文档库 最新最全的文档下载
当前位置:文档库 › 7 等差数列,等差数列求和及应用

7 等差数列,等差数列求和及应用

7 等差数列,等差数列求和及应用
7 等差数列,等差数列求和及应用

不知不觉两周过去了,大家都已经熟悉了火星这边的环境,有自己的朋友圈,特别熟悉时就会称兄道弟:大哥、二哥、三哥、四弟……这样一串顺下来就是一个数列。福利彩票每期开奖号码也是数列。

总之,若干个数排成一列称为数列,其中第一项称为首项,最后一项称为末项,数列中数的个数称为项数。但今天我们要学习的是有规律的数列,这样才有利于计算。从第二

项开始,后项与前项的差称为公差,例如:2,4,6,8,…,98,100

等差数列的几个重要公式:

⑴ 求和公式:总和=(首项+末项)×项数÷2 ⑵ 求项数公式:项数=(末项-首项)÷公差+1 ⑶ 求末项公式:末项=首项+公差×(项数-1) ⑷ 求首项公式:首项=末项-公差×(项数-1)

⑸ 求某项通用公式:第n 项=首项+(项数-1)×公差

【典型例题】

例1、计算:3+8+13+18+

例2、有一列数按如下规律排列:4,10,16,22,…….这列数中前100个数的和是多少

例3、下面的算式是按照规律排列的:

3+1,6+3,9+5,12+7,…… 问:第100个算式的和是多少?

例4、一堆木料共有18层,最上一层是1根,往下每一层都比上一层多1根,这堆木料共有多少根?

例5、某体育馆西侧看台有30排座位,后面一排都比前面一排多2个座位,最后一排有132个座位,体育馆西侧看台共有多少个座位?

※例6、23个连续自然数的和是2944

【方法小结】

做这种类型的题首先判断这是否是等差数列,然后找到首项、末项、公差、项数就可以和。

【练习题】

1、计算:1+2+3+……+2007+2008

2、数列1,9,17,25,……前50项的和是多少?

3、有从小到大排列的一列数,共有250项,已知末项是2753,公差是11,求这列数的和.

4、计算:42003-7-11-15-19-……-403

5、某建筑工地有一批砖,堆成如图形状,最上层两块砖,第2层6块砖,第3层10块砖,……,每层依次都比其上面一层多4块砖.已知最下面一层有1998块砖,那么这批砖共有多少块?

6、15个连续奇数(单数)的和是1995,其中最小的奇数是多少?

检测题(测试时间:30分钟,满分:50分)姓名____________ 学校_______________________ 座号_________ 成绩________

A卷(25分)

计算题:1、50×16×125 (4分) 2、25×125

3、420÷(5×7)

(3分) 4、300÷25÷4(3分)

5、(80+8)×125 (3分)

6、12×a +20×a —2×a (4分)

7、111×999+999×777(4分)

B 卷(25分)

1、有一等差数列,它的首项是24,末项是618,公差是3,这列数的中间一项是多少?这列数的和是多少?(7分)

2、电影院在座位是按照这样的方法排列的:后一排总比前一排多两个座位.如果某电影院第一排有32个座位,共有36排,那么这个电影院共有多少个座位?(8分)

3、把585拆分成13个自然数的和,并使这13个数从小到大排成一行后,相邻两个数的差都是4,那么第一个数与最后一个数各是多少?(10分)

等差数列,等差数列求和及应用参考答案: 【典型例题】

例1、∵项数=(2008-3)÷5+1=402,∴原式=(3+2008)×402÷2=404211 例2、第100个数为:4+6×(100-1)=598,原式=(4+598)×100÷2=30100 例3、首项是4,公差是5,则末项为:4+5×(100-1)=499 例4、即求首项是1,公差是1,项数是18的等差数列的和

最下一层是1+1×(18-1)=18根,和为(1+18)×18÷2=171根

例5、即求公差是2,末项是132,项数是30的等差数列的和

第一排有座位:132-2×(30-1)=74,共有座位:(74+132)×30÷2=3090个

例6、1+2+3+……+22=(1+22)×22÷2=253

最小的数为(2944-253)÷23=117,最大的数为117+22=139

【练习题】

1、原式=(1+2008)×2008÷2=2017036

2、第50项为:1+8×(50-1)=393,和为(1+393)×50÷2=9850

3、首项为:2753-11×(250-1)=14,和为:(14+2753)×250÷2=345875

4、后边的项数为:(403-7)÷4+1=100

原式=42003-(7+403)×100÷2=42003-20500=21503

5、即求首项是2,公差是4,末项是1998的等差数列的和

项数为:(1998-2)÷4+1=500,这批砖共有:(2+1998)×500÷2=500000块

6、即求公差是2,和是1995,项数是15的等差数列的首项,可以转化为:

从第二个数起,每个数和第一个数的差为一个首项为2,公差为2,项数为14的等差数列,求出这个数列的和,再用1995减去这个和,即可求出首项即最小的奇数

新数列的末项为2+2×(14-1)=28,和为:(2+28)×14÷2=210

最小的奇数为:(1995-210)÷15=119

【检测题】

A卷

计算题

1、100000

2、1900000

3、12

4、3

5、11000

6、30a

7、887112

B卷

1、321,63879

2、2412

3、最小的数是21,最大的数是69

等差、等比数列公式总结

一、等差数列 1.定义:)(1常数d a a n n =-+ 2.通项公式:d n a )1(a 1n -+= 3.变式:d m n a m n )(a -+= m n a a d m n --= 4.前n 项和:2 )(1n a a S n n += 或 d n n n a S n 2)1(1-+= 5.几何意义: ①d dn a d n a a n -+=-+=11)1(即q pn a n += 类似 q px y += ②n d a n d S n )2 (212-+= 即 Bn An S n +=2 类似 Bx Ax y +=2 6.}{n a 等差d a a a a a Bn An S q pn a n n n n n n n =-?+= ?+=?+=?++-11122 7.性质 ① q p n m +=+则 q p n m a a a a +=+ ② p n m 2=+ 则 p n m a a a 2=+ ③ =+=+=+--23121n n n a a a a a a ④ m S 、m -m 2S 、2m -m 3S 等差 ⑤ }{n a 等差,有12+n 项,则 n S S 1n +=偶奇 ⑥ 1212-= -n S a n n 二、等比数列 1.定义:常数)(a 1q a n n =+ 2.通项公式:11a -=n n q a 3.变式: m n m n q a -=a m n m n q a a -= 4. ?????≠--==)1( 1)1()1( 11q q q a q na S n n

前n 项和:n a S n 1= )1(=q 或 q q a S n n --=11() 1 )1(≠q 5.变式:m n m n q q S S --=11 )1(≠q 6.性质: ① r p n m +=+则 r p n m a a a a ?=? ② p n m 2=+ 则 2 p n m a a a =? ③ =?=?=?--23121n n n a a a a a a ④ m S 、m -m 2S 、2m -m 3S 等比 ⑤ }{n a 等比,有12+n 项 偶奇qS a a a a q a a a a S n n +=++++=++++=+1242112531)(a 三、等差与等比的类比 {}n a 等差 {}n b 等差 和 积 差 商 系数 指数 “0” “1” 四、数列求和 1.分组求和 本数列的和公式求和.进行拆分,分别利用基,则可或等比数列的和的形式数列,但通项是由等差通项虽不是等差或等比 项的和: 前如求n n n )}1({+ )2)(1(3 1 )1(21)12)(1(61 )321()321( ) ()22()11(] )1(22222222++=++++=++++++++=++++++=∴+=+n n n n n n n n n n n n S n n n n n 2.裂项相消法. ).11(11}{1 1 11+++-=??n n n n n n n a a d a a a n a a 为等差数列,项和,其中的前项为用于通 从而计算和的方法,适别裂开后,消去一部分把数列和式中的各项分

等差、等比数列以及数列求和专题(汇编)

§6.2 等差数列 一.课程目标 1.理解等差数列的概念; 2.掌握等差数列的通项公式与前n 项和公式; 3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题; 4.了解等差数列与一次函数的关系. 二.知识梳理 1.定义 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示. 数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数),或a n -a n -1=d (n ≥2,d 为常数). 2.通项公式 若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . 3.前n 项和公式 等差数列的前n 项和公式:2 2111)() (n n a a n d n n na S +=-+=其中n ∈N *,a 1为首项,d 为公差,a n 为第n 项). 3.等差数列的常用性质 已知数列{a n }是等差数列,S n 是{a n }的前n 项和.

(1)通项公式的推广:*),()(N m n d m n a a m n ∈-+= (2)若m +n =p +q (m ,n ,p ,q ∈N *),则有q p n m a a a a +=+。特别的,当p n m 2=+时,p n m a a a 2=+ (3)等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列. (4)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (5)若}{},{n n b a 是等差数列,则}{n n qb pa +仍是等差数列. 4.与等差数列各项和相关的性质 (1)若}{n a 是等差数列,则}{n S n 也是等差数列, 其首项与}{n a 的首项相同,公差为}{n a 的公差的 2 1。 (2)数列m m m m m S S S S S 232--,,…也是等差数列. (3)关于非零等差数列奇数项与偶数项的性质。 a .若项数为n 2,则1 +==-n n a a S S nd S S 偶奇奇偶, 。 b .若项数为12-n ,则n a n n S )(1-=偶,n na S =奇,1 += =-n n S S a S S n 偶奇奇偶, 。 (4)若两个等差数列}{},{n n b a 的前n 项和分别为n n T S ,,则 1 21 2--=n n n n T S b a 5.等差数列的前n 项和公式与函数的关系: (1)n d a n d S )(2 212-+= ,数列{a n }是等差数列? S n =An 2+Bn (A ,B 为常数). (2)在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.

等比数列的求和公式

等比数列的求和公式 一、 基本概念和公式 等比数列的求和公式: q q a n --1)1(1 (1≠q ) q q a a n --11(1≠q ) n S = 或 n S = 1na (q = 1) 即如果q 是否等于1不确定则需 要对q=1或1≠q 推导性质:如果等差数列由奇数项,则S 奇-S 偶=a 中 ;如果等差数列由奇数项,则S 偶-S 奇= d n 2 。 二、 例题精选: 例1:已知数列{n a }满足:43,911=+=+n n a a a ,求该数列的通项n a 。 例2:在等比数列{n a }中,36,463==S S ,则公比q = 。 - 例3:(1)等比数列{n a }中,91,762==S S ,则4S = ; (2)若126,128,66121===+-n n n S a a a a ,则n= 。

例4:正项的等比数列{n a }的前n 项和为80,其中数值最大的项为54,前2n 项的和为6560,求数列的首项1a 和公比q 。 例5:已知数列{n a }的前n 项和n S =1-n a ,(a 是不为0的常数),那么数列{n a }是? 例6:设等比数列{n a }的前n 项和为n S ,若9632S S S =+,求数列的公比q 。 例7:求和:)()3()2()1(32n a a a a n ----+-+-+-。 例8:在 n 1和n+1之间插入n 个正数,使这n+2个数成等比数列,求插入的n 个数的积。 例9:对于数列{n a },若----------,,,,,123121n n a a a a a a a 是首项为1,公比为31的等比数列,求:(1) n a ;(2) n a a a a +---+++321。

等差数列求和求最值

等差数列求和应用(三)———求最值 (会不会做是能力问题,做不做是态度问题,从态度上去认识自己的问题) 一、填空题 1、(1)已知等差数列{}n a 的前n 项和n n S n 162-=,则当=n 时,()=min n S 。 (2)已知等差数列{}n a 的前n 项和n n S n 172+-=,则当=n 时,n S 取得最 (大、小)值。 (3)已知等差数列{}n a 的前n 项和n n S n 6432+-=,则当=n 时,n S 取得最 (大、小) 值为 。 2、(1)已知数列{}n a 通项公式为92-=n a n ,则当=n 时,()=min n S 。 (2)已知数列{}n a 通项公式为n a n 210-=,则当=n 时,()=max n S 。 3、(1)已知等差数列{}n a 的前n 项和n S 满足:、09>S 011S ,则当=n 时,n S 有最小值。 二、解答题(按照要求,按照步骤,答题过程作答应规范,条理应清晰) 4、已知数列{}1013-n ,求当n 为何值时, 5、已知数列{}1004+-n ,求当n 为何值 该数列的前n 项和n S 有最小值。 时,该数列的前n 项和n S 有最大值。 6、已知等差数列{}n a 的前n 项和n S 满足:、099>S 7、已知等差数列{}n a 的前n 项和n S 满足:、0200>S 0101

等差数列求和公式的

等差数列求和公式的 问题1:著名数学家高斯10岁时,曾解过一道题:1+2+3+…+100=?你们知道怎么解吗? 问题2:1+2+3+…+n=? 在探求中有学生问:n是偶数还是奇数?教师反问:能否避免奇偶讨论呢?并引导学生从问题1感悟问题的实质:大小搭配,以求平衡 设=1+2+3+…+n ,又有= + + +…+1 = + + +…+ ,得= 问题3:等差数列= ? 学生容易从问题2中获得方法(倒序相加法)。但遇到= = =…=呢?利用等差数列的定义容易理解这层等量关系,进一步的推广可得重要结论:m+n=p+q 问题4:还有新的方法吗? (引导学生利用问题2的结论),经过讨论有学生有解法:设等差数列的公差为d,则= +()+()+…+[ ] = = (这里应用了问题2的结论) 1 ————来源网络整理,仅供供参考

问题5:= = ? 学生容易从问题4中得到联想:= = 。显然,这又是一个等差数列的求和公式。 等差数列的求和对初学数列求和的离学生的现有发展水平较远,教师通过“弱化”的问题1和问题2将问题转化到学生的最近发展区内,由于学生的最近发展区是不断变化的,学生解决了问题2,就说明学生的潜在的发展水平已经转化为其新的现有发展水平,在新的现有发展水平基础上教师提出了问题3,学生解决了问题3,他们潜在的发展水平已经转化为其新的现有发展水平,在此基础上教师提出了问题4,这个案例的设计体现教师搭“脚手架”的作用不可低估,教师自始至终都应坚持“道而弗牵,强而弗抑,开而弗达”(《礼记·学记》),诱导学生自己探究数学结论, 处理好“放”与“扶”的关系。 ————来源网络整理,仅供供参考 2

学习等差数列求和公式的四个层次

学习等差数列求和公式的四个层次 黑龙江大庆实验中学(163311)毕明黎 等差数列前n 项和公式d n n na n a a S n n 2 )1(2 )(11-+ =+= ,是数列部分最重要公式之一,学习 公式并灵活运用公式可分如下四个层次: 1.直接套用公式 从公式d n n na n a a n a a S m n m n n 2 )1(2 )(2 )(111-+ =+= += +-中,我们可以看到公式中出现了五 个量,包括,,,,,1n n S n a d a 这些量中已知三个就可以求另外两个了.从基本量的观点认识公式、理解公式、掌握公式这是最低层次要求. 例1 设等差数列{}n a 的公差为d,如果它的前n 项和2 n S n -=,那么( ).(1992年三南高考试 题) (A)2,12-=-=d n a n (B)2,12=-=d n a n (C)2,12-=+=-d n a n (D)2,12=+-=d n a n 解法1 由于2n S n -=且1--=n n n S S a 知,,12)1(2 2+-=-+-=n n n a n ],1)1(2[121+---+-=-=-n n a a d n n ,2-=d 选(C). 解法2 ,2 ) 1(2 1n d n n na S n -=-+ = 对照系数易知,2-=d 此时由2 1)1(n n n na -=--知,11-=a 故,12+-=n a n 选(C). 例2 设n S 是等差数列{}n a 的前n 项和,已知33 1S 与 44 1S 的等比中项为 55 1S , 33 1S 与 44 1S 的等 差中项为1,求等差数列{}n a 的通项n a .(1997年全国高考文科) 解 设{}n a 的通项为,)1(1d n a a n -+=前n 项和为.2 )1(1d n n na S n -+= 由题意知?????=+=? 241 3 1)51(4131432 54 3S S S S S ,

一题多解专题六:等差数列前项和的最值问题

一题多解专题六:等差数列前n 项和的最值问题 求等差数列前n 项和n S 最值的两种方法 (1)函数法:利用等差数列前n 项和的函数表达式bn an S n +=2,通过配方或借助图象求 二次函数最值的方法求解. (2)邻项变号法: ①0,01<>d a 时,满足?? ?≤≥+0 1n n a a 的项数m 使得n S 取得最大值为m S ; ②当0,01>a a ,故n=7 时,n S 最大. 方法二:由113S S =可得d a d a 55113311+=+,把131=a 代入得2-=d ,故 n n n n n S n 14)1(132+-=--=,根据二次函数性质,当n=7时,n S 最大. 方法三:根据131=a ,113S S =,知这个数列的公差不等于零.由于113S S =说明这个数 列的和先是单调递增的然后又单调递减.根据公差不为零的等差数列的前n 项 和是关于n 的二次函数,以及二次函数图象的对称性,当113S S =时,只有 72 11 3=+=n 时,n S 取得最大值. 针对性练习: 1.已知在等差数列}{n a 中,311=a ,n S 是它的前n 项的和,2210S S =. ①求n S ; ②这个数列前多少项的和最大,并求出这个最大值. 解析:①∵102110a a a S ++= ,222122a a a S ++= ,又2210S S =, ∴0221211=++a a a ,则031212211=+=+d a a a ,又311=a ,2-=∴d

等差、等比数列与数列求和

高考专题突破三 高考中的数列问题 第1课时 等差、等比数列与数列求和 题型一 等差数列、等比数列的交汇 例1 记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式; (2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解 (1)设{a n }的公比为q . 由题设可得????? a 1(1+q )=2, a 1(1+q +q 2)=-6. 解得q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n . (2)由(1)可得 S n =a 1(1-q n )1-q =-23+(-1)n 2n + 13. 由于S n +2+S n +1=-43+(-1)n 2n + 3-2n + 23 =2????-23+(-1)n 2n + 13=2S n , 故S n +1,S n ,S n +2成等差数列. 思维升华 等差与等比数列的基本量之间的关系,利用方程思想和通项公式、前n 项和公式求解.求解时,应“瞄准目标”,灵活应用数列的有关性质,简化运算过程. 跟踪训练1 (2019·鞍山模拟)已知公差不为0的等差数列{a n }的前n 项和为S n ,S 1+1,S 3,S 4成等差数列,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式; (2)若S 4,S 6,S n 成等比数列,求n 及此等比数列的公比. 解 (1)设数列{a n }的公差为d 由题意可知???? ? 2S 3=S 1+1+S 4,a 22=a 1a 5, d ≠0, 整理得????? a 1=1,d =2a 1 ,即???? ? a 1=1,d =2, ∴a n =2n -1.

等差数列中的最值问题

等差数列及其前n 项和(2) ——等差数列中的最值问题 数学组 一、教学目标 1、掌握等差数列的通项公式和前n 项和公式的形式和应用。 2、掌握常见题型的解法及常用思想方法。 3、掌握等差数列求最值问题的多种不同方法,并能对最值问题进行归纳总结。 二、教学重点和难点 重点:等差数列求最值问题的常用解法。 难点:通过例题的讲解引导学生对等差数列的最值问题进行归纳和总结,并理解何种形式会有最大值,何种形式会有最小值。 三、教学过程 1、复习旧知,回顾等差数列的常用公式: (1)通项公式()11n a a n d =+- (2)前n 项和公式()112 n n n S na d -=+=()12n n a a + (3)等差中项概念1 2()A a b =+ (4)等差数列的判定方法 定义法:1n n a a +-=常数(*n N ∈)?{}n a 为等差数列; 中项公式法:122n n n a a a ++=+(*n N ∈)?{}n a 为等差数列; 通项公式法:n a kn b =+(*n N ∈)?{}n a 为等差数列; 前n 项求和法:2n S pn qn =+(*n N ∈)?{}n a 为等差数列 (复习时主要以口述为主,必要的公式进行板书,主要让学生进行回顾,强调等差数列的通项公式和前n 项和公式的形式,即通项公式是关于n 的一次函数,前n 项和公式是关于n 的二次函数,且常数项为0,为后面课程的讲述埋好伏笔。) 2、教授新课: 复习用书《高考总复习学案与测评》第87页,题型四:等差数列中的最值问题 例4、在等差数列{}n a 中,已知201=a ,前n 项和为n S ,且1510S S =,求当n 取何值时,n S 有最大值,并求出它的最大值。 分析:要求n 为何值时,n S 有最大值,可从n S 的形式入手思考,n S 是关于n 的二次函数,可以从函数的角度求出n S 的最大值。 解:(方法一)因为201=a ,且1510S S =可得

等比数列和等差数列公式

等比数列:是一种特殊数列。它的特点是:从第2项起,每一项与前一项的比都是一个常数。称为公比,符号为q。 公比公式 根据等比数列的定义可得: 通项公式 我们可以任意定义一个等比数列 这个等比数列从第一项起分别是,公比为q,则有: a2 = a1q, a3 = a2q = a1q2, a4 = a3q = a1q3, , 以此类推可得,等比数列的通项公式为: a n = a n ? 1q = a1q n ? 1, 求和公式 对于上面我们所定义的等比数列,即数列。我们将所有项进行累加。 于是把称为等比数列的和。记为: 如果该等比数列的公比为q,则有: (利用等比数列通项公式)(1) 先将两边同乘以公比q,有: (1)式减去该式,有: (q ? 1)S n = a1? a1q n (2) 然后进行一定的讨论 当时,

而当q = 1时,由(2)式无法解得通项公式。 但我们可以发现,此时: = na1 ?综上所述,等比数列的求和公式为: ?经过推导,可以得到另一个求和公式:当q≠1时 (更正:分母为1-q) 当时, 等比数列无限项之和 由于当及n 的值不断增加时,q n的值便会不断减少而且趋于0,因此无限项之和: (更正:分母为1-q)性质 如果数列是等比数列,那么有以下几个性质: ? 证明:当时, ?对于,若,则 证明: ∵ ∴

?等比中项:在等比数列中,从第二项起,每一项都是与它等距离的前后两项的等比中项。即等比数列中有三项,,,其中,则有 ?在原等比数列中,每隔k项取出一项,按原来顺序排列,所得的新数列仍为等比数列。 ?也成等比数列。 等差数列 等差数列是数列的一种。在等差数列中,任何相邻两项的差相等。该差值称为公差。例如数列 就是一个等差数列。在这个数列中,从第二项起,每项与其前一项之差都等于2,即公差为2。 通项公式 如果一个等差数列的首项标为,公差标为,那么该等差数列第项的表达式为: . 等差数列的任意两项之间存在关系: 等差中项 给定任一公差为的等差数列。从第二项开始,前一项加后一项的和的値为该项的两倍。例: 证明: 设, 则 ∵(矛盾) ∴ 证毕

数列求和7种方法(方法全_例子多)

一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211 +==∑=n n k S n k n 4、)12)(1(6112 ++==∑=n n n k S n k n 5、 21 3 )]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x 由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11) 211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 题1.等比数列的前n项和S n=2n-1,则=

初二数学等差数列求和公式

初二数学等差数列求和公式 各科成绩的提高是同学们提高总体学习成绩的重要途径,大家一定要在平时的练习中不断积累,小编为大家整理了八年级数学等差数列求和公式,希望同学们牢牢掌握,不断取得进步! 公式 Sn=(a1+an)n/2 (首项+末项)X项数2 Sn=na1+n(n-1)d/2; (d为公差) Sn=An2+Bn; A=d/2,B=a1-(d/2) Sn=[2a1+(n-1)d] n/2 和为 Sn 首项 a1 末项 an 公差d 项数n 等差数列公式an=a1+(n-1)d 前n项和公式为:Sn=(a1+an)n/2=na1+n(n-1)d/2 假设m+n=p+q那么:存在am+an=ap+aq 假设m+n=2p那么:am+an=2ap 以上n均为正整数 文字翻译 第n项的值an=首项+(项数-1)公差

前n项的和Sn=首项+末项项数(项数-1)公差/2 公差d=(an-a1)(n-1) 项数=(末项-首项)公差+1 数列为奇数项时,前n项的和=中间项项数 数列为偶数项,求首尾项相加,用它的和除以2 等差中项公式2an+1=an+an+2其中{an}是等差数列 通项 首项=2和项数-末项 末项=2和项数-首项 末项=首项+(项数-1)公差:a1+(n-1)d 项数=(末项-首项)/ 公差+1 :n=(an-a1)/d+1 公差= d=(an-a1)/(n-1) 如:1+3+5+7+99 公差就是3-1 将a1推广到am,那么为: d=(an-am)/(n-m) 性质: 假设 m、n、p、qN ①假设m+n=p+q,那么am+an=ap+aq ②假设m+n=2q,那么am+an=2aq(等差中项) 注意:上述公式中an表示等差数列的第n项。 本文就是查字典数学网为大家整理的八年级数学等差数列

等差数列前n项和的最值求解方法

等差数列前n 项和的最值求解方法 例1 设等差数列{n a }的前n 项和为n s ,已知3a =12,12s >0,130s <, (1)求公差d 的取值范围; (2)指出1s ,2s ,…,12s 中哪一个值最大,并说明理由. 解析 (1)由3a =12,得:1a +2d=12,即1a =12-2d, 由12s >0,得:121a + 12*1102d >,所以d>-247 , 由130s <,得:131a +13*1202 d <,所以d<-3, 因此,d 的取值范围为(-247,-3). (2)解法一:1(1)n a a n d =+- =12-2d+(n-1)d =12+(n-3)d 令0n a >,得:n<3- 12d , 由(1)知:247-; 当n>6时,0n a <,因此,6s 最大. 解法二:由题意可得:n S =n 1a +(1)2n n d -=n(12-2d)+22n n d - =25(12)22 d n d n +- 显然d ≠0, n S 是关于自变量n 的二次函数, 由(1)知:d<0, 二次函数的图像抛物线的对称轴为n= 5122d -, 由(1)知:2437 d -<<-,

所以6<5122d -<132 , 又因为n *N ∈, 故当n=6时,n S 最大, 即6s 最大. 例2 已知等差数列{n a },*n a N ∈,n S =212)8n a +(.若1302n n b a = -,求数列 {n b }的前n 项和的最小值. 分析:①由n S 与n a 的关系,可写出11n n s a ++与之间的关系,两式作差,即可得出1n a +与n a 间的关系; ②{n b }的前n 项和最小,估计{n b }的前n 项均为负值,后面均为正值,所有负值之和为最小. 解 1n a +=1n s +-n S =2112)8n a ++(-212)8n a +(, 即81n a +=(1n a ++22)-(n a +22), 所以(1n a +-22)-(n a +22 )=0, 即(1n a ++n a )(1n a +-n a -4)=0, 因为*n a N ∈,所以1n a ++n a ≠0,即1n a +-n a -4=0, 所以1n a +-n a =4, 因此等差数列{n a }的公差大于0. 1a =1s =2112)8 a +(,解得1a =2. 所以n a =4n-2,则1302 n n b a =-=2n-31. 即数列{n b }也为等差数列且公差为2. 由 23102(1)310{n n -≤+-≥,解得293122 n ≤≤,

等比数列的前n项求和公式

自选课题:等比数列的前n项和 教学设计 1.教学内容解析 本节内容为现行人教A版《必修5》的第二章的核心内容,它在《普通高中数学课程标准(2017年版)》中,被纳入“选择性必修课程”的函数主题之中. 数列作为一类特殊的函数,既是高中函数知识体系中的重要内容,又是用来刻画现实世界中一类具有递推规律的数学模型.在现行教材的编排中,等比数列的前n项和处于等比数列的单元内容之中,是等比数列的概念与通项公式的后继学习内容,它在完善数列单元的知识结构体系,感受数列与函数的共性与差异,体会数学的整体性等方面都是不可或缺,在提升学生探究、应用和实践能力等方面,有着不可替代的作用和价值. 课标要求:学生经历等比数列前n项和公式的探索过程,掌握等比数列前n项和公式及推导方法,并能进行简单应用. 等比数列前n项和公式的知识内容之所以被列为掌握层次,主要是因为它与函数、等差数列的内在联系,尤其是它在数学史上的历史印迹,以及探索过程中所蕴含的丰富的数学思想(如特殊到一般、类比、基本量、分类讨论、函数与方程、转化与化归等),所需要的数学抽象、逻辑推理、数学建模和数学运算素养,都能充分发挥数学的育人功能。 基于以上分析,本节课的教学重点为:等比数列前n项和公式的导出及其应用。 2.学生学情分析 本节课的授课对象为宜昌市夷陵中学高一年级实验班,夷陵中学是湖北省重点中学、省级示范高中,学生有较好的数学学科基础.从学生的思维特点看,很容易把本节内容与等差数列前n项和从公式的发现、特点等方面进行类比,这是积极因素,可因势利导.然而,本节公式的推导与等差数列前n项和公式的推导有着本质的不同,对学生的思维能力提出很高的要求.另外,对于q = 1这一特殊情况,运用公式计算时学生往往容易忽视.教学对象刚进入高一不久,虽然逻辑思维能也初步形成,具有一定的分析问题和解决问题的能力,但由于年龄的原因,缺乏深刻的理性思考。 基于以上分析,本节课的教学难点为:等比数列前n项和公式的探究及其推导。 3. 教学目标设置 (1)学生通过课前自主查阅数学史料,课堂演绎历史短剧,了解等比数列前n项和公式的来龙去脉,感受前人严谨的治学精神,体验数学的魅力和数学文化的熏陶。 (2)学生通过研究性学习和小组合作探究的方式,掌握等比数列前n项和公式的不同推导方法,领悟公式的本质,并能运用公式解决简单问题。 (3)学生在经历等比数列前n项和公式的发生、发展、推导和证明的过程中,感悟特

等差数列最值的求法

等差数列前n 项和最值问题求法 等差数列的前n 项和最值问题反映了数的变化过程,体现了一种从量的积累到质的变化,揭示了数之间的关联,其最值的求法通常可从函数与不等式来考察,下面通过几个例题从不同的侧面来小议其求法。 一、应用二次函数图象求解最值 例1:等差数列{}n a 中, 1490,a S S >=,则n 的取值为多少时?n S 最大 分析:等差数列的前n 项和n S 是关于n 的二次函数,因此可从二次函数的图象的角度来求解。 解析:由条件1490,a S S >=可知,d<0,且2 11(1)()2 2 2 n n n d d S na d n a n -=+ = +- , 其图象是开口向下的抛物线,所以在对称轴处取得最大值,且对称轴为49 6.52 n +==, 而n N *∈,且6.5介于6与7的中点,从而6n =或7n =时n S 最大。 点评:利用二次函数图象的开口方向、对称性等、数形结合求解其最值简单易行,但要注意对称轴是介于两个整数的中点,此时应有两个n 的取值。 二、转化为求二次函数求最值 例3、在等差数列{n a }中, 4a =-14, 公差d =3, 求数列{n a }的前n 项和n S 的最小值 分析:利用条件转化为二次函数,通过配方写成顶点式易求解。 解析:∵4a =1a +3d, ∴ -14=1a +9, 1a =-23, ∴ n S =-23n +2 ) 1(3-n n =2 3[(n -496 )2 - 2 49 36 ], ∴ 当n= 496 最小时,n S 最小, 但由于n N * ∈, 496 介于8与9之间, 8100S =-,999S =- 即有且89S S >,故当n =8 8S =-100最小. 点评:通过条件求出1a ,从而将n S 转化为关于n 的二次函数,然后配方求解,但要注意的是此处 496 介于8与9之间,但并不能取两个整数,判断的标准是对称轴是否处于两 个整数中点,否则只有一个取值。 三、利用关系式0 0n n a a ≥??

等差数列与等比数列归纳

二轮专题复习:等差数列与等比数列 澄海实验高级中学 曦怀 一、教材分析: 数列知识是历年高考的重点容,是必考的热点。数列考查的重点是等差、等比数列的定义、通项公式、前几项和公式、等差(比)中项及等比等差数列的性质的灵活运用。这一部分主要考查学生的运算能力,逻辑思维能力以及分析问题和解决问题的能力,其中考查思维能力是支柱,运算能力是主体,应用是归宿.在选择题、填空题中突出了“小、巧、活”的三大特点,在解答题中以中等难度以上的综合题为主,涉及函数、方程、不等式等重要容,试题中往往体现了函数与方程,等价转化,分类讨论等重要的数学思想。 二、复习目的: 1.熟练掌握等差、等比数列的定义、通项公式、前n 项和公式、等差(比)中项及等差(比)数列的相关性质. 2. 灵活运用等差(比)数列的相关性质解决相应问题.在解决数列综合性问题时,灌输方程思想、化归思想及分类讨论思想。培养学生运算能力、逻辑思维能力、分析问题以及解决问题的能力. 三、复习重点、难点: 重点:等差、等比数列的定义、通项公式、前几项和公式、等差(比)中项及等差(比) 数列的相关性质. 难点:灵活运用差(比)数列的相关性质结合函数思想、方程思想探求解题思路,分析问 题、解决问题. 复习容: 四、复习过程: (一)知识要点回顾: 1、重要公式: (1)数列通项公式n a 与前n 项和公式n S 之间的关系:1n 1 n 1 S n 2 n n S a S -=?=?-≥?. (2)等差数列: ①定义:1{}(n n n a a a d +? -=为等差数列常数). ②通项公式:1(1)n a a n d =+- , ()n m a a n m d =+- . ③前n 项和公式:11()(1) 22 n n n a a n n S na d +-=+ = . ④等差中项:112n n n a a a -+=+ .

等差与等比数列和数列求和的基本方法和技巧

高考专题复习——等差与等比数列 一、知识结构与要点: 等差、等比数列的性质推广 定义n n n n n n a a a a d a a -=-→=-++++1121 N n ∈ 通项d n a a t n )1(1-= —等差中项 abc 成等差2 c a b += ? 基本概念 推广 d m n a a m n )(-+= 前n 项和nd n n a n a a S n )1(2 1 2)(121-+=+= 等差数列 当d>0(<0) 时{}n a 为递增(减)数列 当d=0时}{n a 为常数 基本性质 与首末两端等距离的项之和均相等 1121......+--+==+=+i n i n n a a c a a a a N i ∈ q p n m a a a a q p n m +=+?+=+ }{n a 中共k n n n .......21成等差则nk n n a a a ......,,21也成等

定义: n n n n n n a a a a q a a 1121+++-=→= N n ∈ 通项 →?=-11n n q a a 等比中项:a b c 成等比数列ac b =?2 基本概念 推广m n q -? 前n 项和=n S )1(11)1() 1(11 1≠--= --=q q q a a q q a q n a n n 等比数列 与首末两端等距离的两项之积相等 1121......+--?===i n i n n a a a a a a q p n m a a a a q p n m ?=??+=+ }{n a 成等比,若k n n n ,...,21 成等差 则nk n a a a ,...,21 成等比 基本性质 当 1 01>>q a 或 1001<<q a 时 {}n a 为递减数列 当 q<0时 {}n a 为摆动数列 当 q=1时 {}n a 为常数数列 二、典型例题 例1.在等差数列中20151296=+++a a a a 求20S 解法一 d n a a n )1(1-+=Θ 20 )192(2)14()11()8()5(11111151296=+=+++++++=+++∴d a d a d a d a d a a a a a ∴101921=+d a 那么100)192(102 ) (20120120=+=+= d a a a S 解法二:由q p n m a a a a q p n m +=+?+=+

(完整版)三年级奥数等差数列求和习题及答案

计算(三)等差数列求和 知识精讲 一、定义:一个数列的前n 项的和为这个数列的和。 二、表达方式:常用n S 来表示 。 三:求和公式:和=(首项+末项)?项数2÷,1()2n n s a a n =+?÷。 对于这个公式的得到可以从两个方面入手: (思路1)1239899100++++++L 11002993985051=++++++++L 1444444442444444443 共50个101 ()()()() 101505050=?= (思路2)这道题目,还可以这样理解: 2349899100 1009998973212101101101101101101101 +++++++=+++++++=+++++++L L L 和=1+和倍和 即,和 (1001)100 2 10150 5050=+?÷=?=。 四、中项定理:对于任意一个项数为奇数的等差数列,中间一项的值等于所有项的平均 数,也等于首项与末项和的一半;或者换句话说,各项和等于中间项乘以项数。 譬如:① 48123236436922091800+++++=+?÷=?=L (), 题中的等差数列有9项,中间一项即第5项的值是20,而和恰等于209?; ② 65636153116533233331089++++++=+?÷=?=L (), 题中的等差数列有33项,中间一项即第17项的值是33,而和恰等于3333?。 例题精讲: 例1:求和: (1)1+2+3+4+5+6 = (2)1+4+7+11+13= (3)1+4+7+11+13+ (85) 分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。 例如(3)式项数=(85-1)÷3+1=29 和=(1+85)×29÷2=1247 答案:(1)21 (2)36 (3)1247 例2:求下列各等差数列的和。 (1)1+2+3+4+…+199 (2)2+4+6+…+78 (3)3+7+11+15+…+207 分析:弄清楚一个数列的首项,末项和公差,从而先根据项数公式求项数,再根据求和公式求和。 例如(1)式=(1+199)×199÷2=19900

《等差数列求和公式》教案

等差数列求和公式 一、教材分析: 数列在生产实际中的应用范围很广,而且是培养学生发现、认识、分析、综合等能力的重要题材,同时也是学生进一步学习数学的必备的基础知识。 二、学生分析: 数列在对于我们的学生来说是难点,因为学生对于这部分仅有初中学的简单函数作为基础,所以新课的引入非常重要 三、教学目标: 1.与技能目标:掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和。 2.过程与方法目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。 3.情感、态度与价值观目标:体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。 四、教学重点与难点: 等差数列前n项和公式是重点。 获得等差数列前n项和公式推导的思路是难点。 课堂系统部分: 五、教学过程 1.问题呈现 泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,成为世界七大奇迹之一。陵寝以宝石镶饰,图案之细致令人叫绝。 传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层(见左图), 问题1:你知道这个图案一共花了多少宝石吗? 问题2:图案中,第1层到第21层一共有多少颗宝石? 在知道了高斯算法之后,同学们很容易把本题与高斯 算法联系起来,也就是联想到“首尾配对”摆出几何图形,引引导学生去思考,如何将图与高斯的逆序相加结合起来,让 他们借助几何图形,将两个三角形拼成平行四边形.

获得算法: 设计说明: ? 源于历史,富有人文气息. ? 图中算数,激发学习兴趣. 这一个问题旨在让学生初步形成数形结合的思想,这是在高中数学学习中非常重要的思想方法.借助图形理解逆序相加,也为后面公式的推导打下基础. 2.探究发现: 问题3: 由前面的例子,不难用逆序相加法推出 3.公式应用 例题1: 2008年北京奥运会的体育馆已初步建成,其中有一块地的方砖成扇形铺开,有人数了第一排的方砖个数为10个,最后一排的方砖个数为2008个,而且一共有36排,问这一块地的方砖有多少块? 本例提供了许多数据,学生可以从题目条件发现,只告知了首项、尾项和项数,于是从这一方向出发,可知使用公式1,达到学生熟悉公式的要素与结构的教学目的。 通过两种公式的比较,引导学生应该根据信息选择适当的公式,以便于计算。例题2: 2003年医护人员积极致力于研究人体内的非典病毒,已知一个患病初期的人人体内的病毒数排列成等差数列,且已知第一排的病毒数是2个,后面每一排比前一排多3个,一共有78排,问这个人体内的病毒数有多少个? 本例已知首项,公差和项数,引导学生使用公式2。 事实上,根据提供的条件再与公式对比, 便不难知道应选公式。 例题3: 甲从A地出发骑车去B地,前1分钟他骑了了400米,后来每一分钟都比前一分钟多骑5米,当他到达B地时的那一分钟内骑了500米,问A地和B地之间的距离?

等差数列求和公式

等差数列求和公式 等差数列前n 项和公式d n n na n a a S n n 2 )1(2)(11-+=+=,是数列部分最重要公式之一,学习公式并灵活运用公式可分如下四个层次: 1.直接套用公式 从公式d n n na n a a n a a S m n m n n 2 )1(2)(2)(111-+=+=+=+-中,我们可以看到公式中出现了五个量,包括,,,,,1n n S n a d a 这些量中已知三个就可以求另外两个了.从基本量的观点认识公式、理解公式、掌握公式这是最低层次要求. 例1 设等差数列{}n a 的公差为d,如果它的前n 项和2n S n -=,那么( ). (A)2,12-=-=d n a n (B)2,12=-=d n a n (C)2,12-=+=-d n a n (D)2,12=+-=d n a n 解法1 由于2n S n -=且1--=n n n S S a 知,,12)1(22+-=-+-=n n n a n ],1)1(2[121+---+-=-=-n n a a d n n ,2-=d 选(C). 解法2 ,2 )1(21n d n n na S n -=-+=Θ对照系数易知,2-=d 此时由21)1(n n n na -=--知,11-=a 故,12+-=n a n 选(C). 例 2 设n S 是等差数列{}n a 的前n 项和,已知331S 与441S 的等比中项为551S ,331S 与44 1S 的等差中项为1,求等差数列{}n a 的通项n a . 解 设{}n a 的通项为,)1(1d n a a n -+=前n 项和为.2 )1(1d n n na S n -+= 由题意知?????=+=? 2413 1)51(4131432543S S S S S , 即?????=?++?+?+=?+??+ 2)2344(41)2233(3 1)2455(251)2344(41)2233(31112111d a d a d a d a d a

相关文档 最新文档