热击穿。 5.结电容(讲解) (引入实验电路,观察现象)

半导体电子元器件基本知识

半导体电子元器件基本知识 四、光隔离器件 光耦合器又称光电耦合器,是由发光源和受光器两部分组成。发光源常用砷化镓红外发光二极管,发光源引出的管脚为输入端。常用的受光器有光敏三极管、光敏晶闸管和光敏集成电路等。受光器引出的管脚为输出端。光耦合器利用电---光----电两次转换的原理,通过光进行输入与输出之间的耦合。 光耦合器输入与输出之间具有很高的绝缘电阻,可以达到10的10次方欧姆,输入与输出间能承受2000V以上的耐压,信号单向传输而无反馈影响。具有抗干扰能力强、响应速度快、工作可靠等优点,因而用途广泛。如在:高压开关、信号隔离转换、电平匹配等电路中。 光隔离常用如图: 五、电容 有电解电容、瓷片电容、涤纶电容、纸介电容等。 利用电容的两端的电压不能突变的特性可以达到滤波和平滑电压的目的以及电路之间信号的耦合。电解电容是有极性的(有+、-之分)使用时注意极性和耐压。 电路原理图一般用C1、C2、C?等表示。 半导体二极管、三极管、场效应管是电路中最常用的半导体器件,PN结是构成各种半导体器件的重要基础。 导电能力介于导体和绝缘体之间的物质称为半导体。具有热敏、光敏、掺杂特性;根据掺入的杂质不同,可分为:N型半导体、P型半导体。 PN结是采用特定的制造工艺,使一块半导体的两边分别形成P型半导体和N型半导体,它们交界面就形成PN结。PN结具有单向导电性,即在P端加正电压,N端接负时PN结电阻很低,PN结处于导通状态,加反向电压时,PN结呈高阻状态,为截止,漏电流很小。 一、二极管 将PN结加上相应的电极引线和管壳就成为半导体二极管。 P结引出的电极称为阳极(正极),N结引出的电极称为阴极(负极),原理图中一般常用D1、D2、D?等表示。 二极管正向导通特性(死区电压):硅管的死区电压大于0。5V,诸管大于0。1V。用数字式万用表的二极管档可直接测量出正极和负极。利用二极管的单向导电性可以组成整流电路。将交流电压变为单向脉动电压。 使用注意事项: 1、在整流电路中流过二极管的平均电流不能超过其最大整流电流; 2、在震荡电路或有电感的回路中注意其最高反向击穿电压的使用问题; 3、整流二极管不应直接串联(大电流时)或并联使用,串联使用时,每个二极管应并联一个均压电阻,其大小按100V(峰值)70K左右计算,并联使用时,每个二极管应串联10

第1章__半导体二极管及其应用习题解答xx汇总

第1章半导体二极管及其基本电路 1.1 教学内容与要求 本章介绍了半导体基础知识、半导体二极管及其基本应用和几种特殊二极管。教学内容与教学要求如表1.1所示。要求正确理解杂质半导体中载流子的形成、载流子的浓度与温度的关系以及PN结的形成过程。主要掌握半导体二极管在电路中的应用。 表1.1 第1章教学内容与要求 1.2 内容提要 1.2.1半导体的基础知识 1.本征半导体 高度提纯、结构完整的半导体单晶体叫做本征半导体。常用的半导体材料是硅(Si)和锗(Ge)。本征半导体中有两种载流子:自由电子和空穴。自由电子和空穴是成对出现的,称为电子空穴对,它们的浓度相等。 本征半导体的载流子浓度受温度的影响很大,随着温度的升高,载流子的浓度基本按指数规律增加。但本征半导体中载流子的浓度很低,导电能力仍然很差, 2.杂质半导体 (1) N型半导体本征半导体中,掺入微量的五价元素构成N型半导体,N型半导体中的多子是自由电子,少子是空穴。N型半导体呈电中性。 (2) P型半导体本征半导体中,掺入微量的三价元素构成P型半导体。P型半导体中的多子是空穴,少子是自由电子。P型半导体呈电中性。 在杂质半导体中,多子浓度主要取决于掺入杂质的浓度,掺入杂质越多,多子浓度就越大。而少子由本征激发产生,其浓度主要取决于温度,温度越高,少子浓度越大。 1.2.2 PN结及其特性 1.PN结的形成 在一块本征半导体上,通过一定的工艺使其一边形成N型半导体,另一边形成P型半

导体,在P 型区和N 型区的交界处就会形成一个极薄的空间电荷层,称为PN 结。PN 结是构成其它半导体器件的基础。 2.PN 结的单向导电性 PN 结具有单向导电性。外加正向电压时,电阻很小,正向电流是多子的扩散电流,数值很大,PN 结导通;外加反向电压时,电阻很大,反向电流是少子的漂移电流,数值很小,PN 结几乎截止。 3. PN 结的伏安特性 PN 结的伏安特性: )1(T S -=U U e I I 式中,U 的参考方向为P 区正,N 区负,I 的参考方向为从P 区指向N 区;I S 在数值上等于反向饱和电流;U T =KT /q ,为温度电压当量,在常温下,U T ≈26mV 。 (1) 正向特性 0>U 的部分称为正向特性,如满足U >>U T ,则T S U U e I I ≈,PN 结的 正向电流I 随正向电压U 按指数规律变化。 (2) 反向特性 0>,则S I I -≈,反向电流与反向电压的大小基本无关。 (3) 击穿特性 当加到PN 结上的反向电压超过一定数值后,反向电流急剧增加,这种现象称为PN 结反向击穿,击穿按机理分为齐纳击穿和雪崩击穿两种情况。 4. PN 结的电容效应 PN 结的结电容C J 由势垒电容C B 和扩散电容C D 组成。C B 和C D 都很小,只有在信号频率较高时才考虑结电容的作用。当PN 结正向偏置时,扩散电容C D 起主要作用,当PN 结反向偏置时,势垒电容C B 起主要作用。 1.2.3 半导体二极管 1. 半导体二极管的结构和类型 半导体二极管是由PN 结加上电极引线和管壳组成。 二极管种类很多,按材料来分,有硅管和锗管两种;按结构形式来分,有点接触型、面接触型和硅平面型几种。 2. 半导体二极管的伏安特性 半导体二极管的伏安特性是指二极管两端的电压u D 和流过二极管的电流i D 之间的关系。它的伏安特性与PN 结的伏安特性基本相同,但又有一定的差别。在近似分析时,可采用PN 结的伏安特性来描述二极管的伏安特性。 3. 温度对二极管伏安特性的影响 温度升高时,二极管的正向特性曲线将左移,温度每升高1o C ,PN 结的正向压降约减小(2~2.5)mV 。 二极管的反向特性曲线随温度的升高将向下移动。当温度每升高10 o C 左右时,反向饱和电流将加倍。 4. 半导体二极管的主要参数 二极管的主要参数有:最大整流电流I F ;最高反向工作电压U R ;反向电流I R ;最高工作频率f M 等。由于制造工艺所限,即使同一型号的管子,参数也存在一定的分散性,因此手册上往往给出的是参数的上限值、下限值或范围。 5. 半导体二极管的模型 常用的二极管模型有以下几种:

半导体二极管和三极管分析

第7章半导体二极管和三极管 7.1 半导体的基本知识 7.2 PN结 7.3 半导体二极管 7.4 稳压二极管 7.5 半导体三极管

第7章半导体二极管和三极管 本章要求: 一、理解PN结的单向导电性,三极管的电流分配和 电流放大作用; 二、了解二极管、稳压管和三极管的基本构造、工 作原理和特性曲线,理解主要参数的意义;三、会分析含有二极管的电路。

对于元器件,重点放在特性、参数、技术指标和正确使用方法,不要过分追究其内部机理。讨论器件的目的在于应用。 学会用工程观点分析问题,就是根据实际情况,对器件的数学模型和电路的工作条件进行合理的近似,以便用简便的分析方法获得具有实际意义的结果。 对电路进行分析计算时,只要能满足技术指标,就不要过分追究精确的数值。 器件是非线性的、特性有分散性、RC 的值有误差、工程上允许一定的误差、采用合理估算的方法。

7.1 半导体的基本知识 半导体的导电特性: (可做成温度敏感元件,如热敏电阻)。 掺杂性:往纯净的半导体中掺入某些杂质,导电 能力明显改变(可做成各种不同用途的半导 体器件,如二极管、三极管和晶闸管等)。 光敏性:当受到光照时,导电能力明显变化 (可做 成各种光敏元件,如光敏电阻、光敏二极 管、光敏三极管等)。 热敏性:当环境温度升高时,导电能力显著增强

7.1.1 本征半导体 完全纯净的、具有晶体结构的半导体,称为本征半导体。 晶体中原子的排列方式 硅单晶中的共价健结构 共价健 共价键中的两个电子,称为价电子。 Si Si Si Si 价电子

Si Si Si Si 价电子 价电子在获得一定能量(温度升高或受光照)后,即可挣脱原子核的束缚,成为自由电子(带负电),同时共价键中留下一个空位,称为空穴(带正电)。 本征半导体的导电机理这一现象称为本征激发。 空穴温度愈高,晶体中产 生的自由电子便愈多。 自由电子 在外电场的作用下,空穴吸引相邻原子的价电子来填补,而在该原子中出现一个空穴,其结果相当于空穴的运动(相当于正电荷的移动)。

第一章半导体二极管极其电路

第三章 场效应管及其放大电路 1. JEFT 有两种类型,分别是N 沟道结型场效应管和P 沟道结型场效应管 2. 在JFET 中: (1) 沟道夹断:假设0=DS v ,如图所示。由于 0=DS v ,漏极和源极间短路,使整个沟道内没有压降,即整个沟道内的电位与源极的相同。令反偏的栅-源电压GS v 由零向负值增大,使PN 结处于反偏状态,此时,耗尽层将变宽;由于在结型场效应管制作中,P 区的浓度远大于N 区的浓度,所以,耗尽层主要在N 沟道内变宽,随着耗尽层宽度加大,沟道变窄,沟道内的电阻增大。继续反响加大GS v ,耗尽层将在沟道内合拢,此时,沟道电阻將变的无穷大,这种现象成为沟道夹断 (2)在DS v 较小时,DS v 的加大虽然会增大沟道内的电阻,但这种影响不是很明显,沟道仍处于比较宽的状态,即沟道的电阻在DS v 比较小的时候基本不变,此时加大DS v ,会使D i 迅速增加,D i 与DS v 近似为线性关系。加大DS v ,沟道内的耗尽层会逐渐变宽,沟道电阻增加,D i 随DS v 的上升,速度会变缓。当||P DS V v =时,楔形沟道会在A 点处合拢,这种现象称为预夹断。 3. 解: (1)(a )为N 沟道场效应管 (b )为P 沟道场效应管 (2)(a )V V P 4-= (b )V V P 4= (3)(a )A I DSS 5= (b )A I DSS 5-= (4)电压DS v 与电流D i 具有相同的极性且与GS v 极性相反,因而,电压DS v 的极性可根据D i 或GS v 的极性判断 4.解:

当JFET 工作在饱和区时,有关系式:2)1(P GS DSS D V V I i -= 5. 解:在P 沟道JFET 中,要求栅-源电压GS v 极性为正,漏源电压DS v 的极性为负,夹断电源P V 的极性为正 6. 解:MOS 型场效应管的详细分类 7. 解: 耗尽型是指,当0=GS v 时,即形成沟道,加上正确的GS v 时,能使对数载流子流出沟道, 因而“耗尽”了载流子,使管子转向截止。 增强型是指, 当0=GS v 时管子是呈截止状态,加上正确的GS v 后,多数载流子被吸引到栅极,从而“增强”了该区域的载流子,形成导电沟道。 8. MOS 管工作时一定要保证PN 结反偏。因此输入电阻非常大。 9. a.N 沟道耗尽型MOS 管 VP=-3V b P 沟道耗尽型 VP=4V c N 沟道增强型MOS 管 VT=2V d P 沟道增强型MOS 管 VP=-4V 10. id=id0(vgs/vt -1)(vgs/vt-1) Vgs=2vt 11. 对所有的N 沟道场效应管Vds>0 对于所有的P 沟道场效应管 Vds<0 N 沟道耗尽型VGS 可正可负 N 沟道增强型Vgs>0 P 沟道耗尽型Vgs 可正可负 P 沟道增强型Vgs<0 12 N 沟道增强型: VT 为正 N 沟道耗尽型:VP 为负

相关文档 最新文档