文档库 最新最全的文档下载
当前位置:文档库 › 线性代数 行列式答案

线性代数 行列式答案

线性代数   行列式答案
线性代数   行列式答案

厦门理工

线性代数练习题 第一章 行 列 式

系 专业 班 姓名 学号 第一节 二阶与三阶行列式 第三节 n 阶行列式的定义

一.选择题

1.若行列式x

5

2231

52

1 = 0,则=x [ C ]

(A )2 (B )2- (C )3 (D )3-

2.线性方程组?????=+=+4733

221

21x x x x ,则方程组的解),(21x x = [ C ]

(A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)

3.方程09

3

142

112

=x x

根的个数是 [ C ] (A )0 (B )1 (C )2 (D )3

4.下列构成六阶行列式展开式的各项中,取“+”的有 [ AD ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a

5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ] (A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负

6.下列n (n >2)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式

1

22

1--k k 0≠的充分必要条件是 3,1k k ≠≠-

2.排列36715284的逆序数是 13

3.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。 三、计算下列行列式:

1.1

32213321=18

2.5

98413111=5

3.

y

x

y

x x y x y y x y x

+++332()x y =-+

4.

1

100000100100=1 5.00

10000

2000010

n

n 1(1)!n n -=- 6.

00

11

,22111

,111

n n n

n a a a a a a --(1)

212,11(1)n n n n n a a a --=-

线性代数练习题 第一章 行 列 式

系 专业 班 姓名 学号

一、选择题:

1.如果1333231232221

131211

==a a a a a a a a a D ,33

32

3131

2322

212113

1211111232423242324a a a a a a a a a a a a D = ,则=1D [ C ]

(A )8 (B )12- (C )24

(D )24 2.如果33332

31

2322

21

131211

==a a a a a a a a a D ,23

23

3313

2222321221

2131111352352352a a a a a a a a a a a a D =,则=1D [ B ]

(A )18 (B )18- (C )9- (D )27-

3. 2

2

2

2

2

222

2

222

2

222

)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c

b b b b a a a a = [ C ] (A )8 (B )2 (C )0 (D )6- 二、选择题:

1.行列式=30092280923621534215 12246000 2. 行列式

=1

110

1101

1

011

0111

-3 2.多项式02

1

1111

)(32

1

321321321=+++++=

x a a a a x a a a a x a a a a x f 的所有根是0,1,2--

3.若方程

22

514321434

3314321x x -- = 0 ,则1,3x x =±=±

4.行列式 ==

2

10012100

121

0012

D 5 三、计算下列行列式:

1.

260

5232112131412-21

21415062

0.12325

062

r r +=

2.x

a a a x a a a x 1[(1)]().n x n a x a -=+--

线性代数练习题 第一章 行 列 式

系 专业 班 姓名 学号

一、选择题:

1.若1

11111111

111101-------=x A ,则A 中x 的一次项系数是 [ D ]

(A )1 (B )1- (C )4 (D )4-

2.4阶行列式

4

4

3322110

000000a b a b b a b a 的值等于 [ D ]

(A )43214321b b b b a a a a - (B )))((43432121b b a a b b a a -- (C )43214321b b b b a a a a + (D )))((41413232b b a a b b a a -- 3.如果

122

21

12

11=a a a a ,则方程组 ??

?=+-=+-0

22221211212111b x a x a b x a x a 的解是 [ B ] (A )222

1211a b a b x =

,2211112b a b a x = (B )222121

1a b a b x -=,2211

112b a b a x = (C )222

121

1a b a b x ----=

,221

111

2b a b a x ----= (D )222

121

1a b a b x ----=,2

21

1

11

2b a b a x -----=

二、填空题:

1. 行列式1

22305

4

03-- 中元素3的代数余子式是 -6 2. 设行列式4

32163021

111

8751=

D ,设j j A M 44,分布是元素j a 4的余子式和代数余子式, 则44434241A A A A +++ = 0 ,44434241M M M M +++= -66

3. 已知四阶行列D 中第三列元素依次为1-,2,0,1,它们的余子式依次分布为5,3,,7-4,则D = -15

三、计算行列式:

1.

3

214214314324321 123412341341011310

1014120131112

30311113

10131160.

311

-==---=-=-

2.

1

21111111

1

1n

a a a +++

11221121121110111110111111111

(1).n n n n n

n i i

a a a a a a D a a a a a a a --=++++=+

=+=+∑

线性代数练习题 第一章 行 列 式

系 专业 班 姓名 学号

第七节 克拉默法则

一、选择题:

1.如果

12221

12

11

=a a a a ,则方程组 ??

?=+-=+-00

22221

211212111b x a x a b x a x a 的解是 [ ] (A )222

1211a b a b x =

,2211112b a b a x = (B )222121

1a b a b x -=,2211

112b a b a x = (C )222

121

1a b a b x ----=

,221

111

2b a b a x ----= (D )222

121

1a b a b x ----=,2

21

1

11

2b a b a x -----= 2.行列式01

11021

2=-k k 的充分必要条件是 [ ]

(A )2=k (B )2-=k (C )0=k (D )3=k

二、填空题:若方程组??

?

??=+-=++=+02020z y kx z ky x z kx

仅有零解,则k

三、方程组?????

????=++++=++++=++++=++++=++++0

000

5

43215

43215

43215432154321ax ax ax ax bx ax

ax ax bx ax ax ax bx ax ax ax bx ax ax ax bx ax ax ax ax 仅有零解,求a ,b 应满足的条件。

四、用克拉默法则解方程组??????

?

=+++-=----=+-+=+++0

112325322

4254

32143214

3214321x x x x x x x x x x x x x x x x

线性代数练习题 第一章 行 列 式

系 专业 班 姓名 学号

练 习 题

一、选择题:

1.如果03332

31

232221

131211

≠==M a a a a a a a a a D ,则33

32

31

23222113

12111222222222a a a a a a a a a D = = [ ] (A )2 M (B )-2 M (C )8 M (D )-8 M

2.若x

x x x x x f 171341073

221

)(----=

,则2

x 项的系数是 [ ] (A )34 (B )25 (C )74 (D )6

3.如果方程组 ??

?

?

?=--=+=-+050403z y kx z y z ky x 有非零解,则 k = [ ] (A )0 (B )1 (C )-1 (D )3

4.设3

475344535423333

22212223212)(---------------=x x x x x x x x x x x x x x x x x f ,则方程0)(=x f 的根的个数为 [ ]

(A )1 (B )2 (C )3 (D )4

二、选择题:

1.若54435231a a a a a j i 为五阶行列式带正号的一项,则 i = j =

4. 行列式

=--+---+---1

1

1111111

1

111

111x x x x 5. 已知四阶行列D 中第三列元素依次为1-,2,0,1,它们的余子式依次分布为5,3,,7-4,则D =

6. 设行列式2

75620

5

13--=D ,则第三行各雨水余子式之和的值为 。 三、计算下列n 阶行列式

1、

5

2

350000052000352

00035

2、

n

a a a +++11

1

11111121

线性代数习题及答案(复旦版)1

线性代数习题及答案 习题一 1. 求下列各排列的逆序数. (1) 341782659; (2) 987654321; (3) n (n 1)…321; (4) 13…(2n 1)(2n )(2n 2)…2. 【解】 (1) τ(341782659)=11; (2) τ(987654321)=36; (3) τ(n (n 1)…3·2·1)= 0+1+2 +…+(n 1)= (1) 2 n n -; (4) τ(13…(2n 1)(2n )(2n 2)…2)=0+1+…+(n 1)+(n 1)+(n 2)+…+1+0=n (n 1). 2. 略.见教材习题参考答案. 3. 略.见教材习题参考答案. 4. 本行列式4512312 123122x x x D x x x = 的展开式中包含3x 和4 x 的项. 解: 设 123412341234 () 41234(1)i i i i i i i i i i i i D a a a a τ = -∑ ,其中1234,,,i i i i 分别为不同列中对应元素 的行下标,则4D 展开式中含3 x 项有 (2134)(4231)333(1)12(1)32(3)5x x x x x x x x x ττ-????+-????=-+-=- 4D 展开式中含4x 项有 (1234)4(1)2210x x x x x τ-????=. 5. 用定义计算下列各行列式. (1) 0200 001030000004 ; (2)1230 0020 30450001 . 【解】(1) D =(1)τ(2314)4!=24; (2) D =12. 6. 计算下列各行列式.

线性代数练习题(行列式)

线性代数练习题(行列式)A 一、填空题 1、-=--362 2 36623 2、 =00010020 03004000 3、_____________)631254 (=N 4、四阶行列式)det(ij a 的反对角线元素之积(即41322314a a a a )一项的符号为 5. 行列式2 430123 21---中元素0的代数余子式的值为_______ 二、选择题 1、 =11 a a ( ) ----+1111A a B a C a D a 3、+=-010 111111a a ( ) +++-11(1)(1)A a B a C a D a a 5、若≠314 001 0x x x ,则=x ( )

≠≠≠≠≠≠020202且或A x x B x x C x D x 6、=111011011011 0111 ( ) --2331A B C D 7、=222 111 x y z x y z ( ) ---+++++()()()()()()A y x z x z y B xyz C y x z x z y D x y z 三、设行列式 2 92170216 3332314----=D ,不计算ij A 而直接证明: 444342412A A A A =++

线性代数练习题(行列式)B 一、填空题 1、 设ij A 是n 阶行列式中元素ij a 的代数余子式,则 =∑1 n ik jk k a A = 2、 设=3(1,2,3,4)i A i 是行列式12345678 2348 6789 中元素3i a 的代数余子式, +++=132********A A A A 3、 各列元素之和为零的n 阶行列式之值等于 4、 设A 为m 阶方阵,B 为n 阶方阵,则 =00 A B ; =00 A B 5、 设=(,1,2)ij A i j 为行列式= 21 31 D 中元素ij a 的代数余子式,则=1121 12 22A A A A 6、 方程 -+-= ----1321360 1 2 2 14 x x x x 的根为 7、 已知齐次线性方程组λ+-=?? +-=??-+=?1231231 232020340 x x x x x x x x x 有非零解,则λ= 8、 若11223344,,,a a a a 都不等于零,则方程组 +++=??++=? ? +=??=? 1111221331441 22223324423333443 3444a x a x a x a x b a x a x a x b a x a x b a x b 有 解。

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

《线性代数》练习题行列式部分

《线性代数与解析几何》练习题 行列式部分 一.填空题: 1.已知 4 1 132 213 ----=D 用ij A 表示D 的元素ij a 的代数余子式,则21222323______A A A --+=, 31323323____A A A --+=,行列式__________33 32 31 232221 13 1211 =A A A A A A A A A 2. 12434 003 209 1 064 1 2 a a a a a 的的代数余子式的值等于________。 3.设512 31212 3 122x x x D x x x = ,则D 的展开式中3 x 的系数为______ 4.4阶行列式11121314 21222324 144231323334414243 44 a a a a a a a a D a a a a a a a a a a = 展开式中含有因子的项为______和______ 5.行列式2342342 3 4 2 3 4 a a a a b b b b D c c c c d d d d = =______ 6.设 x x x x x f 3211322133 21)(=

则(4)_____f = 7.设 0112520842111111 15411521211111 1541132111111 3 2 3 2 3 2 =+ + -x x x x x x x x x 上述方程的解______________________=x 8.行列式1 1 2 2334 4 0000 000 a b a b D b a b a = =__________ 9.若齐次线性方程组??? ??=++=++=++0 00321321321x x x x x x x x x λλ 只有零解,则λ应满足_________条件。 10.若方程123123123 020kx x x x kx x x x x ++=?? +-=??-+=?有非零解,则k =_________或k =________。 11.行列式x y y y x y y y x =______ 12.行列式 1110 110110110111= ______ 13.行列式 000000000 a b c d e f =______ 14.方程组1231232 12 31x x x x x x x x x λλλλλ++=?? ++=??++=? 有唯一解时,对λ的要求是______ 二.计算题: 1.已知5阶行列式

线性代数行列式习题+问题详解

第一章习题 1-1.计算下列行列式 (1)713501 1 63.(2)4 3216 5100 5311 021.(3)2 2 2 111a b c a b c . (4) 20 1041106 3 14321111 1.(5) 49 36251636 2516925 169 416 941. 1-2.计算行列式a b c d b a d c c d a b d c b a . 1-3.计算n 阶行列式 (1)n 32133212 2211 111.(2) 1 432 1432 1132 1312 1321n n n n n n n n ---.(3)2 1111121111211 112 ------. 1-4. 证明: (1)2 2 2111 2 22 22 211111 12c b a c b a c b a b a a c c b b a a c c b b a a c c b =+++++++++. (2)3 2 1 321 3213 3 23 213323 213323 21c c c b b b a a a c mc c lc kc c b mb b lb kb b a ma a la ka a =+++++++++.

(3) 22224 4 4 4 1 111a b c d a b c d a b c d ()()()()()()()b a c a d a c b d b d c a b c d =------+++. 1-5.计算行列式x y y x y x y x 0 0000 000 00 . 1-6.计算4阶行列式 1 122334 4 0000000 a b a b b a b a . 1-7. 如果行列式 ?=nn n n n n a a a a a a a a a 21 2222111211,试用?表示行列式n nn n n n n a a a a a a a a a a a a 112 11 21 33231 22221 的值. 1-8.利用克莱姆法则解线性方程组 ?????? ?=+-+-=+-=--=+-+0 674522963852432143242 14321x x x x x x x x x x x x x x . 1-9. 问λ取何值时,齐次线性方程组可能有非零解? 12120 x x x x λλ+=?? +=? 1-10.已知()4 1357 1200=10301004 ij D a = ,求11121314A A A A +++.

考研数学线性代数行列式的计算方法

考研数学线性代数行列式的计算方法考研数学线性代数行列式的计算方法 一、基本内容及历年大纲要求。 本章内容包括行列式的定义、性质及展开定理。从整体上来看,历年大纲要求了解行列式的概念,掌握行列式的性质,会应用行列 式的性质及展开定理计算行列式。不过要想达到大纲中的要求还需 要考生理解排列、逆序、余子式、代数余子式的概念,以及性质中 的相关推论是如何得到的。 二、行列式在线性代数中的地位。 行列式是线性代数中最基本的运算之一,也是考生复习考研线性 代数必须掌握的基本技能之一(另一项基本技能是求解线性方程组),另外,行列式还是解决后续章节问题的一个重要工具,不论是后续 章节中出现的重要概念还是重要定理、解题方法等都与行列式有着 密切的联系。 三、行列式的计算。 由于行列式的计算贯穿整个学科,这就导致了它不仅计算方法灵活,而且出题方式也比较多变,这也是广大考生在复习线性代数时 面临的第一道关卡。虽然行列式的计算考查形式多变,但是从本质 上来讲可以分为两类:一是数值型行列式的计算;二是抽象型行列式 的计算。 1.数值型行列式的计算 主要方法有: (1)利用行列式的定义来求,这一方法适用任何数值型行列式的 计算,但是它计算量大,而且容易出错;

(2)利用公式,主要适用二阶、三阶行列式的计算; (3)利用展开定理,主要适用出现零元较多的行列式计算; (4)利用范德蒙行列式,主要适用于与它具有类似结构或形式的行列式计算; (5)利用三角化的思想,主要适用于高阶行列式的计算,其主要思想是找1,化0,展开。 2.抽象型行列式的计算 主要计算方法有: (1)利用行列式的性质,主要适用于矩阵或者行列式是以列向量的形式给出的; (2)利用矩阵的运算,主要适用于能分解成两个矩阵相乘的'行列式的计算; (3)利用矩阵的特征值,主要适用于已知或可以间接求出矩阵特征值的行列式的计算; (4)利用相关公式,主要适用于两个矩阵相乘或者是可以转化为两个矩阵相乘的行列式计算; (5)利用单位阵进行变形,主要适用于既不能不能利用行列式的性质又不能进行合并两个矩阵加和的行列式计算。 我们究竟该做多少年的真题? 建议大家在刚开始复习的时候,不要去做真题,因为以你刚开始复习的程度还不足以支撑起真题的难度和深度。我们做真题的时间是在我们的强化阶段结束之后,也就是提高阶段和冲刺模考去做真题。 应该怎么样去做真题? 第一:练习重质不重量

线性代数练习题一(行列式)

线性代数练习题一(行列式) 一、填空题 1、 设ij A 是n 阶行列式中元素ij a 的代数余子式,则 =∑1 n ik jk k a A = 2、 设=3(1,2,3,4)i A i 是行列式 12345 678 23486789 中元素3i a 的代数余子式, +++=132********A A A A 3、 各列元素之和为零的n 阶行列式之值等于 4、 设A 为m 阶方阵,B 为n 阶方阵,则 =00 A B ; =00 A B 5、 设=(,1,2)ij A i j 为行列式= 2131 D 中元素ij a 的代数余子式,则 =112112 22 A A A A 6、 方程 13136 01714 x x x x --=- --的根为 7、 已知齐次线性方程组λ+-=?? +-=??-+=?1231231 2320 20340 x x x x x x x x x 有非零解,则λ= 8、 若11223344,,,a a a a 都不等于零,则方程组 a x a x a x a x b a x a x a x b a x a x b a x b +++=??++=? ? +=??=? 1111221331441 22223324423333443 4444有 解。

二、选择题 1、若 =1112 2122 0a a a a ,则方程组+=?? +=?111122211222 0a x a x a x a x ( ) A 无解 B 有无穷多解 C 有唯一解 D 不一定 2、->1 1 1004a a a 的充分必要条件是( ) <>-><2222A a B a C a D a 3、λ λ =-21 2 00111 的充分必要条件是( ) λλλλλ==-===-2203,2A B C D 4、4阶行列式 1 1 22334 4 000 00 a b a b b a b a 的值等于( ) -+----1234123412341234 1212343423231414()()()() A a a a a b b b b B a a a a b b b b C a a b b a a b b D a a b b a a b b 5、若==≠11 121321 222331 32 330a a a D a a a M a a a ,而?=111213 31323321 22 23 222222a a a a a a a a a ,则?=( ) --2244A M B M C M D M 6、如果30 4050x y z y z x y z λλ+-=?? +=??--=? 有非零解,则λ=( )

线性代数第一章行列式试题及答案

如何复习线形代数 线性代数这门课的特点主要有两个:一是试题的计算量偏大,无论是行列式、矩阵、线性方程组的求解,还是特征值、特征向量和二次型的讨论都涉及到大量的数值运算,稍有不慎,即会出错;二是前后内容紧密相连,纵横交织,既相对独立又密不可分,形成了一个完整、独特的知识体系. 在掌握好基本概念、基本原理和基本方法的前提下,下面谈谈在复习过程中应注意的一些问题. 一、加强计算能力训练,切实提高计算的准确性 二、扩展公式结论蕴涵,努力探索灵活解题途径 三、注重前后知识联系,努力培养综合思维能力 线性代数不仅概念多,公式结论多,而且前后知识联系紧密,环环相扣,几乎从任何一个知识点都可切入将前后知识联系起来考查 四、加强综合题型训练,全面系统地掌握好知识 计算能力的提高不是一朝一夕的事,除了要不断归纳总结一些重要公式和结论并加以巧妙、适当的应用外,还要靠平时的积累,要养成踏踏实实、有始有终将最后结果计算出来的习惯,只要持之以恒、坚持练习,计算准确性的提高并不是一件困难的事. 而对整个知识的融会贯通、综合应用也有赖于适当地多做这方面的练习, 第一章行列式 一.概念复习 1. 形式和意义 形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式: a11 a12 (1) a21 a22 (2) ………. a n1 a n2…a nn 如果行列式的列向量组为1,2, …,n,则此行列式可表示为|1,2, …,n|. 意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值. 请注意行列式和矩阵在形式上和意义上的区别. 当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.) 每个n阶矩阵A对应一个n阶行列式,记作|A|. 行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0. 2. 定义(完全展开式) 一般地,一个n阶行列式 a11 a12 (1) a21 a22 (2) ……… a n1 a n2…a nn 的值是许多项的代数和,每一项都是取自不同行,不同列的n个元素的乘积,其一般形式为: n nj j j a a a 2 1 2 1 ,这里把相乘的n个元素的行标按自然顺序排列,它们的列标j1j2…j n构成1,2, …,n的一个全排列(称为一个n元排列), 一个n元排列的总项数共有n!个,因此n阶行列式的值是n!项的代数和。 所谓代数和是在求总和时每项先要乘+1或-1.规定(j1j2…j n)为全排列j1j2…j n的逆序数,全排列的逆序数即小数排列在大数右面的现象出现的个数. 逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数: 2 3 2 3 215 6 3 4,(436512)=3+2+3+2+0+0=10. 则项 n nj j j a a a 2 1 2 1 所乘的是. )1 () (2 1n j j j τ -即逆序数是偶数时,该项为正;逆序数是奇数时,该项为负;在一个n元排列的n!项中,奇排列和偶排列各有n!/2个。至此我们可以写出n阶行列式的值: a11 a12 (1) a21 a22…a2n =. )1 ( 2 1 2 1 2 1 2 1 ) ( n n n nj j j j j j j j j a a a τ - ∑ ……… a n1 a n2…a nn

线性代数习题-[第一章]行列式

习题1—1 全排列及行列式的定义 1. 计算三阶行列式123 4 56789 。 2. 写出4阶行列式中含有因子1324a a 并带正号的项。 3. 利用行列式的定义计算下列行列式: ⑴0 004003002001 0004 D

⑵0 0000000052 51 42413231 2524232221 151********a a a a a a a a a a a a a a a a D = ⑶0 001 0000 200 0010 n n D n -= 4. 利用行列式的定义计算210111()0211 1 1 x x x f x x x -= 中34 , x x 的系数。

习题1—2 行列式的性质 1. 计算下列各行列式的值: ⑴ 2141 012112025 62 - ⑵ef cf bf de cd bd ae ac ab --- ⑶ 2 2 2 2 2 2 2 2 22222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a

2. 在n 阶行列式nn n n n n a a a a a a a a a D 2 1 222 2111211 = 中,已知),,2,1,(n j i a a ji ij =-=, 证明:当n 是奇数时,D=0. 3. 计算下列n 阶行列式的值: ⑴x a a a x a a a x D n = ⑵n n a a a D +++= 11 1 1 1111121 ()120n a a a ≠

线性代数习题集(带答案)

第一部分 专项同步练习 第一章 行列式 一、单项选择题 1.下列排列是5阶偶排列的是 ( ). (A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C) k n -2 ! (D)k n n --2)1( 3. n 阶行列式的展开式中含1211a a 的项共有( )项. (A) 0 (B)2-n (C) )!2(-n (D) )!1(-n 4. =0 00100100 1001 000( ). (A) 0 (B)1- (C) 1 (D) 2 5. =0 00110000 0100 100( ). (A) 0 (B)1- (C) 1 (D) 2 6.在函数1 3232 111 12)(x x x x x f ----= 中3x 项的系数是( ). (A) 0 (B)1- (C) 1 (D) 2

7. 若2 1 33 32 31 232221 131211==a a a a a a a a a D ,则=---=32 3133 31 2221232112 111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若 a a a a a =22 2112 11,则 =21 11 2212ka a ka a ( ). (A)ka (B)ka - (C)a k 2 (D)a k 2- 9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为 x ,1,5,2-, 则=x ( ). (A) 0 (B)3- (C) 3 (D) 2 10. 若5 7341111 1 326 3 478 ----= D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)0 11. 若2 23 5 001 01 11 10 403 --= D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)0 12. k 等于下列选项中哪个值时,齐次线性方程组??? ??=++=++=++0 00321 321321x x kx x kx x kx x x 有非零解. ( ) (A)1- (B)2- (C)3- (D)0 二、填空题

#线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 0010020010000 00n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---=. 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算 例2 一个n 阶行列式 n ij D a =的元素满足 ,,1,2, ,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由i j j i a a =-知i i i i a a =-,即 0,1,2, ,ii a i n ==

故行列式D n 可表示为 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A '= 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)0 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0. 3.化为三角形行列式 若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。 因此化三角形是行列式计算中的一个重要方法。 例3 计算n 阶行列式 a b b b b a b b D b b a b b b b a = 解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,

线性代数-特殊行列式及行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 111121 12,1221222,11,21,1 1,1 12 ,1 (1)2 12,1 1 000000000000000 00 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------= ==- 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????==? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????==-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式;

3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降 阶进行计算——适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法) 【常见的化简行列式的方法】 1. 利用行列式定义直接计算特殊行列式 例1 (2001年考研题) 0001000200019990002000000 002001 D = 分析:该行列式的特点是每行每列只有一个元素,因此很容易联想到直接利用行列式定义进行计算。 解法一:定义法 (1,2,...,2,1,)012...19990(1)2001!(1)2001!2001!n n n D τ--+++++=-=-= 解法二:行列式性质法 利用行列式性质2把最后一行依次与第n -1,n -2,…,2,1行交换(这里n =2001),即进行2000次换行以后,变成副对角行列式。 2001(20011) 20011 20011 2 000020010 001000200(1) (1) (1)2001!2001!019990002000 00 D ?---=- =--=

线性代数习题 行列式

第一章 行列式 1.利用对角线法则计算下列三阶行列式: (1)381141 102 ---; (2)b a c a c b c b a (3)2 2 2 1 11 c b a c b a ; (4)y x y x x y x y y x y x +++. 解 (1)=---3 8 1 141 1 02 811)1()1(03)4(2??+-?-?+?-? )1()4(18)1(2310-?-?-?-?-??- =416824-++- =4- (2)=b a c a c b c b a ccc aaa bbb cba bac acb ---++ 3 3 3 3c b a abc ---= (3)=2 2 2 1 11 c b a c b a 2 2 2 2 2 2 cb ba ac ab ca bc ---++ ))()((a c c b b a ---= (4) y x y x x y x y y x y x +++ yx y x y x yx y y x x )()()(+++++=3 3 3 )(x y x y -+-- 3 3 3 2 2 3 33)(3x y x x y y x y y x xy ------+= )(23 3 y x +-=

2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0 (2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为 2 ) 1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n 3 2 1个 5 2,5 4 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个 3.写出四阶行列式中含有因子2311a a 的项. 解 由定义知,四阶行列式的一般项为 4 3 2 1 4321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为 10100=+++或22000=+++ ∴44322311a a a a -和42342311a a a a 为所求. 4.计算下列各行列式:

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 01110212 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 1111 111 n ---- 1,,1 j n c c j n +=-= 121 1 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法2 01110 212 0n n n D n n --= -- 1 1,2,,111 1111 120 i i r r i n n n +-=----=-- 1 2,,100120 1231 j c c j n n n n +=---= --- =12(1)2(1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 1111n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =111n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上 12 c xc n D += 21121 10010000n n n n x x x a xa a a x a -----++

线性代数行列式经典例题

线性代数行列式经典例题 The Standardization Office was revised on the afternoon of December 13, 2020

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =, 1,1, n a n =-,故 0111 02 12 n n n D n n --= --1,1,,2 i i r r i n n --=-= 0111111 1 1 n ----

1,,1 j n c c j n +=-= 1 2 110 2 1 ( 1) 2 (1) 20 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列.

方法2 01110 21 2 n n n D n n --= --11,2,,1 11111 1 12 i i r r i n n n +-=----= -- 12,, 1 00 1 2 0123 1 j c c j n n n n +=---= ---= 1 2 (1) 2 (1) n n n ----

例2.设a, b, c是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式: = 行列式即为y2前的系数. 于是 = 所以的充要条件是a + b + c = 0. 例3计算D n = 121 10 010 n n n x x a a a x a -- - - + 解:方法1 递推法按第1列展开,有

线性代数习题册行列式-习题详解.doc

行列式的概念 一、选择题 1. 下列选项中错误的是 ( ) a b c d (B) a b d b (A) d a b ; c d c ; c a a 3c b 3d a b a b a b (C) c d c ; (D) c d c . d d 答案: D 2.行列式 D n 不为零,利用行列式的性质对 D n 进行变换后,行 列式的值( ). (A) 保持不变; (B) 可以变成任何值; (C) 保持不为零; (D) 保持相同的正负号. 答案: C 二、填空题 1. log a b 1 =. 1 log b a 解析: log a b 1 log a b log b a 1 1 1 0 . 1 log b a cos sin 2. 3 6 =. sin cos 3 6 cos sin 解析: 3 6 cos cos sin sin cos0 sin cos 3 6 3 6 2 3 6 2x 1 3 3. 函数 f (x) x x 1 中, x 3 的系数为 ; 2 1 x 2x 1 1 g( x) x x x 中, x 3 的系数为. 1 2 x 答案: -2 ; -2.

阶行列式 D n中的n最小值是. 答案: 1. 1 2 3 5.三阶行列式0 2 4 中第2行第1列元素的代数余子式 3 1 1 等于. 答案: 5. 6.若 2x 8 0 ,则x= . 1 2 答案: 2. 7. 在n 阶行列式 D a ij 中,当 i

线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 00100 20010000 n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---= . 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算

例2 一个n 阶行列式n ij D a =的元素满足 ,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由i j j a a =-知i i i a a =-,即 0,1,2,,ii a i n == 故行列式D n 可表示为 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A ' = 1213112 23213 2331230000n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)00 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

线性代数第一章行列式练习题

第一章第一次练习题 一)填空题 1)计算(1465372)τ=________;[135(21)246(2)]n n τ-L L =________; 2)写出四阶行列式中含有因子1123a a 的项及符号__________; 3)在四阶行列式中,21143243a a a a 的符号为__________; 4)设12134453k l a a a a a 在五阶行列式中带有负号,则k =________;l =________. 二)解答题 5)计算三阶行列式 2 221 11a b c a b c .

6)用定义证明 1 (1) 2 12 1 00 000 (1) 00 00 n n n n n λ λλλλ λ - - =- L L L L L .

个元素为零,证明这个行列式为零. 7)设n阶行列式中有多于2n n

班级__________ 姓名__________ 学号_______ 第一章第二次练习题 一)填空题 1)把行列式1 11222 a b c a b c ++定出两个行列式之和______________________; 2)把行列式13 24 1 2 34 0000a a a a x y b b z w b b 写成两个行列式之积_________________________________; 3)提取行列式第二行公因子后11 12132122 2331 3233333a a a a a a a a a =__________________________; 4)行列式22 3456 7 89a b c d a ab ac ad =_________________________________. 二)解答题 5)化简行列式1 11122 223 333x y x a z x y x a z x y x a z +++

线性代数习题参考答案

第一章行列式 §行列式的概念 1.填空 ⑴排列6427531的逆序数为____________ ,该排列为_______ 排列。 (2)i = _____ , j = _______ 时,排列1274 i56 j 9为偶排列。 (3)n阶行列式由____ 项的代数和组成,其中每一项为行列式中位于不同行不同列 的_n个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么 列标构成一个n元排列。若该排列为奇排列,则该项的符号为___________ 号;若为 偶排列,该项的符号为_______ 号。 (4)在6阶仃列式中,含3i5a23a32a44a5i a66的项的符号为___________________________ ,含 832843814851866825 的项的符号为 _________ 。 2.用行列式的定义计算下列行列式的值 8110 0 (1) 0 822 823 0 832 833 解:该行列式的3!项展开式中,有 _________ 项不为零,它们分别为____________________ _________________________________ ,所以行列式的值为__________________________ 。 0 0 0 III III 82,2 旦n 82n ⑵++ + F r p b h ■ 0 8n斗2 III8n 4,n J 8n 4n 8n1 8n2 III8n,n 4 8nn 解:该行列式展开式中唯一不可能为0的项是 ___________________ ,而它的逆序数是_________ ,故行列式值为 ______________________ 。

相关文档
相关文档 最新文档