文档库 最新最全的文档下载
当前位置:文档库 › 葛余博概率2005.01

葛余博概率2005.01

葛余博概率2005.01
葛余博概率2005.01

概率论与数理统计发展史

概率论与数理统计发展简史 姓名:苗壮学号:1110810513 班级:1108105 指导教师:曹莉 摘要:在这里,我们将简略地回顾一下概率论与数理统计的发展史,包括发展过程中所经历的一些大事,以及对这门学科的创立和发展有特别重大影响的那些学者的贡献. 关键词:概率论、数理统计、发展史 正文: 1.概率论的发展 17世纪,正当研究必然性事件的数理关系获得较大发展的时候,一个研究偶然事件数量关系的数学分支开始出现,这就是概率论. 早在16世纪,赌博中的偶然现象就开始引起人们的注意.数学家卡丹诺(Cardano)首先觉察到,赌博输赢虽然是偶然的,但较大的赌博次数会呈现一定的规律性, 卡丹诺为此还写了一本《论赌博》的小册子,书中计算了掷两颗骰子或三颗骰子时,在一切可能的方法中有多少方法得到某一点数.据说,曾与卡丹诺在三次方程发明权上发生争论的塔尔塔里亚,也曾做过类似的实验. 促使概率论产生的强大动力来自社会实践.首先是保险事业.文艺复兴后,随着航海事业的发展,意大利开始出现海上保险业务.16世纪末,在欧洲不少国家已把保险业务扩大到其它工商业上,保险的对象都是偶然性事件.为了保证保险公司赢利,又使参加保险的人愿意参加保险,就需要根据对大量偶然现象规律性的分析,去创立保险的一般理论.于是,一种专门适用于分析偶然现象的数学工具也就成为十分必要了. 不过,作为数学科学之一的概率论,其基础并不是在上述实际问题的材料上形成的.因为这些问题的大量随机现象,常被许多错综复杂的因素所干扰,它使难以呈“自然的随机状态”.因此必须从简单的材料来研究随机现象的规律性,这种材料就是所谓的“随机博弈”.在近代概率论创立之前,人们正是通过对这种随机博弈现象的分析,注意到了它的一些特性, 比如“多次实验中的频率稳定性”等,然后经加工提炼而形成了概率论. 荷兰数学家、物理学家惠更斯(Huygens)于1657年发表了关于概率论的早期著作《论赌博中的计算》.在此期间,法国的费尔马(Fermat)与帕斯卡(Pascal)也在相互通信中探讨了随机博弈现象中所出现的概率论的基本定理和法则.惠更斯等人的工作建立了概率和数学期望等主要概念,找出了它们的基本性质和演算方法,从而塑造了概率论的雏形.18世纪是概率论的正式形成和发展时期.1713年,贝努利(Bernoulli)的名著《推想的艺术》发表.在这部著作中,贝努利明确指出了概率论最重要的定律之一――“大数定律”,并且给出了证明,这使以往建立在经验之上的频率稳定性推测理论化了,从此概率论从对特殊问题的求解,发展到了一般的理论概括. 继贝努利之后,法国数学家棣谟佛(Abraham de Moiver)于1781年发表了《机遇原理》.书中提出了概率乘法法则,以及“正态分”和“正态分布律”的概念,为概率论的“中心极限定理”的建立奠定了基础. 1706年法国数学家蒲丰(Comte de Buffon)的《偶然性的算术试验》完成,他把概率和几何结合起来,开始了几何概率的研究,他提出的“蒲丰问题”就是采取概率的方法来求圆周率π的尝试.

苏教版九年级上册数学[等可能条件下的概率--知识点整理及重点题型梳理]

苏教版九年级上册数学 重难点突破 知识点梳理及重点题型巩固练习 等可能条件下的概率--知识讲解 【学习目标】 1.知道试验的结果具有等可能性的含义; 2.会求等可能条件下的概率; 3.能够运用列表法和树状图法计算简单事件发生的概率. 【要点梳理】 要点一、等可能性 一般地,设一个试验的所有可能发生的结果有n个,它们都是随机事件,每次试验有且只有其中的一个结果出现.如果每个结果出现的机会均等,那么我们说这n个事件的发生是等可能的,也称这个试验的结果具有等可能性. 要点二、等可能条件下的概率 1.等可能条件下的概率 一般地,如果一个试验有n个等可能的结果,当其中的m个结果之一出现时,事件A 发生,那么事件A发生的概率P(A)=m n (其中m是指事件A发生可能出现的结果数,n 是指所有等可能出现的结果数). 当一个随机事件在一次试验中的所有可能出现的结果是有限个,且具有等可能性时,只需列出一次试验可能出现的所有结果,就可以求出某个事件发生的概率. 2.等可能条件下的概率的求法 一般地,等可能性条件下的概率计算方法和步骤是: (1)列出所有可能的结果,并判定每个结果发生的可能性都相等; (2)确定所有可能发生的结果的个数n和其中出现所求事件的结果个数m; (3)计算所求事件发生的可能性:P(所求事件)=m n . 要点三、用列举法计算概率 常用的列举法有两种:列表法和画树状图法. 1.列表法 当一次试验要涉及两个因素,并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法. 列表法是用表格的形式反映事件发生的各种情况出现的次数和方式,以及某一事件发生的可能的次数和方式,并求出概率的方法. 要点诠释: (1)列表法适用于各种情况出现的总次数不是很大时,求概率的问题; (2)列表法适用于涉及两步试验的随机事件发生的概率. 2.树状图 当一次试验要涉及3个或更多个因素时,为了不重不漏地列出所有可能的结果,通常采用树形图,也称树形图、树图.

概率论习题及答案()

概率论习题 一、填空题 1、掷21n +次硬币,则出现正面次数多于反面次数的概率是 . 2、把10本书任意的放到书架上,求其中指定的三本书放在一起的概率. 3、一批产品分一、二、三级,其中一级品是二级品的两倍,三级品是二级品的一半,从这批产品中随机的抽取一件,试求取到二级品的概率 . 4、已知()0.7,()0.3,P A P A B =-= 则().P AB = 5、已知()0.3,()0.4,()0.5,P A P B P AB === 则(|).P B A B ?= 6、掷两枚硬币,至少出现一个正面的概率为.. 7、设()0.4,()0.7,P A P A B =?= 若,A B 独立,则().P B = 8、设,A B 为两事件,11()(),(|),36 P A P B P A B === 则(|).P A B = 9、设123,,A A A 相互独立,且2(),1,2,3,3i P A i == 则123,,A A A 最多出现一个的概率是. 10、某人射击三次,其命中率为0.8,则三次中至多命中一次的概率为 . 11、一枚硬币独立的投3次,记事件A =“第一次掷出正面”,事件B =“第二次掷出反面”,事件C =“正面最多掷出一次”。那么(|)P C AB = 。 12、已知男人中有5%是色盲患者,女人中有0.25%是色盲患者.今从男女人数相等的人群中随机地 表示为互不相容事件的和是 。15、,,A B C 中不多于两个发生可表示为 。 二、选择题 1、下面四个结论成立的是( ) 2、设()0,P AB =则下列说法正确的是( ) 3、掷21n +次硬币,正面次数多于反面次数的概率为( ) 4、设,A B 为随机事件,()0,(|)1,P B P A B >= 则必有( ) 5、设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ) .A P (AB )=0 .B P (A -B )=P (A )P (B ) .C P (A )+P (B )=1 .D P (A |B )=0 6、设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( ) .A P (AB )=l .B P (A )=1-P (B ) .C P (AB )=P (A )P (B ) .D P (A ∪B )=1

概率论与数理统计公式整理超全免费版

第1章随机事件及其概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

简单事件的概率

2.1简单事件的概率 教学目标: 1、在具体情境中进一步了解概率的意义. 2、进一步运用列举法(包括列表、画树状图)计算简单事件的概率教学重点:运用列举法(包括列表、画树状图)计算简单事件的概率. 教学难点:运用列举法(包括列表、画树状图)计算简单事件的概率. 教学过程 一、回顾和思考: 在数学中,我们把事件发生的可能性的大小称为事件发生的概率. 问:运用公式P(A)=m n 求简单事件发生的概率,在确定各种可能结果发生的可能性 相同的基础上,关键是求什么? 关键是求事件所有可能的结果总数n和其中事件A发生的可能的结果m(m≤n) 二、热身训练: 北京08奥运会吉祥物是“贝贝、晶晶、欢欢、迎迎、妮妮”.现将三张分别印有“欢欢、迎迎、妮妮”这三个吉祥物图案的卡片(卡片的形状大小一样,质地相同)放入盒子. (1)小玲从盒子中任取一张,取到印有“欢欢”图案的卡片的概率是多少? (2)小玲从盒子中取出一张卡片,记下名字后放回,再从盒子中取出第二张卡片,记下名字.用列表或画树状图列出小玲取到的卡片的所有情况,并求出小玲两次都取到印“欢欢”图案的卡片的概率. 三、新课教学: 1、例3.学校组织春游,安排给九年级3辆车,小明与小慧都可以从这3辆车中任选一辆搭乘.问小明与小慧同车的概率有多大? 问:你能用树状图表示本题中事件发生的不同结果吗?用列表法也试试吧 解:记这三辆车分别为甲、乙、丙,小明与小慧乘车的所有可能的结果列表如下: (各种结果发生的可能性相同) ∴P=3 9 = 1 3 . 答:小明与小慧同车的概率是1 3 . 2、书本34页课内练习2 3、例4.如图,转盘的白色扇形和红色扇形的圆心角分别为120°和240°.让转盘自由转动2次,求指针一次落在白色区域,另一次落在红色区域的概率. 问:1、转盘自由转动1次,指针落在白色区域、红色区域的可能性相同吗? 2、如何才能使转盘自由转动1次,指针落在各个扇形区域内的可能性都相同?

概率论

一 1、若事件A 出现,事件B 和事件C 都不出现,则可表示为 。 2、已知,6.0)(,4.0)(,==?B P A P B A 则)(A B P -= 。 3、皮尔逊做掷一枚均匀硬币的试验,观察“正面朝上”这一事件A ,在12000次试验中,事件A 出现了6019次,则事件A 出现的频率是 。 4、已知随机变量A 的概率,5.0)(=A P 随机事件B 的概率,6.0)(=B P 条件概率 ,8.0)|(=A B P 则=?)(B A P 。 5、某工厂有甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的%,40%,35%,25各个车间产品的次品率分别为%,2%,4%,5则该厂产品的次品率为 。 6、假设X 是连续型随机变量,其概率密度函数为???<<=. 030)(2其它,; ,x cx x f ,则 =c 。 7、设二维随机变量 ) ,(Y X 的联合分布函数为 ),arctan )(arctan (),(y C x B A y x F ++=则=A ,=B ,=C 。 8、设Y 服从)4,5.1(N ,则=>}2{X P 。 9、设随机变量)16,1(~),4,1(~N Y N X ,则=+)(Y X E 。 10、设X 和Y 是相互独立,X 服从标准正态分布,Y 服从自由度为n 的卡方分布,称随机变量:n Y X T = 的分布为自由度为 的 分布。 二、设有一批量为50的同型号产品,其中次品10件,现按以下两种方式随机抽取2件产品:(1)有放回抽取,即先任取一件,观察后放回批中,再从中任取一件;(2)不放回抽取,即先任取一件,观察后不放回批中,从剩余的产品中再任取一件。试分别按这两种抽取方式,求 (a)、两件都是次品的概率? (b)、第一件是次品,第二件是正品的概率?

123等可能条件下的概率(二).

12.3等可能条件下的概率(二) 建湖县颜单中学陈国华 教学目标: 1、知识目标:了解等可能条件下的概率(二)两个特点,理解确定 这类几何概型概率的因素及概率的计算方法。 2、能力目标:让学生学会用转化的思想把等可能条件下的概率 (二)转化为等可能条件下的概率(一)并体会把无 限问题如何转化为有限问题解决,同时培养学生观 察分析归纳的能力。 3、情感目标:培养学生积极探索、合作交流、勇于创新的科学态度。 教学重点:等可能条件下的概率(二)两个特点,以及确定这类概率的因素和计算概率的方法 教学难点:等可能条件下的概率(二)为什么可以转化为等可能条件下的概率(一)的探索发现过程 教学方法:问题教学法、自主探索合作交流法 教学教具:有关转盘及多媒体课件 教学流程: 一、情境探究 情境1:出示一个带指针的转盘,任意转动这个转盘,如果在某个时刻观察指针的位置。

问题1:这时所有可能结果有多少个?为什么? 问题2:每次观察有几个结果?有无第二个结果? 问题3:每个结果出现的机会是均等的吗? 说明:根据学生的回答,适时揭示等可能条件下的概率(二)的两个特点:1、试验结果是无限个。2、每一个试验结果出现是可能性。 情境2:出示一个带指针的转盘,这个转盘被分成8个面积相等的扇形,并标上1、2、3……8,若每个扇形面积为单位1,转动转盘,转盘的指针的位置在不断的改变。 问题1:在转动的过程中当正好转了一周时指针指向每一个扇形区域机会均等吗?那么指针指向每一个扇形区域是等可能性吗? 问题2:怎样求指针指向每一个扇形区域的概率?它们的概率分别是多少? 问题3:在转动的过程中,当正好转了两周时呢?当正好转了n 周呢?当无限周呢? 说明:1、在问题1中让学生讨论得出求概率的方法:指针指向某个区域面积/整个转盘面积。让学生感知概率与指针经过的区域面

概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=??

分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ), 称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P (3)可列可加性:设n A A A ,,,21Λ是两两互不相容的事件,有∑===n k k n k k A P A P 1 1 )()(Y (n 可 以取∞) 2.概率的一些重要性质: (i ) 0)(=φP (ii )若n A A A ,,,21Λ是两两互不相容的事件,则有∑===n k k n k k A P A P 1 1 )()( Y (n 可以取∞)

概率论的那些事儿

概率论的那些事 院系:自动化测试与控制系姓名:XXX 学号:1130110XXX 导师:XXXX

摘要:概率史是一门研究随机现象规律的数学分支。它起源于十七世纪中叶,当时在误差分析、人口统计等范筹中,有大量的随机数据资料需要整理和研究,从而孕育出一种专门研究随机现象的规律性的数学。 关键字:概率论博弈发展生活 发展史 概率史是一门研究随机现象规律的数学分支。它起源于十七世纪中叶,当时在误差分析、人口统计等范筹中,有大量的随机数据资料需要整理和研究,从而孕育出一种专门研究随机现象的规律性的数学。另一方面,由于数学家参与讨论分赌本问题导致惠根斯完成了《论赌博中的计算》一书,由此奠定了古典概率论的基础。使概率论成为数学一个分支的另一奠基人是瑞士数学家雅各布伯努利。他的主要贡献是建立了概率论中的第一个极限定理《伯努利大数定理》。之后,法国数学家棣莫弗在他的著作《分析杂论》中提出了著名的《棣莫弗—拉普拉斯定理》。接着拉普拉斯在1812年出版了《概率的分析理论》,首先明确地对概率作了古典的定义。经过高斯和泊松等数学家的努力,概率论在数学中地位基本确立。到了20世纪的30年代,通过俄国数学家柯尔莫哥洛夫在概率论发展史上的杰出贡献,完全使概率论成为了一门严谨的数学分支。近代又出现了理论概率及应用概率论的分支,概率论被广泛的应用到了不同范筹和不同的学科。今天概率论已经成为一个非常庞大的数学分支。研究事物发生究数字重复的几率. 随着18、19世纪科学的发展,人们注意到在某些生物、物理和社会现象与机会游戏之间有某种相似性,从而由机会游戏起源的概率论被应用到这些领域中;同时这也大大推动了概率论本身的发展。使概率论成为数学的一个分支的奠基人是瑞士数学家j.伯努利,他建立了概率论中第一个极限定理,即伯努利大数定律,阐明了事件的频率稳定于它的概率。随后棣莫弗和p.s.拉普拉斯又导出了第二个 基本极限定理(中心极限定理)的原始形式。拉普拉斯在系统总结前人工作的基础上写出了《分析的概率理论》,明确给出了概率的古典定义,并在概率论中引入了更有力的分析工具,将概率论推向一个新的发展阶段。19世纪末,俄国数 学家p.l.切比雪夫、a.a.马尔可夫、a.m.李亚普诺夫等人用分析方法建立了大数定律及中心极限定理的一般形式,科学地解释了为什么实际中遇到的许多随机变量近似服从正态分布。20世纪初受物理学的刺激,人们开始研究随机过程。这方 面a·n·柯尔莫哥洛夫、n.维纳、a·a·马尔可夫、a·r·辛钦、p·莱维及w·费勒等人作了杰出的贡献。在总体上,概率论是一门研究事情发生的可能性的学问,但是最初概率论的起源与赌博问题有关。16世纪,意大利的学者吉罗拉莫·卡 尔达诺(Girolam oCardano,1501——1576)开始研究掷骰子等赌博中的一些 简单问题。17世纪中叶,当时的法国宫廷贵族里盛行着掷骰子游戏,游戏规则 是玩家连续掷4 次骰子,如果其中没有 6 点出现,玩家赢,如果出现一次 6 点,则庄家(相当于赌场)赢。按照这一游戏规则,从长期来看,庄家扮演赢家的角色,而玩家大部分时间是输家,因为庄家总是要靠此为生的,因此当时人们也就接受了这种现象。后来为了使游戏更刺激,游戏规则发生了些许变化,玩家这回用2 个骰子连续掷24 次,不同时出现2个6点,玩家赢,否则庄家赢。当时人们普遍认为,2 次出现 6 点的概率是一次出现 6 点的概率的 1 / 6 ,因此 6 倍于前一种规则的次数,也既是24 次赢或输的概率与以前是相等的。然而事实却刚好相反,从长期来看,这回庄家处于输家的状态,于是他们去请教当时的数

概率论与数理统计答案

习题答案 第1章 三、解答题 1.设P (AB ) = 0,则下列说法哪些是正确的 (1) A 和B 不相容; (2) A 和B 相容; (3) AB 是不可能事件; (4) AB 不一定是不可能事件; (5) P (A ) = 0或P (B ) = 0 (6) P (A – B ) = P (A ) 解:(4) (6)正确. 2.设A ,B 是两事件,且P (A ) = ,P (B ) = ,问: (1) 在什么条件下P (AB )取到最大值,最大值是多少 (2) 在什么条件下P (AB )取到最小值,最小值是多少 解:因为)()()()(B A P B P A P AB P -+≤, 又因为)()(B A P B P ≤即.0)()(≤-B A P B P 所以 (1) 当)()(B A P B P = 时P (AB )取到最大值,最大值是)()(A P AB P ==. (2) 1)(=B A P 时P (AB )取到最小值,最小值是P (AB )=+=. 3.已知事件A ,B 满足)()(B A P AB P =,记P (A ) = p ,试求P (B ). 解:因为)()(B A P AB P =, 即)()()(1)(1)() (AB P B P A P B A P B A P AB P +--=-== , 所以 .1)(1)(p A P B P -=-= 4.已知P (A ) = ,P (A – B ) = ,试求)(AB P . 解:因为P (A – B ) = ,所以P (A )– P(AB ) = , P(AB ) = P (A )– , 又因为P (A ) = ,所以P(AB ) =– =,6.0)(1)(=-=AB P AB P . 5. 从5双不同的鞋子种任取4只,问这4只鞋子中至少有两只配成一双的概率是多少 解:显然总取法有410C n =种,以下求至少有两只配成一双的取法k : 法一:分两种情况考虑:1 5 C k =24C 212)(C +25C

等可能事件的概率教案

课题:等可能性事件的概率 教材:人民教育出版社的全日制普通高级中学教科书(试验修订本.必修)《数学》第二册(下B)第十一章概率第一节(第二课时) 教学目标; (1)知识与技能目标:了解等可能性事件的概率的意义,初步运用排列、组合的公式和枚举法计算一些等可能性事件的概率。(2)过程和方法目标:通过学习、生活中的实际问题的引入,让数学走进生活将生活问题由对具体事例的感性认识上升到对定义的理性认识,可培养学生的梳理归纳能力;通过归纳定义后再加以应用可培养学生的信息迁移和类比推理能力;通过计算等可能性事件的概率,提高综合运用排列、组合知识的能力和分析问题、解决问题的能力。(3)情感与态度目标:营造亲切、和谐的氛围,以“趣”激学;随机事件的发生既有随机性,又有规律性,使学生了解偶然性寓于必然性之中的辩证思想;引导学生树立科学的人生观和价值观,培养学生的综合素质。 教学重点: 等可能性事件的概率的意义及其求法。 教学难点: 等可能性事件概率计算公式的重要前提:每个结果出现的可能性必须相同。 教学方法: 启发式探索法 教学手段: 计算机辅助教学、实物展示台 教具准备: 转盘一个 教学过程: 附:课前兴趣阅读: 生活中的数学 1、你做过这样的调查吗?我们班在座的同学中至少有两位同学在同一天生日的可能性 多大? 2、无为一中进行演讲比赛,参赛选手的演讲顺序通过抽签决定,抽签时有先有后,你 认为公平吗? 同学们,要想解决上面的问题,就让我们继续学习概率吧! 一、复习旧知: 抛掷一枚均匀硬币, (1)出现正面向上;(2)出现正面向上或反面向上;(3)出现正面向上且反面向上. 各是什么事件?概率分别是多少?(学生回答)(1)随机事件,概率是1/2 (2)必然事件,概率是 1 (3)不可能事件,概率是0

概率论与数理统计知识点总结(详细)

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 % 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 > 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P

初中《简单事件的概率》知识点

概率的简单应用 一、可能性 1、必然事件:有些事件我们能确定它一定会发生,这些事件称为必然事件. 2、不可能事件:有些事件我们能肯定它一定不会发生,这些事件称为不可能事件. 3、确定事件:必然事件和不可能事件都是确定的。 4、不确定事件:有很多事件我们无法肯定它会不会发生,这些事件称为不确定事件。 5、一般来说,不确定事件发生的可能性是有大小的。 常见考法:判断哪些事件是必然事件,哪些是不可能事件 例1:下列说法错误.. 的是( ) A .同时抛两枚普通正方体骰子,点数都是4的概率为 16 B .不可能事件发生机会为0 C .买一张彩票会中奖是可能事件 D .一件事发生机会为0.1%,这件事就有可能发生 二、简单事件的概率 1、概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。 2、必然事件发生的概率为1,记作P (必然事件)=1,不可能事件发生的概率为0,记作P(不可能事件)=0,如果A 为不确定事件,那么0

等可能事件的概率计算

《等可能事件的概率计算》教学设计 【教学目标】 1.知识与技能 (1)理解等可能事件的定义; (2)掌握等可能事件的概率计算方法。 2.过程与方法 归纳定义时用到特殊到一般的思想;在解题时利用类比的方法,举一反三 3.情感态度和价值观 感受到亲切、和谐的学习氛围,在活动中进一步发展学生合作交流的意识和能力。 【教学重点】 等可能事件的定义以及等可能事件的概率的求法。 【教学难点】 等可能事件概率公式的理解与运用。 【教学方法】 自学与小组合作学习相结合的方法。 【课前准备】 教学课件、完全一样的小球5个、硬币若干。 【课时安排】 1课时 【教学过程】 一、情景导入 【过渡】现在,我们思考一个问题,在6张卡片上分别写有1-6的六个整数,随机抽取一张。能出现什么样的结果? (学生回答) 【过渡】根据实际,我们知道,这6个数,我们抽到任何一个都是有可能的,那么,出现这些结果的概率相等吗?我们又该如何计算出现某一结果的概率呢?这就是我们今天要学习的内容。 二、新课教学 1.等可能事件的频率 【过渡】这里有我提前准备好的一个小箱子,箱子里有5个球,分别标有1,2,3,4,5这5个号码,这些球除号码外都相同,搅匀后任意摸出一个球。(1)会出现哪些可能的结果? 【过渡】这个问题跟我们刚刚的问题类似,相信大家都能回答。

(学生回答) 【过渡】(2)每个结果出现的可能性相同吗?猜一猜它们的概率分别是多少? (学生回答) 【过渡】我们猜测这个概率是1/5,那么,我们的猜测对吗? 【过渡】我们先来看另一个问题,前面我们提到的抛硬币,掷骰子和前面的摸球游戏有什么共同点? (学生讨论回答) 【过渡】通过比较,我们发现,这几个活动相似的地方在于,不管出现什么结果,都是等可能的,即为等可能事件。 设一个实验的所有可能结果有n个,每次试验有且只有其中的一个结果出现。如果每个结果出现的可能性相同,那么我们就称这个试验的结果是等可能的。 【过渡】上节课我们通过频率去估算事件的概率,在这里,我们来求取等可能事件的概率。从刚刚的活动中,大家能总结出概率的计算吗? 一般地,如果一个试验有n个等可能的结果,事件A包含其中的m个结果,那么事件A发生的概率为: P(A)= 【过渡】有了这个计算公式,我们就能够轻松的计算出等可能事件的概率。现在我们一起来看一下例1吧。 讲解课本例1。 【过渡】运用这个公式,一定要先确定事件是否为等可能事件。 【知识巩固】1、一个箱子中装有3个白球和7个红球,每个球除颜色外都相同,从箱子中任意摸出一个球. (1)摸到白球的概率,摸到红球的概率,摸到黑球的概率,摸到白球或红球的概率分别是多少? (2)从箱子中任意摸出一个球,那么很可能摸到什么球?为什么? 解:(1)共有3+7=10个球, ∴摸到白球的概率,摸到红球的概率, 摸到黑球的概率0,摸到白球或红球的概率1;

概率论的起源和发展

概率论的起源和发展 概率论是一门既古老又年轻的学科。说它古老,是因为产生概率的重要因素---赌博游戏已经存在了几千年,概率思想早在文明早期就己经开始萌芽了。而说它年轻,则是因为它在十八世纪以前的发展极为缓慢,现代数学家和哲学家们往往忽略了那段历史,他们更愿意把1654年帕斯卡(Pasac)l和费马(Fomrat)之间的七封通信看作是概率论的开端。这样,概率论的“年龄”就比数学大家族中的其它多数成员小很多。一般认为,概率论的历史只有短短的三百多年时间。虽然在早期概率论的发展非常缓慢,但是十八世纪以后,由于社会学,天文学等其它学科的研究需要,使得概率本身的理论得到了迅速发展,它的思想和方法也逐渐受到了其它学科的重视和借鉴。在当代,随着概率论本身的发展和学科之间的交叉融合,囊括了概率理论和统计理论两大部分的广义概率论已经成为一门应用非常广泛的学科,概率方法与统计方法逐渐渗透到了其它学科的研究工作当中。无论是在自然科学领域还是社会科学领域,各门学科中都能看到概率论的身影。概率论已经成为一种重要的工具,在社会发展中发挥着巨大的作用。 1、机会的早期计算 古希腊人从航海实践中发现了许多概率经验规律, 古犹太人在纪元之初就有概率加法定律和乘法定律的应用记录。但是由于结果不确定的特点, 人们一直认为随机现象好似运气都由天神决定, 其规则是世俗不可想象的。能够刺激人们思考概率的事情很多, 但最终孕育概率论的却是庸俗的骰子赌博。公元 960 年左右, 怀特尔德大主教计算出掷三个骰子时不计次序所能出现的不同组合有 56 种。十三世纪左右拉丁诗歌《维图拉》指出这 56 种组合出现的机会不是相同的: 3 枚骰子点数一样, 每个点数只有一种方式; 2 枚骰子点数一样而另一枚不一样, 则有 3 种方式; 如果 3 枚都不一样就有 6 种方式。但是这些经验并没有引起更多的思考, 机会的计算仍处于直觉的、散乱的经验水平上。 卡尔扎诺是一位医学博士, 曾在米兰讲授数学, 写过多部医学、数学等方面的著作。他认为赌博是一种社会病, 也有理由作为可以医治的疾病来研究。约在1564 年, 他集中了自己的智慧和赌博经验, 用拉丁文写出著名的《论机会游戏》, 揭示了赌博中的不确定性原理, 成为概率论前史的重要人物。书中, 卡尔扎诺强调赌博的基本原则是同等条件,“如果它们有利于对手, 那么你是傻瓜, 如果有利于自己, 那么你就不公平”。骰子应该是“诚实的”, 几个诚实的骰子联合起来仍然是诚实的, 下注应该根据这种诚实性。等可能思想的提出是卡尔扎诺的贡献之一, 为理解和解决复杂的赌博问题提供了依据。他定义了胜率(有利结果数与不利结果数之比) 表示机会的大小, 计算出了多种赌博的全部可能结果数和有利结果数, 由于当时组合数学还很贫乏, 他的计算在方法上与《维图拉》基本相同。卡尔扎诺还思考了独立事件的乘法法则, 在一番错误推理后他发现了正确方法, 例如一次的胜率是 3:1, 连续两次的胜率是 9:7。卡尔扎诺是第一个深入讨论概率问题的人, 他提出了考虑随机问题的基本原则, 建立了胜率概念和一些运算法则, 对概率理论的形成具有开创性贡献。但是他也犯了不少错误, 例如他认为在掷两个骰子时, 36 次投掷有 1 次机会出现双 6, 平均起来 18次投掷中, 出现双 6 的机会是 50%。这种推理意味着36 次投掷中必定出现一次双 6, 他没有意识到自己的错误。由于该书只有很少部分讨论机会计算, 其等可能思想

《概率论与数理统计》答案

习题 1.1 1、(1)选中乘客是不超过30岁的乘车旅游的男性 (2)选中的乘客是不超过30岁的女性或以旅游为乘车目的 (3)选中乘客是不超过30岁的女性或乘车旅游的女性 (4)选中乘客是30岁以上以旅游为目的男性 2、(1)2010A B U (2)1053 1 1 1 i j k i j k A B C ===U U U U U (3) 2017 i i C =U (4)10 10 21 21 1 1 i j i j A C D --==U U U U 3、(1)1 n i i G =I (2) 1 n i i G =U (3)12123121n n n n G G G G G G G G G G G -L U L UL U L && 习题 1.2 1、(该题题目有误,请将()1/4P A =改作()1/3P A =) (1)1()()()()30P AB P A P B P A B =+-= U (2)3()()()()10 P AB P A B P A P AB =-=-= (3)7()1()10 P AUB P AB =-= (4)7()()()()()()15 P AB AB P AB P AB P AB P B P AB =+=+-=U 2、811 877 ?=? 3、(1)仅考虑末位:12110 15C C =(2)末位1和9的数的平方末位是1,故概率为:121101 5 C C = 4、至少两名女生的概率:541 22228 5 30 10.4046C C C C +- ≈ 5人全为女生的概率:58530 0.0004C C ≈ 5、一等奖:8 613316 1 5.643010C C -≈?二等奖:61761561 33168.464510C C C C -≈? 三等奖:511 6 6271613316 9.141710C C C C C -≈?四等奖: 511421 627156271 61 3316 0.0004C C C C C C C C +≈

九年级上 简单事件的概率

VIP 学科优化教(学)案 教学部主管: 时间: 年 月 1.二次函数2 3y x bx =++的对称轴是2x =,则b =_______。 2.已知抛物线y=-2(x+3)2+5,如果y 随x 的增大而减小,那么x 的取值范围是_______. 3.一个函数具有下列性质:①图象过点(-1,2),②当x <0时,函数值y 随自变量x 的增大而增大;满足上述两条性质的函数的解析式是 (只写一个即可)。 4.抛物线22(2)6y x =--的顶点为C ,已知直线3y kx =-+过点C ,则这条直线与两坐标轴所围成的三角形面积为 。 5. 二次函数2241y x x =--的图象是由22y x bx c =++的图象向左平移1个单位,再向下平移2个单位得到的,则b= ,c= 。 6.如图,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB 上离中心M 处5米的地方,桥的高度是 . ㈠承上启下 知识回顾

【课本相关知识点】 1、在一定条件下一定发生的事件叫作必然事件;在一定条件下一定不会发生的事件叫作不可能事件;在一定条件下可能发生,也可能不发生的事件叫作不确定事件或随机事件。 2、为了确定简单事件发生的各种可能的结果,通常用列表、画树状图法。当实验包含两步时,用列表法与画树状图法求发生的结果数均比较方便;但当实验存在三步或三步以上时,用画树状图的方法求事件发生的结果数较为方便。 题型一、识别事件类型 例1、下列事件是必然事件的是( ) A. 水加热到100℃就要沸腾 B. 如果两个角相等,那么它们是对顶角 C.两个无理数相加,一定是无理数 D. 如果 ,那么a=0,b=0 练习.(2013?武汉)袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是必然事件的是( ) A .摸出的三个球中至少有一个球是黑球 B .摸出的三个球中至少有一个球是白球 C .摸出的三个球中至少有两个球是黑球 D .摸出的三个球中至少有两个球是白球 题型二、用列表、画树状图法确定简单事件发生的各种可能的结果 例2、(2011?成都)某市今年的信息技术结业考试,采用学生抽签的方式决定自己的考试内容.规定:每位考生先在三个笔试题(题签分别用代码B 1、B 2、B 3表示)中抽取一个,再在三个上机题(题签分别用代码J 1、J 2、J 3表示)中抽取一个进行考试。小亮在看不到题签的情况下,分别从笔试题和上机题中随机地各抽取一个题签.用树状图或列表法表示出所有可能的结果 练习.(2013?江西)甲、乙、丙三人聚会,每人带了一个从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件。将“甲、乙、丙3人抽到的都不是自己带来的礼物”记为事件A ,请列出事件A 的所有可能的结果。 题型三、比较事件发生的可能性的大小 例3、在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4。随机地摸出一张纸牌然后放回,再随机摸取出一张纸牌。甲、乙两个人进行游戏,如果两次摸出纸牌上数字之和为奇数,则甲胜;如果两次摸出纸牌上数字之和为偶数,则乙胜。这是个公平的游戏吗?请说明理由。 练习1.(2011江苏淮安)有牌面上的数都是2,3,4的两组牌,从每组牌中各随机摸出一张,请用画树状图或列表的方法,求摸出的两张牌的牌面上的数之和为多少的可能性最大。 ㈡紧扣考点 专题讲解

《等可能条件下的概率计算》教案

《等可能条件下的概率计算》教案 教学目标 1、在具体情境中进一步理解概率的意义,体会概率是描述不确定现象的数学模型. 2、进一步理解等可能事件的意义,会列出一些类型的随机实验的所有等可能结果(基本事件),会把事件分解成等可能的结果(基本事件). 3、能借助概率的计算判断事件发生可能性的大小. 4、会列出一些类型的随机试验的所有可能结果. 教学过程 情境:抛掷一只均匀的骰子一次. 问题: (1)点数朝上的试验结果是有限的吗?如果是有限的共有几种? (2)哪一个点数朝上的可能性较大? (3)点数大于4与点数不大于4这两个事件中,哪个事件发生的可能性大呢? 说明:(3)要求一个随机事件的概率,首先要弄清这个试验有多少等可能的结果.这是解决问题的关键. (1)(2)等可能事件的概率的有限性和等可能性.(让学生一一列举出来) 小结:等可能条件下的概率的计算方法: ()m P A n 其中m表示事件A发生可能出现的结果数,n表示一次试验所有等可能出现的结果数说明:我们所研究的事件大都是随机事件.所以其概率在0和1之间. 例1、不透明的袋子中装有3个白球和2个红球.这些球除颜色外都相同,拌匀后从中任意出1个球.问: (1)(学生讨论)会出现那些等可能的结果? (2)摸出白球的概率是多少? (3)摸出红球的概率是多少? 说明: (1)制定一个随机事件的可能的结果时,n的求法容易出错.有些同学认为摸出的球不是白球就是红球,所以摸出n种颜色的球是等可能的,这是不对的;引导学生弄清这个实验有多少等可能的结果. 例2、抛掷一枚均匀的硬币2次,记录2次的结果作为一次试验,重复这样的试验十次.并在小组内交流试验的结果. 问题1:你能只通过一次试验,列出所有可能的结果吗?

初中简单事件的概率知识点

概率的简 单应用 一、可能性 1、必然事件:有些事件我们能确定它一定会发生,这些事件称为必然事件. 2、不可能事件:有些事件我们能肯定它一定不会发生,这些事件称为不可能事件. 3、确定事件:必然事件和不可能事件都是确定的。 4、不确定事件:有很多事件我们无法肯定它会不会发生,这些事件称为不确定事件。 5、一般来说,不确定事件发生的可能性是有大小的。 常见考法:判断哪些事件是必然事件,哪些是不可能事件 例1:下列说法错误.. 的是( ) A .同时抛两枚普通正方体骰子,点数都是4的概率为16 B .不可能事件发生机会为0 C .买一张彩票会中奖是可能事件 D .一件事发生机会为%,这件事就有可能发生 二、简单事件的概率 1、概率的意义:表示一个事件发生的可能性大小的这个数叫做该事件的概率。 2、必然事件发生的概率为1,记作P (必然事件)=1,不可能事件发生的概率为0,记作P(不可能事件)=0,如果A 为不确定事件,那么0

相关文档
相关文档 最新文档