文档库 最新最全的文档下载
当前位置:文档库 › 数值分析考试题山科大研究生

数值分析考试题山科大研究生

数值分析考试题山科大研究生
数值分析考试题山科大研究生

山东科技大学 2008-2009 学年第一学期

《数值分析》考试

[][]。

构造一个复化求积公式利用该求积公式

,等分,并记作,)将区间并说明理由。

否为高斯型求积公式,)试判断该求积公式是数精度。代数精度,并指出其代,使其具有尽可能高的)试确定求积系数七、给定积分公式多项式。上的一次最佳一致逼近,在区间六、求使得

次多项式五、做一个迭代格式收敛。在什么范围取值时以上)分析性。迭代格式并分析其收敛迭代格式与)写出为非零常数。

其中四、给定线性方程组

并指出收敛阶数。造迭代格式的收敛性,的迭代格式,证明所构)构造一个可以求的近似值。

求代格式

)说明不能用下面的迭为正数,记为正整数,三、设的直线。点二、求一条拟合和相对误差限。

的绝对误差限和位有效数字。试分析均具有,一、设,,1,0,1,2

11-32,,1)

1()0()1()(:

10)(,2)2(,1)2(',2)1(',3)4(,1)2(,3)1()(52eidel -auss acobi 126241011-01-422,1,0,1c 2)2,2(),3,1(),1,0(35486.101234.91

1

2*321**11*33n i ih x n

h n C B A f Bf Af d x f x x f H H H H H H x H a S G J a x x x a x x k cx x c

x n C B A y x y x y x i x n

k k n ??=+-==++-≈=====-==????

??????=?????????????????????

?===≥+-==?

--+

[]???

??=++=++=++?????

=-≤≤++++=≤≤+=-=?

??=≤≤=+20

531825214

3210,)),(,(2),(3.

0,,n )(),,('32

132132101x x x x x x x x x y n i y x hf y h x f y x f h y y n i ih a x n

a b h a y b

x a y x f y i i i i i i i i i ,求解方程组

九用矩阵的三角分解法式。时局部截断误差的表达相应的阶数,并给出此具有最高阶精度,指出值求解公式

试确定常数使得下列数记,

取正整数值问题八、考虑常微分方程初ηααη

山东科技大学 2009-2010 学年第一学期

《数值分析》考试试卷

()()()()[][][]多少等分

区间位有效数字,至少应将要是计算结果具有

复化梯形公式计算积分若用及其截断误差。

的复化梯形公式写出计算积分,等分,并记做将区间)指出其代数精度。

及截断误差表达式,并的梯度公式)推导出计算积分项

次插值多项式及插值余两点为差值节点的和以写出七、设。次最佳一致逼近多项式上的,在区间求六、

,满足

)(次的多项式过五、构造一个次数不超解。三角分解法求方程组的)用矩阵的性。迭代格式并分析其收敛迭代格式与写出四、给定线性方程组

收敛阶。,试着构造,并指出其否可以提高?如果可以的迭代格式的收敛阶是)求敛的。明次迭代格式是线性收的牛顿迭代格式,并证的根写出方程为正数,记三、设的直线。,,,,点求一条拟合二、

差限。的绝对误差限和相对误位有效数字。试分析均有设近似值一、

5,)4)()

(,,2,1,0,,,3)()(21)()1)()(,,)(211-124)(2)1('',)1(')0('0)1()0(,4oolittle 2eidel -auss acobi )139502-2-11-304220)()1,)()(53,22,31,103y x 5430.56,1021.11

0n 2

23321**3*23x x i b

a x

d e f T f I n i ih a x n

a

b h n b a f T f I b a x f d x f f I b a C x f x x x f H H H H H x H D S G J x x x x x x f a

x a a x x f D C B A y x ????=+=-==∈++=====????

?

?????=????????????????????==-=+==

表达式

并给出局部截断误差的阶精度,

具有式试证明下列数值求解公记,

取正整数值问题九、考虑常微分方程初式。

其局部截断误差的表达具有二阶精度,并给出,求解公式,试证明下列数值

取正整数值问题八、考虑常微分方程初2)),(,(.

0,,n )(),,('10,)),(32,32(3),(4,2,1,0,,n )(),,('101i i i i i i i i i i i i i i i i y x hf y h x hf y y n i ih a x n

a b h a y b x a y x f y y n i y x hf y h x f y x f h y y n

i ih a x n

a

b h a y b

x a y x f y +++=≤≤+=-=?

??=≤≤=??

???=-≤≤???

???++++=??=+=-=?

??=≤≤=++ηηη

山东科技大学 2010-2011 学年第一学期

《数值分析》考试试卷

[]。

及截断误差的复化梯形公式写出计算积分,等分,并记做将区间及截断误差表达式;的梯形公式写出计算积分八、考虑定积分精度。数精度,并指出其代数使其具有尽可能高的代试确定求积系数七、给定求积公式:

平方误差方逼近设多项式构造差商表解。

三角分解法求方程组的用迭代格式的收敛性;试分析迭代格式;迭代格式与写出线性方程组

公式立方根方程试求绝对分析一、)()(,2,1,0,,n .2)()(.1)()(,,,)

1()0()1()(。多项项式上的一次最佳平[0,1]在区间)( ,试试 )( 六、。

值的三次牛顿三)( ,1,3,2,5 )(时,0,2,3,5 已知当 五、oolittle .3eidel -auss .2eidel -auss acobi .12

72135

22-给定 四、。的迭代 导出求 0,-应用牛顿法于 三、,,,,784641347,4-21设x 二、限和相对和相对误

误差y 的x 位有效数字。试 5 均有80.115y 6.1025, x 设近似值 n 1

1

-231213213321f T f I n i ih a x n

a

b h b a f T f I d x f f I C B A Cf Bf Af d x f x f x x f x f x f x D S G S G J x x x x x x x a a x Ax x x x A i x

b

a x ??=+=-=

=++-====??

?

??=+-=+-=+=?????

?????-=??????????=+==??

∞∞

表达式。

并给出局部截断误差的阶精度,具有式试证明下列数值求解公记取正整数值问题九、考虑常微分方程初2)),(,(.

0,,,)(),,(,1'i i i i i i i y x hf y h x hf y y n i ih a x n

a

b h n a y b

x a y x f y +++=≤≤+=-=?

?

?=≤≤=+η

山东科技大学 2012-2013 学年第一学期

《数值分析》考试试卷

[

][

]

[][]其收敛阶

出的牛顿迭代格式,并指的写出求方程为正数,记设六、计算题

插值多项式。的三次写出时,已知当五、计算题

差。多项式,并估计平方误上的一次最佳平方逼近在区间求设函数四、计算题

一个复化求积公式利用该求积公式构造等分,并记作)将区间

(斯型,并说明理由;

)判断该公式是否为高(数精度;代数精度,并指出其代,使其具有尽可能高的试确定求积系数给定求积公式:

三、计算题差限。的绝对误差限与相对误位有效数字,试分析均具有设二、计算题

。计算、设的值。

与计算、设一、计算题

**21

1

212121710

610

360)(,,)(ewton )(,5,2,3,1)(5,3,2,020)(,)(,,,1,0,1,2

n 11-32,,)1()

1()0()1()(365.3,1.12,,,,723226131,1252222222,13)(1x x f a x a a x x f N x f x f x x f x x f n k i ih x n

h C B A Cf Bf Af d x f x x x x A A x x A x L f L f x x x f n n i x F ==-=====+-==++-≈+==?????

?????-=??????????-=++=?

-∞

并指出其精度。

写出改进的欧拉公式,,记取正整数题考虑常微分方程初值问八、计算题

消去法求方程组的解。用列主元迭代格式的敛散性;试分析迭代格式。迭代格式与写出给定线性方程组七、计算题

.

0,,n ,)(),,(auss )3(eidel -auss )2(eidel -auss acobi )1(215702031-22-1'321n i ih a x n a

b h a y b x a y x f y G S G S G J x x x i ≤≤+=-=?

??=≤≤=????

??????-=????????????????????η

计算数学排名

070102 计算数学 计算数学也叫做数值计算方法或数值分析。主要内容包括代数方程、线性代数方程组、微分方程的数值数值逼近问题,矩阵特征值的求法,最优化计算问题,概率统计计算问题等等,还包括解的存在性、唯一性差分析等理论问题。我们知道五次及五次以上的代数方程不存在求根公式,因此,要求出五次以上的高次代一般只能求它的近似解,求近似解的方法就是数值分析的方法。对于一般的超越方程,如对数方程、三角方采用数值分析的办法。怎样找出比较简洁、误差比较小、花费时间比较少的计算方法是数值分析的主要课题的办法中,常用的办法之一是迭代法,也叫做逐次逼近法。迭代法的计算是比较简单的,是比较容易进行的以用来求解线性方程组的解。求方程组的近似解也要选择适当的迭代公式,使得收敛速度快,近似误差小。 在线性代数方程组的解法中,常用的有塞德尔迭代法、共轭斜量法、超松弛迭代法等等。此外,一些比消去法,如高斯法、追赶法等等,在利用计算机的条件下也可以得到广泛的应用。在计算方法中,数值逼近本方法。数值逼近也叫近似代替,就是用简单的函数去代替比较复杂的函数,或者代替不能用解析表达式表值逼近的基本方法是插值法。 初等数学里的三角函数表,对数表中的修正值,就是根据插值法制成的。在遇到求微分和积分的时候,的函数去近似代替所给的函数,以便容易求到和求积分,也是计算方法的一个主要内容。微分方程的数值解法。常微分方程的数值解法由欧拉法、预测校正法等。偏微分方程的初值问题或边值问题,目前常用的是有限元素法等。有限差分法的基本思想是用离散的、只含有限个未知数的差分方程去代替连续变量的微分方程求出差分方程的解法作为求偏微分方程的近似解。有限元素法是近代才发展起来的,它是以变分原理和剖分的方法。在解决椭圆形方程边值问题上得到了广泛的应用。目前,有许多人正在研究用有限元素法来解双曲方程。计算数学的内容十分丰富,它在科学技术中正发挥着越来越大的作用。 排名学校名称等级 1 北京大学A+ 2 浙江大学 A+ 3 吉林大学A+ 4 大连理工大学A+ 5 西安交通大学A 北京大学:http:https://www.wendangku.net/doc/dd3140548.html,/NewsSpecialDetailsInfo.aspx?SID=4 浙江大学:http:https://www.wendangku.net/doc/dd3140548.html,/NewsSpecialDetailsInfo.aspx?SID=21847 吉林大学:http:https://www.wendangku.net/doc/dd3140548.html,/NewsSpecialDetailsInfo.aspx?SID=5506 大连理工大学:http:https://www.wendangku.net/doc/dd3140548.html,/NewsSpecialDetailsInfo.aspx?SID=4388 西安交通大学:http:https://www.wendangku.net/doc/dd3140548.html,/NewsSpecialDetailsInfo.aspx?SID=18285

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

2009哈工大级研究生《数值分析》试卷

2009级研究生《数值分析》试卷 一.(6分) 已知描述某实际问题的数学模型为x y y x y x u 223),(+=,其中,y x ,由 统计方法得到,分别为4,2==y x ,统计方法的误差限为0.01,试求出u 的误差限 )(u ε和相对误差限)(u r ε. 二.(6分) 已知函数13)(3+=x x f 计算函数)(x f 的2阶均差]2,1,0[f ,和4阶均差]4,3,2,1,0[f . 三.(6分)试确定求积公式: )]1(')0('[12 1 )]1()0([21)(10f f f f dx x f -++≈?的代数精 度. 四.(12分) 已知函数122)(2 3 -++=x x x x f 定义在区间[-1,1]上,在空间 },,1{)(2x x Span x =Φ上求函数)(x f 的最佳平方逼近多项式. 其中,权函数1)(=x ρ,15 4 ))(),((,1532))(),((,34))(),((210-==-=x x f x x f x x f ???. 五.(16分) 设函数)(x f 满足表中条件: (1) 填写均差计算表(标有*号处不填): (2) 分别求出满足条件)2,1,0(),()(),()(22===k x f x N x f x L k k k k 的 2次 Lagrange 和 Newton 差值多项式.

(3) 求出一个四次插值多项式)(4x H ,使其满足表中所有条件.并用多项式降幂形式表示. 六.(16分) (1). 用Romberg 方法计算?3 1 dx x ,将计算结果填入下表(*号处不填). (2). 试确定三点 Gauss-Legender 求积公式?∑-=≈1 1 2 )()(k k k x f A dx x f 的Gauss 点k x 与系数 k A ,并用三点 Gauss-Legender 求积公式计算积分: ?3 1dx x . 七.(14分) (1) 证明方程02ln =--x x 在区间(1,∞)有一个单根.并大致估计单根的取值范围. (2) 写出Newton 迭代公式,并计算此单根的近似值.(要求精度满足: 5 110||-+<-k k x x ). 八. (12分) 用追赶法求解方程组: ???? ?? ? ??=??????? ????????? ??022112111131124321x x x x 的解. 九. (12分) 设求解初值问题???==0 0)() ,('y x y y x f y 的计算格式为: )],(),([111--+++=n n n n n n y x bf y x af h y y ,假设11)(,)(--==n n n n y x y y x y ,试确定参数b a ,的值,使该计算格式的局部截断误差为二阶,即截断部分为: )(3h o .

研究生《数值分析》练习题

硕士研究生 《数值分析》练习题 一、判断题 1、用Newton 切线法求解非线性线性方程可以任选初值。 ( ) 2、求解非线性线性方程,Newton 切线法比弦截法迭代次数多。 ( ) 3、若n n A R ?∈非奇异,用Jacobi 迭代法求解线性方程组Ax b =必收敛。( ) 4、Lagrange 插值法与Newton 插值法得到同一个插值多项式。 ( ) 二、填空题 1、近似数 3.14108937a =关于π具 位有效数字。 2、双点弦截法具有 阶收敛速度。 3、求方程x x e =根的单点弦截法迭代公式是 。 4、设2112A ?? = ? ?? ? ,则()A ρ= 。 5、设,0,1,2,3i x i =是插值基点,,0,1,2,3i l i =是对应的三次Lagrange 插值基函数,则()()3 3012i i i x l =-=∑ 。 6、由下数据表确定的代数插值多项式的不超过 次。 7、若()8754321f x x x x =+-+,则差商[]0,1,2,,8f = 。 8、拟合三点()()()0,1,1,3,2,2A B C 的直线是y = 。 三、分析与计算题 1、设()14,2,3515T A x -??==-?? -?? ,求∞=,2,1,,p x A p p 和()1A cond 。

2、1001012,20253A x -???? ? ? == ? ? ? ?-???? ,试计算p p x A ,,p=1,2,∞,和1)(A cond 。 3、线性方程组,0Ax b b =≠,用Jacobi 迭代法是否收敛,为什么?其中 122111221A -?? ?=-- ? ?--?? 。 4、线性方程组,0Ax b b =≠,用Jacobi 迭代法是否收敛,为什么?其中 2-11=11111-2A ?? ???? ???? 。 5、已知函数表如下: ⑴ ()111.75ln11.75L ≈、估计截断误差并说明结果有几位有效数字; ⑵ ()211.75ln11.75N ≈、估计截断误差并说明结果有几位有效数字。 6、已知函数表 如下: ⑴用Lagrange 插值法求ln0.55的近似值()10.55N 、估计截断误差并说明结果的有效数字; ⑵用 Newton 插值法求ln0.55的近似值()20.55N 、估计截断误差并说明结果的有效数字。 7、已知数据如下,求满足条件的Hermite 插值多项式。

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

电子科技大学数值分析研究生期末考试习题一

习 题 请尽可能提供程序 1.用二分法求方程012=--x x 的正根,要求误差05.0<。 2. 为求方程0123=--x x 在5.10=x 附近的一个根,设将方程改写成下列等价形式,并建立相应的迭代公式: 1)2/11x x +=,迭代公式21/11k k x x +=+;2)231x x +=,迭代公式3211k k x x +=+; 3)1 12-=x x ,迭代公式1/11-=+k k x x ;4)132-=x x ,迭代公式131-=+k k x x 。 试分析每种迭代公式的收敛性。 3. 给定函数)(x f ,设对一切x ,)(x f '存在且M x f m ≤'≤<)(0,证明对于范围M /20<<λ内的任意定数λ,迭代过程)(1k k k x f x x λ-=+均收敛于)(x f 的根*x 。 4.设a 为正整数,试建立一个求 a 1的牛顿迭代公式,要求在迭代公式中不含有除法运算,并考虑公式的收敛性。请提供程序。 5.用Gauss 消去法求解方程组: ???? ? ??-=????? ??????? ??----50312131 2111321x x x (请提供程序) 用列主元Gauss 消去法求解下列方程组: (1)???? ? ??=????? ??????? ??13814142210321321x x x (请提供程序) 6.用追赶法解三对角方程组b Ax =,其中 ????????????????--------=210001 2100012100012100012A ,??????? ?????????=00001b 。 7.设n n R P ?∈且非奇异,又设x 为n R 上一向量范数,定义Px x p =。试证明p x 是n R 上向量的一种范数。 8.用平方根法(Cholesky 分解)求解方程组:

数值分析考试题

山东科技大学 2008-2009 学年第一学期 《数值分析》考试 [][]。 构造一个复化求积公式利用该求积公式 ,等分,并记作,)将区间并说明理由。 否为高斯型求积公式,)试判断该求积公式是数精度。代数精度,并指出其代,使其具有尽可能高的)试确定求积系数七、给定积分公式多项式。上的一次最佳一致逼近,在区间六、求使得 次多项式五、做一个迭代格式收敛。在什么范围取值时以上)分析性。迭代格式并分析其收敛迭代格式与)写出为非零常数。 其中四、给定线性方程组 并指出收敛阶数。造迭代格式的收敛性,的迭代格式,证明所构)构造一个可以求的近似值。 求代格式 )说明不能用下面的迭为正数,记为正整数,三、设的直线。点二、求一条拟合和相对误差限。 的绝对误差限和位有效数字。试分析均具有,一、设,,1,0,1,2 11-32,,1) 1()0()1()(: 10)(,2)2(,1)2(',2)1(',3)4(,1)2(,3)1()(52eidel -auss acobi 126241011-01-422,1,0,1c 2)2,2(),3,1(),1,0(35486.101234.91 1 2*321**11*33n i ih x n h n C B A f Bf Af d x f x x f H H H H H H x H a S G J a x x x a x x k cx x c x n C B A y x y x y x i x n k k n ??=+-==++-≈=====-==???? ??????=????????????????????? ?===≥+-==? --+

[]??? ??=++=++=++????? =-≤≤++++=≤≤+=-=? ??=≤≤=+20 531825214 3210,)),(,(2),(3. 0,,n )(),,('32 132132101x x x x x x x x x y n i y x hf y h x f y x f h y y n i ih a x n a b h a y b x a y x f y i i i i i i i i i ,求解方程组 九用矩阵的三角分解法式。时局部截断误差的表达相应的阶数,并给出此具有最高阶精度,指出值求解公式 试确定常数使得下列数记, 取正整数值问题八、考虑常微分方程初ηααη

数值分析试题

《计算机数学基础(下)》数值分析试题 2000、8 之六(2002、7已用) 一、单项选择题(每小题3分,共15分) 1.数值x *的近似值x =0.1215×10- 2,若满足≤-*x x ( ),则称x 有4位有效数字. (A) 21×10-3 (B) 21×10-4 (C) 21×10-5 (D) 2 1×10-6 2. 设矩阵A =?? ?? ? ?????------52111021210,那么以A 为系数矩阵的线性方程组A X =b 的雅可比迭代矩阵为( ) (A)??????????04.02.01.002.01.02.00 (B) ???? ? ?? ???14.02 .01.012.01.02.01 (C) ??????????------04.02.01.002.01.02.00 (D) ???? ??????021 102120 3. 已知y =f (x )的均差f (x 0,x 1,x 2)=314,f (x 1,x 2,x 3)=315,f (x 2,x 3,x 4)=15 91,f (x 0,x 2,x 3)=318 , 那么均差f (x 4,x 2,x 3)=( ) (A) 315 (B) 318 (C) 1591 (D) 3 14 4. 已知n =4时牛顿-科茨求积公式的科茨系数,15 2,4516,907)4(2)4(1) 4(0===C C C 那么 )4(3C =( ) 90 39 152********)D (152)C (4516)B (907)A (=--- 5.用简单迭代法求方程的近似根,下列迭代格式不收敛的是( ) (A) e x -x -1=0,[1,1.5],令x k +1=1e -k x (B) x 3-x 2-1=0,[1.4,1.5], 令211 1k k x x +=+ (C) x 3-x 2-1=0,[1.4,1.5], 令32 11k k x x +=+ (D) 4-2x =x ,[1,2], 令)4(log 21x x k -=+ 二、填空题(每小题3分,共15分) 6.sin1有2位有效数字的近似值0.84的相对误差限是 . 7.设矩阵A 是对称正定矩阵,则用 迭代法解线性方程组A X =b ,其迭代解数列一定收敛. 8. 已知f (1)=1,f (2)=3,那么y =f (x )以x =1,2为节点的拉格朗日线性插值多项式为 . 9. 用二次多项式2210)(x a x a a x ++=?,其中a 0, a 1, a 2是待定参数,拟合点(x 1,y 1),(x 2,y 2),…,(x n ,y n ). 那么参数a 0, a 1, a 2是使误差平方和 取最小值的解. 10. 设求积公式 ∑?=≈n k k k b a x f A x x f 0 )(d )(,若对 的多项式积分公式

2017年山东科技大学统计学(数据分析方向)专业人才培养方案

统计学(数据分析方向)专业培养方案 Statistics(Data Analysis Specialty) (门类:理学;二级类:统计学;专业代码:071201) 一、专业培养目标 本专业培养德、智、体、美全面发展,在具备一定的数学、统计学和计算机科学等方面知识的基础上,较全面掌握大数据处理和分析的基本理论、基本方法和基本技术,能够运用所学知识解决实际问题,具备较高的综合业务素质、创新与实践能力,能从事大数据分析、大数据应用开发、大数据系统开发、大数据可视化以及大数据决策等工作,具有较强的专业技能和良好外语运用能力的应用型创新人才,或继续攻读本学科及其相关学科的硕士学位研究生。 二、毕业要求 本专业是一门涉及数学、统计学、计算机科学等多领域的交叉学科。学生主要学习数学、统计学、计算机科学的基本理论和基本知识,打好坚实的数学基础,受到系统而扎实的计算机编程训练,具备较强的数据分析和信息处理能力,能在大数据科学与工程技术领域从事数据分析管理、系统设计开发、大数据处理应用、科学研究等方面的工作,具备综合运用所学知识分析和解决实际问题的能力。 本专业学生培养分为两个主要阶段,第一阶段着重于数据科学理论体系的培养,即发展和完善数据科学理论体系,为数据科学人才培养提供必要的理论和知识基础;第二阶段重视实践能力的培养,即在夯实数据科学理论的基础上,重视培养学生利用大数据的方法解决具体行业应用问题的能力。 本专业毕业生在知识、能力和素质方面的具体要求: 1.具有正确的世界观、人生观和价值观;具有良好的道德品质、高度的社会责任感与职业道德;具有良好的人文社会科学素养。 2.具有良好的人际交往能力和团队协作精神;有较强的自学能力和适应能力。 3.具有良好的数学、统计学和计算机科学基础,掌握数据科学与大数据技术、统计学和计算机科学的基本知识、方法和技能。

北航2010-2011年研究生数值分析期末模拟试卷1-3

数值分析模拟试卷1 一、填空(共30分,每空3分) 1 设??? ? ??-=1511A ,则A 的谱半径=)(a ρ______,A 的条件数=________. 2 设 ,2,1,0,,53)(2==+=k kh x x x f k ,则],,[21++n n n x x x f =________, ],,[321+++n n n n x x x x f ,=________. 3 设?????≤≤-++≤≤+=2 1,121 0,)(2 323x cx bx x x x x x S ,是以0,1,2为节点的三次样条函数,则b=________,c=________. 4 设∞=0)]([k k x q 是区间[0,1]上权函数为x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x q ,则 ?=1 )(dx x xq k ________,=)(2 x q ________. 5 设???? ??????=11001a a a a A ,当∈a ________时,必有分解式,其中L 为下三角阵,当 其对角线元素)3,2,1(=i L ii 满足条件________时,这种分解是唯一的. 二、(14分)设4 9,1,41,)(2102 3 === =x x x x x f , (1)试求)(x f 在]4 9,41[上的三次Hermite 插值多项式)(x H 使满足 2,1,0),()(==i x f x H i i ,)()(11x f x H '='. (2)写出余项)()()(x H x f x R -=的表达式. 三、(14分)设有解方程0cos 2312=+-x x 的迭代公式为n n x x cos 3 2 41+ =+, (1) 证明R x ∈?0均有? ∞ →=x x n x lim (? x 为方程的根); (2) 取40=x ,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值; (3)此迭代的收敛阶是多少?证明你的结论. 四、(16分) 试确定常数A ,B ,C 和,使得数值积分公式 有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?

2012研究生数值分析课期末考试复习题及答案

一、填空 1. 设 2.3149541...x * =,取5位有效数字,则所得的近似值x= 2.3150 . 2.设一阶差商 ()()()21122114 ,321f x f x f x x x x --= = =---, ()()()322332 615 ,422f x f x f x x x x --= = =-- 则二阶差商 ()123,,______ f x x x =11/6 3. 设(2,3,1)T X =--, 则2||||X = 14 ,=∞||||X 3 。p49 4. 4.求方程 2 1.250x x --= 的近似根,用迭代公式 1.25x x =+,取初始值 01 x =, 那么 1______x =。 1.5 5.解初始值问题 00 '(,)()y f x y y x y =?? =?近似解的梯形公式是 1______k y +≈。 ()()[]11,,2 ++++k k k k k y x f y x f h y 6、 1151A ??= ? -??,则A 的谱半径 = 6 。 7、设 2()35, , 0,1,2,... , k f x x x kh k =+== ,则 []12,,n n n f x x x ++= —————— ————3 和 []123,,,n n n n f x x x x +++= _______________0_____ 。 8、 若线性代数方程组AX=b 的系数矩阵A 为严格对角占优阵,则雅可比迭代和高斯-塞德尔迭代都 收敛 。 9、解常微分方程初值问题的欧拉(Euler )方法的局部截断误差为_______O(h ) ___。

贵州大学数值分析往年试题(6套)

贵州大学2009级工程硕士研究生考试试卷 数值分析 注意事项: 1.请考生按要求在下列横线内填写姓名、学号和年级专业。 2.请仔细阅读各种题目的回答要求,在规定的位置填写答案。 3.不要在试卷上乱写乱画,不要在装订线内填写无关的内容。 4.满分100分,考试时间120分钟。 专业 学号 姓名 一、(12分)用牛顿迭代法求3220--=x x 在区间[1.5,2]内的一个近似根,要求3 1||10-+-

二、(20分)已知()f x 的一组实验数据如下: (1)用三次插值公式求(1.28)f 的近似值; (2)用中心差商微分公式,求(1.5)' ?与求(2.0)'?的近似值。

三、(20分)设方程组12312312 335421537 ++=-+=--?? ??+=?x x x x x x x x x (1)用列主法求解方程组; (2)构造使G-S 方法收敛的迭代法,并取(0) (0,0,0)=T x ,求方程组的二次迭代近似解根。

四、(16分)将积分区间2等分,分别用复化梯形公式与复化辛普森公式求 2 1 ?x e dx的近似值。 五、(9分)设 32 11 ?? = ? -- ?? A, 3 1 ?? = ? -?? x,求 2 ||||x;谱半径() s A及条件数 1() cond A。

六、(16分)取步长0.1=h ,用Euler 预报-校正公式求微分方程 024| 2 ='=--?? =?x y y x y 的解()y x 在x =0.1与x =0.2处的近似值(2) (0.1)y ,(2)(0.2)y 。 七、(7分)设A 为非奇异矩阵,0≠b ,%x 是=Ax b 的近似解,x 是=Ax b 的解,证明 1|||||||| .()|||||||| --≤%%b Ax x x cond A b x 。

2014-2015数值分析考试试题卷

太原科技大学硕士研究生 2014/2015学年第1学期《数值分析》课程试卷 一、填空题(每空4分,共32分) 1、设?????≤≤-++<≤+=2 1,1321 0,)(2 323x x bx x x x x x s 是以0,1,2为节点三次样条函数,则b=__-2___ 2、解线性方程组12312312388 92688 x x x x x x x x x -++=-?? -+=??-+-=? 的Jacobi 迭代格式(分量形式)为 ?? ???+--=++-=++=+++)(2)(1)1(3) (3)(1)1(2) (3)(2)1(1882/)96(88k k k k k k k k k x x x x x x x x x ,其相应的迭代矩阵为??????????-0812/102/9810。 3、方程03 =-a x 的牛顿法的迭代格式为__3 12 3k k k k x a x x x +-=-__________,其收敛的阶为 2 。 4、已知数x 的近似值0.937具有三位有效数字,则x 的相对误差限是310534.0-? 解:x 1≈0.937, 31102 1 )(-?≤ x ε 3 31111 10(x )2 (x )0.53410x 0.937 r εε--?=≤=? 5、用列主元高斯消去法解线性方程组 ??? ??=--=++=++2333220221 321321x x x x x x x x 作第1次消元后的第2,3个方程分别为? ? ?=+--=-5.35.125 .15.03232x x x x 6、设???? ??-=3211A ,则=∞)(A Cond __4____.

数值分析作业思考题汇总

¥ 数值分析思考题1 1、讨论绝对误差(限)、相对误差(限)与有效数字之间的关系。 2、相对误差在什么情况下可以用下式代替 3、查阅何谓问题的“病态性”,并区分与“数值稳定性”的不同点。 4、取 ,计算 ,下列方法中哪种最好为什么(1)(3 3-,(2)(2 7-,(3) ()3 1 3+ ,(4) ()6 1 1 ,(5)99- , 数值实验 数值实验综述:线性代数方程组的解法是一切科学计算的基础与核心问题。求解方法大致可分为直接法和迭代法两大类。直接法——指在没有舍入误差的情况下经过有限次运算可求得方程组的精确解的方法,因此也称为精确法。当系数矩阵是方的、稠密的、无任何特殊结构的中小规模线性方程组时,Gauss消去法是目前最基本和常用的方法。如若系数矩阵具有某种特殊形式,则为了尽可能地减少计算量与存储量,需采用其他专门的方法来求解。 Gauss消去等同于矩阵的三角分解,但它存在潜在的不稳定性,故需要选主元素。对正定对称矩阵,采用平方根方法无需选主元。方程组的性态与方程组的条件数有关,对于病态的方程组必须采用特殊的方法进行求解。 数值计算方法上机题目1 1、实验1. 病态问题 实验目的: 算法有“优”与“劣”之分,问题也有“好”和“坏”之别。所谓坏问题就是问题本身的解对数据变化的比较敏感,反之属于好问题。希望读者通过本实验对此有一个初步的体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 $ r e x x e x x ** * ** - == 141 . ≈)61

数值分析2010-2011试卷

山东科技大学 2010-2011 学年第一学期 《数值分析》考试试卷 []。 及截断误差的复化梯形公式写出计算积分,等分,并记做将区间及截断误差表达式; 的梯形公式写出计算积分八、考虑定积分精度。 数精度,并指出其代数使其具有尽可能高的代试确定求积系数七、给定求积公式: 平方误差方逼近设多项式构造差商表解。 三角分解法求方程组的用迭代格式的收敛性; 试分析迭代格式; 迭代格式与写出线性方程组 公式立方根方程试求绝对分析一、)()(,2,1,0,,n .2)()(.1)()(,,,) 1()0()1()(。 多项项式上的一次最佳平[0,1]在区间)( ,试试 )( 六、。 值的三次牛顿三 )( ,1,3,2,5 )(时,0,2,3,5 已知当 五、oolittle .3eidel -auss .2eidel -auss acobi .12721 3522-给定 四、。 的迭代 导出求 0,-应用牛顿法于 三、,,,,784641347,4-21设x 二、限和相对和相对误 误差y 的x 位有效数字。试 5 均有80.115y 6.1025, x 设近似值 n 1 1-231213213321f T f I n i ih a x n a b h b a f T f I d x f f I C B A Cf Bf Af d x f x f x x f x f x f x D S G S G J x x x x x x x a a x Ax x x x A i x b a x ??=+=-==++-====?? ???=+-=+-=+=???? ??????-=??????????=+==??∞∞

研究生数值分析试卷

2005~2006学年第一学期硕士研究生期末考试试题(A 卷) 科目名称:数值分析 学生所在院: 学号: 姓名: 注意:所有的答题内容必须答在答题纸上,凡答在试题或草稿纸上的一律无效。 一、(15分)设求方程 0cos 2312=+-x x 根的迭代法 k k x x cos 3 2 41+=+ (1) 证明对R x ∈?0,均有*lim x x k k =∞ →,其中*x 为方程的根. (2) 此迭代法收敛阶是多少? 证明你的结论. 二、(12分)讨论分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解下列方程组的收敛性。 ??? ??=++-=++=-+. 022,1, 122321 321321x x x x x x x x x 三、(8分)若矩阵??? ? ? ??=a a a a A 000002,说明对任意实数0≠a ,方程组b AX =都是非病态的。(范数用∞?) 四、( 求)(x f 的Hermite 插值多项式)(3x H ,并给出截断误差)()()(3x H x f x R -=。 五、(10分)在某个低温过程中,函数 y 依赖于温度x (℃)的试验数据

为 已知经验公式的形式为 2bx ax y += ,试用最小二乘法求出 a ,b 。 六、(12分)确定常数 a ,b 的值,使积分 [ ] dx x b ax b a I 2 1 1 2 ),(?--+= 取得最小值。 七、(14分)已知Legendre(勒让德)正交多项式)(x L n 有递推关系式: ?? ? ? ???=+-++===-+),2,1()(1)(112)()(, 1)(1110 n x L n n x xL n n x L x x L x L n n n 试确定两点的高斯—勒让德(G —L )求积公式 ? -+≈1 1 2211)()()(x f A x f A dx x f 的求积系数和节点,并用此公式近似计算积分 ?=2 11 dx e I x 八、(14分)对于下面求解常微分方程初值问题 ?????==0 0)() ,(y x y y x f dx dy 的单步法: ??? ? ??? ++==++=+) ,() ,()2 121(1 21211 hk y h x f k y x f k k k h y y n n n n n n

数值分析最佳习题(含答案)

第一章 绪论 姓名 学号 班级 习题主要考察点:有效数字的计算、计算方法的比较选择、误差和误差限的计算。 1 若误差限为5105.0-?,那么近似数有几位有效数字(有效数字的计算) 解:2*103400.0-?=x ,325*102 1102 1---?=?≤-x x 故具有3位有效数字。 2 14159.3=π具有4位有效数字的近似值是多少(有效数字的计算) 解:10314159.0?= π,欲使其近似值*π具有4位有效数字,必需 41*102 1 -?≤-ππ,3*3102 1102 1--?+≤≤?-πππ,即14209.314109.3*≤≤π 3 已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a +, b a ?有几位有效数字(有效数字的计算) 解:3*1021 -?≤-a a ,2*102 1-?≤-b b ,而1811.2=+b a ,1766.1=?b a 2123****102 1 10211021)()(---?≤?+?≤ -+-≤+-+b b a a b a b a 故b a +至少具有2位有效数字。 2123*****102 1 0065.01022031.1102978.0)()(---?≤=?+?≤ -+-≤-b b a a a b b a ab

故b a ?至少具有2位有效数字。 4 设0>x ,x 的相对误差为δ,求x ln 的误差和相对误差(误差的计算) 解:已知δ=-* *x x x ,则误差为 δ=-= -* **ln ln x x x x x 则相对误差为 * * ** * * ln ln 1ln ln ln x x x x x x x x δ = -= - 5测得某圆柱体高度h 的值为cm h 20*=,底面半径r 的值为cm r 5*=, 已知cm h h 2.0||*≤-,cm r r 1.0||*≤-,求圆柱体体积h r v 2π=的绝对误差 限与相对误差限。(误差限的计算) 解:*2******2),(),(h h r r r h r r h v r h v -+-≤-ππ 绝对误差限为 πππ252.051.02052)5,20(),(2=??+????≤-v r h v 相对误差限为 %420 1 20525) 5,20() 5,20(),(2 ==??≤ -ππv v r h v 6 设x 的相对误差为%a ,求n x y =的相对误差。(函数误差的计算) 解:%* *a x x x =-, )%(* **** *na x x x n x x x y y y n n n =-≤-= - 7计算球的体积,为了使体积的相对误差限为%1,问度量半径r 时允许的相对误差限为多大(函数误差的计算)

数值分析试题及答案

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110l x = B . ()00l x =0, ()111l x = C .() 00l x =1,()111 l x = D . () 00l x =1,()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 1231231 220223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A . 232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得 分 评卷人 二、填空题(每小题3分,共15分)

1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数()()() 33301213,88C C C ===,那么 () 33C = 4. 因为方程()420 x f x x =-+=在区间 []1,2上满足 ,所以()0f x =在区间 内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公式 . 填空题答案 1. 9和29 2. ()() 0101 f x f x x x -- 3. 1 8 4. ()()120 f f < 5. ()12 00.1 1.1,0,1,210.11k k y y k k y +???? ?=+? ?=+???? =??L 得 分 评卷人 三、计算题(每题15分,共60分) 1. 已知函数 21 1y x = +的一组数据: 求分 段线性插值函数,并计算 () 1.5f 的近似值. 计算题1.答案 1. 解 []0,1x ∈, ()1010.510.50110x x L x x --=?+?=---% []1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--%

2008级研究生数值分析试题

太原科技大学 2008级硕士研究生08/09学年第一学期 《数值分析》考试试卷 说明:1、Legendre 正交多项式)(x L n 有三项递推关系式: ?? ?? ???=+-++===-+ ,2,1)(1)(112)()(,1)(1110n x L n n x xL n n x L x x L x L n n n 2、Chebyshev 多项式)(x T n 有三项递推关系式: ?? ? ??=-===-+ ,2,1)()(2)()(,1)(1110n x T x xT x T x x T x T n n n 一、填空题:(每题4分,共20分) 1、设??? ? ??-=1511A ,则=∞)(A Cond 2、为提高数值计算精度,当x 充分小时,应将 x x sin cos 1-改写为 3、设)5()(2 -+=x a x x ?,要使)(1k k x x ?=+局部收敛到5* = x ,则a 的取值范围为 4、近似数235.0* =x 关于真值229.0=x 有 位有效数字。 5、设,1)(3 -+=x x x f 则差商=]3,2,1,0[f 二、(本题满分10分)用数值积分的方法建立求解初值问题b x a y a y y x f y a ≤≤==',)(),,(的Simpson 公式: )4(3 1111-+-++++=n n n n n f f f h y y 其中1,,1),,(+-==n n n i y x f f i i i ,11-+-=-=n n n n x x x x h . 三、(本题满分15分)设要用Gauss-Seidel 迭代法求解下列线性方程组

研究生数值分析习题

1. 五个节点的Newton-Cotes 求积公式的代数精度为______,五个节点的求积公式最高代数精度为___________。(即Gauss 型求积公式) 2. 已知数值求积公式为3 11 ()[(1)4(2)(3)]3 f x dx f f f ≈++? , 则其代数精度为______。 3. 数值积分公式1 '12 ()[(1)8(0)(1)]9 f x dx f f f -≈-++?的代数 精度为_________。 4. 要使求积公式1 110 1 ()(0)()4 f x dx f A f x ≈ +?具有2次代数精度,则1x =___,1A =___。 5. 在Newton-Cotes 求积公式:() ()()()n b n i i a i f x dx b a C f x =≈-∑? 中,当系数()n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当___________时的Newton-Cotes 求积公式不能使用。 ()8()7()10()6A n B n C n D n ≥≥≥≥ 6. 若用复化梯形公式计算1 0x e dx ?,要求误差不超过6 10-,利 用余项公式估计,至少用______个求积节点。 7. 对于Gauss 型求积公式3 1 ()()()b k k a k f x x dx A f x ρ=≈∑?,其中 ()x ρ为权函数,下列说法错误的是_________。

(A )该求积公式一定是稳定的; (B )3 1()k k k A f x b a ==-∑; (C )该求积公式的代数精度为5; (D )2 (35)()()0b a x x x x dx ωρ-=? ,其中3 1 ()()k k x x x ω==∏-。 8. 0{()}k k x ?∞ =是区间[0,1]上权函数 ()x x ρ=的最高系数为1的正交多项式族,其中0()1x ?=,则1 40()_______x x dx ?=?。 9. 构造代数精度最高的如下形式的求积公式,并求出其代数精度: 1 010 1 ()()(1)2 xf x dx A f A f ≈+? 10. 数值积分公式形如 1 ()()(0)(1)(0)(1)xf x dx S x Af Bf Cf Df ''≈=+++? (1)试确定参数A 、B 、C 、D ,使公式的代数精度尽量高; (2)设4 ()[0,1]f x C ∈,推导余项公式1 0()()()R x xf x dx S x =-?, 并估计误差。 11. 用8n =的复化梯形公式和复化Simpson 公式计算 1 x e d x -? 时, (1)试用余项估计其误差; (2)计算积分的近似值。

相关文档
相关文档 最新文档