文档库 最新最全的文档下载
当前位置:文档库 › 复变函数我们来计算几个复积分例沿两条路径积分L1L

复变函数我们来计算几个复积分例沿两条路径积分L1L

复变函数我们来计算几个复积分例沿两条路径积分L1L
复变函数我们来计算几个复积分例沿两条路径积分L1L

复变函数

第二章我们来计算几个复积分

例:

沿两条路径积分

①L1

②L2+L3

解:路径①的参数方程为

L1: Z(t)=1-t+it (0≤t≤1)

路径②的参数方程为

L2: Z(t)=1-t(0≤t≤1)

L3: Z(t)=it(0≤t≤1)

可见沿不同路径积分值并不一样,这说名积分是路径的泛函。例:

路径①:

积分路径是圆心在a,半径为r的圆,路径的方向为逆时针方向。路径的参数方程为:

显然至此结果应分两种情况考虑:n=1和n≠1

n=1情况:

n≠1情况:

路径②:

如图,路径为然原点半径为r的圆路径的参数方程为:

例:

沿两条路径积分

路径①:L1

路径②:L2+L3

解:路径①的参数方程为

L1: Z(t)=1-t+it (0≤t≤1) ∴

路径②的参数方程为

L2: Z(t)=1-t(0≤t≤1)

L3: Z(t)=it(0≤t≤1)

例:积分:

积分路径为不通过原点有1→Z的曲线

向前面一样,这里仍将积分变成参数积分,即认为:

这样积分为:

第一项

第二项:

但是多少则取决于积分路径

考虑几种积分路径

这种路径没有绕过原点,所以Z由1出发到终点

但如果我们的路径绕过原点,如图

可以看到每绕原点一周,就增加一个2π,而原则上可以绕原点转任意圈,于是有

例:

解:

在C的内部绕a做一半径为r的圆周线L,由复连通区域的Cauchy定理可知

L是半径为r的圆,这个结果我们已经在前面得到过了(见<3-1-2-②>)所以

例:

解:积分路径是半径为2的一个圆

根据Cauchy公式我们有

复变函数与积分变换重点公式归纳

复变函数与积分变换复习提纲 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= ΛΛ1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+= =

复变函数积分方法总结

复变函数积分方法总结
[键入文档副标题]
acer [选取日期]

复变函数积分方法总结
数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新
形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,
也就会有相应的积分函数求解方法。就复变函数:
z=x+iy i2=-1 ,x,y 分别称为 z 的实部和虚部,记作
x=Re(z),y=Im(z)。 arg z=θ? θ?称为主值 -π<θ?≤π ,
Arg=argz+2kπ 。利用直角坐标和极坐标的关系式 x=rcosθ ,
y=rsinθ,故 z= rcosθ+i rsinθ;利用欧拉公式 eiθ=cosθ+isinθ。
z=reiθ。
1.定义法求积分:
定义:设函数 w=f(z)定义在区域 D 内,C 为区域 D 内起点为 A 终点
为 B 的一条光滑的有向曲线,把曲线 C 任意分成 n 个弧段,设分点为
A=z0 ,z1,…,zk-1,zk,…,zn=B,在每个弧段 zk-1 zk(k=1,2…n)上任
取一点?k 并作和式 Sn=
(zk-zk-1)=
?zk 记?zk= zk-
zk-1,弧段 zk-1 zk 的长度 =
{?Sk}(k=1,2…,n),当
0 时,
不论对 c 的分发即?k 的取法如何,Sn 有唯一的极限,则称该极限值为
函数 f(z)沿曲线 C 的积分为:
=
?zk
设 C 负方向(即 B 到 A 的积分记作)
.当 C 为闭曲线时,f(z)
的积分记作
(C 圆周正方向为逆时针方向)
例题:计算积分
,其中 C 表示 a 到 b 的任一曲

复变函数与积分变换 复旦大学出版社 习题六答案

习题六 1. 求映射1w z = 下,下列曲线的像. (1) 22x y ax += (0a ≠,为实数) 解:2 2 2 2 11i=+i i x y w u v z x y x y x y == = - +++ 2 2 1x x u x y ax a = == +, 所以1w z = 将22x y ax +=映成直线1u a =. (2) .y kx =(k 为实数) 解: 2 2 2 2 1i x y w z x y x y = =- ++ 2 22 2 2 2 x y kx u v x y x y x y = =- =- +++ v ku =- 故1w z = 将y kx =映成直线v ku =-. 2. 下列区域在指定的映射下映成什么? (1)Im()0, (1i)z w z >=+; 解: (1i)(i )()i(+)w x y x y x y =+?+=-+ ,. 20.u x y v x y u v y =-=+-=-< 所以Im()Re()w w >. 故(1i)w z =+?将Im()0,z >映成Im()Re()w w >. (2) Re(z )>0. 00, 00. Im(w )>0. 若w =u +i v , 则 2 2 2 2 ,u v y x u v u v = = ++ 因为0 + 故i w z = 将Re(z )>0, 00,Im(w )>0, 12 12 w > (以(12 ,0)为圆心、12 为半径的圆) 3. 求w =z 2在z =i 处的伸缩率和旋转角,问w =z 2将经过点z =i 且平行于实轴正向的曲线的切线方向映成w 平面上哪一个方向?并作图.

复变函数积分计算

复变函数积分计算方法总结 1、 一般计算方法:()(,)(,)f z u x y iv x y =+沿有向曲线C 的积分: ()C C C f z dz udx vdy i udy vdx =-++? ?? 若有向光滑曲线C 可以表示为参数方程()()() ()z z t x t iy t t αβ==+≤≤,则: ()[()]()C f z dz f z t z t dt β α '=? ? 2、 柯西积分定理:()f z 在简单闭曲线C 上和内部解析,则: ()0C f z dz =? 由闭路变形原理可得重要积分:10 0, 01 2, 0()n C n dz i n z z π+≠?=? =-?? 可以把各种简单闭路变为圆周进行积分。 3、 柯西积分公式:设D 为有界多(单)连域,Γ为其正向边界 条件:()f z 在D 内及其边界Γ上解析,0z 为D 内任意一点 公式: 00() 2()f z dz if z z z πΓ=-? 高阶导数公式:设D 为有界多(单)连域,Γ为其正向边界 条件:()f z 在D 内及其边界Γ上解析,0z 为D 内任意一点 公式: () 01 0()2()()! n n f z i dz f z z z n π+Γ=-? 联系:柯西积分公式是高阶导数公式的特殊情况,高阶导数公式是柯西积分公式的推广。 4、 用洛朗级数展开式的-1次项系数计算积分 00101() ()() (r<) 2()n n n n C n f z f z c z z z z R c dz i z z π∞ +=-∞ = --<= -∑?,其中: 其中C 为环域内任意围绕0z 的正向简单闭路。当1n =-时,-1次项的系数为11()2C c f z dz i π-= ? ,因此 1()2C f z dz ic π-=? 5、 用留数计算复积分 函数()f z 在点0z 的留数定义为:01Re [(),]()2C s f z z f z dz i π= ? ,即洛朗级数展开式中-1 次项的系数。 留数定理:函数()f z 在正向简单曲线C 上处处解析,在C 内部除了有限个孤立奇点12, ... n z z z 外解析,则有:

复变函数期末试卷()

《复变函数论》期末考试试题-A 卷答案 一、 选择题(每小题4分,共20分) ⒈ 21|z |且Im 表示的轨迹为( B ) A 、有界闭区域 B 、有界开区域 C 、无界开区域 D 、无界闭区域 ⒉ 右半平面Re z >0 在映射 ω=i z +i 下的象为( D ) A 、ωIm >0 B 、ωRe >0 C 、ωRe >1 D 、ωIm >1 ⒊ )43(i Ln +-= (C ) A 、)34(5ln arctg i -+π B 、)3 42(5ln arctg k i -+π C 、)342(5ln arctg k i -++ππ D 、)342(5ln arctg k i +++ππ ⒋ ()=f z ( D ) A 、1,2,=∞z B 、0,1,2=z C 、0,1,2,=z ∞ D 、0,=z ∞ ⒌ 0z = 0 为函数 21cos ()z f z z -=的( A ) A 、可去奇点 B 、本性奇点 C 、一阶极点 D 、二阶极点 二、填空题(每小题4分,共36分) ⒈ 设ω=,则()i ω-=( ) ⒉ 设 ?=-++=3 2173)(z z z f ξξξξd ,则 )1('i f +=)136(2i +-π 3. ?=+1)2ln(z z dz = 0 4. ? =++223 4sin z z z z πdz = 0 5. 10?423z =3 (2)()z dz z +z -2= 2i π 6.将函数2 1()(2)f z z =+展成1z -的幂级数,则其收敛圆为(|1|3z -<). 7.||z e 在闭圆|1|1z -≤上的最大值为( 2e )

复变函数与积分变换公式

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.2 1i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数与积分变换重点公式归纳

复变函数与积分变换 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= 1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+== 反余弦函数 )1(1 cos 2-+= =z z Ln i z Arc w

复变函数与积分变换公式

复变函数与积分变换公 式 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

复变函数复习提纲 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.21i =-. 注:两个复数不能比较大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值 ()arg z 是位于(,]ππ- 中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

复变函数与积分变换习题答案

一、将下列复数用代数式、三角式、指数式表示出来。 (1) i 解:2 cos sin 2 2 i i e i π ππ==+ (2) -1 解:1cos sin i e i πππ-==+ (3) 13i + 解:()/31322cos /3sin /3i i e i πππ+==+ (4) 1cos sin i αα-+ 解: 2 221cos sin 2sin 2sin cos 2sin (sin cos ) 2 2 2 2 2 2 2sin cos()sin()2sin 222222 i i i i i e παα α α α α α αααπαπαα ?? - ??? -+=+=+? ?=-+-= ??? (5) 3z 解:()3333cos 3sin 3i z r e r i θθθ==+ (6) 1i e + 解:()1cos1sin 1i i e ee e i +==+ (7) 11i i -+ 解: 3/4 11cos 3/4sin 3/411i i i i e i i i πππ--==-==+++ 二、计算下列数值 (1) a ib + 解: 1ar 2ar 2 2 22 4 21ar 2 2421ar 2242 b b i ctg k i ctg k a a b i ctg a b i ctg a a i b a b e a b e a b e a b e ππ?? ?? ++ ? ? ?? ?? += += +?+?=? ?-+? (2) 3 i 解:6 226 36346323 2332 2322 i k i i i i k i e i i e e e e i π ππππππππ?? ??++ ? ???????+ ?????+ ??? ?=+ ?? ??====-+? ??=-?

复变函数积分方法总结

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式 e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B 的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,z1,…,

z k-1,z k,…,z n=B,在每个弧段z k-1 z k(k=1,2…n)上任取一点?k并作和式S n=?(z k-z k-1)=??z k记?z k= z k- z k-1,弧段z k-1 z k的长度 ={?S k}(k=1,2…,n),当0时,不论对c的分发即?k的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C的积分为: =??z k 设C负方向(即B到A的积分记作).当C为闭曲线时,f(z)的积分记作(C圆周正方向为逆时针方向) 例题:计算积分,其中C表示a到b的任一曲线。(1)解:当C为闭合曲线时,=0. ∵f(z)=1 S n=?(z k-z k-1)=b-a ∴=b-a,即=b-a. (2)当C为闭曲线时,=0. f(z)=2z;沿C连续,则积分存在,设?k=z k-1,则 ∑1= ()(z k-z k-1) 有可设?k=z k,则 ∑2= ()(z k-z k-1) 因为S n的极限存在,且应与∑1及∑2极限相等。所以 S n= (∑1+∑2)==b2-a2 ∴=b2-a2 1.2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy带入得:

学习复变函数与积分变换的心得

学习复变函数与积分变换的心得 这个学期我们学习了复变函数与积分变换这门课程,虽然它同概率统计一样也是考查课,但它的应用及延伸远比概率统计广,复杂得多。我从中学到了很多,上课也感受到了这门课程的魅力及授课老师的精彩的讲课。 每周二都很空闲,除了体育课就没课了,又因为这门课程是公共考查课,是四个班级在一起上课,所以有时候经常想逃课,但自从上了梁老师的一堂课,就感觉到了他是一个很负责的老师,他每次来教室都来得很早,他很喜欢点名,上课上的也很生动,他经常会叫同学上黑板做题目,来检查学生学得怎么样,他不希望同学带早餐进教室。以后的星期二基本上都没逃过课,我深深地被复变函数与积分变换这门课程给吸引住了。 关于这门课程,首先,它作为一门工科类各专业的重要基础理论课程,它与工程力学、电工技术、电磁学、无线电技术、信号系统和自动控制等课程的联系十分密切,其理论方法应用广泛。同时,作为一门工程数学的课程,它主要是以工程背景为依托来展开讨论和研究的,其前提就是为了服务于实际工程。其次,复变函数与积分变换作为一门工程数学课程,概念晦涩难懂、计算繁琐和逻辑推理不易理解。它既具有传统数学的一些特点,又具有与实际工程相结合才能理解的特点。传统数学主要注重对于基本概念的理解和对理论的讲解,要求理论推导具有严密的逻辑性,而不太注重其实际应用。而工程数学在推导定理或概念的过程中就会出现一些不完全符合严密逻辑的推理,但在现实中又是实实在在存在的一些特殊情况。如单位脉冲函数,对于集中于一点或一瞬时的量如点电荷、脉冲电流等,这些物理量都可以用通常的函数形式来描述。 复变函数是在实变函数的基础上产生和发展起来的一个分支,复变函数与积分变换中的理论和方法不仅是数学的许多后续课程如数理方程泛函分析多复变函数调和分析等课程的基础,而且在其它自然科学和各种工程技术领域特别是信号处理以及流体力学电磁学热学等的研究方面有着广泛的应用,可以说复变函数与积分变换既是一门理论性较强的课程,又是解决实际问题的有力工具各高校普遍将复变函数与积分变换课程作为工科各专业的一门重要的必修科来开设,尤其作为电子、机电自动化等电力专业的学生而言,该课程更是一门必不可少的专业基础类必修课,它为电路分析信号与系统以及自动控制原理等后续专业课程的学

第三章复变函数的积分(答案)

复变函数练习题 第三章 复变函数的积分 系 专业 班 姓名 学号 §1 复变函数积分的概念 §4 原函数与不定积分 一.选择题 1.设C 为从原点沿2y x =至1i +的弧段,则2()C x iy dz +=? [ ] (A )15 66 i - (B )156 6 i -+ (C )156 6 i -- (D )156 6 i + 2. 设C 是(1)z i t =+,t 从1到2的线段,则arg C zdz =? [ ] (A )4 π (B )4 i π (C )(1)4 i π + (D )1i + 3.设C 是从0到12 i π +的直线段,则 z C ze dz =? [ ] (A )12 e π- (B )12 e π-- (C )12 ei π+ (D )12 ei π - 4.设()f z 在复平面处处解析且()2i i f z dz i πππ-=?,则积分()i i f z dz ππ--=? [ ] (A )2i π (B )2i π- (C )0 (D )不能确定 二.填空题

1. 设C 为沿原点0z =到点1z i =+的直线段,则 2C zdz =? 2 。 2. 设C 为正向圆周|4|1z -=,则 22 32 (4) C z z dz z -+=-? 10.i π 三.解答题 1.计算下列积分。 (1) 323262121 ()02 i z i i z i i i e dz e e e ππππππ---==-=? (2) 22222sin 1cos2sin 222 4sin 2.244i i i i i i zdz z z z dz i e e e e i i i i ππ ππππππππππππ------??==- ????? --=-=-=+ ?? ? ??

复变函数与积分变换试题及答案

复变函数与积分变换试题(一) 一、填空(3分×10) 1.)31ln(i --的模 ?? ,幅角 ?? 。 2.-8i的三个单根分别为: , , 。 3.Ln z在 的区域内连续。 4.z z f =)(的解极域为:? ?? ? 。 5.xyi y x z f 2)(22+-=的导数=')(z f ? ??。 6.=?? ? ???0,sin Re 3z z s ?? ?。 7.指数函数的映照特点是:??? ? ?? ??。 8.幂函数的映照特点是: ? ?? ? ?。 9.若)(ωF =F [f (t)],则)(t f = F )][(1ω-f ?? ??。 10.若f (t )满足拉氏积分存在条件,则L [f (t )]= ? ? 。 二、(10分) 已知222 1 21),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为解 析函数,且f(0)=0。 三、(10分)应用留数的相关定理计算 ?=--2||6)3)(1(z z z z dz 四、计算积分(5分×2) 1.?=-2 ||) 1(z z z dz

2.? -c i z z 3 )(cos C :绕点i 一周正向任意简单闭曲线。 五、(10分)求函数) (1 )(i z z z f -= 在以下各圆环内的罗朗展式。 1.1||0<-

复变函数与积分变换复习提纲

复变函数复习重点 (一)复数的概念 1.复数的概念:z x iy =+,,x y 是实数, ()()Re ,Im x z y z ==.2 1i =-. 注:一般两个复数不比较大小,但其模(为实数)有大小. 2.复数的表示 1 )模:z = 2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。 3)()arg z 与arctan y x 之间的关系如下: 当0,x > arg arctan y z x =; 当0,arg arctan 0,0,arg arctan y y z x x y y z x ππ? ≥=+??

《复变函数与积分变换》期末考试试卷及答案[1]

一.填空题(每小题3分,共计15分) 1. 2 31i -的幅角是( 2,1,0,23 ±±=+- k k ππ ) ; 2.)1(i Ln +-的主值是( i 4 32ln 21π + ); 3. 2 11)(z z f +=,=)0()5(f ( 0 ), 4.0=z 是 4 sin z z z -的( 一级 )极点; 5. z z f 1 )(=,=∞]),([Re z f s (-1 ); 二.选择题(每题4分,共24分) 1.解析函数 ),(),()(y x iv y x u z f +=的导函数为(B ) ; (A ) y x iu u z f +=')(; (B )y x iu u z f -=')(; (C ) y x iv u z f +=')(; (D )x y iv u z f +=')(. 2.C 是正向圆周 3=z ,如果函数=)(z f ( D ) ,则0d )(=?C z z f . (A ) 23-z ; (B )2 ) 1(3--z z ; (C ) 2)2()1(3--z z ; (D ) 2 )2(3 -z . 3.如果级数∑∞ =1 n n n z c 在 2=z 点收敛,则级数在(C ) (A )2-=z 点条件收敛 ; (B )i z 2=点绝对收敛; (C ) i z +=1点绝对收敛; (D )i z 21+=点一定发散. 4.下列结论正确的是( B ) (A )如果函数 )(z f 在0z 点可导,则)(z f 在0z 点一定解析; (B) 如果 )(z f 在C 所围成的区域内解析,则 0)(=? C dz z f (C )如果0)(=? C dz z f ,则函数)(z f 在C 所围成的区域内一定解析; (D )函数 ),(),()(y x iv y x u z f +=在区域内解析的充分必要条件是),(y x u 、) ,(y x v

《复变函数与积分变换》

《复变函数与积分变换》期末复习题 2009-6-22 一、判断题 1. 若{z n }收敛,则{Rez n }与{Imz n }都收敛. ( T ) 2. 如z 0是函数f (z )的本性奇点,则)(lim 0 z f z z →一定不存在. ( F ) 3. 若f (z)在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=?C dz z f . ( F ) 4.复数484z +=i 的模|z|=8。 ( T ) 5.设100i)(1z +=,则Imz =0。 ( T ) 6.设z=i 2e +,则argz =1。 ( T ) 7.f (z )的可导处为0。 ( T ) 8.设C 为正向圆周|z|=1,则?+c )dz z z 1 (=4πi 。 ( T ) 9.幂极数∑ ∞ =1 n n n z n n!的收敛半径为e 。 ( T ) 10.函数f(z)=]1)(z 1 1z 1[1z 15 +++++ 在点z=0处的留数为6。 ( T ) 11.cos z 与sin z 在复平面内有界。 ( F ) 12.若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数。( T ) 13.若f (z )在z 0解析,则f (z )在z 0处满足柯西-黎曼条件。 ( T ) 14.若函数f (z )在z 0可导,则f (z )在z 0解析。 ( F ) 15.若f (z )在区域D 内解析,则对D 内任一简单闭曲线C 都有0)(=? C dz z f 。 ( F ) 16.若)(lim 0 z f z z →存在且有限,则z 0 是函数的可去奇点。 ( F ) 17.若函数f (z )在区域D 内解析且0)('=z f ,则f (z )在D 内恒为常数。 ( T ) 18.如果z 0是f (z )的本性奇点,则)(lim 0 z f z z →一定不存在。 ( F ) 19.非周期函数的频谱函数呈连续状态。 ( T ) 20.位移性质表明,一个函数乘以指数e at 后的拉氏变换等于其像函数作位移a 。( T )

复变函数与积分变换 学习笔记

第二章解析函数 一、复变函数的导数及微分 1、导数的定义 2、可导与连续 3、求导法则 实变函数的求导法则可以不加更改地推广到复变函数中来 4、微分的概念 与一元实变函数的微分概念完全一致 二、解析函数的概念 1、解析函数的定义 如果函数f(z)在z0及z0的邻域内处处可导,那么称f(z)在z0解析。 如果函数f(z)在区域D内每一点解析,则称f(z)在区域D内解析。或称f(z)是区域D内的一个解析函数(全纯函数或正则函数) 2、奇点的定义 如果函数f(z)在z0不解析,那么称z0为f(z)的奇点。 根据定义可知,函数在区域内解析和区域内可导是等价的。但是,函数在一点处解析和一点处可导是不等价的,即在一点处可导,不一定在该点处解析。 函数在一点处解析比在该点处可导的要求高得多。 定理 (1)在区域D内解析的两个函数f(z)和g(z)的和、差、积、商(除去分母为零的点)在D内解析。 (2)设函数h=g(z)在z平面上的区域D内解析,函数w=f(h)在h平面上的区域G内解析。如果对于D内的每个点z,函数g(z)的对应值h都属于G,那么复合函数w=f|g(z)|在D内解析。 根据定理可知: (1)所有多项式在复平面内是处处解析的。 (2)任何一个有理分式函数P(z)/Q(z)在不含分母为零的点的区域内是解析的,使分母为零的点是它的奇点。 注意:复变函数的导数定义与一元实变函数的导数定义在形式上是完全一样的,它们的求导公式与求导法则也一样,然而复变函数极限存在要求与z趋于零的方式无关,这表明它在一点可导的条件比实变函数严格得多。 第二节、函数解析的充要条件 一、主要定理 定理一:设函数f(z)=u(x,y)+iv(x,y)定义在区域D内,则f(z)在D内一点z=x+yi 可导的充要条件是:u(x,y)与v(x,y)在点(x,y)可微,并在该点满足柯西-黎曼方 程:?u ?x =?v ?y ,?u ?y =??v ?x 。 根据定理一,可得函数f(z)=u(x,y)+iv(x,y)在点z=x+yi处的导数公式:f'(z) =?u ?x +i?v ?x =1 i ?u ?y +?v ?y 。 定理二:函数f(z)=u(x,y)+iv(x,y)在其定义域D内解析的充要条件是:u(x,y)

复变函数与积分变换(修订版-复旦大学)课后的第二章习题答案

习题二 1. 求映射 1 w z z =+ 下圆周||2z =的像. 解:设i ,i z x y w u v =+=+则 2222 22 1i i i i i()i x y x y u v x y x y x y x y x y x y x y -+=++ =++=++-++++ 因为22 4x y +=,所以 53i 44u iv x y += + 所以 54u x =,34v y =+ 53 4 4 ,u v x y == 所以( ) ()2 25344 2 u v + =即( ) ()2 2 22531 u v + =,表示椭圆. 2. 在映射2 w z =下,下列z 平面上的图形映射为w 平面上的什么图形,设e i w ? ρ=或 i w u v =+. 解:设222 i ()2i w u v x iy x y xy =+=+=-+ 所以22 ,2.u x y v xy =-= (1) 记e i w ? ρ=,则 π 02,4r θ<<= 映射成w 平面内虚轴上从O 到4i 的一段,即 π 04,. 2ρ?<<= (2) 记e i w ? ρ=,则π0,024r θ<<<<映成了w 平面上扇形域,即 π 04,0.2ρ?<<<<

(3) 记w u iv =+,则将直线x=a 映成了22,2.u a y v ay =-=即 222 4().v a a u =-是以原点为焦点,张口向左的抛物线将y=b 映成了22 ,2.u x b v xb =-= 即222 4()v b b u =+是以原点为焦点,张口向右抛物线如图所示 . 3. 求下列极限. 解:令 1z t = ,则,0z t →∞→. 于是2 22 01lim lim 011z t t z t →∞→==++. (2) 0Re()lim z z z →; 解:设z=x+yi ,则Re()i z x z x y =+有 000 Re()1 lim lim i 1i z x y kx z x z x kx k →→=→== ++ 显然当取不同的值时f(z)的极限不同 所以极限不存在. (3) 2lim (1) z i z i z z →-+; 解: 2lim (1) z i z i z z →-+= 11 lim lim ()()()2 z i z i z i z i z z i z i z →→-==- +-+.

关于复变函数积分求解总结

关于求积分的各种方法的总结 摘要:函数的积分问题是复变函数轮的主要内容,也是其基础部分,因此有必要总结归纳求积分的各种方法.其主要方法有:利用柯西积分定理,柯西积分公式和用留数定理求积分等方法.现将这些方法逐一介绍. 关键词:积分,解析,函数,曲线 1.利用定义求积分 例1、计算积分()dz ix y x c ?+-2,积分路径C 是连接由0到i +1的直线段. 解:()10≤≤=x x y 为从点0到点i +1的直线方程,于是 ()dz ix y x c ?+-2 ()()iy x d ix y x i ++-= ?+10 2 ()()ix x d ix x x ++-= ?1 2 ()dx x i i ?+=1 21 3 1i -- =. 2.利用柯西积分定理求积分 柯西积分定理:设()z f 在单连通区域 D 内解析,C 为D 内任一条周线,则 ()0=?dz z f c . 柯西积分定理的等价形式:设C 是一条周线, D 为C 之内部,()z f 在闭域 C D D +=上解析,则()0=?dz z f c . 例2、求dz i z z c ? +cos ,其中C 为圆周13=+i z , 解:圆周C 为()13=--z z ,被积函数的奇点为i -,在C 的外部, 于是, i z z +cos 在以C 为边界的闭圆13≤+i z 上解析, 故由柯西积分定理的等价形式得dz i z z c ? +cos 0=. 如果D 为多连通区域,有如下定理: 设D 是由复周线---+++=n C C C C C 210所构成的有界多连通区域,()z f 在D 内

复变函数积分复习题答案

3.1计算积分 2C z dz ? ,其中C 是: (1)原点到()2i +的直线段; (2)原点到2再到()2i +的折线; (3)原点到i 再沿水平到()2i +的折线。 解:(1)C 的参数方程为()()22201z t i t ti t =+=+≤≤ ()2dz i dt =+ 于是 ()()()222 1 222113 C i i d z d t i z t +++== ? (2)12C C C =+,1C 参数方程为()02z t t =≤≤, 2C 参数方程为()201z it t =+≤≤ ()()1 2 2 21 2 2 2 2 1 22113 C C C z dz z dz z dz t dt id it i t += +=+=+? ???? (3)12C C C =+,1C 参数方程为()01z it t =≤≤, 2C 参数方程为()02z t i t =+≤≤ ()()()1 2 2 1 2 2 2 22 1 2113 C C C z dz z dz z dz it idt dt t i i += +++==????? 3.2设C 是,i z e θ θ=是从π-到π的一周,计算: (1) ()Re C z dz ? ;(2)()Im C z dz ?;(3)C zdz ? 解:cos sin i z e i θ θθ==+,()sin cos dz i d θθθ=-+ (1)()()Re cos sin cos C z dz i d i π π θθθθπ-=-+=??; (2)()()Im sin sin cos C z dz i d π π θθθθπ-=-+=-? ?; (3) ()()cos sin sin cos 2C zdz i i d i π π θθθθθπ-=--+=? ? 3.3计算积分C z zdz ? ,其中C 是由直线段11,0x y -≤≤=及上半单位圆周组成的正向闭 曲线。 解:12C C C =+,1C 表示为z x iy =+,()11,0x y -≤≤=; 2C 表示为()cos sin 0z x iy i θθ θπ=+=+≤≤,()sin cos dz i d θθθ=-+,

复变函数与积分变换试题及答案

复变函数与积分变换试题(一) 一、填空(3分×10) 1.)31ln(i --的模 ,幅角 。 2.-8i 的三个单根分别为: , , 。 3.Ln z 在 的区域内连续。 4.z z f =)(的解极域为: 。 5.xyi y x z f 2)(22+-=的导数=')(z f 。 6.=?? ? ???0,sin Re 3z z s 。 7.指数函数的映照特点是: 。 8.幂函数的映照特点是: 。 9.若)(ωF =F [f (t )],则)(t f = F )][(1ω-f 。 10.若f (t )满足拉氏积分存在条件,则L [f (t )]= 。 二、(10分) 已知222 1 21),(y x y x v +-=,求函数),(y x u 使函数),(),()(y x iv y x u z f +=为 解析函数,且f (0)=0。 三、(10分)应用留数的相关定理计算 ?=--2||6)3)(1(z z z z dz 四、计算积分(5分×2) 1.?=-2||) 1(z z z dz 2.?-c i z z 3 ) (cos C :绕点i 一周正向任意简单闭曲线。

五、(10分)求函数) (1 )(i z z z f -= 在以下各圆环内的罗朗展式。 1.1||0<-

复变函数积分计算方法

()()()0 1 1. lim n k k T k C f z dz f z λ?→==?∑? (定义法) 2. ()d d d d d C C C f z z u x v y v x u y =-++? ??

1.计算函数()Re f z z =沿下列曲线的积分. (2)2C 为从点0z =到点11z =再到点 21z i =+的折线. 解:从点0z =到点11z =的直线段参数方程为z x =(01)x ≤≤,在它上有 ()1,Re z x z x '==,则 1 1 210,10 1 Re 1 22x I z dz x dx ==?= = ??, 从点11z =再到点21z i =+的直线段参数方程为1(01),z yi y =+≤≤在它上有 (),z y i '=Re 1z =,则 1 1 201,10 Re 1 i I z dz i dy iy i +==?==? ?,

于是由复积分对积分路径的可加性可得 2121 Re .2C z dz I I i =+=+? 4.计算()||f z z =沿下列曲线的积分. (1)1C 为从11z =-到21z =的直线段; (2)2C 为从11z =-到21z =的上半圆周; (3)3C 为从11z =-到21z =的下半圆周. 解:(1)直线段1C 的参数方程为 (11),z x x =-≤≤在它上有()1,z x '=||||z x =,则 1101 110 11 || || 1;22C z dz x dx x dx x dx --==-+=+=????(2)上半圆周2C 的参数方程为

相关文档 最新文档